
Pruning Parameterization with Bi-level Optimization for Efficient Semantic

Segmentation on the Edge

Changdi Yang*1 Pu Zhao*1 Yanyu Li1 Wei Niu2 Jiexiong Guan2

Hao Tang3 Minghai Qin1 Bin Ren2 Xue Lin1 Yanzhi Wang1

1Northeastern University 2College of William & Mary 3CVL, ETH Zurich

{yang.changd, zhao.pu, li.yanyu, xue.lin, yanz.wang}@northeastern.edu

{wniu, jguan}@email.wm.edu, bren@cs.wm.edu, hao.tang@vision.ee.ethz.ch, qinminghai@gmail.com

Abstract

With the ever-increasing popularity of edge devices, it is

necessary to implement real-time segmentation on the edge

for autonomous driving and many other applications. Vi-

sion Transformers (ViTs) have shown considerably stronger

results for many vision tasks. However, ViTs with the full-

attention mechanism usually consume a large number of

computational resources, leading to difficulties for real-

time inference on edge devices. In this paper, we aim to de-

rive ViTs with fewer computations and fast inference speed

to facilitate the dense prediction of semantic segmentation

on edge devices. To achieve this, we propose a pruning pa-

rameterization method to formulate the pruning problem of

semantic segmentation. Then we adopt a bi-level optimiza-

tion method to solve this problem with the help of implicit

gradients. Our experimental results demonstrate that we

can achieve 38.9 mIoU on ADE20K val with a speed of 56.5

FPS on Samsung S21, which is the highest mIoU under the

same computation constraint with real-time inference.

1. Introduction

Inspired by the extraordinary performance of Deep Neu-

ral Networks (DNNs), DNNs have been applied to various

tasks. In this work, we focus on semantic segmentation,

which aims to assign a class label to each pixel of an image

to perform a dense prediction. It plays an important role in

many real-world applications, such as autonomous driving.

However, as a dense prediction task, segmentation models

usually have complicated multi-scale feature fusion struc-

tures with large feature sizes, leading to tremendous mem-

ory and computation overhead with slow inference speed.

To reduce the memory and computation cost, certain

lightweight CNN architectures [21, 40, 66] are designed for

efficient segmentation. Besides CNNs, inspired by the re-

cent superior performance of vision transformers (ViTs)

*These authors contributed equally to this work.

Figure 1. Comparison of accuracy versus FPS on ADE20K.

[17], some works [10, 11, 72] adopt ViTs in segmentation

tasks to explore self-attention mechanism with the global

receptive field. However, it is still difficult for ViTs to re-

duce the computation cost of the dense prediction for seg-

mentation with large feature sizes.

With the wide spread of edge devices such as mobile

phones, it is essential to perform real-time inference of seg-

mentation on edge devices in practice. To facilitate mo-

bile segmentation, the state-of-the-art work TopFormer [68]

adopts a token pyramid transformer to produce scale-aware

semantic features with tokens from various scales. It signif-

icantly outperforms CNN- and ViT-based networks across

different semantic segmentation datasets and achieves a

good trade-off between accuracy and latency. However, it

only partially optimizes the token pyramid module, which

costs most of the computations and latency.

In this work, we propose a pruning parameterization

method with bi-level optimization to further enhance the

performance of TopFormer. Our objective is to search for

a suitable layer width for each layer in the token pyramid

This CVPR paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

15402



module, which is the main cost of computations and latency

(over 60%). To achieve this, we first formulate the problem

with pruning parameterization to build a pruning framework

with a soft mask as a representation of the pruning policy.

With this soft mask, we further adopt thresholding to con-

vert the soft mask into a binary mask so that the model is

trained with actual pruned weights to obtain pruning results

directly. This is significantly different from other meth-

ods [27, 47] to train with unpruned small non-zero weights

and use fine-tuning to mitigate the performance degradation

after applying pruning. Besides, to update the soft mask as

long as the pruning policy, we adopt to straight though es-

timator (STE) method to make the soft mask differentiable.

Thus, we can build the pruning parameterization framework

with minimal overhead.

Based on this framework, we need to search the best-

suited layer width for each layer in the token pyramid mod-

ule. It is non-trivial to perform the search. As the to-

ken pyramid module needs to extract multi-scale informa-

tion from multiple spatial resolutions, the large hierarchical

search space leads to difficulties of convergence. To resolve

this problem, we adopt a bi-level optimization method. In

the outer optimization, we try to obtain the pruning pol-

icy based on the pruning parameters (the soft mask). In

the inner optimization, the optimized model weights with

the best segmentation performance under this soft mask can

be obtained. Compared with a typical pruning method, our

work incorporates the implicit gradients with second-order

derivatives to further guide the update of the soft mask

and achieve better performance. Our experimental results

demonstrate that we can achieve 38.9 mIoU (mean class-

wise intersection-over-union) on the ADE20K dataset with

a speed of 56.5 FPS on Samsung S21, which is the highest

mIoU under the same computation constraint with real-time

inference speed. As demonstrated in Figure 1, our models

can achieve a better tradeoff between the mIoU and speed.

We summarize our contributions below,

• We propose a pruning parameterization method to build

a pruning framework with a soft mask. We further use

a threshold-based method to convert the soft mask into

the binary mask to perform actual pruning during model

training and inference. Besides, STE is adopted to update

the soft mask efficiently through gradient descent opti-

mizers.

• To solve the pruning problem formulated with the frame-

work of pruning parameterization, we propose a bi-level

optimization method to utilize implicit gradients for bet-

ter results. We show that the second-order derivatives in

the implicit gradients can be efficiently obtained through

first-order derivatives, saving computations and memory.

• Our experimental results demonstrate that we can achieve

the highest mIoU under the same computation constraint

on various datasets. Specifically, we can achieve 38.9

mIoU on the ADE20K dataset with a real-time inference

speed of 56.5 FPS on the Samsung S21.

2. Related Work

Real-Time Semantic Segmentation. Though semantic

segmentation based on CNNs [6, 22, 33, 58, 71] can achieve

great performance, it typically costs large amounts of com-

putations with slow inference speed. Furthermore, with the

ever-increasing popularity of edge devices such as mobile

phones, it is necessary to achieve fast inference speed for

semantic segmentation on edge devices [4]. Besides human

designed lightweight models [21,40,67], neural architecture

search (NAS) methods [1, 7, 42, 45, 69] are also adopted to

search lightweight models.

As a pioneer in handcrafted real-time segmentation,

ENet [50] designs a lightweight model for fast inference.

DeepLabV3+ [6] adopts atrous separable convolution to

reduce computation counts and uses the lightweight Mo-

bileNetV2 [56] as the backbone. BiSeNet [66, 67] and

STDC [21] utilizes a two-branch architecture, where the

deep branch extracts spatial information, and the shallow

branch learns details. SFNet [40] uses flow alignment mod-

ule to fuse context and spatial information.

