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Abstract— In this paper, we propose a distributed zeroth-
order policy optimization method for Multi-Agent Reinforce-
ment Learning (MARL). Existing MARL algorithms often
assume that every agent can observe the states and ac-
tions of all the other agents in the network. This can be
impractical in large-scale problems, where sharing the state
and action information with multi-hop neighbors may incur
significant communication overhead. The advantage of the
proposed zeroth-order policy optimization method is that
it allows the agents to compute the local policy gradients
needed to update their local policy functions using local
estimates of the global accumulated rewards that depend
on partial state and action information only and can be ob-
tained using consensus. Specifically, to calculate the local
policy gradients, we develop a new distributed zeroth-order
policy gradient estimator that relies on one-point residual-
feedback which, compared to existing zeroth-order estima-
tors that also rely on one-point feedback, significantly re-
duces the variance of the policy gradient estimates improv-
ing, in this way, the learning performance. We show that
the proposed distributed zeroth-order policy optimization
method with constant stepsize converges to the neighbor-
hood of a policy that is a stationary point of the global ob-
jective function. The size of this neighborhood depends on
the agents’ learning rates, the exploration parameters, and
the number of consensus steps used to calculate the local
estimates of the global accumulated rewards. Moreover, we
provide numerical experiments that demonstrate that our
new zeroth-order policy gradient estimator is more sample-
efficient compared to other existing one-point estimators.

Index Terms— Distributed Zeroth-Order Optimization,
Multi-Agent Reinforcement Learning, Partial Observation

[. INTRODUCTION

Multi-Agent Reinforcement Learning (MARL) has received
a lot of attention in recent years due to its wide applicability in
real-world large-scale decision making problems, e.g., cloud
autonomous driving, distributed multi-robot planning, and
distributed resource allocation, to name a few. The goal is
to enable a team of agents to collaboratively determine the
global optimal policy that maximizes the sum of their local
accumulated rewards. To do so, the agents typically need to
communicate with each other in order to obtain information
about the global state and action of the team. This is because
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their states and rewards are generally affected by the actions
of their other peers. However, sharing such information can
be undesirable, due to significant communication overhead or
privacy concerns. Therefore, there is a great need for MARL
algorithms that rely only on partial observations of the global
state and action information.

A major challenge in developing cooperative MARL meth-
ods under partial observations is that the environment, as
perceived by every individual agent when it interacts with
the other agents, is non-stationary since it changes as a
result of changes in the policies of those agents [1]. In [1]-
[3], this challenge is addressed using a centralized Critic
function that can mitigate the effect of non-stationarity in the
learning process. Then, the trained policies can be executed
in a decentralized way. In [4], a distributed offline experience
replay technique is developed to enable fully decentralized
training, which requires that all agents receive a global reward
at each timestep. However, when the global reward is defined
as the sum of local agent rewards, as in cooperative MARL,
this global reward can not be easily available to the local
agents in practice. Cooperative MARL methods that maximize
the sum of local rewards are considered in [5]-[8]. These
works develop fully decentralized Actor-Critic methods where
the agents maintain local estimates of the global value or
policy functions, that depend on the states and actions of
all other agents and update those estimates until they reach
consensus. Then, these local estimates of the global value
or policy functions are used to compute the policy gradient
estimates needed for optimization. Since these policy gradient
estimates require knowledge of the global state and action
information, such Actor-Critic methods can not be used for
cooperative MARL with partial state and action information.

In this paper, we propose a new distributed zeroth-order
estimator of the local policy gradients, which is an extension
of the one-point zeroth-order gradient estimator developed in
[9] for centralized optimization problems that estimates the
gradient using the residual of the function values at two con-
secutive iterations. As such, it queries the function value only
once at each iteration. Specifically, our proposed estimator
computes the local policy gradients by locally perturbing the
local agent policies, using information about the sum of local
accumulated rewards that can be obtained using consensus; the
sum of local accumulated rewards is global information that
is not otherwise accessible to the local agents.The advantage
of our proposed zeroth-order policy optimization method is
that it makes it possible to estimate the local policy gradients
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without having access to the global Critic function, which is
not available under partial state and action information.
Related work: Zeroth-order policy optimization has been
considered in [10], [11] for a special case of single-agent
RL problems, namely, Linear Quadratic Regulation (LQR)
problems. These results were extended in [12] for distributed
LQR problems. All these works use the one-point zeroth-
order policy gradient estimator proposed in [13], [14], which
is known to have large variance that slows down learning [15].
Instead, our proposed distributed residual-feedback estimator
returns policy gradient estimates with significantly lower vari-
ance which improves the learning performance. Our work is
also related to distributed optimization methods, as in [16]-
[20]. In these works, the agents collaborate to find a decision
variable that maximizes the sum of local objective functions.
For this, the method in [18] assumes that the gradient can
be computed, while the methods proposed in [16], [17], [19],
[20] do not assume knowledge of the gradient and instead
compute the zeroth-order gradient estimates of the local ob-
jective functions with respect to all decision variables, even
those owned by other agents. However, in MARL with partial
observations, the agents can not have access to all decision
variables and, therefore, can only compute the zeroth-order
gradient estimate of their local objective functions with respect
to those partial decision variables to which they have access.
Therefore, the methods in [16], [17] cannot be used to solve
the MARL problems considered here. In fact, recent work
on cooperative MARL [21] relies on the assumption that the
local agents can observe the team reward. This is in contrast
to the problem considered here where the agents can only
observe their local rewards, while the team rewards, which
are the summation of local rewards, are not accessible locally.
Therefore, the method in [21] cannot be applied to the problem
considered in this paper. Related is finally work on multi-agent
game formulations of MARL problems [22], [23]. While these
problems rely on partial state and action information, they are
non-cooperative in nature since the goal of the agents is to
optimize their local policies in order to maximize their local
accumulated rewards, as opposed to maximizing the sum of
their local accumulated rewards. As a result, in these problems,
the agents converge to a Nash equilibrium point rather than an
optimal policy that maximizes the global accumulated rewards.
Contributions: In this paper, we propose a new distributed
zeroth-order policy optimization method for general coop-
erative MARL problems. Compared to the one-point pol-
icy gradient estimators in [10]-[12], our proposed residual-
feedback policy gradient estimator reduces the variance of
the policy gradient estimates and, therefore, improves the
learning performance. Compared to the centralized estimator
in [9] that produces unbiased gradient estimates, the proposed
distributed policy gradient estimator is biased due to possible
consensus errors in distributedly estimating the sum of local
accumulated rewards needed for the estimation of the policy
gradients. We show that the proposed zeroth-order policy
optimization method with constant stepsize converges to a
neighborhood of a stationary point (policy) of the global
objective function. The size of this neighborhood depends
on the number of consensus steps needed to control the

bias in the policy gradient estimates. Moreover, we propose
a value tracking method to reduce the numer of consensus
steps needed to achieve a desired user-specified solution ac-
curacy. Finally, compared to existing distributed zeroth-order
optimization methods [16], [17], our method is the first that
does not require a perturbation of all decision variables or
knowledge of all local objective function values to compute
the zeroth-order gradients of the local objective functions, but
still converges to a stationary point of the global objective
function. To the best of our knowledge, this is the first work
that provides convergence guarantees for collaborative multi-
agent reinforcement learinng problems when global states and
actions are partially observable and agents can only receive
local rewards.

The rest of the paper is organized as follows. In Section
2, we present the MARL problem under consideration and
introduce preliminary results on zeroth-order optimization. In
Section 3, we develop our proposed algorithm and present the
convergence analysis. In Section 4, we verify the effectiveness
of our algorithms using numerical experiments. In Section 5,
we conclude the paper.

1. PRELIMINARIES AND PROBLEM FORMULATION

Consider a multi-agent system consisting of N agents.
The agent dynamics are governed by a Makov Decision
Process (MDP) defined by a tuple (S, A, R, P, ), where s; =
[$1.t,82.¢,---,Snt] € S and a¢ = [a14,a2,4,...,an] € A
denote the joint state and action spaces of the N agents at
time instant ¢. The reward vector r = [r1 4,72, ..., 7Nt € R
denotes the local rewards received by each agent at time
t. The local reward r;:(s¢, ar,wy) is affected by the joint
state and action of all the agents in the network, and is also
subject to noise w;. The transition function P(s;,ay, S¢41) :
SxAxS — [0,1] € P denotes the probability of transitioning
to state s;;; when the agents take action a; at state s;. Let
oir € O; represent the local observation received at agent
¢ at time t, which contains partial entries of the joint state
and action vectors, s; and a;. Agent 7 selects its action a; ¢
based on the observation o;, using its local policy function
m  O; — A;. Let w denote the joint policy function
which consists of all local policy functions ;. Then, the
accumulated discounted reward received by agent ¢ is defined
as Q7 (s,a) = E[Y]_7'ritlso = s,a0 = a] or V7 (s) =
]E[ZtTZO Y¥'rit|so = s], when the agents start from the state-
action pair (s,a) or state s, follow the joint policy , and
apply a discount factor v < 1 to their future rewards '.

