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Fermi’s golden rule (FGR) serves as the basis for many expressions of spectroscopic observables and quantum
transition rates. The utility of FGR has been demonstrated through decades of experimental confirmation.
However, there still remain important cases where the evaluation of a FGR rate is ambiguous or ill-defined.
Examples are cases where the rate has divergent terms due to the sparsity in the density of final states or time
dependent fluctuations of system Hamiltonians. Strictly speaking, assumptions of FGR are no longer valid
for such cases. However, it is still possible to define modified FGR rate expressions that are useful as effective
rates. The resulting modified FGR rate expressions resolve a long standing ambiguity often encountered in
using FGR and offer more reliable ways to model general rate processes. Simple model calculations illustrate
the utility and implications of new rate expressions.

I. INTRODUCTION

Although rarely recognized explicitly, Fermi’s golden
rule (FGR)1–5 is probably the most important theory
in spectroscopy and many quantum rate/dynamics pro-
cesses. It is the starting point for deriving expressions
of many spectroscopic transition properties.3,5–7 Förster
resonance energy transfer rate8 is an application of FGR,
which Förster rederived9 specifically for incoherent trans-
fer of electronic excitations interacting via transition
dipoles. Similar applications of FGR were also developed
for exchange mechanisms by Dexter10 and for multipo-
lar mechanisms.8,10,11 Marcus-Levich-Dogonadze-Jortner
theories12–19 for electron transfer in the nonadiabatic
limit can also be derived as specific applications of FGR
for the transition between two charge localized diabatic
states.20 The energy gap law21–23 for nonradiative decay
is a stationary phase approximation for a FGR rate ex-
pression in the limit where the rate is limited by high fre-
quency vibrational modes. There have also been various
extensions and generalizations of these theories,11,20,23–37

but most of them can still be viewed as different forms
of FGR. Furthermore, many quantum dynamical pro-
cesses going beyond simple rate processes can be de-
scribed, with surprising reliability, in terms of master
equations (MEs) or generalized MEs38 that employ FGR
rates or their nonequilibrium generalizations35,37 as tran-
sition probabilities. On the other hand, in recent years,
fairly accurate evaluation of FGR rates for quite complex
molecular systems have also become feasible.39–45

The derivation of a FGR rate, starting from the first
order time dependent perturbation theory, is well known
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at the textbook level.3–5 In general, for a transition from
a set Si of initial quantum states to a set Sf of final quan-
tum states, the corresponding FGR rate can be expressed
as

kFGR =
2π

~
∑
i∈Si

∑
f∈Sf

pi

∣∣∣〈ψf |Ĥc|ψi〉
∣∣∣2 δ(Ef − Ei), (1)

where Ei and Ef are energies of eigenstates |ψi〉 and |ψf 〉
of a zeroth order Hamiltonian Ĥ0, pi is the probability
for the initial state to be in |ψi〉, and Ĥc is a small in-
teraction term responsible for the transition, which is
assumed to be independent of time here.62 Alternatively,
Eq. (1) can be expressed in the time domain by employ-
ing the Fourier integral representation of the Dirac-delta
function as follows:

kFGR =
1

~2
∑
i∈Si

∑
f∈Sf

pi

∣∣∣〈ψf |Ĥc|ψi〉
∣∣∣2 ∫ ∞
−∞

dtei(Ef−Ei)t/~

=
1

~2
∑
f∈Sf

∫ ∞
−∞

dt〈ψf |eiĤ0t/~Ĥce
−iĤ0t/~ρ̂iĤc|ψf 〉

=
2

~2
∑
f∈Sf

Re

∫ ∞
0

dt〈ψf |eiĤ0t/~Ĥce
−iĤ0t/~ρ̂iĤc|ψf 〉.

(2)

In the second line of the above expression, the initial
density operator ρ̂i is defined as

ρ̂i =
∑
i∈Si

pi|ψi〉〈ψi|, (3)

which is diagonal in the basis of |ψi〉’s.
It is worthwhile to mention that the final expression

of Eq. (2) can be derived directly from the time depen-
dent perturbation theory with less steps of approxima-
tion/justification than Eq. (1). In this sense, Eq. (2)
can be considered as the primary FGR rate expression.
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One subtle issue in using Eq. (1) is the appearance
of the Dirac-delta function, which also manifests itself
as the divergence of time integration in Eq. (2). When
taken literally, this indicates that the rate is singular for
Ei = Ef and zero otherwise. For Eq. (2), this also means
that the time integration before being summed over the
final states diverges, unless a convergence factor is intro-
duced. This divergence is in fact an outcome of taking
the mathematical limit of t → ∞ in defining the rate,
whereas the first order time dependent perturbation the-
ory is valid only for t << ~/|〈ψf |Ĥc|ψi〉| and the actual
dynamics in the long time limit requires calculation of
all the higher order terms. For relatively simple cases of
spectroscopies in gas phase environments, it is possible to
calculate major higher order terms up to an infinite or-
der, which contribute to natural linewidths46 and remove
the delta function singularity. However, similar calcula-
tions for general quantum processes remain challenging,
if not impossible. In condensed or complex environments,
there are also other mechanisms that help avoid dealing
with the delta function singularity directly. If the final
states form a continuous spectrum and the summation
over the final states are conducted first, such singularity
seems to disappear because the sum over f in Eq. (2)
can be replaced with an integration over the distribution
as follows: ∑

f∈Sf

=

∫
dEf

∫
dξf wf (Ef , ξf ), (4)

where ξf represents an additional set of compatible pa-
rameters (or quantum numbers) that are needed for a
full specification of the final states, and wf (Ef , ξf ) is the
density of final states for given Ef and ξf . As a result,
Eq. (1) or (2) can be expressed as

kFGR =
2π

~
∑
i∈Si

pi

∫
dξf

∣∣∣〈ψf |Ĥc|ψi〉
∣∣∣2 wf (Ei, ξf )

=
2

~2
Re

∫ ∞
0

dt

∫
dEf

∫
dξf wf (Ef , ξf )

×〈ψf |eiĤ0t/~Ĥce
−iĤ0t/~ρ̂iĤc|ψf 〉. (5)

In the above equation, the first equality results from us-
ing Eq. (1) followed by integration over Ef , whereas the
second equality results from using the last expression of
Eq. (2).