Inspired by the recent success of NAS, some works au-

tomatically search lightweight segmentation models. To re-

duce the computation cost, FasterSeg [7] incorporates la-

tency regularization during search. DCNAS [69] uses a

densely connected search space and employs a gradient-

based direct search method. NASViT [24] proposes a gra-

dient projection algorithm to deal with the gradient con-

flict issues and improve the convergence performance. HR-

NAS [15] keeps high-resolution representations in its en-

coder and the search process to maintain high accuracy in

dense prediction. RTSeg [43] redesigns backbone and pro-

poses a latency-driven search framework.

Although many lightweight segmentation models are de-

veloped, it is still hard for them to run real-time inference

on resource- and power-limited GPUs of edge devices.

Vision Transformers. By utilizing the self-attention mech-

anism, ViTs [17] can achieve competitive results against

CNN models in vision tasks. Inspired by the great

success of ViTs, many research efforts are devoted to

dense prediction tasks with ViTs on complex datasets.

SETR [72] utilizes a ViT-based encoder to extract high-

level semantic information. Instead of per-pixel predic-

tion, MaskFormer [11] performs mask-based prediction

with a customize backbone and a transformer-based de-

coder. With a transformer decoder to explore masked atten-

tion, mask2Former [10] proposes a universal architecture

and achieves SOTA performance for various segmentation

tasks. MobileViT [48] and MobileFormer [9] mix CNN and

ViT in their architectures, but they are not fast enough for

real-time inference on edge devices. TopFormer [68] uti-

15403



lizes c CNN-based token pyramid module to extract multi-

level tokens and lightweight ViT blocks to extract semantic

information. It achieves low latency and high accuracy on

complex datasets.

Neural Architecture Search and Pruning. NAS and prun-

ing are commonly used to find lightweight models and re-

duce the computation overhead. Given a search space, NAS

tries to identify a superior model automatically. Reinforce-

ment learning (RL) based NAS [51,75] and evolution-based

NAS [18, 53] usually need to train and evaluate each candi-

date model, leading to tremendous searching cost. To mit-

igate this, gradient-based NAS [5, 12, 29, 46] is proposed

to formulate a supernet with all candidate architectures and

search the outstanding architecture through gradient descent

methods. But it costs huge memory to incorporate all can-

didate architectures.

Network pruning is a compression technique to effec-

tively reduce the DNN storage and computation cost [31].

In this work, we focus on structured pruning [39, 61] to re-

move entire filters or channels of CONV layers, which can

be accelerated effectively for fast inference.

3. Problem Formulation with Pruning Param-

eterization

In our method, we first formulate the pruning problem

with pruning parameterization. Previous pruning methods

usually depend on the magnitudes of model weights and

adopt the in-differentiable sorting operations, leading to in-

consistent performance after applying pruning with sorting

and additional overhead with fine-tuning. To mitigate this,

we propose a pruning parameterization method, which uses

a soft mask (rather than magnitudes of weights) to indicate

whether to prune and get rid of sorting operations. With

the STE method [3], we are able to represent the pruning

with parameters and directly train the pruning like a typi-

cal model training. Then we formulate our problem with

pruning parameterization and introduce our solution.

3.1. Soft Mask Construction

We first introduce how to construct the soft mask. To ac-
celerate the inference, we adopt channel pruning to search
for a suitable width for each convolution (CONV) layer.
Specifically, we insert a depth-wise CONV layer following
each CONV layer that is supposed to be pruned as below,

al = sl ⊙ (wl ⊙ al−1), (1)

where ⊙ denotes the convolution operation. wl ∈
Ro×i×k×k is the weight parameters in l-th CONV layer,

with o output channels, i input channels, and kernels of size

k × k. al ∈ Rn×o×t×t′ represents the output features of

the l-th layer, with o channels and t × t′ feature size. n

denotes batch size. sl ∈ Ro×1×1×1 is the weights of the

depth-wise CONV layer. Each output channel of wl⊙al−1

corresponds to one single element of sl. Thus sl can serve

as a soft mask or pruning indicator for the l-th CONV layer

to indicate whether to prune the corresponding channels.

3.2. Forward and Backward Propagation

Since sl is only a soft mask with continuous values, it
can not represent the binary operation of pruning. To solve
this, we adopt a threshold, and the forward pass with the
mask is represented as

bl =

{

1, sl > τ

0, sl ≤ τ
(element-wise), al = bl ⊙ (wl ⊙ al−1),

(2)

where bl ∈ {0, 1}o×1×1×1 is the binarized sl, and τ is a

threshold which is simply set to 0.5 in our case. Each ele-

ment of bl corresponds to one output channel of wl⊙al−1.

In the forward pass, we first convert the soft mask into

a binary mask through a threshold and then perform the

depth-wise CONV to perform actual pruning. Thus the out-

put channels corresponding to the zero elements in bl are

pruned, and the rest channels are preserved. We show the

proof in Appendix A.

Advantages of the Binary Operation. With the binary op-

eration to obtain the binary mask, the pruned weights be-

come zero during computations of both training and infer-

ence. This is different from some pruning works [27,30,47]

to perform training with small but non-zero weights and in-

ference with binary weights, which has inconsistent perfor-

mance between training and inference, and requires addi-

tional finetuning.

Why τ = 0.5. Since the sl parameters in Equation (2) are

initialized randomly between 0 and 1, we set τ = 0.5 as

a threshold for the binary operation. τ can be set to other

values (such as 0.3 or 0.6). The key point is that sl can

be updated to increase above τ to keep the corresponding

channel or decrease below τ to prune the channel.
The binary operation in Equation (2) is non-differential,

leading to difficulties for back-propagation. To solve this,
we propose to use STE [3, 64] for back-propagation below,

∂L

∂sl

=
∂L

∂bl
, (3)

where we directly pass the gradients of bl to sl so that we

can update the soft mask.

Why Named Pruning Parameterization. With the bina-

rization and STE method, the pruning process can be rep-

resented with the soft mask s = {sl}. We can update the

soft mask to update the pruning policy based on its gradi-

ents. Thus s is the pruning parameters to denote and control

pruning, i.e., pruning parameterization.

Difference with Other Pruning Works. Based on prun-

ing parameterization, we decouple the pruning policy from

model parameter magnitudes so that pruning does not fur-

ther depend on the weight magnitudes. Unlike previous

15404



works on pruning to force pruned weights to be or as close

as to zeros [27,30,47], our method does not have such a con-

straint that pruned weights should be zero. Instead, once the

corresponding binary mask is turned from 1 to 0, the infor-

mation in pruned channels is preserved rather than zeroed

out since zeros in bl can block gradient flow to the corre-

sponding weights. As a result, pruned channels are free to

recover and contribute to accuracy if their corresponding el-

ements in bl switch from 0 to 1.

Difference with Other Mask Methods. Although some

other works also adopt indicator/mask-based pruning such

as [27, 28, 36, 37], our method is more straightforward and

effective. For example, unlike our method to train the soft

mask with STE directly, DAIS [27] relaxes the binarized

channel indicators to be continuous. To bridge the non-

negligible discrepancy between the continuous model and

the target binarized model, it further uses an annealing-

based procedure to steer the indicator convergence toward

binarized states. Some works [36, 65] adopts batchnorm

(BN) layers and uses the cumulative density function (CDF)

of a Gaussian distribution as the mask variable, with a CDF-

based loss function and the Gumbel-Softmax trick to up-

date the mask at the cost of additional random sampling and

complex gradient revision. Besides, the works [23, 65] cre-

ate a mask to multiple the channels weights. This is differ-

ent from our design with the depth-wise CONV operation

for easy mask creation and direct mask training.