Our goal in this paper is to find an optimal joint policy
function 7* that solves the problem max, + > ;_;Ji(7),
where J; () = E (s a0)~po [QF (50, a0)] and py is a distribution
that the initial state-action pair is sampled from. To do so,
we assume that the local policy function 7; is parameterized
as m;(0ix), where 6, € R% is the local policy parameter
during episode k. Stacking these local policy parameters into
the global policy parameter vector § € R?, we can rewrite the

! Although we consider a task with accumulated discounted rewards in
this paper, our proposed methods can be easily adapted to task considering
averaged rewards.
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problem we consider in this paper as

1 N
ma J(0) := N;L(e). (1)

Assumption 2.1: We assume that the local objective func-
tion J;(¢) is non-convex and non-smooth for all i =
1,2,...,N.

Problem (1) can be solved using distributed Actor-Critic
methods as in [5], [6]. These methods require that all agents
maintain local estimates of the global value function or the
global policy function and that these local estimates are
parameterized in the same way and depend on the global
states and actions of all other agents. Therefore, they cannot
be used for MARL with partial state and action information.
Instead, in this paper, we propose a new distributed zeroth-
order policy optimization method that relies on the stochastic
gradient ascent update

Opr1 = 0k +aVJ(0k) + €k 2)

to determine optimal policy parameters 6 that solve Prob-
lem (1), where €, represents the noise in gradient estimate and
a denotes the stepsize. The key idea that makes it possible to
use partial state and action information in the update (2) is the
use zeroth-order estimators V.J(6;) of the true policy gradient
VJ(6y). Zeroth-order gradient estimators have been recently
proposed in [15], [24], [25], and take the form
VJ(0) = J(Ok +;Uk7§k)uk’ 3)
or VJ(0) = J (O + ouk, &) — J (O — 5uk7§k)uk’ @
20
where J (0 + duy, &) is an unbiased noisy sample 2 of the
accumulated rewards under the perturbed policy 6 + dug,
5 € R is the exploration parameter, u;, € R? is the random
exploration direction sampled independently from a standard
multivariate normal distribution N (0, I4) and I, is an identity
matrix with dimension d. The estimator (3) is called a one-
point estimator because it requires one policy evaluation at
a single perturbed policy, 0 + dug. On the other hand, the
estimator (4) is called a two-point estimator because it requires
two policy evaluations at two different perturbed policies,
Or + dug and 6 — dup. While the two-point estimator (4)
typically produces gradient estimates with lower variance, it
is difficult to use in decentralized MARL problems. This is
because, to compute zeroth-order policy gradient estimates in
MARL, requires coordination between the agents to evaluate
their local policies. Specifically, the agents need to initialize an
episode, randomly perturb their local policies and implement
the perturbed policies until the end of episode. This procedure
requires synchronization, which can incur delays. And the
more points are used to estimate the zeroth-order gradient, the
longer these delays become as multi-point gradient estimation
requires synchronization over multiple episodes to implement
one udpate. In practice, this waiting time forces the agents to

2For RL problems, the noise vector &, in the function evaluation is due
to noise in the initial state and action samples, the state transition dynamics
and the reward signals.

remain at a sub-optimal policy for longer than the proposed
one-point gradient estimator.

To address the above limitations akin to estimators (3) and
(4), in this paper, we adopt the one-point residual-feedback
policy gradient estimator

J (O + oug, &) — J (Or—1 + 5uk71a§k71)u
1)

VJ(0r) =
(5)

originally proposed in [9]. Same as the estimator (3), the
estimator (5) only requires one policy evaluation at each
iteration, but can use the history of policy evaluations to
effectively reduce the variance of the current policy gradient
estimate and, therefore, improve the learning rate. We note
that the estimator (5) cannot be directly used to solve MARL
problems where the agents can only observe the value of their
local objective functions J;. To address this challenge, in this
paper, we let agents implement a finite number of consensus
steps to approximate the value of the global objective function
J and analyze the effect of consensus errors on the gradient
estimator (5), as we discuss below. 3

According to [9], [24], both estimators (3) and (5) provide
unbiased gradient estimates of a smoothed function J5(6) at
0y, where J5(0) is defined as J5(6) := E,[J(0 + du)] and
u is subject to a standard multivariate normal distribution.
Therefore, updating the policy parameter #; as in (2) using
the gradient estimates (3) or (5) will in fact converge to a
stationary point of the smoothed function J5(6) rather than
a stationary point of the value function J(#) that may be
nonsmooth. To ensure that the stationary point found by this
process is meaningful for the original MARL problem, we
need to define appropriate optimality conditions that addi-
tionally ensure that J5(6) and J(6) are close to each other.
Specifically, we consider the following optimality criterion

IVJs(O)]I* < e, and [J5(0) = J(0)] < e, (6)

which suggests that § is an e—stationary point of the smoothed
value function Js5(6), and that the smoothed value function
Js5(0) is € j-close to the true value function J(#). In this paper,
we use the notation || - || to denote the Euclidean vector norm,
or the induced matrix norm induced by the Euclidean norm. To
bound the distance between the smoothed function J;5(¢) and
the original value funtion J(#) in (6), we need the following
assumption on the value function J(6).

Assumption 2.2: The function .J(#) is Lipschitz with con-
stant Ly, that is, |J(01) — J(02)] < Lg||61 — 6], for all
91, 0, € R4,

We note that Assumption 2.2 can be restrictive in selecting the
class of policy functions. However, even with Assumption 2.2,
to the best of our knowledge, this work is the first to show
convergence of distributed policy optimization under partial
observability. Furthermore, it is the first to show convergence
of distributed zeroth-order optimization when the local agents
can only perturb their local decision variables and observe their

3We note that since the original submission of this paper, a new one-
point zeroth-order estimator has been proposed in [26] that improves on the
performance of the estimator in (5). However, this method is centralized and
does not directly apply to the MARL problem under consideration.
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local objective function value. For comparison, the methods in
[16], [17] require that the full decision variable is perturbed at
every local agent, which imply that they can all observe global
states and actions. Given Assumption 2.2, the following result
for the smoothed value function Js5(#) holds.

Lemma 2.1: (Gaussian Approximation [24]) Given As-

sumption 2.2, the smoothed function Js(0) satisfies |.J5(0) —
J(0)| < 6LoVd, for all § € R%.
According to Lemma 2.1, to control the approximation accu-
racy of the smoothed function J5(6), the parameter 0 needs
to be selected appropriately. The choice of this parameter will
be discussed in Section III. Note that although the random
exploration direction uy ~ N(0, ;) needed to evaluate the
estimator (5) can be sampled in a fully decentralized way, the
global value J (6 + duy) = % Zf\;l Ji(0k + dug, &) is not
accessible by the local agents. In the next section, we design
a new algorithm that relies on partial state and action infor-
mation only to produce a fully decentralized implementation
of the estimator (5).

[1l. ALGORITHM DESIGN AND THEORETICAL ANALYSIS

In this section, we propose a fully distributed zeroth-orther
policy optimization algorithm for MARL that employs the
residual-feedback zeroth-order policy gradient estimator (5).
Specifically, we first introduce a consensus step so that the
global value J (0 + dug, &) in the estimator (5) can be com-
puted locally. Given a finite number of consensus iterations,
the local estimates of J(6) + dug, &) will be inexact and,
therefore, the local policy gradient estimates will be biased. To
control this bias, we then introduce a value tracking technique
that reduces the bias at the current episode using the local
estimates of J (0, + duy, &) from previous episodes. Finally,
we provide convergence results showing that the proposed
distributed zeroth-order policy optimization method with con-
stant stepsize converges to a neighborhood of the stationary
point of the smoothed global objective function.The size of
this neighborhood is controlled by the number of consensus
steps during each episode. Proofs of all theoretical results that
follow can be found in the Appendix.