Equation (5) is the most general textbook level expres-
sion for a FGR rate and is widely applicable. However,
it cannot yet account for some important cases as listed
below.

• Final states are not in fact continuous but are dis-
crete.

• The distribution of final states, although continu-
ous, is such that the rate still has divergent com-
ponent.

• There are cases where the full information on
wf (Ef , ξf ) is difficult to know.

• The Hamiltonian is time dependent due to intrinsic
time dependent noises or external time dependent
sources, making it impossible to define a steady
state limit.

The objective of this work is to provide detailed analy-
ses of some of the issues encountered in applying FGR
as noted above and to provide modified FGR rate ex-
pressions that can address such issues. To this end, it is
instructive to start from a more general time dependent
rate, which results in the original FGR rate expression,
Eq. (2), as a specific limit. This will be provided in Sec.
II.

II. THEORETICAL MODEL AND GENERAL TIME
DEPENDENT RATE

Let us consider two system states denoted as |1〉 and
|2〉. These system states are coupled to a bath repre-

sented by Ĥb, the bath Hamiltonian, and also go through
time dependent fluctuations due to the effects of all other
degrees of freedom that are not represented by Ĥb. Thus,
we assume the following total Hamiltonian:

Ĥ(t) = Ĥ0(t) + Ĥc(t), (6)

where

Ĥ0(t) = (E1(t) + B̂1)|1〉〈1|+ (E2(t) + B̂2)|2〉〈2|+ Ĥb,

(7)

Ĥc(t) = Ĵ(t)|2〉〈1|+ Ĵ†(t)|1〉〈2|. (8)

In the above expressions, B̂1 and B̂2 are bath operators
representing couplings to populations of system states 1
and 2, respectively. It is assumed that these two bath op-
erators are time independent. On the other hand, Ĵ(t)

and the Hermitian conjugate Ĵ†(t), the electronic cou-
pling terms between |1〉 and |2〉, can be dependent on
both time and bath operators. This assumption can ac-
count for fairly general molecular environments where the
coupling between two quantum states are influenced by
both classical/fluctuating degrees of freedom and quan-
tum vibrational degrees of freedom. We have assumed
the general case where Ĵ(t) is not Hermitian, which is
possible in the presence of magnetic interactions or un-
der rotating wave approximation.

Alternatively, we can define projections of the to-
tal Hamiltonian Ĥ(t) onto the two-state system states,

which are denoted as Ĥ1(t) and Ĥ2(t), respectively.
Thus,

Ĥ1(t) = 〈1|Ĥ(t)|1〉 = E1(t) + B̂1 + Ĥb, (9)

Ĥ2(t) = 〈2|Ĥ(t)|2〉 = E2(t) + B̂2 + Ĥb. (10)

Then, Ĥ(t) defined by Eq. (6) can also be expressed as

Ĥ(t) = Ĥ1(t)|1〉〈1|+ Ĥ2(t)|2〉〈2|+ Ĥc(t). (11)
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A. General time dependent rate

Let us assume that the system is prepared in the state
|1〉 at time t = 0 while the bath is in a certain state
represented by a bath density operator ρ̂b. Thus, the
total density operator at time t = 0 is given by

ρ̂(0) = |1〉〈1|ρ̂b. (12)

Then, the probability to find the system in the state |2〉
at time t is

P2(t) = Trb {〈2|ρ̂(t)|2〉}

= Trb

{
〈2|e−

i
~
∫ t
0
dτĤ(τ)

(+) |1〉ρ̂b〈1|e
i
~
∫ t
0
dτĤ(τ)

(−) |2〉
}
,

(13)

where the subscript (+) and (−) in the exponential
operator respectively represent chronological and anti-
chronological time ordering.

Let us also assume that Ĵ(t) is small compared to other
terms of the Hamiltonian. Then, the component of the
propagator with chronological time ordering in Eq. (13)
can be approximated as

〈2|e−
i
~
∫ t
0
dτĤ(τ)

(+) |1〉

≈ − i
~

∫ t

0

dτe
− i

~
∫ t
τ
dτ ′Ĥ2(τ

′)

(+) Ĵ(τ)e
− i

~
∫ τ
0
dτ ′Ĥ1(τ

′)

(+)

= − i
~

∫ t

0

dτe−
i
~ (

∫ t
τ
dτ ′E2(τ

′)+
∫ τ
0
dτ ′E1(τ

′))

×e− i
~ (t−τ)(B̂2+Ĥb)Ĵ(τ)e−

i
~ τ(B̂1+Ĥb), (14)

where the definition of Ĥ(t), Eq. (11), and the expres-

sions for Ĥ1(t) and Ĥ2(t) given by Eqs. (9) and (10) were
used. Employing the above expression and its Hermitian
conjugate in Eq. (13), we obtain

P2(t) =
1

~2

∫ t

0

dτ

∫ t

0

ds e
i
~
∫ τ
s
dτ ′(E2(τ

′)−E1(τ
′))

×Trb
{
e
i
~ (τ−s)(B̂2+Ĥb)Ĵ(τ)e−

i
~ τ(B̂1+Ĥb)ρ̂b

×e i~ s(B̂1+Ĥb)Ĵ†(s)
}
, (15)

where the two time integrations of E1(t) and E2(t) within
the exponent have been combined. The cyclic invariance
of the product of bath operators within the trace opera-
tion over the bath degrees of freedom has also been used.
With this simplification, Eq. (15) does not involve t ex-
cept for integration boundaries, which simplifies taking
time derivative of P2(t). Thus, it is possible to define a

general time dependent rate as follows:

k(t) =
1

~2

∫ t

0

ds e
i
~
∫ t
s
dτ ′(E2(τ

′)−E1(τ
′))