3.3. Training Loss with Pruning Parameterization

Based on the soft mask, we can train and prune the model
with the following loss function,

Lm(w, s) = L(w, s) + β · Lreg(s), (4)

where L(w, s) is the cross-entropy loss, and Lreg is the
regularization term related to the sparsity or pruning ra-
tio. For simplicity, we take Multiply-Accumulate opera-
tions (MACs) as the regularization rather than parameter
number to estimate the on-device execution cost more pre-
cisely. β can weight the loss and stabilize training. Lreg can
be defined as the squared ℓ2 norm of the difference between
current MACs and target MACs C,

Lreg =

∣

∣

∣

∣

∣

∑

l

o
′

l × il × tl × t
′

l × k
2 − C

∣

∣

∣

∣

∣

2

, (5)

where o′l is the number of remaining channels after pruning,

and tl × t′l is the output feature size.

3.4. Problem Formulation

With pruning parameterization, the per-layer width
search problem can be formulated as follows

min
s

Lm(w∗

, s), (6)

s.t. w
∗ = argmin

w

L(w, s) +
1

2λ
∥w∥22. (7)

It is a bi-level optimization problem [25, 35]. In the inner

optimization of Equation (7), we optimize the model pa-

rameters under a given soft mask with a commonly used

squared ℓ2 norm as a regularization to mitigate the over-

fitting problem. In the outer optimization of Equation (6),

we optimize the soft mask to minimize the loss. Each time

before updating s, we first need to obtain w
∗.

4. Proposed Method with Bi-level Optimiza-

tion

The objective is to find the soft mask (search a suitable

width) for each layer to minimize the loss with optimized

model weights. We adopt a bi-level pruning method to solve

this problem. Compared with a typical gradient descent

method to update the parameters with first-order derivatives,

the bi-level optimization method incorporates implicit gra-

dients with second-order derivatives to adjust the first-order

term, leading to higher training efficiency with better con-

vergence results. For easy of expression, since each channel

has a corresponding mask, in this section, we broadcast the

masks s and b so that the masks have the same dimension

as the model weights w.

4.1. Bi-level Optimization with Implicit Gradients

From the inner optimization, w∗ is a function of s and
different s can lead to different w

∗. Thus, to minimize
Lm(w∗, s) in Problem (6), we need to compute the gra-
dients with reference to s as below,

dLm(w∗, s)

ds
=

dw∗

ds
∇wLm(w∗

, s) +∇sLm(w∗

, s), (8)

where ∇w and ∇s denote the partial derivatives of the loss

function with reference to w and s, respectively. dw∗

ds
repre-

sents the vector-wise full derivative, and we omit the trans-
pose expression. Since w

∗ is implicitly defined as an opti-

mization problem in Equation (7), dw∗

ds
is also known as im-

plicit gradients [52, 54, 55, 70]. With g(w, s) = L(w, s) +
1
2λw

T
w, dw∗

ds
can be obtained through the following,

dw∗

ds
= −∇2

sw
g(w∗

, s)∇2

w
g(w∗

, s)−1
, (9)

where ∇2
sw

and ∇2
w

are the second-order partial deriva-

tives. We show the proof in Appendix B.
The Hessian matrix ∇2

w
g(w∗, s) can be given by

∇2

w
g(w∗

, s) = ∇2

w
L(w∗

, s) +
1

λ
I =

1

λ
I, (10)

where we adopt a Hessian-free approximation that
∇2

w
L(w∗, s) = 0 as DNNs usually have piece-wise lin-

ear decision boundary with ReLU functions. Thus, Equa-
tion (8) can be transformed to

dLm(w∗, s)

ds
=∇sLm(w∗

, s)− λ∇2

sw
L(w∗

, s)∇wLm(w∗

, s).

(11)

15405



Compared with a typical gradient descent method, the bi-

level optimization incorporates the second-order derivatives

∇2
sw

L(w∗, s)∇wLm(w∗, s) to adjust the first-order term

∇sLm(w∗, s).
It is difficult to obtain the second-order derivatives

∇2
sw

L(w∗, s). Usually certain approximation methods
such as finite difference [8, 20] may be adopted to save
computation cost. But here we show that in this specific
problem, we can directly obtain the analytical solution with
first-order derivatives, which greatly saves computation ef-
forts without approximation. Note that each channel has its
corresponding mask, and we denote the masked channels as
wb = w

∗ ·b where · means the element-wise multiplication
and b is defined in Equation (2). We can obtain that

∇2

sw
L(w∗

, s) = diag(∇wb
L(wb)) (12)

where diag(·) represents formulating a diagonal matrix with
the diagonal vector. We show the proof in Appendix C.
Then we can transform Equation (11) into the following,

dLm(w∗, s)

ds
=∇sLm(w∗

, s)− λ∇wb
L(wb) · ∇wLm(w∗

, s).

(13)

Thus although the implicit gradients incorporate second-

order derivatives, it can be analytically expressed with first-

order derivatives, greatly saving computation cost without

any approximations.
In Equation (13), we need to create two copies wb and

w to obtain their derivatives, which are still not memory
efficient. To further reduce the complexity, we can obtain
∇wb

L(wb) in the following,

∇wb
L(wb) =

{

∇wLm(w), b = 1

0, b = 0
(element-wise) (14)

The pruned weights (b = 0) do not contribute to the loss,
so their gradients are zero. The difference between L(·)
and Lm(·) is just the regularization term Lreg(·), which only
relates to the sparsity and does not care the weight values.
So ∇wb

L(wb) and ∇wLm(w) are equal if their weights
are not pruned (b = 1). Combining Equation (13) and (14),
we can obtain the following,

dLm(w∗, s)

ds
=∇sLm(w∗

, s)− λb · [∇wLm(w∗

, s)]
2
. (15)

We can see that there is no need to keep a copy and compute

the gradients of wb, thus saving memory. During practical

implementation, since s and b are the channel-wise masks,

we accumulate the gradients of all weights in each channel

to update the channel mask following Equation (15).

The Case without Implicit Gradients. In Equation (8),

we can omit the first term with implicit gradients. Thus we

have
dLm(w∗,s)

ds
= ∇sLm(w∗, s) and there is no need to

deal with the second-order term. It is easier to solve. But

we demonstrate in the experiments that our method with

implicit gradients can help to boost the performance without

a significant increase of the computation cost in Section 5.4.

4.2. Bi-level Optimization Framework

In each iteration, our framework has two steps, including

the model weights training step and the mask updating step.

In the first step, we update the weights w with a few training

steps for a fixed mask s. Next in the second step, we update

s with implicit gradients following Equation (15). Then we

move on to the next iteration. In each step, we only update

w or s without changing the other parameter. We discuss

the advantages of the proposed method in the following.