Our proposed algorithm is summarized in Algorithm 1.
In what follows, we also assume that the N agents form a
communication graph G = (V, &), where V = {1,2,...,N}
is the index set of agents and &£ represents the set of edges.
The edge (i,j) € £ if agents ¢ and 5 € N can directly
send information to each other. Moreover, we define by W €
RY*N 3 weight matrix associated with the graph G such that
the entry W;; > 0 when (i,j) € £ and W;; = 0 otherwise.
Note that the communication graph G is independent of the
coupling between agents in their state transition function
P(st,at, st+1) and reward functions {r;(s¢ a:)} defined in
Section II.

A. Distributed Residual-Feedback Zeroth-Order Policy
Optimization

In this section, we describe and analyze our proposed
residual-feedback zeroth-order policy optimization algorithm
in the absence of value tracking, i.e., when DoTracking =

Algorithm 1: Distributed Residual-Feedback Zeroth-
Order Policy Optimization

Input: Exploration parameter J, stepsize a, consensus
matrix W, number of consenseus steps N, initial
policy parameter 6, discount ratio v, maximum
number of time steps run per episode tmax, number
of episodes K, and the logic variable DoTracking.

Set y1; *(Ne) =0 forall i = 1,2,..., N ;

for episode k =0,1,2,..., K do

3 For agents : = 1,2,..., N, let agent ¢ sample a random

exploration direction w; j from the standard

multivariate normal distribution ;

4 Let all agents implement their perturbed policy

m; (05,1 + 0u; 1) for tmax time steps and construct

unbiased estimates of their local accumulated rewards

{Ji (0 + dug, &)} s

[

5 For all agent?=1,2,..., N,

6 if DoTracking = False or k == 0 then

7 | set pF(0) = Ji (0, + dug, &)

8 else

9 set 4 (0) = puf~H(Ne) + Ji(0k + Sy, &) —
Ji(Op—1 + dug—1,8k—1) ;

10 end

11 for m=20,1,2,...,Nc. — 1 do

12 For agents ¢ = 1,2,..., N, let agent ¢ send ,uf (m)
to its direct neighbors j € A; and conduct local
a\;‘eraging by computing .

pi (m+1) =3, Wijng (m) s

13 end
14 For agents ¢ = 1,2, ..., N, let agent ¢ update its current
policy parameter ¢; ;, by

pE(Ne) = pb " (Ne)
S ui7k.

Oikt1 =0+ (7

15 end
Output: Uniformly sample an integer k within the interval
[0, K] and output 6.

False in Algorithm 1 (line 6). Specifically, at the beginning
of episode k, the agents randomly perturb their current policy
parameters 0, using a random exploration direction uj and
conduct on-policy local policy evaluation to obtain an un-
biased estimate of the local accumulated rewards {J;(0 +
dug) bi=1,2,... n (lines 3-4). To conduct local policy evalua-
tions, existing MARL methods [5], [6] usually assume that
the global state-action pairs (s, a;) are available to all local
agents. Under this assumption, it is possible to update the local
Critic functions Q7 (s¢, a¢) in [5], [6] to reduce the variance
of policy evaluations and, therefore, the variance of the policy
gradient estimates [27]. However, when the agents only have
access to local observations o; ; which contain partial entries
of (s, at), these methods cannot be used. Therefore, in this
paper, evaluate the local policies as J;(0 + dug, &) =
ri(1) + 7ri(2) + ¥27(3) + - + ytmer =i (4, ), same as
in REINFORCE [28]. This policy evaluation method can be
implemented in a fully decentralized way but is subject to
large variance, which increases the variance of the zeroth-order
policy gradient estimates and degrades the converegence speed
of the algorithm. The residual-feedback policy gradient estima-
tor (5) can effectively reduce this variance as we will discuss
later. In what follows, we make the following assumption on
the local policy value estimator.
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Assumption 3.1: For all agents, the local policy evalua-

tion is subject to bounded variance. That is, E[(J;(0,£) —
Ji(0))?] <o? fori=1,2,...,N.
After all agents compute local policy values Ji(¢9¢7k +oug, &)
as Ji(Or + dug, &) = ri(1) + yri(2) + ¥*r(3) + - +
vtmam_lri(tmm), which is an unbiased estimation according
to [28], they conduct N. rounds of local averaging on their
local policy values {J;(0x + duk, k) i=1,2,.. .~ (lines 7, 11-
13). As a result, they obtain inexact estimates 5 (N, + 1) of
the global accumulated rewards J (6 +dug, k). To bound this
estimation error, we need the following two assumptions.

Assumption 3.2: The undirected communication graph G is
connected and fixed for all episodes. In addition, the associated
weight matrix W is doubly stochastic. That is, W1y = 1y
and W71 = 1, where 15 denotes a N dimensional vector
of elements 1.

For simplicity of notations, in the following we neglect
the subscript V in 1x and write it as 1. The dimension
of the vector can be taken as appropriate within its context.
Assumption 3.2 is introduced to ensure that agents’ local
estimates 1% of the global objective function value can reach
consensus on their average = >, ¥ within an error that
depends on the number of consensus steps. In this paper we
assume that the communication networks is fixed. If it is not,
then consensus methods for time-varying graphs, such as that
proposed in [29] can be used to estimate the global objective
function value. The analysis in this case is left for future
research

Assumption 3.3: The local values J;(6,€) are upper
bounded by J, and lower bounded by J; for all ¢ =
1,2,..., N and all policy parameters 6.

Assumption 3.3 can be easily satisfied for episodic RL
problems with bounded rewards over all state-action pairs.
Let ji*(m) = [u¥(m), ..., u% (m)]T. Then, we can show the
following lemma.

Lemma 3.1: Given Assumptions 3.2 and 3.3, we have that
% (Ne) — J(Ok + du, &)1 < phevV/N(J, — Ji), where
pw = IW - $117) < 1.

Lemma 3.1 shows that the bias in the local estimate ji*(N,.)
can be controlled by choosing a large enough N, when the
local policy values are upper and lower bounded by .J,, and
J;. Using the estimates ji*(N,), the agents can then construct
the decentralized policy gradients (7) and update their policy
parameters 6; ;, (line 14). This completes episode k. The
decentralized residual-feedback estimator (7) can reduce the
variance of the policy gradient estimates, since the value
estimate of the last policy iterate ﬁf‘l(Nc) can provide a
baseline to compare ji¥ (N,.) to. Effectively, the value estimate
of the last policy iterate has an analogous variance reduction
effect to the state value V™ (s) that is used as a baseline for
the action value Q™ (s, a) in Actor-Critic methods [27]. 3 Next,
we show how to select IV, so that the optimality criterion (6)
is satisfied.

Theorem 3.2: (Learning Rate of Algorithm 1 with-
out Value Tracking) Let Assumptions 2.2, 3.1, 3.2 and

3Note that the fact that the value of past policy iterates can also be used
as a baseline to reduce the variance of policy gradient estimates may be of
interest in its own right in the development of policy gradient methods.

1.5
J

3.3 hold and define § = \/%JLU, a = STV and
N. > log( vees )/ log(pw). Then, running Al-

) V2d 5 Lo(Ju—1))
gorithm 1 with DoTracking = False, we have that

LSS ENVIs00)]2] < O(d5e; ' K~0%) 4 &, where
the expectation is taken over the trajectory of sampled vector
uj and evaluation noise &.

As shown in Theorem 3.2, Algorithm 1 converges to a
neighborhood of the stationary point of the smoothed global
objective function. Specifically, according to the optimality
conditions in (6), the approximation error on the smoothed
objective function J5(0;) compared to the original function
J(0) is controled by the parameter ¢;. And the neighbor-
hood around the stationary solution is characterized by the
parameter €. Given the user specified parameters €; and e,
Theorem 3.2 says that the number of iterations K can be
selected according to the bound in (32). Note that computing
this bound requires knowledge of the problem parameters
Jiz —Js(00), E[||gs(60)]|?] and Lo. In practice, we can replace
these parameters in (32) by bounds selected sufficiently large.
Note also that selecting the number K according to (32) can be
conservative. We leave the study of tighter theoretical bounds
on K for our future research.

The size of the neighborhood e can be controlled by choos-
ing the number of consensus steps N.. Specifically, according
to Lemma 3.1, the number of steps IV, controls the consensus
error ||ji*(N.) — J (60 + Sug, &)1, which in turn bounds
the error e of the solution; see the proof of Theorem 3.2
in the Appendix. Moreover, the number of consensus steps
N, depends not only on the user-specified accuracy level e
and €7, but also on the range of the policy bounds .J, and
Ji. This is because the consensus iteration at each episode is
independent of those at previous episodes. Therefore, to select
N_ to control the estimation bias |u¥(N,) — J (0 + Su, &),
we need to select the term J, — J; in the definition of V.
in Theorem 3.2 as the difference between the initial estimates
pF(0) = J;(0r + dug, &) € [J), J,] that have the maximum
and minimum value.