×Trb
{
e
i
~ (t−s)(B̂2+Ĥb)Ĵ(t)e−

i
~ t(B̂1+Ĥb)ρ̂b

×e i~ s(B̂1+Ĥb)Ĵ†(s)
}

+
1

~2

∫ t

0

dτ e
i
~
∫ τ
t
dτ ′(E2(τ

′)−E1(τ
′))

×Trb
{
e
i
~ (τ−t)(B̂2+Ĥb)Ĵ(τ)e−

i
~ τ(B̂1+Ĥb)ρ̂b

×e i~ t(B̂1+Ĥb)Ĵ†(t)
}
. (16)

The two integrations in the above expression correspond
to Hermitian conjugates and thus can be combined as
follows.

k(t) =
2

~2
Re

∫ t

0

dτ e
i
~
∫ t
τ
dτ ′(E2(τ

′)−E1(τ
′))

×Trb
{
e
i
~ (t−τ)(B̂2+Ĥb)Ĵ(t)e−

i
~ t(B̂1+Ĥb)ρ̂b

×e i~ τ(B̂1+Ĥb)Ĵ†(τ)
}
. (17)

Replacing the integrand τ with t−τ , the above expression
can also be expressed as

k(t) =
2

~2
Re

∫ t

0

dτ e
i
~
∫ t
t−τ dτ

′(E2(τ
′)−E1(τ

′))

×Trb
{
e
i
~ τ(B̂2+Ĥb)Ĵ(t)e−

i
~ t(B̂1+Ĥb)ρ̂b

×e i~ (t−τ)(B̂1+Ĥb)Ĵ†(t− τ)
}
. (18)

Equation (18) is the most general rate expression that
can be obtained within the time dependent perturbation
theory, and is valid for any time dependences of E1(t),

E2(t), and Ĵ(t). In addition, Ĵ(t) can be any function of
bath operators.

B. Verification of conventional FGR expression

In the simple case where all terms of the Hamiltonian
are time independent, namely, E1(t) = E1, E2(t) = E2,

and Ĵ(t) = Ĵ , Eq. (18) reduces to

k(t) =
2

~2
Re

∫ t

0

dτ e
i
~ τ(E2−E1)

×Trb
{
e
i
~ τ(B̂2+Ĥb)Ĵe−

i
~ τ(B̂1+Ĥb)ρ̂b(t− τ)Ĵ†

}
,

(19)

where

ρ̂b(t− τ) = e−
i
~ (t−τ)(B̂1+Ĥb)ρ̂be

i
~ (t−τ)(B̂1+Ĥb). (20)

In the standard derivation of a FGR rate, it is assumed
that ρ̂b commutes with B̂1 + Ĥb since the initial state is
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assumed to be diagonal in the eigenstate basis of Ĥ1 =
E1 + B̂1 + Ĥb. Therefore, ρ̂b(t − τ) = ρ̂b in this case.
In more general case where ρ̂b does not commute with
B̂1 + Ĥb, given that the dynamics of the bath degrees of
freedom is ergodic, one can assume that

lim
t→∞

ρ̂b(t− τ) = ρ̂eqb,1 ≡
e−β(B̂1+Ĥb)

Tr{e−β(B̂1+Ĥb)}
. (21)

Thus, let us introduce ρ̂b,1, which is defined as ρ̂b in

Eq. (12) in case ρ̂b commutes with B̂1+Ĥb and is defined
as ρ̂eqb,1 given by Eq. (21) otherwise. Then, we find that

the t→∞ limit of Eq. (19) becomes

k(∞) =
2

~2
Re

∫ ∞
0

dt e
i
~ t(E2−E1)

×Trb
{
e
i
~ t(B̂2+Ĥb)Ĵe−

i
~ t(B̂1+Ĥb)ρ̂b,1Ĵ

†
}
, (22)

where we have replaced the integration variable from τ
to t.

In the present case, note that Ĥ0 = (E1 + B̂1)|1〉〈1|+
(E1 + B̂2)|2〉〈2| + Ĥb. In addition, the integration over
Ef and ξf in Eq. (5) becomes the trace over the bath
degrees of freedom as follows:∫

dEf

∫
dξfwf (Ef , ξf )〈ψf | · · · |ψf 〉 = Trb {〈2| · · · |2〉} .

(23)
Thus, Eq. (22) is nothing but the standard FGR rate
expression given by Eq. (5) for |1〉〈1|ρ̂b,1 as the initial
state.

The derivation detailed above clarifies assumptions in-
volved in a conventional FGR rate expression and situa-
tions where it is not well defined, as listed below.

• Even if there are no time dependent fluctuations,
in case the integration in Eq. (22) has a residual
term that does not vanish as t → ∞ or the decay
is not fast enough, the FGR rate defined as such
cannot be calculated.

• In case there are time dependences of E1(t) and

E2(t), and/or Ĵ(t), the time integration in Eq. (19)
may not converge to a steady state limit for time
scales relevant for transitions.

• In case ρ̂b does not commute with B̂1+Ĥb, ρ̂b(t−τ)
defined by Eq. (20) may never reach the equi-
librium density or approach a time independent
steady state limit.

For the above three cases, is it still possible to de-
fine a more generalized rate expression that can quantify
the transition while being related to experimental observ-
ables? At least for the first two cases above, it is possible
to derive such generalized rates as will be the subject of
Sec. III and IV.