No Need for Finetuning. After training with the proposed

method, we can obtain the final layer-wise pruning policy

following s and the sparse model. Since the model is al-

ready trained with the binary masks, it can achieve good

segmentation performance without further fine-tuning.

First-Order Optimization. During the computation, we

only adopt first-order optimization. Though we incorporate

second-order derivatives in implicit gradients, we show that

it can be analytically expressed with first-order derivatives

in Equation (12), which greatly saves computation cost. We

further optimize the computation process in Equation (15)

to save memory cost.

Recoverable Contribution. During pruning, though some

channels are pruned, their weights are not set to 0 due to the

protection of the mask. When their mask is updated from 0

to 1, they can recover and contribute the accuracy.

5. Experiments

5.1. Datasets and Evaluation Metrics

ADE20K. ADE20K [73,74] is a scene parsing dataset con-

taining 25k images in the training set and 2k images in the

validation set with 150 label classes.

Cityscapes. Cityscapes [14] is a dataset of urban street

scenes from cars collected in 50 cities. It includes 5,000

finely annotated images, in which 2,975 images are used

for training, 500 for validation, and 1,525 for testing. We

exclude the extra training data with coarse labels through-

out this paper. This dataset has 30 label classes, and 19 of

them are used for segmentation. The resolution of images

is 2048× 1024. Cityscapes dataset is an intensively studied

benchmark for semantic segmentation, but it is challenging

to perform real-time inference on such a high resolution.

Pascal VOC. PASCAL Visual Object Classes (VOC) 2012

[19] is a widely used dataset for semantic segmentation,

classification, and object detection tasks. There are 1,464

images for training and 1,449 images for validation. We

show the results on Pascal VOC in Table 4.

Evaluation Metrics. For semantic segmentation evalua-

tion, we use the mean of class-wise intersection-over-union

(mIoU) to measure the accuracy performance. We introduce

the details of mIoU in Appendix D. For our results, we run

our algorithm three times and report the mean and variance

of the mIoU performance. For the baseline methods, some

15406



Table 1. Comparison of our searched model and prior arts on the ADE20K val dataset. We compare with popular handcraft baselines in the

first segment, NAS-based models in the second segment, pruning-based methods in the third segment and lightweight ViT-based models

in the fourth segment. We measure the FPS on the Qualcomm Adreno 660 GPU of the Samsung Galaxy S21 mobile phone. Some FPS

results are not available due to unsupported operations on the mobile device.

Category Method Backbone Parameters GMACs FPS val mIoU (%)

Human
Design

PSPNet [71] ResNet50-D8 49.1M 178.8 0.4 41.1
DeepLabV3+ [6] EfficientNet 17.1M 26.9 5.9 37.6
BiSeNetV2 [66] N.A. 3.34M 12.4 9.1 25.7

SFNet [40] ResNet-50 − 75.7 − 42.8
HRNet-W18-S [60] HRNet-W18-S 4.0M 10.2 5.5 31.4

NAS

HR-NAS-A [15] Searched 2.5M 1.4 − 33.2
HR-NAS-B [15] Searched 3.9M 2.2 − 34.9

NASViT [24] Searched − 2.5 − 37.9
HRViT-b1 [26] Searched 8.2M 14.6 − 45.9

Prune

EagleEye [38] N.A. 3.4M 1.2 59.2 34.3
DMCP [28] N.A. 3.3M 1.2 63.8 33.9
ResPep [16] N.A. 3.3M 1.2 64.9 35.0
CHEX [32] N.A. 3.3M 1.2 64.2 35.2

ViT

Segmenter [57] Searched 6.7M 4.6 4.1 39.9
MobileViT [48] Searched 3.9M 2.2 41.8 34.9

SegFormer-B0 [63] MiT-B0 3.8M 8.4 2.6 37.4
TopFormer-Base [68] N.A. 5.1M 1.8 36.3 37.8
TopFormer-Small [68] N.A. 3.1M 1.2 54.7 36.1
TopFormer-Tiny [68] N.A. 1.4M 0.6 82.7 31.8

Ours

Ours-Base Searched 3.7M 1.8 56.5 38.9

Ours-Small Searched 3.3M 1.2 75.2 37.5

Ours-Tiny Searched 1.3M 0.7 98.0 33.5

methods cost too many resources and we can hardly rerun

their experiments. Some methods provide their well-trained

models, and we can test with the trained model.

5.2. Experimental Settings

Train Settings. We perform the pruning to search for a suit-

able width for each CONV layer in the TopFormer model.

To enable a larger search space, we adopt the TopFormer

architecture and use a larger per-layer width compared with

the TopFormer-Base model. So our unpruned model has

4.1GMACs (with 39.9 mIoU), larger than the 1.8GMACs

of the TopFormer-Base model.

We use stochastic gradient descent (SGD) optimizer, and

momentum is set to 0.9, and set the batch size to 8 on

each GPU. For ADE20K, the initial learning rate is set to

1.2 × 10−4, and the ªpolyº learning rate policy is applied.

For the Cityscapes dataset, the initial learning rate is set

to 3 × 10−4, and we apply the ªpolyº learning rate policy.

For PASCAL VOC 2012, we set the initial learning rate as

0.01. Learning rate value is determined as
(

1− iter
total iter

)0.9

where iter refers to the current iteration number. For the

ADE20K dataset, we incorporate data augmentation by re-

sizing with the random ratio between 0.5 and 2.0 as well as

random flipping. On the Cityscapes dataset, multiple ran-

dom scaling {0.5, 0.75, 1.0, 2.0} and fixed size cropping of

512 × 1024 are adopted for data augmentation. We choose

the crop size for a better trade-off between mobile capac-

ity and accuracy. We set hyperparameters β = 0.01 and

λ = 0.1 in the experiments.

Test Settings. Instead of muti-scale testing, we employ sin-

gle scale testing for a fair comparison. For the ADE20K

dataset, we use 512 × 512 as the input resolution. For the

Cityscapes dataset, 512 × 1024 (rather than 1024 × 2048)

is used as the inference resolution during testing for the fol-

lowing reasons. (i) In practice, we cannot use the resolution

1024× 2048 since it causes memory overflow problems on

our selected mobile phone. (ii) Besides, since the screens

on edge devices such as mobile phones are not very large,

the resolution of 512× 1024 is good enough to serve on the

small screens. (iii) Moreover, we find that this 512 × 1024
resolution can greatly speedup the inference on the mobile

phones without significant accuracy degradation.

Experiment Environments. We train and prune the model

using PyTorch 1.9 and CUDA 11.1 on 8 NVIDIA RTX TI-

TAN GPUs. We measure the mobile latency on the GPU

of an Samsung Galaxy S21 smartphone, with Qualcomm

Snapdragon 888 mobile platform integrated with Qual-

comm Kryo 680 Octa-core CPU and a Qualcomm Adreno

660 GPU. Note that for most baseline works, even the re-

duced resolution (512× 1024) can cause an out-of-memory

problem on the selected mobile device.

