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The Data Science domain has expanded monumentally in both research and industry communities
during the past decade, predominantly owing to the Big Data revolution. Artificial Intelligence (AI)
and Machine Learning (ML) are bringing more complexities to data engineering applications, which
are now integrated into data processing pipelines to process terabytes of data. Typically, a significant
amount of time is spent on data preprocessing in these pipelines, and hence improving its efficiency
directly impacts the overall pipeline performance. The community has recently embraced the concept
of Dataframes as the de-facto data structure for data representation and manipulation. However, the
most widely used serial Dataframes today (R, pandas) experience performance limitations while
working on even moderately large data sets. We believe that there is plenty of room for improvement
by taking a look at this problem from a high-performance computing point of view. In a prior
publication, we presented a set of parallel processing patterns for distributed dataframe operators
and the reference runtime implementation, Cylon [1]. In this paper, we are expanding on the initial
concept by introducing a cost model for evaluating the said patterns. Furthermore, we evaluate the
performance of Cylon on the ORNL Summit supercomputer.
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1. Introduction

Artificial Intelligence (Al), Machine Learning (ML), and the
Big Data revolution have introduced an abundance of complex
data engineering applications in the data science domain. These
applications are now required to process terabytes of data and
are orchestrated as an intricate collection of data engineering
pipelines. To achieve this, a significant amount of developer time is
spent on data exploration, preprocessing, and prototyping. There-
fore, improving the efficiency of such activities directly impacts
the overall data engineering pipeline performance.

Databases and structured query language (SQL) have been
the de-facto tool for data preprocessing applications. However,
in the early 2000s, the focus shifted significantly towards Big
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Data toolkits and frameworks. These systems (eg. Hadoop [2] and
map-reduce [3], Spark [4], Flink [5], etc.) enabled more capa-
bilities than traditional relational database management systems
(RDBMS), such as functional programming interface, consuming
large structured and unstructured data volumes, deploying in the
cloud at scale, etc. Coinciding with the big data developments,
enterprise and research communities have invested significantly
in artificial intelligence and machine learning (AI/ML) systems.
Data analytics frameworks complement Al/ML by providing a rich
ecosystem for preprocessing data, as these applications require
enormous amounts of data to train their models properly.

In recent times, the data science community has increas-
ingly moved away from established SQL-based abstractions and
adopted Python/R-based approaches, due to their user-friendly
programming environment, optimized execution backends, broad
community support, etc. Dataframes play a pivotal role in this
transformation [6] by providing a functional interface and inter-
active development environment for exploratory data analytics.
Most dataframe systems available today (e.g. R-dataframe, Pan-
das) are driven by the open-source community. However, despite
this popularity, many dataframe systems encounter performance
limitations even on moderately large data sets. We believe that
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dataframe systems have now exhausted the capabilities of a sin-
gle computer and this paves the way for distributed and parallel
dataframe processing systems.

1.1. Background: High-performance dataframes from parallel pro-
cessing patterns

In the precursor publication, titled “High-Performance
Dataframes from Parallel Processing Patterns” [1], we presented a
framework that lays the foundation for building high-performance
distributed-memory parallel dataframe systems based on par-
allel processing patterns. There, we analyzed the semantics of
common dataframe operators to establish a set of generic dis-
tributed operator patterns. We also discussed several significant
engineering challenges related to developing a scalable and high-
performance distributed dataframe (DDF) system. The main goal
of this framework is to simplify the DDF development pro-
cess substantially by promoting existing serial/ local operators
into distributed operators following the said patterns. They pri-
marily focus on a distributed memory and Bulk Synchronous
Parallel (BSP) [7,8] execution environment. This combination
has been widely employed by the high-performance computing
(HPC) community for exascale computing applications with ad-
mirable success. Based on this framework, we developed Cylon, an
open-source high-performance distributed dataframe system [9].

In this paper, we present an in-depth analysis of the aforemen-
tioned parallel processing patterns based on a cost model. We
encapsulate the parallel processing patterns concept into “Cylon
Distributed Operator Model” and present “Cylon Communica-
tion Model” which allows plugging-in multiple communication
runtimes into Cylon distributed execution. These two aspects con-
stitute the “Cylon Distributed Memory Execution Model”, which
we will discuss in detail in the following sections. Furthermore,
we will introduce a cost model to evaluate the performance of
distributed memory execution. In addition, we demonstrate the
scalability of Cylon on leadership-class supercomputing environ-
ments, which affirms the significance of the underlying frame-
work. We have also conducted a scalability analysis between
Cylon and related state-of-the-art data processing systems. This
analysis demonstrates the applicability of the design across the
board, on both distributed computing and supercomputing infras-
tructure. In the following sections, we use Cylon to refer to its
underlying high-performance DDF framework interchangeably.

2. Cylon distributed-memory execution model

Cylon is based on the distributed memory parallel model, which
isolates memory for each parallel process. These processes can
manage their memory individually while communicating with
others using message passing. This isolation makes distributed
operator implementation easier to reason about. While it leaves
room for improvement, especially using multi-threading execu-
tion, the results show that Cylon dataframes show superior scal-
ability over the state-of-the-art systems. In addition, it is based
on BSP execution in the distributed memory environment. Gao
et al. [10] recently published a similar concept for scaling joins
over thousands of Nvidia Graphical Processor Units (GPU). Cylon
experiments demonstrate that this approach can be generalized
to all operators and achieves commendable performance.

Conceptually, we can divide Cylon distributed execution model
into two distinct sub-models, 1. Communication Model, and
2. Distributed Operator Model. We will discuss the former in
Section 3 and the latter in Section 4.
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Distributed Dataframe[schema = S, , len = N]

Schema (S,)
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.............

Row Labels (Ry)

Fig. 1. Distributed memory dataframe abstraction.

2.1. Distributed memory parallel dataframe definition

The primary insight behind Cylon is to present a dataframe
framework that promotes an already available serial (local) op-
erator into a distributed memory parallel execution environ-
ment [11]. For this purpose, we formally defined a Distributed
Memory Parallel Dataframe based on row-based partitioning in
our previous publication [1]. This concept is depicted in Fig. 1.
The dotted lines represent the virtual collection of Partitions in
the distributed memory parallel environment. Users would not
see a separate distributed API object but instead, continue to
write their program as they would work on a single partition.
The execution environment determines if the operator needs to
be performed locally or in a distributed fashion based on the
operator’s semantics.