B. Distributed Residual-Feedback Zeroth-Order Policy
Optimization with Value Tracking

As discussed in Section ITI-A, the estimation bias |u(N..)—
J (0 + ouk,&)| at episode k can be reduced by using
local policy estimates from previous episodes. Specifically,
rather than resetting p¥(0) = J;(0r + duy, &) in line 7
of Algorithm 1, we update it using the estimate % ~'(NNV,)
from the last episode as pk(0) = pF='(N.) + Ji(0r +
dug, &) — Ji(Og—1+0ug—_1,&k—1). Then, we run N, consensus
iterations on 1¥(0) as before. Let i (m) = + va:l pk(m).
The following lemma shows that the value tracking updates
preserve the global information J (0 + duy,&x).

Lemma 3.3: Let Assumption 3.2 hold. Then, running Al-
gorithm 1 with DoTracking = True, we have that i*(m) =
JOp + dup, &) = SN Ji(0ix, &), for all m =
1,2,..., N, and all k.

Lemma 3.3 implies that the local estimation bias |u¥(N..) —
J(0k + Sug,&)| is equal to the consensus error |pF(N..) —
i*(N.)|. Using value tracking, the bias at episode k can be
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controlled by the consensus steps of past episodes. This is
formally shown in the following lemma.

Lemma 3.4: Let Assumptions 2.2, 3.1, 3.2 hold and define
Ef = |fir(Ne) — fr(Ne)1|. Then, running Algorithm 1
with DoTracking = True, we have that E[(E})?] <

2

(QE[(E;j—l)Q] T BRAIRE[(EE )2 fups 2] + 3242L2

ng[(E’ﬂ)Q])p%éVC + 16N LG B[V (05-1) [ o3 +

32NdL35%py) + 16N a2 pipe.

Compared to Lemma 3.1, the proposed value tracking tech-
nique makes it possible to bound the consensus error at episode
k with the consensus errors from episodes k£ — 1 and k — 2.
Furthermore, at each episode, this error is perturbed by the
second order momentum of the policy gradient estimate (5)
which can be controlled by choosing a small stepsize o and
a large number N.. To see the benefit of this result, when the
consensus errors from episodes £ — 1 and k — 2 are small,
value tracking needs fewer consensus iterations to achieve
small consensus error at episode k. This is in contrast to the
case without value tracking, where NN, is selected regardless
of previous consensus errors. The following result shows
convergence of Algorithm 1 using value tracking.

Theorem 3.5: (Learning Rate of Algorithm 1
with Value Tracking) Let Assumptions 2.2,1 . 3.1,
32 hold and define § = -2 S

VdLgy’ 4d1~Sigx/E’
mas (log(pw) log( 15, log(ow)
where G? =

and N, >

1 €

Og(\/4(G26J+32(d+4)2dLg+16d3Lgcf?/e?,) )
max ( E[[|[VJ(6o)]?] + 32L3(d + 4)? +16d2L3§>.

J

Then, running Algorithm 1 with DoTracking = True, we
have that £ 32,7 E[|[VJ5(04) %] < O(d' e, K=0%)+5,
where the expectation is taken over the trajectory of the
sampled vector uj, and evaluation noise &.

2e €
7 dK

In Theorem 3.5, the constant G? represents the uni-
form bound on E[|VJ(6;)|?] for all & = 1,2,...,K.
Moreover, from the bounds on N, in Theorems 3.2 and
3.5, when ¢ and €; are close to 0, we obtain that
N. ~ O(log(%%2)/log(pw)) in Theorem 3.5 and N, ~
O(log(%)/log(pw)) in Theorem 1. This suggests
that the choice of /N, in Theorem (3.5) depends on the variance
of function evaluation o2, while in Theorem 3.2 the choice
of N, depends on the range of value functions [J;, J,]. In
practice, the standard deviation of function evaluation ¢ can
be much smaller than the range of its value [.J;, J,,]. To see this,
note that by Assumption 3.3, we have that the noisy sample
of the objective function value J;(6, ) has bounded support.
Then, applying the Popoviciu’s inequality on variances, we get
that the variance o2 satisfies that o2 < 1(J, — J;)?, that is,
o < 3|Ju — Ji|. Therefore, Algorithm 1 with value tracking
requires fewer consensus steps per episode than without value
tracking.

Remark 3.4: The proposed value-tracking technique can
also be combined with the existing distributed one-point policy
gradient estmiator [12] to reduce the variance of its gradient
estimates. To see this, note that the global value function

—— One-Point with Tracking
Residual with Tracking

_—40 ~ —40
S S
L) T -as

—50 | =—— One-Point Policy Gradient =50
Residual Policy Gradient

5!
10000 0 2000 4000 6000 8000
Episodes

0 2000 4000 6000 8000 10000

Episodes

(a) (b)

Fig. 1. Distributed zeroth-order policy optimization with the proposed
residual-feedback estimator (5) (orange) versus the one-point estimator
(3) (blue). In each case, Algorithm 1 is run 10 times. (a): Results without
value tracking. (b): Results with value tracking.

-30 -36
= One-Point Policy Gradient -37
_35 One-Point with Tracking _38
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LR ARAT A AT 3%
-45 =-4
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-50 —43
—44

J(61)

—— Residual without value tracking
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45
10000 0 4000 8000 12000 16000 20000
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0 2000 4000 6000 8000
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(a) (b)

—— Consensus error without value tracking
Consensus error with value tracking

N

Consensus Error
Oor N WSE U O N ®

0 4000 8000 12000
Episodes

©

16000 20000

Fig. 2. Distributed zeroth-order policy optimization with value tracking
(orange) versus without value tracking (blue). In each case, Algorithm 1
is run 10 times. (a): Comparative results for the one-point estimator (3).
(b): Comparative results for the proposed residual-feedback estimator
(5). (c) Maximum absolute consensus errors max; qu(Nc) —J(O0 +
dug, £k )| over episodes.

J (0 + duy, &) used in the one-point estimator (3) can be
replaced by the local esimate of the value J (6 +dug, &), i-e.,
u¥(N.). Then, we obtain the following distributed one-point
policy gradient estimator with value tracking: @aiykj () =

k

N g ik (Y en, Wi (uEH(Ne) + J;(0k +
Sug, &) — Jj(0k—1 + Oup—1,&k—1)))/5. We observe that
the estimator Vo, ,J(0;) has the same structure as the
distributed residual-feedback policy gradient estimator with-

out value tracking (7) except for an additional noise term
ZjeN,i[WNC]ijﬂg?il(NC)

5 u; . Therefore, the variance of the es-
timator 69% . (0x) is reduced through a similar mechanism
as that of the distributed residual-feedback policy gradient
estimator without value tracking. As a result, the learning
performance is improved compared to that of the existing
distributed one-point policy gradient estimator [12], as we will
demonstrate in the next section.

V. EXPERIMENTS

In this section, we illustrate our proposed MARL algorithm
on stochastic multi-agent multi-stage decision making prob-
lems. Specifically, we conduct an ablation study to demon-
strate the benefits of applying the decentralized residual-
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Fig. 3. (a) Algorithm 1 with value tracking (orange) versus without value
tracking (blue) under the communication graph which does not respect
the coupling relationship among agents. (b) Comparative results for Al-
gorithm 1 with value tracking under different number of consensus steps
N, and the centralized algorithms with partial and full observations. In
each case, Algorithm 1 is run 10 times.

feedback zeroth-order policy gradient estimate (7) and the
value tracking technique separately. We consider 16 agents
that are located on a 4 x 4 grid. Agent ¢ has state s;(t) =
[m;(t), d;(t)], which denotes the resources it stores and the lo-
cal demand it receives in the amount of m;(¢) and d;(t) at time
t, respectively. In the meantime, agent ¢ takes actions a; (1),
which denote the resources it shares with its neighbors j € N;
in the grid. Specifically, a;;(t) € [0, 1] denotes the fraction of
resources agent ¢ sends to its neighbor j at time ¢. The local
resources and demands at agent ¢ are defined as m;(t + 1) =
mi(t) = e n @i (Omi(t) + 3 e, azo(8ymy (1) — di(t) and
d;(t) = A;sin(w;t + ¢;) + w; ¢, where w; ; is the noise in the
demand. At time ¢, agent ¢ receives a local reward r;(t), such
that r;(t) = 0 when m;(t) > 0 and r;(t) = —m;(t)?> when
m;(t) < 0. We consider a partial observation scenario, where
agent ¢ can only observe its local resources and demands, that
is, 0;(t) = [mi(t),d;(t)]". Agent i determines its actions
{ai;(t)} using its local policy function m;(0;(t)|6;), where
0; is the policy function parameter for agent :. Specifically,
we have that a;; = exp(zi;)/ > ; exp(zi;), where z;; =
Zizl lloi—cplI20:;(p) and ¢, is the p-th feature parameter. We
consider episodes of length 7" = 30, and select the discount
factor as v = 0.75. The goal of the agents is to find the optimal
joint policy parameter 6, so that their total accumulated reward
J(0) = Egyaompo [ 20207t SN (1) |7(6)] is maximized.
The communication graph is assumed to be a chain graph.
Moreover, we select the number of consensus steps N, = 1,
and show that Algorithm 1 with value tracking can achieve
policy improvement even in this challenging scenario. The
stepsizes are selected so that the convergence speed is op-
timized.