Compiler Framework on Mobile Devices. We need to

compile the models before they can be executed on mobile

devices. For TopFormer, we adopt the compiler TNN [13]

to report the speed performance, which is also used in the

original TopFormer paper. To further improve the inference

speed, we adopt several compiler optimization methods and

15407



Table 2. Our search results on the Cityscapes val dataset. We compare with popular handcraft baselines, NAS-based models, pruning based

methods and lightweight ViT-based models. We measure the FPS on the Qualcomm Adreno 660 GPU of the Samsung Galaxy S21 mobile

phone. Some FPS results are not available due to unsupported operations on the mobile device.

Category Method Backbone Resolution #params GMACs FPS mIoU%

Human
Design

ENet [50] N.A. 512× 1024 354.9K 5.9 − 58.5
PSPNet [71] ResNet101 1024× 2048 68.07M 525.0 0.2 78.8

BiSeNetV2 [66] N.A. 512× 1024 3.34M 24.6 5.0 73.4
DeepLabV3+ [6] MBv2 512× 1024 2.26M 9.5 9.4 69.0

STDC1-Seg50 [21] STDC1 512× 1024 12.05M 31.1 4.3 72.2
STDC2-Seg50 [21] STDC2 512× 1024 16.08M 44.3 3.7 74.2

NAS

Auto-DeepLab-S [45] N.A. 1024× 2048 10.15M 333.3 − 79.7
FasterSeg [7] N.A. 1024× 2048 − 28.2 − 73.1
DCNAS [69] N.A. 1024× 2048 − 294.6 − 85.0

Prune

EagleEye [38] N.A. 512× 1024 3.6M 2.4 27.6 69.6
DMCP [28] N.A. 512× 1024 3.5M 2.4 32.0 70.3
ResPep [16] N.A. 512× 1024 3.5M 2.4 28.2 71.3
CHEX [32] N.A. 512× 1024 3.4M 2.4 35.5 71.7

ViT

HRViT-b1 [26] N.A. 512× 1024 8.1M 28.2 − 81.6
SegFormer-B0 [63] MiT-B0 512× 1024 3.8M 17.7 0.9 71.9

TopFormer-Base [68] N.A. 512× 1024 5.1M 2.7 21.5 70.6
TopFormer-Tiny [68] N.A. 512× 1024 1.4M 1.2 42.8 66.1

Ours

Ours-Base Searched 512× 1024 3.7M 3.6 30.8 74.7

Ours-Small Searched 512× 1024 3.3M 2.4 38.7 73.6

Ours-Tiny Searched 512× 1024 1.3M 1.4 52.6 71.5

develop an advanced compiler framework to compile our

models and test their on-mobile speed. We show the details

about our compiler optimization in Appendix E.

5.3. Experimental Results and Analysis

Segmentation Performance. Based on the TopFormer

model, we obtain three models (Ours-Base, Ours-Small,

and Ours-Tiny) with different computations. We show the

comparison results on ADE20K in Table 1 and Cityscapes

in Table 2. (i) For ADE20K, we can observe that the human-

designed segmentation models and NAS-based models usu-

ally consume many computations (such as DeepLabV3+

with 26.9GMACs) in terms of MACs (multiply±accumulate

operations). They can hardly achieve real-time inference

on edge devices. Some NAS-based models with a small

number of computations are not able to achieve high mIoU

(such as HR-NAS-A with 33.2 mIoU). (ii) For the compar-

ison with other pruning methods, we start from the same

dense model and set the target GMACs to the same number

(1.2GMACs) to make a fair comparison. We can see that

our small model can achieve higher mIoU given the same

GMACs. (iii) Compared with the ViT-based TopFormer,

our models can achieve higher mIoUs with non-trivial im-

provements under the same computation budget (such as

Ours-Small 37.5 mIoU v.s. 36.1 of TopFormer-Small under

the same 1.2GMACs). Our models can achieve a faster in-

ference speed (FPS higher than 50) on mobile phones com-

pared with TopFormer models. We show the comparison

with the baselines in terms of mIoU and FPS in Figure 1.

We can achieve a better trade-off between mIoU and FPS.

(i) On the Cityscapes dataset, compared with hand-

crafted CNN-based segmentation models, including

BiSeNetV2 and STDC, our searched base model greatly

reduces the GMACs (such as Ours-Base 3.6GMACs v.s.

24.6GMACs of BiSeNetV2) and achieves non-trivial

better accuracy (Ours-Base 74.7 mIoU v.s. 73.4 mIoU of

BiSeNetV2), as shown in Table 2. (ii) Compared with

NAS-based methods such as FasterSeg, our models can

achieve higher mIoU with much smaller computation costs.

Other NAS methods consume too many computations (e.g.,

DCNAS with 300GMACs) to be deployed on edge devices.

(iii) Compared with other pruning baselines, under the

same computation budgets (2.4GMACs), our small model

can achieve higher mIoU. (iv) Compared with transformer-

based methods such as SegFormer-B0, similarly, our

models achieve higher mIoU with less computations. Our

small and tiny models have similar computations compared

with TopFormer-Base and TopFormer-Tiny. But we can

achieve higher mIoU.

Speed Performance on Mobile Devices. Our base model

can achieve 56.5 FPS on the mobile device (Samsung

Galaxy S21), which implements real-time execution with

competitive segmentation performance, as shown in Ta-

ble 1. Other baseline methods except TopFormer can hardly

achieve real-time segmentation on edge devices, usually

with FPS lower than 10. Our faster inference speed than

TopFormer is achieved with the compiler optimization tech-

niques, detailed in Appendix E.

Search Overhead. We show the search cost in Table 3.

We only show the cost of our small model since our base,

small and tiny models have similar search costs. It takes ap-

proximately 1.3 GPU days, which is smaller than the search

cost of most other NAS-based segmentation methods. Our

method can efficiently search out a compact model with

15408



Table 3. Comparison of search cost on the Cityscapes val dataset.

Method GPU Days GMACs mIoU

Auto-DeepLab [45] 3 695.0 82.1
GAS [44] 6.7 - 73.5

FasterSeg [7] 2 28.2 73.1
Fast-NAS [49] 8 435.7 78.9

SparseMask [62] 4.2 36.4 68.6
DCNAS [69] 5.6 294.6 85.0

LDP [34] 4.3 − 75.8
Without implicit gradients 1.1 2.4 71.9

Ours-Small 1.3 2.4 73.6

fewer computations and better segmentation performance.

The low search cost is achieved by our pruning parameteri-

zation framework. Based on the soft mask and the low-cost

thresholding and STE method, we are able to directly train

the model weights and the pruning parameters. During the

training, the pruned channels are zeroed out by the binary

mask without the need of additional fine-tuning. Besides,

our bi-level optimization can efficiently address the second-

order derivatives with low computation complexity.

Visualization Comparison. We show the visualization

comparison of our base model and other baselines in Ap-

pendix F. We can achieve better segmentation performance.

Results on Other Datasets and Model Architectures. We

show the results on the Pascal VOC dataset in Table 4.