For example, Fig. 2(a) shows a Pandas script that reads data
from two directories, joins them, sorts the result, and takes the
top 10 rows. A corresponding Cylon script for distributed-memory
Dataframes is shown in Fig. 2(b).

2.2. Apache Arrow Columnar Memory Layout

Cylon uses Apache Arrow Columnar format as the physical
data representation. This is an integral component of the Cylon
memory model. It provides several benefits, such as data adja-
cency for sequential access (scans), O(1) (constant-time) random
access, SIMD vectorization-friendly data structure, true zero-copy
access in shared memory, etc. It also allows serialization-free data
access from many language runtimes. Due to these benefits, many
libraries including Pandas, PySpark [4], CuDF [12], and Ray [13],
are now using the Apache Arrow format.

3. Cylon communication model

In many dataframe applications, communication operations
take up significant time creating critical bottlenecks. This is ev-
ident from our experiments (Section 6), where we evaluate com-
munication and computation time breakdown applied to several
dataframe operator patterns. Moreover, most frameworks (eg.
Spark, Dask, Ray), provide special guidelines to reduce communi-
cation overheads (eg. shuffle routine) [14,15]. Therefore, careful
attention has been given while developing the communication
model for Cylon.
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df1 = read_csv('dir/path/0’) #read
df2 = read_csv('dir/path/1’)

df_j = df1.merge(df2, ...) #join
df_s = df_j.sort_values(...) #sort
df_s.iloc[:10] # head(10)

df1 = read_csv_dist('dir/path/0’, env=env) #dist read
df2 = read_csv_dist('dir/path/1’, env=env)

df_j = df1.merge(df2, ..., env=env) #dist join
df_s = df_j.sort_values(..., env=env) #dist sort
df_s.iloc[:10, env] #dist head(10)

(a) Pandas

(b) Cylon

Fig. 2. Example script.

Table 1
Communication semantics in dataframe operators.

Operation Data structure

Table Array Scalar
Send/ Recv Common Common Common
Shuffle (AllToAll) Common Rare N/A
Scatter Common Rare N/A
Gather/AllGather Common Common Common
Broadcast Common Common Common
Reduce/AllReduce N/A Common Common
Barrier Common (independent of the data structure)

BSP execution allows the program to continue independently
until the next communication boundary is reached. Message pass-
ing libraries such as MPI (OpenMPI, MPICH, IBM Spectrum, etc.),
Gloo, and UCX [16] provide communication routines for memory
buffers, which by extension support homogeneously typed arrays.
The most primitive routines are point-to-point (P2P) message
passing, i.e., tag-based async send and async receive. Complex
patterns (generally termed collectives) can be derived on top of
these two primitive routines (eg. MPI-Collectives, UCX-UCC).

Unlike multi-dimensional arrays, heterogeneous data types in
dataframes make communication routines more involved. The
Arrow columnar data format represents a column by a tuple
of buffers (boolean validity bitmap, integer offsets, & byte
data). A dataframe incorporates a collection of such columns.
Therefore, a communication routine would have to be called on
each of these buffers. Cylon communication model outlines a set
of communication collectives required to implement distributed
memory parallel dataframes by inspecting the semantics of core
dataframe operators. These are listed in Table 1 together with
their frequency of usage for each data structure.

The key features of the Cylon communication model are,

1. Modular architecture: Allows plugging-in multiple com-
munication libraries.

2. Extensibility: The communication model has been eas-
ily extended into Nvidia CUDA GPU hardware, in GCylon
project.

Fig. 3 depicts the overall Cylon architecture.
3.1. Communicator

The communicator interface manages Cylon communication
routines (Fig. 4). At the very top, the user API defines routines
based on the data layer data structures, as described in Table 1.
These are blocking routines for the user (e.g., shuffle_table
will wait until completion).

The communicator implements these routines using two ab-
stract constructs, (1). channels (for point-to-point/ send-receive
communications) and (2). collective communications. The for-
mer works only on byte buffers, and the collectives can also be
implemented using these channels. In fact, table_shuffle is
implemented using channels due to a mismatch in traditional
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Fig. 3. Cylon Architecture.
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Fig. 4. Cylon Communicator model.
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MPI_Alltoall. The abstract collective communications imple-
ment collective routines for composite data structures (tables,



N. Perera, A.K. Sarker, M. Staylor et al.

arrays, and scalars), using collectives on buffers. This abstract
implementation allows Cylon to easily plug in multiple communi-
cation libraries that support BSP semantics, such as OpenMPI [17],
UCX [16], and Gloo [18].

3.2. Abstract channels

Channels are designed to be used for composite buffer com-
munications in a non-blocking manner. During the initialization,
it registers two callbacks which inform the caller that (1). the
sending has been completed, (2). the data is received for a partic-
ular buffer. It then accepts requests that contain the buffer address
and metadata (such as buffer size, buffer index, etc.) to be sent.
The caller then has to progress through sends and receives. First,
the channel exchanges buffer metadata, which is used to allocate
memory for receiving buffers. Later on, it starts exchanging data.
Both these progressions use non-blocking send/receive routines.
Once each receiving buffer completes, it will be passed on to the
caller using the receive-callback.

Channels give much flexibility to the caller to implement
composite communication routines. However, there are disad-
vantages to this as well. Most importantly, each buffer collective
routine must be implemented from scratch using channels. As
listed in Table 3, we need to implement multiple communication
algorithms to get the best performance for collectives. Managing
such a custom communication library code base could be a cum-
bersome exercise. Currently, shuffle routine is implemented
using the channels.

3.3. Abstract collectives

Abstract collectives are higher-level communication abstrac-
tion that implements table, array, or scalar collectives using non-
blocking buffer collective routines. For example, an allgather
table can be implemented as a collection of non-blocking all-
gather routines. To do this, we create a metadata structure with
the buffer pointers, sizes, data types, etc. of the input table and
call corresponding communication routines on each buffer. In the
end, we recreate the resultant table based on the output buffers.