III. CONSIDERATION OF LINEARLY COUPLED
HARMONIC OSCILLATOR BATHS AND DIVERGENT
CASES

Let us consider more specific but still quite generic case
where the bath Hamiltonian can be modeled as a set of
harmonic oscillators and the system-bath couplings are
linear with respect to displacements of bath coordinates.
The assumption that there are no time dependences in
E1, E2, and Ĵ , which was used in Sec. IIB, remains the
same here. In addition, we make the Condon approxima-
tion. Thus, it is assumed that the electronic coupling is
a constant, J , which is independent of the bath degrees
of freedom. As a result, the total Hamiltonian defined by
Eq. (6) reduces to

Ĥ = (E1 + B̂1)|1〉〈1|+ (E2 + B̂2)|2〉〈2|
+J |2〉〈1|+ J∗|1〉〈2|+ Ĥb, (24)

where J∗ is complex conjugate of J and

B̂1 =
∑
n

~ωngn1(b̂n + b̂†n), (25)

B̂2 =
∑
n

~ωngn2(b̂n + b̂†n), (26)

Ĥb =
∑
n

~ωn
(
b̂†nb̂n +

1

2

)
. (27)

In the above expression, ωn, b̂n, and b̂†n are frequency,
lowering operator, and raising operator of the nth har-
monic oscillator mode of the bath, whose coupling
strength to state |i〉, i = 1 or 2, is given by gni. Then,
assuming ρ̂b,1 = ρ̂1b,eq, Eq. (19) for the present case can

be calculated explicitly47 and expressed as

k(t) =
2|J |2

~2
Re

[∫ t

0

dτ exp

{
i(Ẽ1 − Ẽ2)τ

~
− C(τ)

}]
,

(28)

where Ẽ1 = E1 −
∑
n ~ωng2n1, Ẽ2 = E2 −

∑
n ~ωng2n2,

and

C(t) =
∑
n

δg2n

{
coth

(
β~ωn

2

)
(1− cos(ωnt))

+i sin(ωnt)
}
, (29)

with δgn = gn1 − gn2. Employing the following bath
spectral density:

J (ω) = π~
∑
n

δg2nδ(ω − ωn)ω2
n, (30)

Eq. (29) can also be expressed as

C(t) =
1

π~

∫ ∞
0

dω
J (ω)

ω2

{
coth

(
β~ω

2

)
(1− cos(ωt))

+i sin(ωt)
}

= CR(t) + iCI(t), (31)
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where CR(t) and CI(t) are real and imaginary parts.

As was clarified in Sec. IIB, the t → ∞ limit of
Eq. (28) becomes the conventional FGR rate expression.
However, it is important to note that such a limit exists
only for the case where limt→∞ CR(t) = ∞. In order to
make this clear, let us rewrite Eq. (28) as follows:

k(t) =
2|J |2

~2
Re

[∫ t

0

dτei(Ẽ1−Ẽ2)τ/~
(
e−C(τ) − e−CR,s

)]
+

2|J |2

~2
e−CR,sRe

[∫ t

0

dτei(Ẽ1−Ẽ2)τ/~
]
, (32)

where

CR,s = lim
t→∞

CR(t). (33)

In Eq. (32), the integration in the first term converges
as t→∞ and can be calculated directly for broad cases
of C(t). On the other hand, the integration in the second
term approaches the Fourier representation of the Dirac-
delta function. Thus, in the limit of t → ∞, Eq. (32)
becomes the FGR rate as follows:

kFGR = k(∞)

=
2|J |2

~2
Re

[∫ ∞
0

dtei(Ẽ1−Ẽ2)t/~
(
e−C(t) − e−CR,s

)]
+

2π|J |2

~
e−CR,sδ(Ẽ1 − Ẽ2). (34)

For more detailed illustration, let us consider the fol-
lowing model of bath spectral density that is widely used
for continuous environments:

Jn(ω) =
πλn

(n− 1)!

(
ω

ωc

)n
e−ω/ωc , (35)

where λn = (1/π)
∫∞
0
dωJn(ω)/ω is the reorganization

energy, and ωc is the cut-off frequency that sets the range
of the bath spectral density. In the above expression, the
power n determines the long time behavior of C(t). The
imaginary part of Eq. (31) for each case of n, which

is denoted as C(n)I (t) here, can be calculated exactly as
follows:

C(1)I (t) =
λ1
~ωc

tan−1(τ0), (36)

C(2)I (t) =
λ2
~ωc

τ0
(1 + τ20 )

, (37)

C(3)I (t) =
λ3
~ωc

τ0
(1 + τ20 )2

. (38)

where τ0 = ωct. On the other hand, employing the
following approximation: coth(β~ω/2) ≈ 1 + 2e−β~ω +
2e−2β~ω+(2/β~ω)e−5β~ω/2, which was shown to be fairly
accurate48 over the entire range of β = 1/kBT , the real
part of Eq. (31) for each case of n, which is denoted as

0

2

4

6

C
R
(t

)

n=1
n=2
n=3

0 2 4 6 8 10
ω

c 
t

0

0.5

1

1.5

C
I(t

)

FIG. 1. Real and imaginary parts, C(n)R (t) and C(n)I (t), for
different bath spectral densities within the model of Eq. (35),
with λn = ~ωc and θ = 1.

C(n)R (t) here, can be approximated as

C(1)R (t) ≈ λ1
~ωc

{
1

2
ln
(
1 + τ20

)
+ ln

(
1 + τ21

)
+ ln

(
1 + τ22

)
+

2(1 + 5θ/2)

θ

∫ τ5/2

0

dτ ′ tan−1(τ ′)

}
, (39)

C(2)R (t) ≈ λ2
~ωc

{
τ20

(1 + τ20 )
+

2

(1 + θ)

τ21
(1 + τ21 )

+
2

(1 + 2θ)

τ22
(1 + τ22 )

+
1

θ
ln(1 + τ25/2)

}
, (40)

C(3)R (t) ≈ λ3
~ωc

{
τ40 + 3τ20
(1 + τ20 )2

+
2

(1 + θ)2
τ41 + 3τ21
(1 + τ21 )2

+
2

(1 + 2θ)2
τ42 + 3τ22
(1 + τ22 )2

+
2

θ(1 + 5θ/2)

τ25/2

(1 + τ25/2)

}
, (41)

where θ = β~ωc and τs = ωct/(1 + sθ). Eqs. (39)-

(40) clearly show that C(1)R,s = ∞ at all temperature and

C(2)R,s(t) =∞ at finite temperature. On the contrary, Eq.