We can observe that handcrafted CNN-based methods usu-

ally require more computational cost (such as DeepLabV3+

with 5.7 GMACs for MobileNetV2 backbone and 37.8

GMACs for ResNet50 backbone). Compared with ViT-

based TopFormer, our method could achieve better mIoU

under the same computational cost (such as Ours-Small

73.4% v.s. 69.8% mIoU of TopFormer-S for 1.2 GMACs).

Our method is general and can be applied to other model

structures. We show the results for DeepLabV3+ [6] on

Cityscapes in Table 5. Our two searched models have fewer

parameters and computations with accelerated on-mobile

inference speed, while achieving better mIoU compared

with the original DeepLabV3+ model. Other models such

as BiSeNetV2 or STDC cost much more computations.

5.4. Ablation Study

In our bi-level optimization, we incorporate implicit gra-

dients in Equation (11). To demonstrate the advantages with

implicit gradients, we consider the case without implicit

gradients which omits the second term in Equation (11) with

just
dLm(w∗,s)

ds
= ∇sLm(w∗, s). We compare the perfor-

mance of the solution without implicit gradients and our bi-

level solution with implicit gradients on Cityscapes in Ta-

ble 3. We can observe that our solution with implicit gradi-

ents has a search cost slightly higher than the solution with-

out implicit gradients, demonstrating that our first-order so-

lution for the second-order derivatives in Equation (12) can

effectively save computation cost. For mIoU, our method

Table 4. Results on the PASCAL VOC 2012 test dataset. We com-

pare our results with popular CNN-based models and lightweight

ViT-based models.

Method #params GMACs mIoU% FPS

EfficientNet-B7 [59] 66.0M 194.0 85.2 0.1
EMANet [41] 10.0M 43.1 80.1 2.5
PSANet [2] 18.5M 56.3 78.5 1.4

DeepLabV3+ R101 [6] 43.9M 58.5 77.4 2.2
DeepLabV3+ R50 [6] 24.9M 37.8 76.3 3.1

DeepLabV3+ MBv2 [6] 2.3M 5.7 70.5 5.1
TopFormer-B [68] 5.1M 1.8 71.0 36.8
TopFormer-S [68] 3.1M 1.2 69.8 55.2
TopFormer-T [68] 1.4M 0.6 65.7 81.5

MobileViT-XXS [48] 1.9M 1.7 73.6 43.8

Ours-Base 3.7M 1.8 74.3 56.8

Ours-Small 3.3M 1.2 73.4 75.0

Ours-Tiny 1.3M 0.7 70.5 97.6

Table 5. Our searched results for DeepLabV3+ with MobileNetV2

backbone on Cityscapes val. The input resolution is 512× 1024.

Method #params GMACs mIoU% FPS

BiSeNetV2 [66] 3.34M 24.6 73.4 5.0
STDC1-Seg50 [21] 12.05M 31.1 72.2 4.3
STDC2-Seg50 [21] 16.08M 44.3 74.2 3.7
DeepLabV3+ [6] 2.26M 9.5 69.0 9.4

Ours-Base-DeepLab 1.21M 7.6 70.9 22.3

Ours-Small-DeepLab 569.0K 4.3 70.2 28.1

can achieve higher mIoU with non-trivial improvements,

demonstrating that incorporating implicit gradients can ef-

fectively boost the performance.

Hyperparameter Tuning. We show the results with var-

ious β and λ in Appendix G. To compare with baselines

under certain computations, we mainly show the results of

our three sparse models (Ours-Base, Ours-Small, and Ours-

Tiny). We show the results of more models under other

computations in Appendix H.

6. Conclusion

We propose pruning parameterization with the threshold-

ing and STE methods to build a pruning framework. Based

on the framework, we formulate the problem and propose

a bi-level optimization method with the implicit gradients.

Our experimental results demonstrate that we can achieve

the highest mIoU under the same computation constraint on

various datasets. Specifically, we can achieve 38.9 mIoU on

the ADE20K with a real-time inference speed of 56.5 FPS

on the Samsung S21.

Acknowledgments

This work was supported in part by National Sci-

ence Foundation (NSF) under the awards of CMMI-

2125326, CNS-1932351, CCF-2047516 (CAREER) and

CCF-2146873.

15409



References

[1] Haoli Bai, Hongda Mao, and Dinesh Nair. Dynami-

cally pruning segformer for efficient semantic segmentation.

In ICASSP 2022-2022 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages

3298±3302. IEEE, 2022. 2

[2] Anjali Balagopal, Howard Morgan, Michael Dohopoloski,

Ramsey Timmerman, Jie Shan, Daniel F. Heitjan, Wei Liu,

Dan Nguyen, Raquibul Hannan, Aurelie Garant, Neil De-

sai, and Steve Jiang. Psa-net: Deep learning based physi-

cian style-aware segmentation network for post-operative

prostate cancer clinical target volume, 2021. 8

[3] Yoshua Bengio, Nicholas LÂeonard, and Aaron C. Courville.

Estimating or propagating gradients through stochastic neu-

rons for conditional computation. CoRR, abs/1308.3432,

2013. 3

[4] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Han-

rui Wang, Ligeng Zhu, and Song Han. Enable deep learn-

ing on mobile devices: Methods, systems, and applications.

ACM Transactions on Design Automation of Electronic Sys-

tems (TODAES), 27(3):1±50, 2022. 2

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct

neural architecture search on target task and hardware. arXiv

preprint arXiv:1812.00332, 2018. 3

[6] Liang-Chieh Chen, Yukun Zhu, George Papandreou, Florian

Schroff, and Hartwig Adam. Encoder-decoder with atrous

separable convolution for semantic image segmentation. In

Proceedings of the European conference on computer vision

(ECCV), pages 801±818, 2018. 2, 6, 7, 8

[7] Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang,

Yuan Li, and Zhangyang Wang. Fasterseg: Searching

for faster real-time semantic segmentation. arXiv preprint

arXiv:1912.10917, 2019. 2, 7, 8

[8] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive

darts: Bridging the optimization gap for nas in the wild. In-

ternational Journal of Computer Vision, pages 1±18, 2020.

5

[9] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen

Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-

former: Bridging mobilenet and transformer. arXiv preprint

arXiv:2108.05895, 2021. 2

[10] Bowen Cheng, Ishan Misra, Alexander G Schwing, Alexan-

der Kirillov, and Rohit Girdhar. Masked-attention mask

transformer for universal image segmentation. arXiv preprint

arXiv:2112.01527, 2021. 1, 2

[11] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-

pixel classification is not all you need for semantic segmen-

tation. Advances in Neural Information Processing Systems,

34, 2021. 1, 2

[12] Xiangxiang Chu, Bo Zhang, Ruijun Xu, and Jixiang Li. Fair-

nas: Rethinking evaluation fairness of weight sharing neural

architecture search. arXiv preprint arXiv:1907.01845, 2019.

3

[13] TNN Contributors. TNN: A high-performance, lightweight

neural network inference framework. https://github.

com/Tencent/TNN, 2019. 6

[14] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proc.