3.4. Supported communication libraries

Currently, Cylon communicator supports the following com-
munication libraries that support BSP message-passing semantics.

3.4.1. OpenMPI

OpenMPI is a widely used open-source implementation of
the MPI specification. It consists of two main components, (1).
process management and (2). communication library. Currently,
Process Management Interface Exascale (PMIx) standard [19] is
used for the former, while various communication algorithms
have been implemented ( Table 3) as a part of the latter. It is
a comprehensive communication library with a rich collection
of communication routines for many distributed computing and
HPC applications. Cylon communication model was also heavily
influenced by OpenMPI.

3.4.2. Gloo

Gloo collective communications library is managed by Meta
Inc. incubator [18] predominantly aimed at machine learning ap-
plications. PyTorch uses it for distributed all-reduce operations. It
currently supports TCP, UV, and ibverbs transports. Gloo commu-
nication runtime can be initialized using an MPI Communicator
or an NFS/Redis key-value store (P2P message passing is not
affected). Gloo lacks a comprehensive algorithm implementation
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Fig. 5. Distributed DDF Sub-operator composition [1] (Bottom: Join operator
example).

as an incubator project, yet our experiments confirmed that it
scales admirably. We have extended the Gloo project to suit Cylon
communication interface.

3.4.3. Uucxyucc

Unified Communication X (UCX) is a collection of libraries
and interfaces that provides an efficient and convenient way to
construct widely used HPC protocols on high-speed networks,
including MPI tag matching, Remote Memory Access (RMA) op-
erations, etc. Unlike MPI runtimes, UCX communication workers
are not bound to a process bootstrapping mechanism. As such,
it is being used by many frameworks, including Apache Spark
and RAPIDS (Dask-CuDF). It provides primitive P2P communi-
cation operations. Unified Collective Communications (UCC) is a
collective communication operation API built on UCX, which is
still being developed. Similar to MPI, UCC implements multiple
communication algorithms for collective communications. Based
on our experiments, UCX+UCC performance is on par with or
better than OpenMPI.

4. Cylon distributed operator model

Cylon distributed operator model provides the basis for ele-
vating a local dataframe operator to a distributed memory par-
allel dataframe operator. This was the primary idea behind our
precursor publication [1]. It comprises two key observations,

1. A distributed of

sub-operators:

operator  consists three major

(a) Core local operator
(b) Auxiliary local operators
(c) Communication operators

For example, the bottom image in Fig. 5 shows how the
distributed join is composed of these sub-operators.

. By examining the composition of these sub-operators, they
can be categorized into several parallel execution patterns,
as depicted in Fig. 6. Therefore, rather than analyzing/
optimizing each operator, we can focus on these parallel
patterns. In addition, some operators can be implemented
using multiple algorithms that show distinctive parallel
patterns (e.g., join can be done by shuffling or by broad-
casting). Hence, understanding these patterns is essential
to choose the best runtime strategy.
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Table 2
Generic dataframe operator patterns.

Future Generation Computer Systems 149 (2023) 250-264

Pattern Operators

Result semantic Communication

Embarrassingly parallel Select, Project, Map,Row-Aggregation Partitioned -
Loosely Synchronous
e Shuffle Compute Union, Difference jJoin, Transpose Partitioned Shuffle
e Combine Shuffle Reduce Unique, GroupBy Partitioned Shuffle
e Broadcast Compute Broadcast-Join* Partitioned Bcast
e Globally Reduce Column-Aggregation Replicated AllReduce
e Sample Shuffle Compute Sort Partitioned Gather, Bcast, Shuffle, AllReduce
e Halo Exchange Window Partitioned Send-recv
Partitioned I/O Read/Write Partitioned Send-recv, Scatter, Gather
Specialized join algorithm.
Table 3
Complexity of Communication Operations.
Operation Algorithm Startup Transfer Reduction
time time time
(Ts[ar[u p ) (Ttmnsfer ) ( Treduce )
isend-irecieve [20] o(P) O(%t ) -
Ring [21] Oo(P) O(P % n) -
Shuffle/AllToAll Pairwise Exchange [20] o(p) 0O(n) -
Bruck [22]/ Modified Bruck [21] O(log P) O(log P * g -
Ring [20] o(P) O(%1 % N) -
AllGather Recursive Doubling [20] O(log P) O(%1 % N) -
Bruck [20] 0O(log P) (%1 % N) -
Binomial Tree [20] O(log P) O(log P * n) -
Broadcast Scatter-AllGather [23] O(log P +P) O(*F* *n) -
Reduce Binomial Tree [20] O(log P) O(log P * n) O(log P * n)
Reduce-Scatter Gather [24] O(log P) O(%t ) O(%1 s n)
Binomial Tree [20] O(log P) O(log P * n) O(log P * n)
AllReduce Recursive Doubling [20] O(log P) O(log P % n) O(log P * n)
Reduce-Scatter AllGather [24] O(log P) O(% «n) O(%t s n)

Cylon Operator Patterns Modin DF Algebra
Selection
Projection
Map
Row Aggregation*
Union
Shuffle Compute el D1ff'erence
Join
Transpose
Loosely Combine Shuffle Unique
Synchronous Reduce GroupBy _
Globally Reduce Column Aggregation#
Sample Shuffle S
ort
Compute
Halo Exchange Window
Broadcast Compute
Partitioned I/O
Rename
To Labels
From Labels

Fig. 6. Cylon Operator Patterns & Modin DF Algebra.

We believe understanding distributed dataframe operator pat-
terns reduce the burden of parallelizing a massive API, such as
Pandas. To address the same problem, Petersohn et al. [25] intro-
duced a primitive set of dataframe operators that could be used
as a basis for the rest, termed Dataframe Algebra. Our dataframe
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operator patterns are a complementary concept to dataframe
algebra, as shown in Fig. 6.

4.1. Core local operator

These refer to single-threaded implementations of primitive
operators. There could be one or more libraries that provide this
functionality, such as numpy, pandas, RAPIDS CuDF [12], Acero
(Apache Arrow Compute), etc, or locally developed as a part of
Cylon. The choice of the library depends on the language runtime,
the underlying memory format, and the hardware architecture.
This is to prevent redundant development efforts for reinventing
the existing functionality.