First, we compare the performance of Algorithm 1 using
the decentralized policy gradients (5) and (3), without value
tracking. The learning progress is presented in Figure 1(a).
We observe that the decentralized residual-feedback policy
gradient estimator has less variance than the existing one-point
policy gradient estimator and, therefore, improves faster and
finds a better policy in the end of the learning. The same effect
is observed in Figure 1(b), when both estimators are imple-
mented with value tracking. This suggests that the residual-
feedback zeroth-order policy gradient estimator is superior to
the one-point policy gradient estimator for decentralized policy
optimization problems.

Next, we demonstrate the merit of using value tracking.
Specifically, we first run Algorithm 1 with the decentralized
one-point policy gradient estimator (3), with and without
value tracking. The difference in the performance is shown in
Figure 2(a). We observe that using value tracking results in less
variance and also achieves better policies. This is because the
decentralized one-point policy gradient estimator with value
tracking Vg, , J(0%) has the same variance reduction effect
on the policy gradient estimates as the residual feedback
estimator 5, as we have discussed in Remark 3.4. Figure 2(b)
shows the results of using the residual-feedback policy gradi-
ent estimator (5) with and without value tracking. We observe
that Algorithm 1 with value tracking performs slightly better
in the mean than without value tracking. This is because value
tracking can track the value of the global objective function
better, as shown in Figure 2(c) where the maximum consensus
error max; |uf(N,) — J (0 + dug,&)| at each episode k is
presented. The improvement achieved by value tracking is not
very significant in Figure 2(b) because the underlying com-
munication graph respects the coupling relationship among
agents. Specifically, we say that the communication graph
respects the coupling relationship between agents if the action
of every agent ¢ that can directly communicate with an agent j
also directly affects the reward and transition function of that
agent j. In this case, the rewards received from an agent’s
local neighbors can approximate this agent’s contribution to
the global reward well even without tracking the information
from other distant neighbors in the graph.

To further demonstrate the advantage of combining the
decentralized residual-feedback gradient estimator with value
tracking, we consider a challenging scenario where the com-
munication graph does not respect the coupling relationship
among agents as described above. The performance of Al-
gorithm 1 using the residual-feedback estimator (5) with
and without value tracking is presented in Figure 3(a). In
this case, using rewards from the local neighbors does not
approximate well the local agent’s contribution to the global
reward. Therefore, value tracking can help obtain a better
estimate of the global reward information. As a result, the
decentralized residual-feedback policy gradient estimator with
value tracking outperforms the one without value tracking, as
shown in Figure 3(a). The numerical results presented above
show that the performance of Algorithm 1 is affected by the
structure of the communication graph among the agents. As
shown in Lemma 3.1, the second largest singular value of
the matrix W, py, captures the speed at which the agents
can reach consensus on the global objective function value.
As shown in (23) in Lemma 1.3, the bound on the second
moment of the gradient estimate is related to the consensus
error terms, e.g., ||@*~! — p*~11|,. Therefore, the smaller the
value of pyy, the smaller is the second moment and, therefore,
the variance of the gradient estimate. This suggests that the
variance in learning can be further reduced for communication
graphs that enable fast consensus.

Finally, we demonstrate the effect of the consensus steps N,
on Algorithm 1 by comparing to a centralized algorithm that
uses the gradient estimator (5) with both full and partial ob-
servations. Specifically, in the centralized algorithm, the value
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of the global objective function J(6y + dug, &) is directly
provided to each local agent at each episode, and the local
agents’ policy functions receive all agents’ states as inputs
when full observations are assumed and only receive the neigh-
boring agents’ states as inputs when partial observations are
assumed. As shown in Figure 3(b), as the number of consensus
steps [V, increases, the performance of Algorithm 1 with value
tracking approaches that of the centralized algorithm with
partial observations. And the performance of the centralized
algorithm with partial observations slightly underperforms that
of the centralized algorithm with full observations. This is
because policy functions learned using partial observations
constitute a subset of those that can be learned using full
observations. Note that the centralized algorithm requires all
the agents to observe the values of all local objective functions,
which is not a scalable approach in practice. Its performance is
provided here as a benchmark to compare to the performance
of the proposed distributed algorithm.

V. CONCLUSION

In this paper, we proposed a new distributed zeroth-order
policy optimization method for MARL problems. Compared
to existing MARL algorithms that require all the agents’
states and actions to be accessible by every local agent,
our algorithm can be applied even when each agent only
observes partial states and actions. Specifically, we developed
a new distributed residual-feedback zeroth-order estimator of
the policy gradient and analyzed the effect of bias in the local
policy gradient estimates on the convergence of the proposed
MARL algorithm. Furthermore, we introduced a value tracking
technique to reduce the number of consensus steps needed at
each episode to control the bias in the estimation of the policy
gradient. Finally, we provided numerical experiments on a
stochastic multi-agent multi-stage decision making problem
that demonstrated the effectiveness of both the decentralized
residual-feedback policy gradient estimator and the value
tracking technique.
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APPENDIX

Lemma 3.1. Given Assumptions 3.2 and 3.3, we have that
173 (Ne) = J(Ok + dug, &)1 < piyeV/N(Ju — Jy), where
pw = [|[W - 117 < 1.

Proof: First, we show that 17 /i*(m) = J (0, +6uy, &)
for all m = 0,1,...,N.. Note that the consensus step
pF(m+1) = D ieN, Wiju;?(m) (line 12 in Algorithm 1) can
be equivalently written in a compact form as ji*(m + 1) =
W ji* (m). Therefore, we have that

1 1 1
NlTﬁk(m +1) = NlTWﬁk(m) = NlTﬁk(m), ®)
where the second equality is due to Assumption 3.2, that

the matrix W is doubly stochastic. Extending equality (8)
from m to 0, we obtain that +17i*(m) = £17[*%(0) =

sz 1 (Qk + §uk,§k) = J(Hk + 5uk,§k), for m =
0,1,...,Ne.

Next, we show that ||ii*(m) — 117 @%(m)|| < |[W —
1177k (0) — % 11T*k(0)|| for m =1,2,...,N.. To
see this, we have that

. 1 .
I (m+ 1) = LT (m+ 1)
= Wi (m) — F1 Wit (m)]
. 1 .
= Wit (m) = 117 @ (m)), ©)

where the second equality is due to Assumption 3.2. According
to (9), we have that || 7" (m+1)— 4117 % (m+1)|| = (W —
L)k ()| = [[(W — L1217k (m) — & 117 ()|
This is because (W — %117) 117 i*(m) = 0. Therefore,
we get that

” 1 .
17" (m +1) — NllTuk(m + 1)l

“(m) -

17| (0)

1
<|w- =117
< N Il

1
< W= =1

1 .
ST )|

IN

1
= 1O (10

The first inequality is due to the definition of the induced
matrix norm ||W —+117||. According to Assumption 3.2, we
have that pyy = ||[W — %117 < 1. Furthermore, recalling
the fact that 177%(m) = 17 J;(0% + duk, &) = J(0k +
dug, &) for m =0,1,..., N., we obtain that

| %(N.) — J(0k + Sug, &)1
< pie 1E*(0) = J (O + du, &)1 ]. (11)

Since 1%(0 ) = Ji(0r + oug,&) € [Ji,Ju) and J(Or +
Sup, &) = % SN Ji(0k + duy, &) € [ i, Ju], we have that
1*(0) = J (81 + St &)1]| < VN(J, — Ji). Plugging this
inequality into the bound in (11), we complete the proof. W

In the subsequent proof, we need the following lemma by
[24].