(41) shows that C(3)R,s remains finite at all temperature,

making t→∞ limit of Eq. (28) clearly divergent. Figure
1 shows examples of these functions for the case where
λ1 = λ2 = λ3 = ~ωc and θ = ~ωc/(kBT ) = 1.

The Ohmic (n = 1) case of Eq. (35) is typically used
for charges at interstitial sites in metals49 and charge
transfer processes in many liquid environments. On the
other hand, for defect sites in two or three dimensional
crystalline environments where phonon modes serve as
primary source of the bath, super-Ohmic cases of n =
2 or n = 3 are typical.49,50 Thus, for the latter super-
Ohmic case, the time integration of Eq. (28) for t → ∞
results in a delta function singularity as is clear from Eq.
(34).



6

-4 -3 -2 -1 0 1 2 3 4

∆E/λ

-3

-2

-1

0

1

2

3

L
n

 [
κ

]
n=1
n=2
n=3, γ

d
=0.01

n=3, γ
d
=0.1

FIG. 2. Logarithms of dimensionless FGR rates, κ =
~
√
kBTλ/(

√
πJ2)kFGR, where kFGR is the t → ∞ limit of

Eq. (28), versus ∆Ẽ = Ẽ1 − Ẽ2, for different bath spectral
densities within the model of Eq. (35), with λn = ~ωc and
θ = 1. For the case of n = 3, an additional damping factor
e−γdωct was used. Results for two different values of γd = 0.01
and 0.1 are shown.

Figure 2 compares the FGR rates, the t→∞ limit of
Eq. (28), for the three different values of n in the model
bath spectral density given by Eq. (35), with λn = ~ωc
and θ = 1. For the cases of n = 1 and n = 2, finite values
are obtained at all values of Ẽ1− Ẽ2. On the other hand,
for the case of n = 3, additional damping factor, e−γdωct,
was included in the integrand in order to ensure conver-
gence of the integral. Results for two different values of
γd = 0.01 and 0.1 are shown. The true value of FGR cor-
responds to the limit of γd → 0+. Unless the damping
factor has true physical meaning, for example, as in case
of lifetime decay for a resonance energy transfer process,
these results show that arbitrary choice of the value of
γd for this super-Ohmic bath spectral density can have
significant effects on the value of the rate near Ẽ1 ≈ Ẽ2.

For exciton transfer or intersystem crossing dynamics
in molecular environments or charge transfer processes
in sluggish environments, it is most likely that the bath
spectral density J (ω) = 0 for ω ≤ ωl, where ωl is either
the lowest vibrational frequency actively coupled to the
transition or effective lower bound51 that can be argued
on the basis of time scale argument, leading to CR,s <
∞. For these cases, depending on the nature of the final
state, it is possible to obtain two different modified FGR
rate expressions out of the above expression as described
below.

(i) In case there is no disorder or uncertainty of the
final state, the following expression is appropriate for the
FGR rate:

km−FGR =
2|J |2

~2
Re

[∫ ∞
0

dtei(Ẽ1−Ẽ2)t/~
(
e−C(t) − e−CR,s

)]
(42)

The validity of the above expression is easy to see
from Eq. (34) for the case where Ẽ1 6= Ẽ2 since the
second delta function term does not contribute in this
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FIG. 3. Logarithms of dimensionless first modified FGR (m-
FGR-1) rate, κ = ~

√
kBTλ/(

√
πJ2)km−FGR, where km−FGR

is the modified FGR rate, Eq. (42), versus ∆Ẽ = Ẽ1 − Ẽ2.
The super-Ohmic bath spectral density with n = 3 is used
for λ3 = ~ωc and θ = 1. The original FGR rates with two
different damping factors in the integrand, which were shown
in Fig. 2, are also provided for comparison.

case. However, even when Ẽ1 = Ẽ2, omitting the delta
function term is justified since this is indicative of a
residual oscillatory dynamics that does not disappear
for bound final state without additional dephasing term.
When averaged over long enough time, this term does
not contribute to the net population transfer and thus
can be excluded from calculating average population
transfer rate. In fact, a time dependent version of this
rate expression has been tested in comparison with
calculations based on polaron-transformed quantum
master equation approach52–54 and was shown to work
well in capturing the average population dynamics in
the weak electronic coupling (J) limit.

Figure 3 compares Eq. (42), for the case of the super-
Ohmic bath spectral density with n = 3, with the t →
∞ limit of Eq. (28), with two different values for the
damping factor, γd. The same parameters of λ3 = ~ωc
and θ = 1 as in Fig. 2 were used. Comparison of these
original FGR rates for two different values of γd show that
these indeed approach Eq. (42) plus additional peak that

becomes singular at ∆Ẽ = 0 as γd → 0+. It is also shown
that the effects of finite γd near ∆Ẽ are nontrivial.