4.2. Auxiliary sub-operators

Partition operators are essential for distributed memory appli-
cations. Partitioning determines how a local data partition is split
into subsets so they can be sent across the network. This operator
is closely tied with Shuffle communication routine. Hash partition,
range partition, and rebalance are several key auxiliary operators.

4.3. Parallel processing patterns & operator implementations

According to our previous publication, dataframe operators
can be broadly separated into three categories [1], as described
in Table 2.

1. Embarrassingly parallel: Operators that require no commu-
nication required
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2. Loosely synchronous: Operators that require communica-
tion at some stage in its implementation. This is a broad
category; therefore, it is separated into the following sub-
categories.

) Shuffle-compute
Sample-shuffle-compute
Combine-shuffle-reduce
Broadcast-compute
Globally reduce

(f) Halo exchange

(a
(b
(c
(d
(e

—_ T —

. Partitioned I/O: 1/O operators in distributed memory par-
allel environments require communication to load balance
data amongst the workers.

5. Cost model for evaluation

A cost model can be applied to the Cylon distributed operator
model to estimate the execution time/ cost of each operator
pattern. As observed before, each pattern comprises three sub-
operators. Hence, the total cost estimate (T ) is the sum of the
cost of each sub-operator.

Ttoml = TCOTE + Taux + Tcomm

1. Teore — Core local operator cost
2. Tyx — Auxiliary local operator cost
3. Teomm — Communication operator cost

We analyze the communication and computation cost of dis-
tributed dataframe operators in the subsequent sections, and the
following notation has been used.

P — Parallelism

N — Total number of rows

n = N/P — Number of rows per process

¢ — Number of columns (constant for row-partitioned data)
N = N x ¢ — Total amount of distributed work/ total data
n = N/P — Work per process/ rows per process

C — Cardinality of data

5.1. Communication cost (Teomm)

Based on the literature, Hockney [26], LogP [27], and LogGP
[28] are some of the most commonly used cost models to evalu-
ate collective communication operations. Hockney model provides
a simple communication cost estimation, and therefore, it has
been used in many recent publications [20-22,29]. The model
fails to capture the network congestion. However, it provides an
adequate cost estimation to evaluate Cylon. The model assumes
that the taken to send a message between any two nodes can be
modeled as,

1. n — Message size/ number of bytes
transferred

2. o — Latency/ startup time per message
(independent of n)

3. B — Transfer time per byte

T=a+np

Let us take Shuffle (AllToAll) for an example. Cylon uses non-
blocking send-receive-based implementation. Each worker would
shuffle n data with others in P iterations. In each iteration, it
would send and receive g amount of data (on average, for uni-
formly distributed data). Out of the P iterations, one iteration is
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Table 4

Core local operator cost (Teore)
Local operation Cost (Teore) Output size

(Mnew)

Selection, Map 0O(n) O(n)
Row-aggregation O(nc) = O(n) O(n)
Projection 0O(c) O(nc)
Union O(nc) = O(n) (hash-based) 0o(nC)
Set-difference O(nc) = O(n) (hash-based) O(n)
Hash-Join o(n)+ 0(¢) 0g)
Sort-Join O(nlog n) + o(¢g) 0(¢)
Transpose O(nc) O(nc)
Unique O(nc) = O(n) (hash-based) 0o(nC)
GroupBy 0(n) (hash-based) 0(nC)
Column Aggregation O(nc) = O(n) 0(c)
Sort O(nlogn) O(n)

a local data transfer. Therefore,

n (P—1)n
Tshufﬂe =(P— 1)(a+ 5/3) =P — o+ Tlg
Therefore, for row-partitioned data,
P —
Tshufﬂe = Tstartup + Ttransfer = O(P) + O( X Tl)

Table 3 describes the communication costs of communication
routines used in distributed dataframe operator implementations
for multiple algorithms based on the Hockney model. It uses the
definitions described in Section 5.

5.2. Computation cost (Teore + Taux)

Core local operator cost (Tcre) & auxiliary local operator cost
(Tqux) constitutes the computation cost. Since these are local op-
erations, the cost can be derived from time complexity of the algo-
rithm. For example, a local sort operation would take (when us-
ing a quick-sort algorithm for uniformly distributed data), Tso;r =
O(nlog n) Table 4 describes the time complexities of commonly
used local dataframe operators (Core local operator cost, T, ) and
their output size (Mpey ).

5.3. Total cost of dataframe operator patterns

We will look at the total cost of each operator pattern in the
following subsections.

5.3.1. Embarrassingly parallel

This is the most trivial class of operators since they do not
require any communication to parallelize the computation. Se-
lect, Project, Map, and Row-Aggregation fall under this pattern.
Arithmetic operations (ex: add, mul, etc.) are also good examples
of this pattern. Embarrassingly parallel distributed operators can
simply call the corresponding local operator, and therefore the
cost estimation of this pattern is,

Tgp = O(n)

5.3.2. Shuffle compute
This common pattern can be used for operators that depend
on Equality/Key Equality of rows. Of the core dataframe operators,
join, union and difference directly fall under this pattern.
In contrast, transpose follows a more nuanced approach.
Partitioning and shuffling communication routines rearrange
the data so that equal/key-equal rows are on the same partition
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at the end of the operation. This guarantees that the correspond-
ing local operation can be called at the end of the shuffling stage.
Join, Union and Difference operators follow this pattern:

Partition |—| Split |—| Shuffle |[—| LocalOp

Therefore, the cost estimation of shuffle compute for each
worker is,

P—-1

Tshuﬁ]e,compute(hash) = O(n) + O(P) + O( X Tl) + Tcore

P-1
Tshujﬂe,compute(range) = O(IOg P) + O(n) + O(P) + O(

x 1)+ Teore

Typically partitioning schemes (hash, range, etc.) are map
operators and, therefore, access memory locations contiguously.
These can be efficiently executed on modern SIMD-enabled hard-
ware. However, the local operator may need to access memory
randomly (e.g., a join that uses a hash table). Therefore, allow-
ing the local operator to work on in-cache data improves the
efficiency of the computation. This can be achieved by simply
attaching a local partition block at the end of the shuffle.

