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Abstract— Ice dynamics are a major factor in sea level rise and
future sea-level rise projections [1]. The vertical velocity profile of
the ice is one major knowledge gap in both observations and model
experiments. We propose to apply multipass differential
interferometric synthetic aperture radar (DInSAR) techniques to
data from the Multichannel Coherent Radar Depth Sounder
(MCoRDS) to measure the vertical displacement of englacial
layers. Estimation of englacial layer vertical displacement requires
compensating for the spatial baseline between interferometric
antenna pairs using radar trajectory information and estimates of
the cross-track layer slope from direction of arrival (DOA)
analysis, but airborne systems suffer from unknown spatial
baseline errors. The current DInSAR algorithm assumes zero
error in the array position information when inferring
displacement and the direction of arrival for subsurface
scatterers, which means that unincorporated baseline errors map
into errors in cross-track slope and vertical velocities. Here we
demonstrate a maximum likelihood estimator that jointly
estimates the vertical velocity, the cross-track internal layer slope,
and the unknown baseline error due to GPS and Inertial
Navigation System (INS) errors.

Keywords— multipass, DInSAR, radar sounder, interferometry,
tomography, radioglaciology

L INTRODUCTION

Radar has been extensively applied in remote sensing of ice
sheets, with the generation of nadir, SAR focused imagery the
dominant application of radar data. These data products are
typically used to measure ice thickness and internal-layer
geometry. This paper focuses on the new application of
multipass radar sounder data for englacial layer tomography
and interferometry. This allows us to use radar remote sensing
to measure small scale changes in the ice-sheet subsurface.
Direct measurements of subsurface deformation have the
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potential to constrain the fluidity and basal resistance
parameters that control ice flow and reduce uncertainties in
predicting ice-sheet contributions to sea level rise.

Differential Interferometric Synthetic Aperture Radar
(DInSAR) [2] reveals the displacement between two data
acquisitions over the same spatial region (the radar profile).
This introduces an additive phase term, A¢,, that is
independent of the baseline; A¢p,; = 4md /A, where d is the
relative scatterer displacement projected onto the slant range
direction. The flattened interferometric phase, ¢, now
comprises both the altitude and motion contributions
respectively. In the case of ice sheet internal layers, vertical
displacement is estimated by measuring the interferometric
phase, and compensating for the spatial baseline using precise
trajectory information and estimates of the cross-track layer
slope from direction of arrival (DOA) analysis:

4t B,z +47rd
A Rsing; 1 '

Dint =
(1)

where A is the wavelength, R is the slant range to the target,
0; is the DOA (layer slope), B, is the perpendicular component
of the baseline between passes, and z is the altitude from the
reference plane.

With knowledge of the radar position during both the
baseline and monitor radar acquisition, DINSAR’s accuracy is
on the order of a small fraction of the wavelength in monitoring
ground displacement along the radar line of sight (LOS). But
unlike ground-based Autonomous phase-sensitive Radio-Echo
Sounders (ApRES) that can be precisely positioned, airborne
systems suffer from unknown baseline errors. Direction of
arrival (DOA) estimation, a necessary input to the traditional
DInSAR algorithm, assumes the position information is
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accurate, an assumption that is violated by most airborne data
positioned using Global Positioning System (GPS) and Inertial
Navigation System (INS) data. We propose to improve the
DInSAR algorithm for use in multipass radar sounding of ice
sheets by implementing a maximum likelihood estimator that
jointly estimates the vertical displacement, the cross-track
internal layer slope, and the unknown baseline error due to GPS
and Inertial Navigation System (INS) errors.

II. METHODOLOGY

A. Wideband Signal Model

To formulate the wideband signal model, we decompose the
wideband signals into several narrowband signals using a filter
bank. The received signal is a superposition of signals from
multiple sources that are received by the sensor array
simultaneously. For @ sources, if we consider a narrowband
component with a center frequency wy, at snapshot index m, we
can write the received signal as:

x(mr wk) = A(wk)s(mv wk) + Tl(m, wk)' (2)

where m=1,..,M and k=1,...,,K; A is the steering
matrix, § is the source signal, and n is the additive noise. Since
the steering vectors of A don’t depend on m, we write a single
matrix expression for all snapshots as:

X(wi) = A(wy)S(wi) + N(wy), 3)

where XiSPXM ,AisPXQ,SisQXM,NisP XM,
and Q < P.