(ii) In case there is additional disorder or uncertainty

in the final state energy Ẽ2, which has known probability
distribution ρf (Ẽ2) that has not been represented by the
bath term in the Hamiltonian, the actual FGR rate cor-
responds to the average of Eq. (34) over the distribution
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as follows:

kFGR =
2|J |2

~2

∫
dẼ2ρf (Ẽ2)

×Re

[∫ ∞
0

dtei(Ẽ1−Ẽ2)t/~
(
e−C(t) − e−CR,s

)]
+

2π|J |2

~
e−CR,sρf (Ẽ1)

=
2|J |2

~2
Re

[∫ ∞
0

dt

∫
dẼ2ρf (Ẽ2)ei(Ẽ1−Ẽ2)t/~e−C(t)

]
,

(43)

where the second expression can be used in case the
preaveraging over the distribution makes the time inte-
gration convergent for all cases. The above expression is
thus the effective FGR rate for the transition to the en-
semble of final states representing all possible realizations
of the disorder or to a final state with intrinsic uncer-
tainty. Here it is assumed that the distribution ρf (Ẽ2) is
narrow enough to make it possible to define the rate as
an average of individual ones (in case it is for an ensemble
of static disorder) and dense enough to make the possible
recurrent oscillatory dynamics disappear due to dephas-
ing or decoherence. Typically, Gaussian distribution (for
an ensemble of disorder) or Lorentzian function (for a

final state with finite lifetime) can be used for ρf (Ẽf ).
Indeed, this is the basis of using either a Gaussian or
Lorentzian function for the delta function peak in many
lineshape calculations.

IV. IMPLICATIONS OF TIME DEPENDENT RATES
AND THEIR AVERAGES FOR GENERAL TIME
DEPENDENT HAMILTONIANS

Let us now consider in more detail the general case
where the system energies E1(t) and E2(t) and the

electronic coupling Ĵ(t) are time dependent as out-
lined in Sec. IIA. This is not uncommon for quan-
tum transitions in complex environments such as protein
environments55–58 with various sources of perturbations
and environmental effects, which cannot always be rep-
resented by simple models of quantum baths. Even for
liquid environments, introduction of such additional time
dependence in the Hamiltonian may become necessary to
model dynamic environments around which quenched or
stable transient normal modes can be modeled. As the
first step to describe the population dynamics of quantum
states for these cases, we review derivation47 of a second
order ME governing the populations of states 1 and 2,
which extends those for time independent Hamiltonian.34

Then, we examine the relationship between rates involved
in the ME and the rate obtained from the first order time
dependent perturbation theory.

For the general time dependent Hamiltonian defined
by Eqs. (6)-(8), the total density operator denoted as

ρ̂(t) evolves according to

d

dt
ρ̂(t) = −i (L0(t) + Lc(t)) ρ̂(t)

≡ − i
~

[
Ĥ0(t) + Ĥc(t), ρ̂(t)

]
, (44)

where L0(t) and Lc(t) are quantum Liouville super-
operators and are respectively defined by the two commu-
tator terms in the second line. In the interaction picture
with respect to Ĥ0(t), the density operator becomes

ρ̂I(t) = Û†0 (t)ρ̂(t)Û0(t), (45)

where

Û0(t) = e−i
∫ t
0
dτĤ0(τ)/~

= |1〉〈1|e−i
∫ t
0
dτE1(τ)/~e−it(B̂1+Ĥb)/~

+|2〉〈2|e−i
∫ t
0
dτE2(τ)/~e−it(B̂2+Ĥb)/~. (46)

Note that the above operator does not involve any time
ordered exponential operator. This is because time de-
pendences occur only in the system energies, whereas B̂1,
B̂2, and Ĥb are assumed to be time independent. Thus,
the zeroth order Hamiltonians at different times com-
mute with each other, and the time evolution equation
for ρ̂I(t) is given by

d

dt
ρ̂I(t) = −iLc,I(t)ρ̂I(t) ≡ −

i

~

[
Ĥc,I(t), ρ̂I(t)

]
, (47)

where

Ĥc,I(t) = Û†0 (t)Ĥc(t)Û0(t). (48)

Let us introduce the following projection super-
operator:

P(·) = |1〉〈1|ρ̂b,1Tr {|1〉〈1|(·)}+ |2〉〈2|ρ̂b,2Tr {|2〉〈2|(·)} ,
(49)

where (·) represents an arbitrary operator. ρ̂b,1 and ρ̂b,2
can be arbitrary time independent bath operators, but
let us assume here that they are the following equilibrium
bath operators for respective system states:

ρ̂eqb,k =
e−β(Ĥb+B̂k)

Tr{e−β(Ĥb+B̂k)}
. k = 1, 2 (50)

Then, it is easy to confirm that P satisfies the following
identity:

PLc,I(t)P = 0, (51)

which simplifies47 the expression for the exact time evo-
lution equation for P ρ̂I(t).

The initial condition of the density operator is assumed
to be the same as that for the perturbation theory ex-
pansion in the previous section. Thus, ρ̂I(0) = |1〉〈1|ρ̂eqb,1.

Then, P ρ̂I(0) = ρ̂(0). With this condition, the time
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evolution equation for P ρ̂I(t) up to the second order of
Lc,I(t) can be approximated as47

d

dt
P ρ̂I(t) ≈ −

1

~2

∫ t

0

PLc,I(t)Lc,I(τ)P ρ̂I(t), (52)

where

P(ρ̂I(t)) = p1(t)|1〉〈1|ρ̂b,1 + p2(t)|2〉〈2|ρ̂b,2. (53)

In the above expression, pk(t) = Trb{〈k|ρ̂I(t)|k〉} =
Trb{〈k|ρ̂(t)|k〉}, is the population for state k = 1, 2. The
time evolution equation for pk(t) can be obtained from
Eq. (52) by taking trace of the equation over the bath
and then calculating expectation values for |k〉’s. Thus,
for p2(t),

d

dt
p2(t) = p1(t)k1→2(t)− p2(t)k2→1(t), (54)

where

k1→2(t) =
2

~2
Re

[∫ t

0

dτTrb

{
〈2|Ĥc,I(t)|1〉

× ρ̂b,1〈1|Ĥc,I(τ)|2〉
}]

, (55)

k2→1(t) =
2

~2
Re

[∫ t

0

dτTrb

{
〈1|Ĥc,I(t)|2〉

× ρ̂b,2〈2|Ĥc,I(τ)|1〉
}]

. (56)

A similar equation can be obtained for p1(t), which how-
ever is not needed because p1(t) = 1−p2(t) for the present
case.