Partition |[—| Split —>| Shuffle |—>‘ Partition ‘—> Split || LocalOp

A more complex scheme would be to partition data into much
smaller sub-partitions from the beginning of the pipeline. Possi-
ble gains on each scheme depend heavily on runtime character-
istics such as the data distribution.

5.3.3. Sample shuffle compute

This pattern is an extension of the shuffle-compute pattern.
Sampling is commonly used for operators such as distributed
sort. It gives an overview of the data distribution, which needs
to be communicated among the other workers to determine
an ordered (range) partition scheme. This can be achieved triv-
ially by calling all reduce operation, or by a composite of
communication & computation steps (eg. sample sort).

‘ Sample ‘—> ICommunicate insights |—> Partition |— | Split |—

Shuffle [~ | LocalOp

Cylon uses multiple algorithms for distributed sort implementa-
tion. The data can be range-partitioned for numerical key columns
based on a key-data histogram, and it would have the following
total cost per worker.

‘ Sample ‘—> IAllreduce range ‘—> ‘ Binning &Range part. ‘—>
‘ Shuffle |—> ’ Local sort\

Tsort(range) = O(IOg P) + O(n) + O(P) + O(

For the rest, Cylon uses sample sort with regular sampling [30].
It sorts data locally and sends a sample to a central entity that
determines pivot points for data. Based on these points, sorted
data will be split and shuffled. Finally, all executors merge the
received sub-partitions locally.

Local sort |— ‘ Sample ‘—> Gather @rank0 —

‘ Calc. pivots @rank0 ‘—> ‘ Bcast pivots ‘—) ‘ Split ‘—) Shuffle |-

x n) + 0(nlog n)

Local merge
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5.3.4. Combine shuffle reduce

Another extension of the Shuffle-Compute pattern, Combine-
Shuffle-Reduce, is semantically similar to the map-reduce [3]
paradigm. The operations that reduce the output length, such as
Groupby and Unique, benefit from this pattern. The effectiveness
of combine-shuffle-reduce over shuffle-compute depends on the
Cardinality (C) (i.e., the ratio of unique rows to the total length).
It follows,

‘LocalOp (interm. results) ‘—> Partition |— ‘Split ‘—> Shuffle |—

‘ LocalOp with final res. ‘

The initial local operation reduces data into a set of interme-
diate results (similar to the Combine step in MapReduce), which
would then be shuffled. Upon their receipt, a local operation is
performed to finalize the results. The author also discusses this
approach for dataframe reductions in a recent publication [31]. At
the end of the initial local operation, the output dataframe size (in
each worker) is O(nC). Therefore, the total cost per worker would
be,

Tcomb,shuf,red = Tcore(n) + O( HC) + O(P) + O( X nC) + Tcore(nc)

5.3.5. Globally reduce

This pattern is most commonly seen in dataframe Column-
Aggregation operators. It is similar to the embarrassingly parallel
pattern but requires an extra communication step to arrive at
the final result. For example, calculating the column-wise mean
requires a local summation, a global reduction, and a final value
calculation.

LocalOp [~ |Allreduce |—> ’ Finalize \

Some utility methods such as distributed length and equality
also follow this pattern. For large data sets, the complexity of this
operator is usually governed by the computation rather than the
communication.

5.3.6. Halo exchange

This pattern is observed in window operations. A window
operation performs an aggregation over a sliding partition of
values. Pandas API supports rolling and expanding windows. For
row partitions, the windows at the boundaries would have to
communicate with their neighboring partitions and exchange
partially computed results. The amount of data sent/received is
based on the window type and individual length of partitions.

5.3.7. Broadcast compute

Broadcast compute is a scaled-down pattern from shuffle-
compute. Rather than shuffling, certain operators like broadcast-
join can use broadcasting. This strategy only becomes useful
when there is a smaller relation so that it can be broadcasted
without shuffling the large relation. It reduces communication
overhead significantly. However, broadcast-joins would perform
poorly if the relations were of the same order. This effect was
observed in Modin [25], where out-of-memory errors are re-
ported even for moderately large datasets because it only em-
ploys broadcast joins.

Broadcast |—| LocalOp
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5.3.8. Partitioned I/O

Partitioned Input parallelizes the input data (CSV, JSON, Par-
quet) by distributing the files to each executor. It may distribute a
list of input files to each worker evenly. Alternatively, it receives a
custom one-to-many mapping from the worker to input file(s). It
reads the input files according to the custom assignment. For Par-
quet files, Partitioned Input tries to distribute the number of rows
to each partition as evenly as possible when metadata is present.
Suppose an executor does not receive data from reading. In that
case, it constructs an empty dataframe with the same schema as
the other partitions. In Partitioned Output, each executor writes
its partition dataframe to one file.

5.4. Runtime aspects

5.4.1. Cardinality

Equality of rows governs the Cardinality of a Dataframe C,
which is the number of unique rows relative to the length. There-
fore, C € [ﬁ, 1], where C % — rows are identical
and C = 1 — all rows are unique. In the Combine-Shuffle-
Reduce pattern, the initial local operation has the potential to
reduce communication order to n’ < n. This gain depends on the
Cardinality (C) of the dataframe C € [%, 1], which is the number
of unique rows relative to the length. C ~ 1 — n « n,
making the combine-shuffle-reduce much more efficient than a
shuffle-compute. Consequently, when C ~ 1 = n’ ~ n may
in fact worsen the combine-shuffle-reduce complexity. In such
cases, the shuffle-compute pattern is more efficient. This incident
is very evident from the cost model.

Teomb_shuf _red = Teore(n) +0O(nC) + O(P) + O( x NC) + Teore(nC)

\'S

P—1
Tshuf,comp = O(n) + O(P) + O(

x 1) + Teore(N)

When, C—>1 = Tcomb,shuf,red - Tshuf,compv and in faCt- it is
worse because the core local operation would have to be carried
out twice.