B. Maximum Likelihood Estimator (MLE)

DOA estimation using MLE maximizes the likelihood that
the received signal came from a particular angle (). By
assuming that the noise n is a stationary, ergodic, and Gaussian
process of zero mean and variance o2l with statistically
independent samples, we can write the joint density function of
the sampled data as:

M
FX) = ﬂmexp (=3 1m0 — A@)stm, w1
@)

The log likelihood function is given by:

M
L(6) = ~MPlogo? — % Z 1x(m, @) — A(8)s(m, w2,
= s)

where the constant terms have been disregarded. We can
further write the log-likelihood function as:

M

L) = Z |Paoyx(m, wk)lz = Tr(Py@)R),
= ©)

where P,y = A(0)(AH(0)A(0)) AH(0) is the
projection of the steering matrix and Tr( ) is the trace operator.
For deterministic MLE, the maximum likelihood estimate is
done by maximizing the deterministic cost function below,
assuming that the noise variance and target signal are unknown
but non-random [3]:
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Tuie = TF(PA(G)R)- (7)
MLE seeks to maximize the cost function, J,,; ; such that:

6 = arg mQaXUMLE)-

(®)
C. Wideband Maximum Likelihood Estimator (WMLE)

Wideband MLE is realized by subdividing the signal
bandwidth into K sub-bands and the narrowband MLE is
applied to the combined likelihood function. This is the
summation of all the individual likelihood functions assuming
the sub-bands are independent [4]. The wideband MLE cost
function then becomes:

K
Jwmie = Z Tuie (@),
©

where J 5 (wg)is the narrowband MLE cost function at
frequency w;. Wideband MLE maximizes the cost function
such that:

0 = arg mHaXUWMLE)'

(10)
D. Multipass Interferometry

Multipass DInSAR techniques are applied to the MCoRDS
data to measure the vertical displacement of englacial layers
[5]. MCoRDS [6] is a multichannel radar, developed by the
Center for Remote Sensing and Integrated Systems (CReSIS)
that has up to 15 cross-track antenna elements (4 on the left
wing, 7 on the fuselage, and 4 on the right wing), which are
used for array processing [6]. The scattering sources for the
DInSAR measurements are quasi-specular near-horizontal
englacial layers throughout the ice column as shown in Fig. 1.

The phase difference between two radar passes taken at
different times gives an indication of the average vertical
velocity of the layer under investigation between those two
passes [5].

| Air

Fig. 1. Multipass geometry
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If we consider a set of P passes (p = 1, ... ... , P), the cross-
track geometry shown in Fig. 1 shows that B, ,, and B,,,, are the
z and y components respectively of the pt* baseline vector
between pass 1 and the p** pass. 6, is the Direction of Arrival
(DOA) of the signal in air, and 8; is the cross-track slope of
the internal layer, [. 6y is also equal to the DOA within the
ice. Using (1), which makes use of the plane wave
approximation, and subtracting the phase for pass p from that
of pass 1, we get the interferometric phase, ¢, due to the spatial
baseline and layer displacement for pass p relative to pass 1 as:

¢ = =B, kcos0, + By ,ksin6, +1,,k, (a1

where k is the wavenumber in air, by Snell’s law sin 6, =
n; sin 85 where n; is the refraction index of ice, and 1, is
the range displacement of layer, [. The layer slope is assumed
to remain the same over the collection period of the passes.

We can now use classic tomographic synthetic aperture
radar (SAR) techniques [7] with (11) to estimate 8;. We briefly
present the algorithmic steps employed in DInSAR processing
below (summarized in Fig. 2).

E. DInSAR algorithm

The generalized methodology can be separated into two
steps: coregistration, and estimation of interferometric phase.
We first describe the processes involved in each of these steps
before outlining the joint maximum likelihood estimator that
unites these steps in a single framework.