Detailed expressions for time dependent rates, Eqs.
(55) and (56), can be obtained by employing Eqs. (8)
and (48). With further rearrangement of terms employ-
ing cyclic invariance within trace operation, they can be
expressed as

k1→2(t) =
2

~2
Re

[∫ t

0

dτei
∫ t
τ
dτ ′(E2(τ

′)−E1(τ
′))/~

×Trb
{
ei(B̂2+Ĥb)(t−τ)/~Ĵ(t)e−i(B̂1+Ĥb)(t−τ)/~ρ̂b,1Ĵ

†(τ)
}]

k2→1(t) =
2

~2
Re

[∫ t

0

dτei
∫ t
τ
dτ ′(E1(τ

′)−E2(τ
′))/~

×Trb
{
ei(B̂1+Ĥb)(t−τ)/~Ĵ†(t)e−i(B̂2+Ĥb)(t−τ)/~ρ̂b,2Ĵ(τ)

}]
(57)

Comparison of the above expressions with Eq. (17) show
that k1→2(t) is equivalent to k(t), Eq. (17) or (18), given
that ρ̂b,1 is used for ρ̂b. Likewise, k2→1(t) is equivalent
to a similar time dependent rate for the transition from

2 to 1 with initial bath density operator ρ̂b,2. For time
independent Hamiltonians, the equivalence of the rates
within a ME to those obtained within the time depen-
dent perturbation theory is in fact well known and is
the reason why FGR or its nonequilibrium versions can
be used even beyond its strict perturbation limit. The
above derivation confirms that such equivalence remains
true even when there are general time dependent fluctu-
ations in the Hamiltonian as assumed in this work.

Equations (54)-(56) suggest that the ME population
dynamics cannot in general be described in terms of time
independent rates even in the long time limit due to fluc-
tuations of energies and Ĵ(t). However, if we are inter-
ested in the dynamics of populations averaged over an
ensemble of the time dependent fluctuations, it may be
possible to identify effective time independent rates. For
this, let us take average of Eq. (54) as follows:

d

dt
〈p2(t)〉 = 〈p1(t)k1→2(t)〉 − 〈p2(t)k2→1(t)〉, (58)

where 〈· · · 〉 denotes averaging over the ensemble of time

dependent fluctuations of E1(t), E2(t), and Ĵ(t).
Let us assume that time scales of fluctuations in Hamil-

tonian parameters are much faster than the variation of
average populations. Then, the averaging over the prod-
uct of rate and populations in Eq. (58) can be decoupled
as follows:

d

dt
〈p2(t)〉 ≈ 〈p1(t)〉kav1→2 − 〈p2(t)〉kav2→1, (59)

where

kav1→2 = lim
t→∞
〈k1→2(t)〉

= lim
t→∞

2

~2
Re

[∫ t

0

dτ

〈
ei

∫ t
t−τ dτ

′(E2(τ
′)−E1(τ

′))/~

×Trb
{
ei(B̂2+Ĥb)τ/~Ĵ(t)e−i(B̂1+Ĥb)τ/~ρ̂b,1Ĵ

†(t− τ)
}〉]

,

(60)

kav2→1 = lim
t→∞
〈k2→1(t)〉

= lim
t→∞

2

~2
Re

[∫ t

0

dτ

〈
ei

∫ t
t−τ dτ

′(E1(τ
′)−E2(τ

′))/~

×Trb
{
ei(B̂1+Ĥb)τ/~Ĵ†(t)e−i(B̂2+Ĥb)τ/~ρ̂b,2Ĵ(t− τ)

}〉]
.

(61)

Given that the averaging over the energies and electronic
couplings can be further decoupled from each other, the
averaging in the above expressions can be expressed in
terms of those involving correlation functions for the en-
ergy and the electronic couplings. In addition, let us
assume that δE(t) = E1(t) − E2(t) − 〈E1〉 + 〈E2〉 obeys
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a Gaussian statistics with exponential correlation as fol-
lows:

〈δE(t)δE(0)〉 = 〈δE2〉e−t/τe , (62)

and that Ĵ(t) = Ĵf(t) such that

〈f(t)f(0)〉 = e−t/τf . (63)

In Eq. (62), 〈δE2〉 can also be expressed as

〈δE2〉 = 〈δE2
1〉+ 〈δE2

2〉 − 2(〈E2E1〉 − 〈E2〉〈E1〉). (64)

Thus, except for the special case where δE1(t) and δE2(t)
are identical, the above quantity is nonzero and positive
in general. Then, the averaging that appears in the ex-
pression of kav1→2, Eq. (60), simplifies to

〈ei
∫ t
t−τ dτ

′(E2(τ
′)−E1(τ

′))/~〉〈f(t)f(t− τ)〉

= eiτ(〈E2−E1〉)/~e−
1
~2

∫ t
t−τ dτ

′ ∫ τ′
t−τ dτ

′′〈δE(τ ′)δE(τ ′′)〉e−τ/τf

= eiτ(〈E2−E1〉)/~e−τe(τ−τe(1−e
−τ/τe ))〈δE2〉/~2

e−τ/τf . (65)

In the second line of the above expression, cumulant ex-
pansion and the fact that δE(t) obeys Gaussian statistics
was used, together with the assumption that the time
correlation function of f(t) is stationary. The third line
is obtained by explicit integration over τ ′ and τ ′′. Thus,
employing the above expression, we obtain

km−FGR = kav1→2 =
2

~2
Re

[∫ ∞
0

dteit(〈E2〉−〈E1〉)/~

×e−(t/τe−(1−e
−t/τe ))〈δE2〉τ2

e /~
2

e−t/τf

×Trb
{
ei(B̂2+Ĥb)t/~Ĵe−i(B̂1+Ĥb)t/~ρ̂b,1Ĵ

†
}]

. (66)

A similar expression can be derived for kav2→1 as well.