5.4.2. Data distribution

Data distribution heavily impacts the partitioning operators.
Some executors may be underutilized when unbalanced parti-
tions exist, affecting the overall distributed performance. Work-
stealing scheduling is a possible solution to this problem. In a BSP
environment, pseudo-work-stealing execution can be achieved by
storing partition data in a shared object-store. Furthermore, some
operations could employ different operator patterns based on the
data distribution. For instance, when one relation is very small
by comparison, Join could use a broadcast_join (broadcast-
compute) rather than a hash-shuffle join (shuffle-compute) to
achieve better performance.

5.4.3. Out-of-core execution

Currently, Cylon is limited by the memory available to the
workers. With the data immutability guarantees, it always allo-
cates new memory for the columns that get modified. Therefore,
loosely synchronous patterns may require a workspace of 3 —4x
the size of the table. This could be a challenging requirement for
memory-constrained environments and limits the dataset size we
could process. Therefore, the system needs to be able to execute
operators out-of-core.
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5.4.4. Logical plan optimizations

A typical SQL query may translate to multiple Dataframe oper-
ators, and the application script can include several such queries.
Semantically, these operators construct a DAG (directed acyclic
graph) or a logical plan. SQL and data engineering engines gener-
ate an optimized logical plan based on rules (ex: predicate push-
down) or cost metrics. While these optimizations produce signif-
icant gains in real-life applications, this is an orthogonal detail to
the individual operator patterns we focus on in this paper.

6. Experiments

To evaluate the performance of Cylon distributed-memory ex-
ecution model, we have conducted the following experiments.

e Communication and computation breakdown of Cylon oper-
ators for strong and weak scaling

e Running Cylon in Oak Ridge National Laboratory Summit
supercomputer

e Comparing Cylon performance against the state-of-the-art
data processing systems

For the following experiments, uniformly random distributed
data was used with two int64 columns in column-major format
(Fortran order). Data uses a cardinality of 90% (i.e. 90% of rows
are unique), which constitutes a worst-case scenario for key-
based operators (eg. join, sort, groupby, etc.). The main focus of
these experiments is to micro-benchmark the distributed opera-
tor implementation. Using a generated dataset allows the input
dataset to be uniformly distributed and thereby evaluate the true
performance of the kernels. Barthels et al. followed a similar
approach to evaluate distributed join kernels [32].

6.1. Communication & computation

These experiments were carried out on a 15-node Intel®
Xeon® Platinum 8160 cluster. Each node comprises 48 hardware
cores on two sockets, 255 GB RAM, and SSD storage, and is
connected via Infiniband with 40Gbps bandwidth.

Fig. 7 shows communication and computation time break-
down for join operation for a strong scaling test (1B rows per
table). Moreover, Fig. 8 shows the same for a weak scaling test
(25M per worker per table). Out of many operators, joins have
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Communication and Computation Breakdown Cylon Join (Weak Scaling)
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Fig. 8. Computation and communication breakdown - join (Weak scaling).

the most communication overhead, as it is a binary operator (2
input DFs).

In the strong scaling plot, even at the smallest parallelism
(32), there is a significant communication overhead (Gloo 27%,
MPI 17%, UCX 17%), and as the parallelism increases, it dom-
inates the wall time (Gloo 76%, MPI 86%, UCX 69%). Unfortu-
nately, the author needed more expertise in the Spark, Dask,
or Ray DDF code base to run a similar micro-benchmark. This
experiment shows that communication plays a significant role
in dataframe operator implementation. Despite using libraries
specialized for message passing, Cylon still encounters signifi-
cant communication overhead. Therefore, careful consideration
must be given to communication while developing distributed
dataframe runtimes.

The weak scaling plot can further analyze the impact of com-
munication performance. The work per process is fixed; therefore,
we should see a flat graph. However, as we see in Fig. 8, the
time increases along the parallelism axis, indicating that the
communication overhead increases. The graph on the right plots
each stage (log-log). The local join computation is relatively flat,
while both shuffle stages (left & right) show a linear increase.

6.1.1. Examining the results using the cost model
By looking at the cost model in Section 5, the cost of join
would be,

P—-1

Tshuﬁle = O(P - ]) + O( X n)

P-1
T)’oin(sort) = O(P - 1) + O(

x 1)+ 0(n) + O(nlog n) + 0(2)

Substituting n = N/P,

N N

P—1 N N
]}'oin(sort) = O(P_1)+O(T X F)+O(F)+O( F)+O(E)

For strong scaling, N is constant. Therefore, as P increases, the
components that depend on n (in computation and communi-
cation) reduce. This results in a downward trend in wall time.
However, the O(P — 1) component (coming from the communi-

Nlo
P g
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cation cost) overtakes the gains of reducing n. This explains the
increase in wall time in higher parallelisms.

Similarly, for weak scaling, n is kept constant, which reduces
the cost to O(P — 1) + O(%). For the parallelism values tested
in the experiments (Fig. 8), this explains the increasing wall-time
values and linear upward trends in shuffle timings. Even though
the amount of data transferred per worker remains constant (n),
the cost model does not account for network congestion. This
could explain the increasing gradient at higher parallelisms.

In the following sections, we will see that Cylon outperforms
the state-of-the-art data engineering systems available today.
However, the weak scaling indicates that Cylon still needs to
improve on the communication operator performance (such as
shuffle). It would be worthwhile evaluating other algorithms such
as Pairwise Exchange [20], Bruck [22]/ Modified Bruck [21], etc.,
that have better time complexity as the parallelism increases.
Another option would be to completely offload the shuffle imple-
mentation to the communication library (MPI, Gloo, UCX) and let
the library decide which algorithm to choose based on runtime
characteristics.

6.2. Cylon on ORNL Summit supercomputer

Cylon was run on the Summit supercomputer at Oak Ridge
National Laboratory (ORNL) as a part of large-scale testing. Each
node in Summit consists of two IBM POWER9 processors and six
Nvidia Tesla V100 accelerators, and there are 4600 of these nodes
available for computation, reaching a theoretical peak double-
precision performance of approximately 200 PF. Each node con-
sists of 512 GB of RAM and 42 hardware cores. Fig. 9 shows the
architecture of a single node in Summit. For Cylon workloads, only
the CPU nodes were used.