Lemma 1.1: (Lipschitz Properties of the Smoothed Func-
tion, [24] Given Assumption 2.2, the smoothed function

Js(0) is differentiable and its gradient is Lipschitz, that is,

IV J5(61) — VJ5(6s)|| < YLa||g, — G|, lfor all 6;,0 € R

Next, we present a lemma that bounds the squared norm of

the gradient of the smoothed function VJ5(6y) at iterate 6.
Lemma 1.2: Let Assumptions 2.2 and 3.1 hold. Then, for

all kK > 0, we have that

2

= (E[J5(Or+1) —

E[|VJ5(0x)[|* Fr-1] < J5 (01 )| Fr-1])

+2fLo Elllgs(05)|1*| Fr—1]
fE[IIﬁ — 1P| ||? | Freer]
T 4Vdd, LO E[||* — %12l u] | Fr-1]
+ 4d"%d; Lo E[lp" " = 55112 Fema], (12)

where the filtration Fj_1 = o(ug, &t < k — 1), gs(0) =
J(Or+0up,&k)—J (O —1+0uk—1,6k—-1) 1T 7k

5 N+ M
J(0x + Sup, ).

Proof: According to Assumption 2.2 and Lemma 1.1, we
have that the smoothed function f5(6) has Lipschitz gradient
with the Lipschitz constant L s = \/%LO . Therefore, using the
inequality (6) in [24], we obtain that

up and pF =

(VI5(0k), 01 — Or) < J5(Ohs1) — J5(0n)+
Ll 0 2
— 0k

13)

Without loss of generality, we assume that each agent’s local
policy function 7; is parameterized with §; € R% and d; = %
for all 7. Then, the update (7) can be written in the compact

form

«
Orr1 = Ok + gdiag([ulf(N) (NG,
o R (Ne) = TN (NG)]) @ T, u

a .
=0+ — i = PR

5 (14)

diag(
where ® represents the kronecker product and I, is an identity
matrix with dimension d;. To simplify the notation, we use ¥
or ji* to denote p¥(N.) and ji*(N.), respectively. Then, we
equivalently rewrite equality (14) as

Opp1 = Op + %diag(ﬂk AR+ J(0k + dup, &)1

— B BN = T(O + Surr, &h-1)1)) @ T s,

because fi¥ = +17 % = J(64 + duk, &) as in the proof of
Lemma 3.1. Rearranging terms in above equality, we have that

J(Or + oug, &) — J(Or—1 + 5uk717§k71)uk

Opt1 — O =« 5
a
+ s diag(i* — i"1) ® Iy uk
- %dlag( TAREI /LS DR PRI 15)

Substituting (15) into the bound in (13) and rearranging terms,
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we get that where the first two inequalities are due to the fact that
lor + v2]|? < 2[jv1||* + 2||v2]|* and the third inequality is
a(VJ5(0x), 95(0r)) due to the fact that IEJ[Hdiag(,uk’1 - pF ) ® Idiuk||2] <
< J5(Oni1) — Js(01) — %(VJg(@k),diag(ﬁk A1) @ Iy, uy) B[l diag(ut ™ — P TP ug|?], the fact that pt! —
L . f*~11 is independent of uy and the fact that E[||ug||?] =
+ %‘SaQIIga(Gk) + gdiag(ﬁk — iF1) ® Iy, up, Substituting the bounds in (18) and (19) into the bound in (17)
1 and rearranging the terms, we get that
—dia, 1P ) @ I g2
g[ g( — K ) d; kH E[”ng(ak)HQ}
—(VJ5(0y),diag(p* ' — F 1) ® 1,, 16 2
+ 5V al0h), dinglu™ — BT @ La, o < B 0r) = Ji0R)) + 2/ Ao SEllg5(04)]?)
where 96(9k) J(0k+ur,Ek)— J(ek 1+6uk—1,8k— l)uk Dividing +4\fd LO Hl ﬁk1||2||uk||2]
both sides of (16) by « and takmg the expectation of both s a2
sides with respect to u; and & conditioned on the filtration +4d°d; LO [||H — g1
Fr—1 = o(ug, &t < k —1), we have that .
Els(Geer) — J5(60) | Fo] B0 — 712l (20)
§0kt1) — J5(Ok)| S k-1
B[V s (0k) 1% Fia] < a The proof is complete. ]

1 . 1
- EE[<VJ6(9k)7diag(uk — 1) @ I, up) | Fi]

L 1 Lk -
+ =5 aEllgs () + diag(i’ — i*1) @ Lo uk

1 1 ke
— ~diag(p ™" — i") @ IguplP| Fr-a- (17)

1
Note that all the expectation in the rest of this proof shall
be conditional on the filtration Fj_;. To simplify notation,
in what follows we omit conditioning on the filtration. This
is because E[gs(0)] = VJ5(0k), VJ5(0x) and diag(pu*~1 —
/lk_ll) are fixed when conditioned on the filtration Fj_1,
and E[uy] = 0. Next, we provide bounds on the second and
third terms in the right hand side (RHS) of (17). Specif-
ically, because —(VJ5(0), Jdlag(ﬂ . ﬂkl) ® Igug) <
LIV I5(00)|1* + 53z || diag(fi* — p*1) ® I, up||?, we have that

1 e
= ELVI5(0%), diag(f@* — i*1) © Iq,uy)]

1) ® Iq,ux ]

k112 2
SR — 7P e ),
where the third inequality is due to the fact that

ldiag(vi)val|? < ||vi||?||v2)|? for all vy,ve € RZ Further-
more, we have that

1 ~ _
< SE(IVJs(60)) + @Emdmgw -

IN

1
SEUVIs(O)]1°] + (18)

1 o
E[llgs(6x) + gdiag(u’“ — 1) ® Ig,uk

1
- gdiag( S 7'“_11) ® Ig,up|?]
< 2E[||gs (6x)11°] + Ellldiag(i* — i*1) ® Iq,ux
— diag(p*! uk ") @ Lo, ue?]
< 2E[||gs (0x)11°] + < Ellldiag(i* — i*1) ® Iq,uz|?]

4 e
+ 53 Ellldiag(y” 1—//“ 1) @ La,ur|)?]

< 2E[||gs(6)]1] + *E[II — AL 1)

4dd,;

k—1
B

— "),

19)

Next, we present a lemma bounding the second moment of
the gradient estimate gs5(6y).

Lemma 1.3: Let Assumptions 2.2 and 3.1 hold. Then, for
all £ > 1, we have that

042
]E[Hga(t?k)l\z] < 8dLG—E[llg5(0x1)|”)

+16dd; L3 54 [le/H = A" | 1?) 2n
8do?
+ 16d2d; LO 1 E[||u"2 — @F721)?) + 16(d + 4)*L3 + 5
Proof: Recalling that 95 (Or) =
J(QHM’“’5’“)7‘](2’“‘&6“’“‘1’5’“‘1)uk, we have that
E(llgs(0x)]) (22)

_ 1

E[|J(0), + dug, &) — J (O—1 + Sup—1, E—1)*[lux))?].

In addition, using the inequality (a + b)? < 2a? + 2b2, we

have that
T Ok + Oup, &) — J (Ok—1 + Sug—1,&k-1)]?
= [J (O + dug, &) — J (Ok—1 + dup—1, k)

+ J(Or—1 + 0ug—1,8k) — J(Ok—1 + dup—1,8§k—1)]

2(J (O + Ouk, &) — J(Or—1 + Oup—1,))

+ 2(J (O—1 + dur—1,&x) — J(Op—1 + up—1,E—1))>.
Then, by adding and subtracting the term J(0;_1 + duy, k)
within the term (J(6x + dug, &) — J(Or—1 + Sug—1,&x))? in
above inequality and applying the bound (a+b)? < 2a? + 2b2
similarly as above, we get that

| J(Ok + Sur, &) — J (O —1 + dup—1,&—1)[°
< A(T(Or + Sur, &) — J(Or 1 + dug, &)
4(J(Op—1 + dup, &) — J (Ok—1 + 5Uk—1,§k))2
2(J Bk 1 + Sup_1,&) — J (1 + Sup_1,&1))°
According to Assumption 2.2, we have that (J(Hk +uk, &) —
J(Ok—1 + 5uk,§k))2 < L§||0x — Or—1]* and (J(Or—1 +

2
Sup, &) — J(Op—1 + oup—1,&))" < L3 |lwr — up—1]*
Furthermore, according to Assumption 3.1, we have that

(23)
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2
(J(Qk_1 + dug—1,&k) — J(Ok—1 + 5uk_1,£k_1)) < 402,
Applying the above bounds to the RHS of (23), we get that

|0k + duk, &) — J(Ok—1 + Sup—1, 1) ?