Equation (66) can be considered as a modified form of
FGR, which accounts for the effect of fluctuating ener-
gies and electronic couplings in a mean-field manner. It
is in fact a combination of well-known Kubo-Anderson
lineshape theory59–61 and conventional FGR expression.
It is also interesting to note that the additional damp-
ing factor that arise from fluctuations now makes the
integration well-defined even when CR,s for the model
considered in Sec. IIC remains finite. Thus, the issue
of delta-function singularity disappears due to dynamic
fluctuations.

For the case where Ĵ = J , a complex number, and B̂1,
B̂2, and Ĥb are given by Eqs. (25)-(27), Eq. (66) can be
expressed as

km−FGR =
2|J |2

~2
Re

[∫ ∞
0

dteit(〈Ẽ1〉−〈Ẽ2〉)/~

×e−(t/τe−(1−e
−t/τe ))〈δE2〉τ2

e /~
2−t/τf−C(t)

]
, (67)
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FIG. 4. Logarithms of dimensionless second modified FGR
(m-FGR-2) rates, κ = ~

√
kBTλ/(

√
πJ2)km−FGR, where

km−FGR is the modified FGR rate, Eq. (67), versus ∆Ẽ =

Ẽ1 − Ẽ2. The super-Ohmic bath spectral density with n = 3
is used with λ3 = ~ωc, and θ = 1. Different values of γe = 0.1,
1, and 2 were used while γf = 0 and 〈δE2〉 = 0.1(~ωc)2. The
m-FGR-1 rate without time dependent fluctuations, Eq. (42),
which was shown in Fig. 3, is also provided for comparison.

where C(t) is given by Eq. (29) and 〈Ẽj〉 =
〈Ej〉 −

∑
n ~ωng2n,j for j = 1, 2. Note that the in-

tegration of Eq. (67) remains well-defined even when
CR,s is finite, rendering the modification considered in
Sec. III unnecessary.

Figure 4 compares Eq. (67) for the case of the super-
Ohmic bath spectral density with n = 3, for different
values of γe = 1/(ωcτe), while assuming γf = 1/(ωcτf ) =
0 and 〈δE2〉 = 0.1(~ωc)2. The first modified FGR rate
given by Eq. (42) is compared as well. It is interesting to
note that the case with γe = 0.1 is similar to that of FGR
with a damping factor γd = 0.1 in Fig. 2. However, as γe
increases, the rate according to Eq. (67) for ∆E/λ ∼ 0 is
smaller than Eq. (42), whereas the former becomes larger
than the latter for |∆E/λ| >> 1. This is an effect of
dynamic averaging over fluctuating energies, which plays
a major role for τe ≤ 1/ωc.

If the overall population dynamics is dispersive or the
time dependent fluctuations have long memory time, the
decoupling of averages such as in Eq. (59) is not possible.
Further simplification of Eq. (58) is impossible in this
case and one has to conduct simulation of ME over each
realization of the time dependent fluctuation. In fact, in
this case, one can calculate the average of p2(t) directly
by solving Eq. (54) using the fact that p1(t) = 1− p2(t)
and the initial condition of p2(0) = 0 as follows:

〈p2(t)〉 =

〈∫ t

0

dτk1(τ)e−
∫ t
τ
dτ ′(k1(τ

′)+k2(τ
′))

〉
. (68)

While a closed form expression for the above average is
not available in general, sampling over the ensemble of
fluctuations is always feasible in these general cases.
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V. CONCLUDING REMARKS

In this work, we have provided new analyses of FGR
rate expressions. For two cases, one (I) when the final
states have sparse density and the other (II) when there
are additional time dependent fluctuations, we have pre-
sented two modified FGR rate expressions.

For case (I), we suggest using a regularized expression,
Eq. (42), in case there is no additional uncertainty or dis-
tribution of the final states. In this expression, the delta-
function singularity is removed by subtracting the contri-
bution of the long time limit of the integrand. The valid-
ity of this regularization has already been demonstrated
for the case of super-Ohmic bath spectral density,52–54

and we expect it should be applicable for other kinds
of general bath spectral densities as well. On the other
hand, if there are verifiable additional distribution of fi-
nal states, Eq. (43) can be used instead.

The case (II) is expected to be more common in com-
plex systems, where not all environmental effects can be
represented by a simple form of bath Hamiltonian. Un-
der the assumption of fast enough fluctuations, decou-
pling of average rates from average populations becomes
a reasonable approximation. Considering Gaussian fluc-
tuations in energies, with correlation function given by
Eq. (62), and also assuming multiplicative fluctuations
in the coupling, with correlation function given by Eq.
(63), we have obtained a new modified form of FGR
rate, Eq. (66), for general case and Eq. (67) for lin-
early coupled bath of harmonic oscillators. The damping
factor resulting from the energy fluctuation approaches
an exponentially decaying function if τe is much shorter
than other time scales in the integrand, while it follows a
Gaussian function in the opposite limit where it is much
longer than others. This term, along with the exponen-
tial damping factor resulting from finite correlation of
f(t), again removes the delta function singularity of the
integration naturally.

For application of Eqs. (66) or (67) to an actual
system, information on time correlation functions for
fluctuating energies and couplings is needed. Such
information can be obtained through routine molecular
dynamics simulation of the entire system. Obtaining
the information on fluctuations of couplings, Ĵ12(t),
is straightforward as well. However, in obtaining the
information on energy gap fluctuations, care should be
taken since contributions to the energy gap correlation
from the quantum bath has to be properly subtracted.
In addition, evaluation of Eq. (66) or (67) in general
requires direct time domain integration, which is not
necessarily a disadvantage of the expression.
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