6.2.1. Setting up cylon in summit

Setting up Cylon environment in Summit proved to be a
tedious undertaking. Generally, Cylon is installed via a Conda
Python environment [34], which conveniently installs dependen-
cies using the official Anaconda packages. However, due to the
Summit node hardware architecture, some of these default pack-
ages were failing unexpectedly. Most notably, we encountered
memory allocation errors from the Apache Arrow library. Since
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Fig. 9. ORNL summit node architecture [33].

this is an essential requirement for Cylon, we had to rebuild
Apache Arrow natively on Summit hardware architecture. This
was done by the native Cylon installation script which uses PyPI
(pip) environment [35].

Additionally, Summit supercomputer uses its own MPI im-
plementation based on IBM Spectrum MPI [36]. At the time,
Cylon was tested on OpenMPI and Microsoft MPI only, and there-
fore, several minor changes were required to properly link with
Summit MPI modules.

The recommended way of using custom software in Sum-
mit is to create a module and load it (with dependencies) in
batch scripts. However, this requires advanced expertise in Sum-
mit package management. We bypassed this requirement by
installing Cylon and its dependencies into a PyPI environment
using a login node. This PyPI environment resides in the user
space in the file system. When submitting a batch job, we would
activate this environment and run our Cylon script.

Following is an example batch script for a Cylon workload.

#!/bin/bash

#BSUB -P <project name>

#BSUB -W 1:30

#BSUB -nnodes 8

#BSUB -alloc_flags smtl

#BSUB -J cylonrun—-s-8

#BSUB -o cylonrun-s-8. #BSUB -e cylonrun-s-8.

module load python/3.7.7 gcc/9.3.0

source $HOME/CYLON/bin/activate

BUILD_PATH=$HOME/cylon/build

export LD_LIBRARY_PATH=$BUILD_PATH/arrow/install/1lib64:
$BUILD_PATH/glog/install/1ib64:$BUILD_PATH/1ib64:
$BUILD_PATH/1ib:$LD_LIBRARY_PATH

time jsrun -n $((8%42)) -c 1 python $HOME/cylon/summit/

scripts/cylon_scaling.py -n 9999994368 -s s

Both installation and batch scripts are available in the Cylon
GitHub repository [9].
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Table 5

Summit weak scaling results.
Cores Rows Size Throughput

(Mn) (GB) (Tuples/s)

1 50 1 3,261

42 2,100 34 110,437
84 4,200 67 186,267
168 8,400 134 384,137
336 16,800 269 729,943
672 33,600 538 1,377,837
1,344 67,200 1,075 2,561,797
2,688 134,400 2,150 4,513,890
5,376 268,800 4,301 7,657,451
10,752 537,600 8,602 11,814,754

6.2.2. Strong scaling

A strong scaling experiment was carried out on Cylon join
operation of two 10 billion row tables. The size of each table
is around 160 GB. The parallelism was increased from 4 nodes
(4 x 42 = 168 cores) to 25 nodes (256 x 42 = 10,752 cores).
Fig. 10 plots the results on a log-log scale.

Fig. 10(a) shows 10 billion rows per table experiment. As
the parallelism increases from 168 to 2688, the wall time re-
duces almost linearly with fairly consistent timings. However,
from thereon, the timings take a drastic turn and show a higher
variance. From 5376 onward, the computation component is less
than 2 million rows per table per core. Therefore, communication
would dominate the final wall time.

To further analyze this scenario, another 50 billion rows per
table experiment was carried out (Fig. 10(b)). There, smaller
parallelism experiments were unsuccessful due to memory lim-
itations. However, for higher parallelisms, the wall time reduces
fairly linearly, as expected. This indicates that, as long as the com-
putation dominates the communication, performance gains can
be achieved by adding more resources. For 50 billion cases, the
inflection point would occur at higher parallelism than 10,752.

6.2.3. Weak scaling

A weak scaling experiment was carried out again on Cylon
join operation. The intention was to utilize the memory avail-
able in the node allocation fully. Considering the 512 GB RAM and
42 cores per node, it was decided to use 50 million row tables per
core. The number of cores has been increased from 1 to 10,752,
where the last experiment joins more than 1 trillion rows from
the two tables. The results are depicted in Fig. 11.

As we saw in the previous weak scaling experiments, the
wall time increases with parallelism. This is not ideal for a weak
scaling plot. However, the main culprit for this increase is the
shuffle communication overhead. However, Cylon was able to
successfully process more than 17 terabytes (TB) of data across
10,752 cores which is a commendable achievement. When look-
ing at the throughput of the operation, it steadily increases to
close to 12 million tuples/second (see Table 5) .

6.3. Cylonvs. the state-of-the-art

In order to evaluate the performance of the distributed-memory
execution model discussed in this paper, we performed a strong
scaling analysis on several state-of-the-art distributed dataframe
systems that are described in the related work section (Sec-
tion 7). Experiments were also carried out on Pandas [37] to
get a serial performance baseline. The following frameworks
were considered. We tried our best to refer to publicly available
documentation, user guides, and forums while carrying out these
tests to get the optimal configurations.
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Dask Distributed Dataframes v2022.8

Ray Datasets v1.12
Modin Distributed Dataframe v0.13

Apache Spark (Pandas-on-Spark) v3.3

We have carried out similar strong scaling analyses in the
precursor publication [1,38], and several others [11,39,40]. In this
publication, the results have been updated to the latest versions
of software and their dependencies. The same 15-node Intel®
Xeon™ Platinum 8160 cluster described in Section 6.1 was also
used for these experiments.

The following dataframe operator patterns were used for the
experiments. When evaluating large-scale data engineering use
cases (eg. TPC benchmarks [41], Deep Learning Recommendation
Model (DLRM) preprocessing [42], etc.) and based on our prior
experience, these operator patterns [11,38] consume the majority
of the computation time.

o Shuffle Compute - Join operator
e Combine Shuffle Reduce - GroupBy operator
e Sample Shuffle Compute - Sort operator
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Fig. 12 depicts two sets of strong-scaling experiments. Left col-
umn represents tests on one billion-row dataset with all systems,
while the Right column represents a smaller 100 million-row
dataset with Cylon, Dask, and Spark systems. Cylon was using
the UCX/UCC [16] communicator, as it shows the best distributed
performance.