< 4L(2)||0k — Gk_1||2 + 4L(2)52||uk — uk_1H2 + 8a2.
Substituting the bound (24) into (22), we have that
L2

(24)

E[llgs(0x)II°] < 5°E[Il9k—9k 11k ]1?]
+AL3E lJur — w1 |1 [lux]?] + TQEHIukIIQ}
_ 4dLj 8do?
< 52°E[|\9k—9k 1|12] +16(d +4)2L3 + 5 (25)

The second inequality is due to the fact that ||y — 01|
is independent of wuy, E[||lux — up—1|*||ux|?] < 4(d + 4)*
and E[||ux|?] = d. Specifically, we have that E[||u; —
wi—1|[?Jug||?] < 4(d+4)? because |Jup —ug—1[* < 2juk*+
2||up_1]|? and that E[||ug||*] < (d + 4)? according to [24].
Substituting the expression for 6 — 0 _1 in (15) into (25) and
applying the bound in (19), we obtain that

2
(67
E[|lgs(01) ] < SdL(Q)ﬁE[Hgé(ekfl)Hz]

+ 16,3 B[ — 51 e )

0 54
+16d%d; L2 E[||F =2 — aF21)|?] + 16(d + 4)2L2 + Sdo”
0 54 H K 0 52
The proof is complete. [ |

Now, we are ready to present the proof for Theorem 3.2.
Theorem 3.2. (Learning Rate of Algorithm 1 with-
out Value Tracking) Let Assumptions 2.2, 3.11er 3.2 and

3.3 hold and define § = \/%JLO, « and

€J
4dr5L2VK’

! E[||lgs(0x)||?] on the RHS of (27). Specifically, since
N is selected so that ||ji* — " 1|| = ||@*—J (O +0ug, &)1 <
E,, regardless of uy for all £ > 0, the bound in (21) can be
simplified as

2
E[llgs (0r—1) 1| Fro—1]

8do?
52

Applying the tower rule of conditional expectation and tele-

scoping the above inequality from £ = 1 to K -1, addmg

E[||g5(f0)||?] on both sides, adding 8dL3 (gz E[|gs(0x—1)]?]
on the RHS, and rearranging the terms, we have that

E[||gs(0%)||?|Fr—1] <8dL

+32d%d; L3S 5 E2 +16(d +4)°L§ + . (28)

N

32d2d; L2
(%) IE 6o)||?] + ———=2 E2K
gj|m O] las o))+ ==
4 2L2 2
16(d + 4) 05 1 8do K. 29)
1—ay (1 —ay)d?
1o
where ay = 8dL 2‘—2. When § = \;JL and a = 4d15L2\/»,
we have that oy = sz < 5 when €5 < d and K > 1.

Substituting the bound on ¢ into (29), we obtain that

K—1
E[llgs(05) 2] < 2E[]|gs(80)|] + 64d%d; L3S 5 EQK
k=0
16d,
+32(d + 4)2L2K + 650 K.
Moreover, substituting the bound in (30) into the bound in
(27), we get that

(30)

K—1
€€ . 2
N, > log(m)/bg(pw). Then, running Al- Z E[||VJ5(05)|1%] < E(IE[J(;(GK) — Js(6o)])
gorlthm 1 with DoTracking = False, we have that k=0
% Cio BlIVs(00)]°) < O(d e PK-0%) + 5. FAVAL,SE mm&m]+mw+®“L Sk
Proof: According to Lemma 3.1, and using 4
Assumptio\l}g 32 and 33, we select N, > +32d1'5L00 LK 41284254, Lo . E2K
log(sar i)/ loglpw) so that [I* — k1] = 62 dd, g
|2 — J (0 + Sug, & )1|| < E,, regardless of s for all k > 0, + 8d%d; L05 E? 52 ELKs. (1)
where E,, is a small constant such that Ei =5 d T
the bound in (12) can be simplified as Recalling that Ei = ;g -~ and substituting the selected values
2 _ € _ €5 . .
E[||V J5(05) |12 Fe_1] < a(EU&(ekH) — Js(00)| Fui)) for 0 JaLe and o VR into (31), we obtain that
(26) K—-1 dl 5L2
dd; E[||VJ5(0k)|? —CE[J; — J5(00)]VK
+2\[L0 [Hgé(ok)H |fk 1] + 8d1 Sd L063E;21 = — [” ( k)H ] J [ 5§ ( 0)]
Applying the tower rule of the conditional expectation and I €y® E[|g5(60)||?] + eey” 16(d+4>2 1205 /K
telescoping the above inequality from k£ = 0 to K — 1, we get VdK 830 dt- 5\ﬁ d o=J
that 8d1.5L2 2
K—1 ) * 61'500 VE+ 6\6/% VK §K7 G2
J
E[[[VJs(0k)I1"] < = (E[J5(0x) — J5(0)]) 27
k=0 @ where J; > J5(0) for all § € R%. The upper bound on J;5(6)
o Kl dd, exists due to Assumption 3.3. Dividing both sides of (32) by
+ 2\/&1103 Z E[llgs(0x)]1*] + 8d'5d; Lo— 5 E? 52 . J(,K, we achieve the bound in Theorem 3.2. [

where the expectation is taken over the trajectory of ran-
dom samples of wu; and &. Next, we bound the term

Lemma 3.3. Let Assumption 3.2 hold. Then, running Al-
gorithm 1 with DoTracking = True, we have that i*(m) =
J(Or + Sup, &) = & Sm, Ji(0k + dup, &), for all m =
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1,2,..., N, and all k. Proof: According to (8), we have
that
i (m) = <17 (m) = 17 (m — 1) =
N N
= %1%’“(0), forall m,k>0. (33)
Next, we show that 7*(N,) = a*(0) = L S°7 J;(6x +

duy, &) for all k. We use mathematical induction to construct
the proof Specifically, suppose that g*~*(N,) = g*=1(0) =
~ lel 1(0k—1+0uk_1,E&—1) holds. Then, according to line
9 in Algorithm 1, we have that

ST N = 17 0)
_ %ﬁ(,ﬁ—l( )+ (61 + Sup, )
— J(O—1 + Sup—1,&—1))
1 N
i1+ dup—1,&-1) + 5 D JilOk + Sug, &)

1 =1

i

I
=i

?

Ji(Op—1 + dug—_1,&K—1)

an

where j(ek + dug, &) = [, Ji(Ok + oug, &k), - .. ]T. The
second equality above is due to the induction hypothesis. We
have that the induction hypothesis is satisfied for ji(N,),
according to line 7 in Algorithm 1. Therefore, we have shown
that £177%(0) = & SN | Ji(Ok + Su, &) for all k. And
due to (33), we have shown that ji*(m) = J(0y + dug, &) =
LS ik + Suy, &), for all m =1,2,..., N, and all k.
The proof is complete. ]
Lemma 34. Let Assumptions 2.2, 3.1, 3.2 hold and define
= ||i*(N.) — i*(N,)1||. Then, running Algorithm 1 with
DoTracklng = True we have that

E[(E})?] §<2]E[(Ek‘1) ] + 32412 5 [(ES ) luk—1]?]

+ 32d2L§§—2E[(Ek %)? ]);ﬁ%

+16N L3 B[ ||V (0x1)|2] i

+32NdL35%p3)" + 16Nao?p 2Nc. (34)

Proof: To simplify notations, in what follows, we denote
i@*(N.) and fi*(N.) by ji* and ¥ respectively. According to
lines 9 and 12 in Algorithm 1, we have that

E[(E;)*] =E[I( -

=E[|(I - NllT)WNC (WF=Y 4 T(Oy + Suy, &)
— J(Op—1 + Sur—1,&-1)) %]

= B (WY~ 117 (5 4 T + S, &)
— J(Ok—1 + Sug—1,&-1))|%].