Coregistration

SAR interferometry requires pixel-to-pixel matching
between common features in SAR image pairs. Thus
coregistration, which aligns the SAR images from two passes,
is an essential step for the accurate determination of phase
difference. We refer to the reference image as the baseline
image and use the term monitor images to refer to the images
that we process relative to the baseline image. Coregistration of
monitor SAR images from each channel of MCoRDS and from
each pass is applied with a time shift to all passes based on the
correlation of each monitor image with the baseline image. The
imprecise repeat-pass geometry combined with cross-track
gradients in layer slope complicate the process of coregistering
image pairs and require corrections for positioning of antenna
elements (motion compensation) and the direction of arrival of
englacial reflectors. These corrections represent the primary
differences in airborne DInSAR compared to previous ground-
based englacial interferometry methodologies.

Motion compensation

After along-track resampling to interpolate data to a
common radar coordinate system, a time-delay is applied in the
frequency-domain to the monitor images to compensate for the
differences in elevation between flights. The monitor and
baseline images are then later flattened relative to the surface
using GPS baseline corrections.

Estimation of direction of arrival

Cross-track slope compensation applies a phase correction
after motion compensation and before array processing based
on the estimated cross-track slope using (11).
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Fig. 2. DInSAR Algorithm

The slopes are calculated using the Multiple Signal
Classification (MUSIC) array processing method to estimate
the DOA of the returned signal, which can be related to the
reflector geometry and the mean slope of reflectors over a
specified range bin using Snell’s law.

Interferometric phase difference and displacement estimation

Calculation of the interferometric phase is done by cross
correlating the complex images in the frequency domain. These
complex correlation coefficients record the wrapped phase
differences between the monitor and baseline profiles that can
be unwrapped and used (with assumptions for the density and
permittivity of the ice) to calculate relative displacement of the
layers. The layer displacement with precise knowledge of the
timing between measurements can be used to calculate the
vertical velocity of the layer.

F. Joint estimation

The process of coregistering images and incrementally
applying corrections for layer slopes and antenna element
positions can be unified with an inverse framework that solves
for poorly constrained parameters that control each correction
iteratively (Fig. 3). This method can also formally treat
uncertainty in the spatial baseline, improving the estimates for
the glaciological parameters of interest. Here, we apply the
maximum likelihood estimator (MLE) algorithm, which can be
used to estimate parameters of an assumed probability
distribution given a set of observational data. We chose this
method because MLE is the most efficient estimator when the
model is correctly assumed and results in unbiased estimates
for large samples. This method fits the data by maximizing a
log-likelihood function, which we use to introduce the
implementation of the algorithm.

From (5), the log likelihood function for the joint estimation
of the parameters for each SAR pixel can be written as:

2

’

1 M
Lr,c =—-MP IOg o% — ? Z |xr,c - A(el,r,ct Vir,er Bycl Bzc)sr,c
m=1

(12)
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Fig. 3. Joint estimation framework

where the subscript  and ¢ represent range bin (rows) and
range line (column) indices respectively, By and B, are
baseline errors, v, . is the vertical velocity, and 6, , .is the
slope. The steering matrix elements for pass p are defined as:

— ,—Jjk(d
a(gl,r,c: Vlrer Bycr Bzc) =e™ ( +rl'N)

_ e—jk((vl,rvctp—Bzc) €05 8y,c+By, sin Gl,m), (13)

where t,, is the temporal baseline, d = —B,_,, cos 0,,. +
By, p Sin 0, is the displacement derived from (11), and 1y
is the range displacement. The steering vector above is obtained
by taking into account the contributions from the layer motion
and offsets added to all the monitor pass sensors because of the
GPS error.