Unfortunately, several challenges were encountered with run-
ning tests on Ray Datasets. It only supports unary operators
(single input) currently. Therefore it has been omitted from Join
experiments. Moreover, Ray groupby did not complete within
3 h, and sort did not show presentable results. Several issues
came up with Modin as well. It only supports broadcast_join
implementation, which performs poorly on two similar-sized
dataframe Join. Only the Ray backend worked well with the data
sets. Another observation was that Modin defaults to Pandas for
Sort (ie. limited distributed scalability).

The one billion-row strong scaling timings show that Cylon
shows better scalability compared to the rest. Dask & Spark
Datasets show commendable scalability for Join and Sort, how-
ever the former displays very limited scalability for GroupBy. A
100 million row test case (right column of Fig. 12) was per-
formed to investigate Dask & Spark further. This constitutes
a communication-bound operation because the partition sizes
are smaller. This reduces the computation complexity, however,
these smaller partitions need to be communicated across the
same number of workers. Under these circumstances, both Dask
and Spark diverge significantly at higher parallelisms, indicat-
ing limitations in their communication implementations. There
was a consistent anomaly in Spark timings for 8-32 parallelism.
We hope to investigate this further with the help of the Spark
community.

We also observe that the serial performance of Cylon out-
performs the rest consistently, which could be directly related
to Cylon’s C++ implementation and the use of Apache Arrow
format. At every parallelism, Cylon distributed performance is
2—4x higher than Dask/Spark consistently. These results confirm
the efficacy of the proposed distributed execution model in this

paper.
7. Related work

In a previous publication, we proposed a formal framework
for designing and developing high-performance data engineering
frameworks that include data structures, architectures, and pro-
gram models [43]. Kamburugamuve et al. proposed a similar big
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data toolkit named Twister2 [44], which is based on Java. There,
the authors observed that using a BSP-like environment for data
processing improves scalability, and they also introduced a DF-
like API in Java named TSets. However, Cylon being developed in
C++ enables the native performance of hardware and provides a
more robust integration to Python and R.

In parallel to Cylon, Totoni et al. also suggested a similar HP-
DDF runtime named HiFrames [45]. They primarily attempt to
compile native MPI code for DDF operators using numba. While
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there are several architectural similarities between HiFrames and
Cylon, the latter is the only open-source high-performance dis-
tributed dataframe system available at the moment.

Dask [46,47] is one of the pioneering distributed dataframe
implementations out there. It provides a Pandas-like API and
is built on top of the Dask distributed execution environment.
CuDF [12] extends this implementation in Dask-CuDF to provide
distributed dataframe capabilities in Nvidia GPUs. Modin [25,48]
is another dataframe implementation built on top of Dask and
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Ray. It provides an API identical to Pandas so that existing appli-
cations can be easily ported to a distributed execution. Apache
Spark [4,49] also provides a Pandas-like DDF named Pandas on
Spark.

In addition to these systems, we would also like to recognize
some exciting new projects. Velox is a C++ vectorized database
acceleration library managed by the Meta Inc. incubator [50]. Cur-
rently, it does not provide a DF abstraction, but still offers most of
the operators shown in Fig. 6. Photon is another C++-based vec-
torized query engine developed by Databricks [51] that enables
native performance to the Apache Spark ecosystem. Unfortu-
nately, it has yet to be released to the open-source community.
Substrait is another interesting model that attempts to produce
an independent description of data compute operations [52].

8. Limitations and future work

Cylon currently covers about 30% of the Pandas API, and more
distributed operators are being added, significantly, Window op-
erators. Furthermore, the cost model for evaluating dataframe
operator patterns has allowed us to identify areas of improve-
ment. For example, communication operations could be improved
by introducing algorithms that have lower latency costs.

Additionally, in Section 6.1 we saw significant time being
spent on communication. These observations can be further an-
alyzed using MPI profiler tools (eg. TAU - Tuning and Analysis
Utilities, LLNL mpiP, etc.) and distributed debugging tools (eg.
Arm/Linaro DDT, etc.). Some of these tools are available in the
Summit supercomputer, which could give an in-depth look at the
communication bottlenecks. In modern CPU hardware, we can
perform computation while waiting on communication results.
Since an operator consists of sub-operators arranged in a DAG,
we can exploit pipeline parallelism by overlapping communication
and computation. Furthermore, we can also change the granular-
ity of a computation such that it fits into CPU caches. We have
made some preliminary investigations on these ideas, and we
were able to see significant performance improvements for Cylon.

Providing fault tolerance in an MPI-like environment is quite
challenging, as it operates under the assumption that the com-
munication channels are alive throughout the application. This
means providing communication-level fault tolerance would be
complicated. However, we are planning to add a checkpointing
mechanism that would allow a much coarser-level fault toler-
ance. Load imbalance (especially with skewed datasets) could
starve some processes and might reduce the overall throughput.
To avoid such scenarios, we are working on a sample-based
repartitioning mechanism.

9. Conclusion

We recognize that today’s data science communication oper-
ations could be improved by introducing algorithms that have
lower latency costs. The data science community requires scalable
solutions to meet its ever-growing data demand. Dataframes
are at the heart of such applications, and in this paper, we
discussed a cost model for evaluating the performance of dis-
tributed dataframe operator patterns introduced in our prior
publication [1]. We also extended the execution model described
in the previous work, by introducing a communication model.
With these additions, we strongly believe we have presented a
comprehensive execution model for distributed dataframe op-
erators in distributed memory environments. Additionally, we
presented Cylon, a reference runtime developed based on these
concepts. We use the proposed model to analyze the commu-
nication and computation performance and identify bottlenecks
and areas of improvement. We also showcased the importance
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of this work by conducting large-scale experiments on the ORNL
Summit supercomputer where it showed admirable scalability in
both strong and weak scaling experiments. Cylon also showed
superior scalability compared to the state-of-the-art distributed
dataframe systems, which further substantiates the effectiveness
of the execution model presented in this paper.
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