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016. 5

[15] Mingyu Ding, Xiaochen Lian, Linjie Yang, Peng Wang, Xi-

aojie Jin, Zhiwu Lu, and Ping Luo. Hr-nas: Searching ef-

ficient high-resolution neural architectures with lightweight

transformers. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), 2021.

2, 6

[16] Xiaohan Ding, Tianxiang Hao, Jianchao Tan, Ji Liu, Jungong

Han, Yuchen Guo, and Guiguang Ding. Resrep: Lossless

cnn pruning via decoupling remembering and forgetting. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 4510±4520, 2021. 6, 7

[17] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,

Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,

Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is

worth 16x16 words: Transformers for image recognition at

scale. ICLR, 2021. 1, 2

[18] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Ef-

ficient multi-objective neural architecture search via lamar-

ckian evolution. arXiv preprint arXiv:1804.09081, 2018. 3

[19] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The pascal visual object classes (voc) chal-

lenge. International Journal of Computer Vision, 88(2):303±

338, June 2010. 5

[20] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. On

the convergence theory of gradient-based model-agnostic

meta-learning algorithms. In International Conference

on Artificial Intelligence and Statistics, pages 1082±1092.

PMLR, 2020. 5

[21] Mingyuan Fan, Shenqi Lai, Junshi Huang, Xiaoming Wei,

Zhenhua Chai, Junfeng Luo, and Xiaolin Wei. Rethinking

bisenet for real-time semantic segmentation. In Proceedings

of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition, pages 9716±9725, 2021. 1, 2, 7, 8

[22] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene

segmentation. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 3146±

3154, 2019. 2

[23] Shangqian Gao, Feihu Huang, Jian Pei, and Heng Huang.

Discrete model compression with resource constraint for

deep neural networks. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2020. 4

[24] Chengyue Gong, Dilin Wang, Meng Li, Xinlei Chen,

Zhicheng Yan, Yuandong Tian, Vikas Chandra, et al. Nasvit:

Neural architecture search for efficient vision transformers

with gradient conflict aware supernet training. In Interna-

tional Conference on Learning Representations, 2021. 2, 6

[25] Stephen Gould, Basura Fernando, Anoop Cherian, Peter An-

derson, Rodrigo Santa Cruz, and Edison Guo. On differ-

entiating parameterized argmin and argmax problems with

15410



application to bi-level optimization. CoRR, abs/1607.05447,

2016. 4

[26] Jiaqi Gu, Hyoukjun Kwon, Dilin Wang, Wei Ye, Meng Li,

Yu-Hsin Chen, Liangzhen Lai, Vikas Chandra, and David Z

Pan. Hrvit: Multi-scale high-resolution vision transformer.

arXiv preprint arXiv:2111.01236, 2021. 6, 7

[27] Yushuo Guan, Ning Liu, Pengyu Zhao, Zhengping Che,

Kaigui Bian, Yanzhi Wang, and Jian Tang. Dais: Auto-

matic channel pruning via differentiable annealing indicator

search. IEEE Transactions on Neural Networks and Learn-

ing Systems, pages 1±12, 2022. 2, 3, 4

[28] Shaopeng Guo, Yujie Wang, Quanquan Li, and Junjie Yan.

Dmcp: Differentiable markov channel pruning for neural

networks. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 1539±1547,

2020. 4, 6, 7

[29] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,

Zechun Liu, Yichen Wei, and Jian Sun. Single path one-

shot neural architecture search with uniform sampling. In

European Conference on Computer Vision, pages 544±560.

Springer, 2020. 3

[30] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning

for accelerating very deep neural networks. In Proceedings

of the IEEE international conference on computer vision,

pages 1389±1397, 2017. 3, 4

[31] Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden,

and Alexandra Peste. Sparsity in deep learning: Pruning

and growth for efficient inference and training in neural net-

works. J. Mach. Learn. Res., 22(241):1±124, 2021. 3

[32] Zejiang Hou, Minghai Qin, Fei Sun, Xiaolong Ma, Kun

Yuan, Yi Xu, Yen-Kuang Chen, Rong Jin, Yuan Xie, and

Sun-Yuan Kung. Chex: Channel exploration for cnn model

compression. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 12287±

12298, 2022. 6, 7

[33] Junjie Huang, Zheng Zhu, and Guan Huang. Multi-stage hr-

net: multiple stage high-resolution network for human pose

estimation. arXiv preprint arXiv:1910.05901, 2019. 2

[34] Lam Huynh, Esa Rahtu, Jiri Matas, and Janne Heikkila. Fast

neural architecture search for lightweight dense prediction

networks. arXiv preprint arXiv:2203.01994, 2022. 8

[35] Kaiyi Ji, Junjie Yang, and Yingbin Liang. Bilevel optimiza-

tion: Convergence analysis and enhanced design. In Interna-

tional Conference on Machine Learning, pages 4882±4892.

PMLR, 2021. 4

[36] Minsoo Kang and Bohyung Han. Operation-aware soft chan-

nel pruning using differentiable masks. In International Con-

ference on Machine Learning, pages 5122±5131. PMLR,

2020. 4

[37] Jaedeok Kim, Chiyoun Park, Hyun-Joo Jung, and Yoonsuck

Choe. Plug-in, trainable gate for streamlining arbitrary neu-

ral networks. Proceedings of the AAAI Conference on Artifi-

cial Intelligence, 34(04):4452±4459, Apr. 2020. 4

[38] Bailin Li, Bowen Wu, Jiang Su, and Guangrun Wang. Ea-

gleeye: Fast sub-net evaluation for efficient neural network

pruning. In European conference on computer vision, pages

639±654. Springer, 2020. 6, 7

[39] Tuanhui Li, Baoyuan Wu, Yujiu Yang, Yanbo Fan, Yong

Zhang, and Wei Liu. Compressing convolutional neural net-

works via factorized convolutional filters. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 3977±3986, 2019. 3

[40] Xiangtai Li, Ansheng You, Zhen Zhu, Houlong Zhao, Maoke

Yang, Kuiyuan Yang, Shaohua Tan, and Yunhai Tong. Se-

mantic flow for fast and accurate scene parsing. In European

Conference on Computer Vision, pages 775±793. Springer,

2020. 1, 2, 6

[41] Xia Li, Zhisheng Zhong, Jianlong Wu, Yibo Yang, Zhouchen

Lin, and Hong Liu. Expectation-maximization attention net-

works for semantic segmentation, 2019. 8

[42] Xin Li, Yiming Zhou, Zheng Pan, and Jiashi Feng. Partial

order pruning: for best speed/accuracy trade-off in neural

architecture search. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

9145±9153, 2019. 2

[43] Yanyu Li, Changdi Yang, Pu Zhao, Geng Yuan, Wei Niu,

Jiexiong Guan, Hao Tang, Minghai Qin, Qing Jin, Bin Ren,

Xue Lin, and Yanzhi Wang. Towards real-time segmentation

on the edge. In Thirty-Seven AAAI Conference on Artificial

Intelligence, 2023. 2

[44] Peiwen Lin, Peng Sun, Guangliang Cheng, Sirui Xie, Xi Li,

and Jianping Shi. Graph-guided architecture search for real-

time semantic segmentation, 2020. 8

[45] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig

Adam, Wei Hua, Alan L Yuille, and Li Fei-Fei. Auto-

deeplab: Hierarchical neural architecture search for semantic

image segmentation. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

82±92, 2019. 2, 7, 8

[46] Hanxiao Liu, Karen Simonyan, and Yiming Yang.