We can rewrite the joint estimation log-likelihood function
as:

Ny N¢

L(6,v,B,By) = z Z L.,

==t (14)

where N, is the number of along-track samples in the
complex SAR image (i.e., number of range lines in the azimuth
dimension) and N;is the number of fast-time samples in the
complex SAR image (i.e., number of snapshots in the range
dimension) to consider in the joint estimation. As in (8) the joint
maximum likelihood estimation is achieved by doing the
maximization across all these log likelihood cost functions:

Nx Nt

0,v, Bz: By = argg II;nIi%XB Z Z(PA(G,V ,BZ,By)R)'
== (16)

G. Joint estimation simulation

In order to evaluate the performance of our MLE framework
under realistic conditions, we generated a set of synthetic radar
data sets with various SNR ranging from 1 to 30. These radar
data sets include a signal of subsurface glacier change. The
surface accumulation in these synthetic experiments was
chosen to be 1 ma’! with a linear vertical velocity profile that
decreased to zero at the glacier bed (i.e., no basal melt). We
assume no along-track variability in sliding parameters,
focusing only on uncertainty induced by spatial baseline and
across-track slope range estimate errors.

Each synthetic radar data set contains 2 passes, each pass
containing radar images recorded from 15 separate antenna
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elements. 15 elements were chosen to match the number of
elements on the airborne MCoRDS system. Each radar image
in each data set contains 100 cross-track pixels and 50 along-
track pixels.

The vertical velocities were used to generate 15 independent
monitor images, assuming a single value for the cross-track
slope, absolute slope, and absolute baseline error. The values
for cross-track slope and absolute slope were selected from
uniform distributions between -1 and 1 degrees, while the
baseline error was selected from a uniform distribution between
0and 0.1 m.

The joint MLE framework outlined above was run for each
monitor-baseline image pair. The interior point method was
used to calculate a search direction for the MLE parameters
throughout the optimization. The optimum likelihood functions
were then summed across all antenna element pairs. The joint
estimate for the vertical velocity, cross-track slope, and baseline
errors is the set of parameters that gives the highest summed
likelihood across all antenna elements. These estimates can
then be compared with known values used to derive the
synthetic data, and used to evaluate MLE performance.

I1I1. RESULTS AND DISCUSSION

A. Joint estimation simulation results

Results for the synthetic simulation described in the
previous section are shown in Figures 5-7. Across all
simulations, the root-mean-square-error (RMSE) determined
by comparing the joint estimated parameters with their ground
truth values was reduced as the signal-to-noise ratio (SNR)
increased.

The MLE framework we have implemented provides a
formal measure of the system errors and solutions for vertical
ice-velocity. The flexibility of the adopted MLE framework
makes it easy to include additional prior information that
constrains the flow behavior and geometry of the layer slopes
and vertical deformation. It also can be used to determine the
covariance matrix that describes the degeneracy of errors and
solutions for vertical deformation. This is an important first step
toward evaluating the significance of higher-order terms in non-
linear models of vertical deformation.

The MLE framework allows us to incorporate additional
observational constraints in the estimation of subsurface
properties. This work could be expanded to include the surface
horizontal velocity and snow accumulation rate as additional
constraints on the inversion. The vertical velocity is equal to the
surface accumulation when the ice sheet is in steady state and
this may be estimated from other remote sensing
measurements, firn core data or weather models [8]. Similarly,
the horizontal velocity can be measured from satellite remote
sensing measurements [9] and used with analytic descriptions
of  wvertical wvelocity [10], or three-dimensional
thermomechanically coupled models of ice flow [11].
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IV. CONCLUSION

We have developed an MLE framework that can be used to
jointly estimate the baseline and slope errors in addition to the
solutions for the ice vertical velocity. This framework reduces
the dependence of a solution on the assumptions of a single
correction and the ordering of applied corrections through the
traditional DInSAR processing workflow.

Where repeat acquisitions exist in the NASA Operation
IceBridge (OIB) radar data archive, we intend to apply the MLE
framework for interferometric processing. This will result in the
concurrent production of fine-resolution maps of the subglacial
topography and direct observations of ice deformation and
transport from measured englacial vertical velocities. These
data products will be used to evaluate ice flow on various
timescales, which will expand our understanding of glacier
processes that affect ice discharge to the ocean and
subsequently sea-level rise.
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