11T)*k|\ ]

Since (W¥e — +117)*~11 = 0, we obtain that

]E[(Ek:)Q} —
+ J(Ok + Sug, &) —
< 2E[W-

1
N.  * 44T k—1 _ zk—1
E[| (W™ — 5117) (4 P
(gk 1+ Sup_ 1a£k 1))”2]

1 _
- SUTRES D 2 69)

1
N11T|| [T (Ok + Sur, &) — T(Or—1 + Sup—1,&—1)|?]-

Moreover, since (W — +117)2 = W2 — L1117, we get that
(W—+117)3 = (W2—L 11" (W -+ nf —ws_ L +117).
This is because W?2 is also doubly stochastic, Wthh can
be shown using the definition. Through induction, we obtain
that (W — £117)Ne = WNe — L1117, Therefore, we have
that [N = L117)2 = (W= L1aT)Ne2 < W —
F 117 2N = QNC . Applying this bound in (35), we get that

E[(EF)?] < 203 E[(EL")?] (36)
+ 2050 B[ T (05 + dur, &) — J(Or—1 + dup—1, &x—1)|%].

Following the same procedure used to derive the bound in (24),
we get that ‘J (Gk +5uk,§k) (Gk 1+ g 1,&k_ 1)| S
4L20k — Ok—1||* + 4L236%||ug — ug—1]|* + 802, for all i =
1,2,..., N. Applying this bound to the RHS in (36), we obtain
that
E[(E;)?] < 205 E[(E;)?] + 8N Ly iy “E[||6), — 01—1]%]
+ 8N L25%plVB|ug — up—1|?] + 16No?pine. (37)
Moreover, we have that E[||lux, — ug_1]]?] < E[2|jug|* +
2||uk—1]|?] < 4d. Substituting the expression of 6 — 51
for (15) into (37) and applying the bound in (19), we obtain
that
E[(B})?] < 205 E[(Ey )] + 16N Loy “a”Elllgs (0x-1)|1%]
+32dN L2522 + 16No?pile

+ 32413 p3) 52E[<Ek 2|1

3L B2,

The proof is complete. [ ]
First, we present a lemma characterizing the bound on
E[(E)?|lux]?]-

Lemma 1.4: Let Assumptions 2.2, 3.1, 3.2 hold. Then, for
all kK > 1, we have that

E[(E;)?|lwe]?]
< 2dp%V“E[(E’“’1)2] +16dN L ppo’El|gs (0 -1) 1

+32d2 L2 p3N 521E[(E’“ )2 |- [|?)

2
«
+ 324° Lo B2

+32(d + 4)2NL25%pEe +16dN a2 p2le.
Proof: According to the bound on (E| k) derived in (35),
we have that

E[(E})?(lucl®] < 205 BI(EL")?|Juk?]
+ 2pW FE[HJ(G]C + duy, fk)

(38)
J(O—1 + Sug—1, Ex—1) || ur]|?).
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Since Ek L g independent of wuy, we have that
E[(E;~ 1)e luell?] = E(E£;)*Elluel’] = dE[(E;)?).
Following the same procedure used to derive the bound in (24),
we get that |J (9k + 5uk,§k) (Gk 1+ dup— 17§k 1)|2
4L30k — Ok_1||* + 4L36%||lup — ur—_1]||* + 802, for all
1=1,2,..., N. Applying this bound to the RHS in (38), we
obtain that

E[(E})?|uk|®] < 2dp3 E[(E; )]
+ 8N L3 B0 — 01 [1*Juxl|?]
+ 8N L2682 p2 B ||ug — w1 || |lus||?] + 16N pie.

(39)

Moreover, we have that E[||uy, —ug_1]|%||ux]|?] < E[2]ux]|*+
2|Jug—1]|?]|url|?] < 4(d + 4)2. Substituting the expression of
0 — 01 in (15) into (39) and applying the bound (19), we
obtain that

E[(ES)?|uxl?]
< 2dp§§VcE[(Ek—1)2] +16dN Lip' o[l g5 (05-1) %]
+ 32d2 L2 p2N (SQIE[(E’c Y2 )|u—1]%]

2
+ 324 L piy S E[(B} )]

+32(d + 4)2N L26%pEh + 16dN a2 il (40)

The proof is complete. ]
Now, we are ready to present the proof for Theorem 3.5.

Theorem 3.5. (Learning Rate of Algorithm 1 with Value
Tracklng) Let Assumptlons 2.2,3.1, 3.2 hold and define § =

fLo = 4d1-oL§\ﬁ and N, > max(log(zf)/log(pw)
> €
N, > log(\/4(G%J+32(d+4)2dLg+16d3L302/63) )/ log(pw))

where G? = max (EHWJ(GO)HQ],Q;;{ + 32L3(d +

4)? +16d2L2”
with DoTracklng =
LSS L EVI00)2] < 0@ e K00 4+
Proof: First, we show that for all & > 0, we
have that E[llgs(6)2) < G2 E[(EL)? < E2 and
]E[(El’j)2||uk||2] < dEi when we let § = \/%JLO,

€1.5
a = m, and N, > max(log(ﬁ)/log(pw),

log(\/2G25J+64(d+4)2;L2+32d3L202/e )/IOg(pW)) where

E/QL = 2dd
Spe01ﬁcally, suppose we have that E[(Ek 1)} < Eﬁ,
]E[(Ek 2] < E}, ]E[(Ek D2 lur-1l’] < dE. and

[Hg(;(ﬂk D7 < G2 Then according to Lemma 13 we

have that

Then, running  Algorithm 1

True, we have that

2 2042 2 2 2042 2
Elllgs(0x)I7] < 8dL05—2G + 32d diLO(gTEu

8do?

+16(d +4)°L§ + 5

(41)

Substituting the selected values for §, o and the constant EZ

in (41), we get that

2
S L 16L2(d+4)% + 842122,
dK e

(42)

< 2 2
E[|lgs(01) (] < 2dKG + 2

<GP
where the second inequality holds because 57 G? < 1G2
when £ < 1. In addition, we have that % +16L3 (d +4)
8d?L§% < 3G? due to the choice of G2 in Theorem 3.5.
Furthermore, according to Lemma 3.4, we have that

E[(EF)?] < (2+ 64d°L

3 52) YeEr + 16N LiG? ooy

+ 32NdL35?p2)Y + 16Na?p2)e. (43)

Substituting the selected values for J, o and Eﬁ into (43), we
get that

k2
E[(E:)"]
<@2+4%)p QN"EQ—i—( NG¢) | sonet 116N 2)p2Ne
= K BLK g 7
2
< E2. (44)
The second inequality is because when e;/K < 1
and N, > log(2 )/log(pw), we have that
(2 + 4S)pi°E2 < LE2 In addition, when
> €
Ne =z log(\/ (G?eJ+32(d+4)2dL2+16d3L2a2/52]))/IOg(pW)’
we get that (dSLQK +32N6J + 16Ng? )P 2Ne < %Eﬁ
Next, accordlng to Lemma 1.4, we have that
2
a
E[(ER)?|luel?] < (2+ 64d2L(2)6—2) Py dE? (45)

+16dN LG22 p3) + 32N (d + 4)?LE6* piye + 16dNa? .

Substituting the selected values for J, o and E2 into (45), we

get that E[(Ek) ||uk|| ] ( +46J) 2chE2 (il\[?CZ;[é +

32N (dtf) €% +16dN o> )pch < alE2 The second inequality
holds for similar reasons as those used to obtain (44). To
complete the induction argument, we simply need to verify
the induction hypothesis when k = 1. It is straightforward to
see that E[]|gs(60)|?] < G? due to the definition of G?. In
addition, due to the initialization step p~'(N.) = 0 in line
1 in Algorithm 1, we have that E[(E;')?] < EZ2. To satisfy
the conditions E[(EJ)*] < E;. and E[(EJ)?|luol®] < dEZ,
it is sufficient to run many enough consensus steps only at
the first iteration of Algorithm 1, according to Lemma 3.1.
To summarize, the induction hypothesis is satisfied at the
first iteration of Algorithm 1 and we have shown that for all
k > 0, we have that E[||gs(05)]1*] < G2 E[(E})?] < E}
and E[(Efj)2||uk||2] < dE}. under the choice of parameters
specified in Theorem 3.5.

Fmally, using the uniform bounds E[(Ef)?] < E? and
E[(EF)?||lux||’] < dE?2, we can follow the same procedure
as in the proof of Theorem 3.2 and obtain the following
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optimality bound

852
- _

Z [V J5(0x)]1] < —5 ElJs J5(00)]VE
k J

60'5 eekd (d+4)?

\/iiKE[HQtS(eO)”Q] + dqL- 5‘1/— + 16 d L2 0 VK

8d-°L2

00W+€f}f+ K. (46)

Dividing both sides by K completes the proof. ]
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