Darts: Differentiable architecture search. arXiv preprint

arXiv:1806.09055, 2018. 3

[47] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Pro-

ceedings of the IEEE international conference on computer

vision, pages 2736±2744, 2017. 2, 3, 4

[48] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-

weight, general-purpose, and mobile-friendly vision trans-

former. arXiv preprint arXiv:2110.02178, 2021. 2, 6, 8

[49] Vladimir Nekrasov, Hao Chen, Chunhua Shen, and Ian Reid.

Fast neural architecture search of compact semantic segmen-

tation models via auxiliary cells, 2019. 8

[50] Adam Paszke, Abhishek Chaurasia, Sangpil Kim, and Euge-

nio Culurciello. Enet: A deep neural network architecture

for real-time semantic segmentation, 2016. 2, 7

[51] Hieu Pham, Melody Y Guan, Barret Zoph, Quoc V Le, and

Jeff Dean. Efficient neural architecture search via parameter

sharing. arXiv preprint arXiv:1802.03268, 2018. 3

[52] Aravind Rajeswaran, Chelsea Finn, Sham M Kakade, and

Sergey Levine. Meta-learning with implicit gradients. Ad-

vances in neural information processing systems, 32, 2019.

4

[53] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V

Le. Regularized evolution for image classifier architecture

15411



search. In Proceedings of the aaai conference on artificial

intelligence, volume 33, pages 4780±4789, 2019. 3

[54] Walter Rudin et al. Principles of mathematical analysis, vol-

ume 3. McGraw-hill New York, 1976. 4, 12

[55] Kegan GG Samuel and Marshall F Tappen. Learning op-

timized map estimates in continuously-valued mrf models.

In 2009 IEEE Conference on Computer Vision and Pattern

Recognition, pages 477±484. IEEE, 2009. 4

[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 4510±4520, 2018. 2

[57] Robin Strudel, Ricardo Garcia, Ivan Laptev, and Cordelia

Schmid. Segmenter: Transformer for semantic segmenta-

tion. In Proceedings of the IEEE/CVF International Confer-

ence on Computer Vision, pages 7262±7272, 2021. 6

[58] Guolei Sun, Yun Liu, Hao Tang, Ajad Chhatkuli, Le Zhang,

and Luc Van Gool. Mining relations among cross-frame

affinities for video semantic segmentation. In ECCV, 2022.

2

[59] Mingxing Tan and Quoc V Le. Efficientnet: Rethinking

model scaling for convolutional neural networks. arXiv

preprint arXiv:1905.11946, 2019. 8

[60] Jingdong Wang, Ke Sun, Tianheng Cheng, Borui Jiang,

Chaorui Deng, Yang Zhao, Dong Liu, Yadong Mu, Mingkui

Tan, Xinggang Wang, et al. Deep high-resolution repre-

sentation learning for visual recognition. IEEE transactions

on pattern analysis and machine intelligence, 43(10):3349±

3364, 2020. 6

[61] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and

Hai Li. Learning structured sparsity in deep neural net-

works. In Advances in neural information processing sys-

tems (NeurIPS), pages 2074±2082, 2016. 3

[62] Huikai Wu, Junge Zhang, and Kaiqi Huang. Sparsemask:

Differentiable connectivity learning for dense image predic-

tion, 2019. 8

[63] Enze Xie, Wenhai Wang, Zhiding Yu, Anima Anandkumar,

Jose M Alvarez, and Ping Luo. Segformer: Simple and

efficient design for semantic segmentation with transform-

ers. Advances in Neural Information Processing Systems,

34, 2021. 6, 7

[64] Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher,

Yingyong Qi, and Jack Xin. Understanding straight-through

estimator in training activation quantized neural nets. arXiv

preprint arXiv:1903.05662, 2019. 3

[65] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping

Wang. Gate decorator: Global filter pruning method for ac-

celerating deep convolutional neural networks. Advances in

Neural Information Processing Systems, 32, 2019. 4

[66] Changqian Yu, Changxin Gao, Jingbo Wang, Gang Yu,

Chunhua Shen, and Nong Sang. Bisenet v2: Bilateral net-

work with guided aggregation for real-time semantic seg-

mentation. International Journal of Computer Vision, pages

1±18, 2021. 1, 2, 6, 7, 8

[67] Changqian Yu, Jingbo Wang, Chao Peng, Changxin Gao,

Gang Yu, and Nong Sang. Bisenet: Bilateral segmenta-

tion network for real-time semantic segmentation. In Pro-

ceedings of the European Conference on Computer Vision

(ECCV), September 2018. 2

[68] Wenqiang Zhang, Zilong Huang, Guozhong Luo, Tao Chen,

Xinggang Wang, Wenyu Liu, Gang Yu, and Chunhua Shen.

Topformer: Token pyramid transformer for mobile semantic

segmentation. arXiv preprint arXiv:2204.05525, 2022. 1, 2,

6, 7, 8

[69] Xiong Zhang, Hongmin Xu, Hong Mo, Jianchao Tan, Cheng

Yang, Lei Wang, and Wenqi Ren. Dcnas: Densely connected

neural architecture search for semantic image segmentation.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 13956±13967, 2021.

2, 7, 8

[70] Yihua Zhang, Yuguang Yao, Parikshit Ram, Pu Zhao, Tian-

long Chen, Mingyi Hong, Yanzhi Wang, and Sijia Liu. Ad-

vancing model pruning via bi-level optimization. In Thirty-

sixth Conference on Neural Information Processing Systems,

2022. 4

[71] Hengshuang Zhao, Jianping Shi, Xiaojuan Qi, Xiaogang

Wang, and Jiaya Jia. Pyramid scene parsing network. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 2881±2890, 2017. 2, 6, 7

[72] Sixiao Zheng, Jiachen Lu, Hengshuang Zhao, Xiatian Zhu,

Zekun Luo, Yabiao Wang, Yanwei Fu, Jianfeng Feng, Tao

Xiang, Philip HS Torr, et al. Rethinking semantic segmen-

tation from a sequence-to-sequence perspective with trans-

formers. In Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, pages 6881±6890,

2021. 1, 2

[73] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela

Barriuso, and Antonio Torralba. Scene parsing through

ade20k dataset. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2017. 5

[74] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-

dler, Adela Barriuso, and Antonio Torralba. Semantic under-

standing of scenes through the ade20k dataset. International

Journal of Computer Vision, 127(3):302±321, 2019. 5

[75] Barret Zoph and Quoc V. Le. Neural architecture search

with reinforcement learning. In International Conference on

Learning Representations (ICLR), 2017. 3

15412


