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Abstract— Ice dynamics are a major factor in sea level rise and 

future sea-level rise projections [1]. The vertical velocity profile of 

the ice is one major knowledge gap in both observations and model 

experiments. We propose to apply multipass differential 

interferometric synthetic aperture radar (DInSAR) techniques to 

data from the Multichannel Coherent Radar Depth Sounder 

(MCoRDS) to measure the vertical displacement of englacial 

layers. Estimation of englacial layer vertical displacement requires 

compensating for the spatial baseline between interferometric 

antenna pairs using radar trajectory information and estimates of 

the cross-track layer slope from direction of arrival (DOA) 

analysis, but airborne systems suffer from unknown spatial 

baseline errors. The current DInSAR algorithm assumes zero 

error in the array position information when inferring 

displacement and the direction of arrival for subsurface 

scatterers, which means that unincorporated baseline errors map 

into errors in cross-track slope and vertical velocities. Here we 

demonstrate a maximum likelihood estimator that jointly 

estimates the vertical velocity, the cross-track internal layer slope, 

and the unknown baseline error due to GPS and Inertial 

Navigation System (INS) errors.  

Keywords— multipass, DInSAR, radar sounder, interferometry, 

tomography, radioglaciology 

I. INTRODUCTION 

Radar has been extensively applied in remote sensing of ice 
sheets, with the generation of nadir, SAR focused imagery the 
dominant application of radar data. These data products are 
typically used to measure ice thickness and internal-layer 
geometry. This paper focuses on the new application of 
multipass radar sounder data for englacial layer tomography 
and interferometry.  This allows us to use radar remote sensing 
to measure small scale changes in the ice-sheet subsurface. 
Direct measurements of subsurface deformation have the 

potential to constrain the fluidity and basal resistance 
parameters that control ice flow and reduce uncertainties in 
predicting ice-sheet contributions to sea level rise.  

Differential Interferometric Synthetic Aperture Radar 
(DInSAR) [2] reveals the displacement between two data 
acquisitions over the same spatial region (the radar profile). 
This introduces an additive phase term, , that is
independent of the baseline;   4/, where  is the
relative scatterer displacement projected onto the slant range 
direction. The flattened interferometric phase, , now
comprises both the altitude and motion contributions 
respectively. In the case of ice sheet internal layers, vertical 
displacement is estimated by measuring the interferometric 
phase, and compensating for the spatial baseline using precise 
trajectory information and estimates of the cross-track layer 
slope from direction of arrival (DOA) analysis: 

 (1) 

where  is the wavelength,  is the slant range to the target,
 is the DOA (layer slope),  is the perpendicular component
of the baseline between passes, and  is the altitude from the
reference plane.   

With knowledge of the radar position during both the 
baseline and monitor radar acquisition, DInSAR’s accuracy is 
on the order of a small fraction of the wavelength in monitoring 
ground displacement along the radar line of sight (LOS).  But 
unlike ground-based Autonomous phase-sensitive Radio-Echo 
Sounders (ApRES) that can be precisely positioned, airborne 
systems suffer from unknown baseline errors. Direction of 
arrival (DOA) estimation, a necessary input to the traditional 
DInSAR algorithm, assumes the position information is 

978-1-6654-4166-7/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
siu

m
 o

n 
Ph

as
ed

 A
rr

ay
 S

ys
te

m
s &

 T
ec

hn
ol

og
y 

(P
AS

T)
 |

 9
78

-1
-6

65
4-

41
66

-7
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
PA

ST
49

65
9.

20
22

.9
97

49
85

Authorized licensed use limited to: University of Kansas Libraries. Downloaded on November 11,2023 at 21:50:20 UTC from IEEE Xplore.  Restrictions apply. 



accurate, an assumption that is violated by most airborne data 
positioned using Global Positioning System (GPS) and Inertial 
Navigation System (INS) data. We propose to improve the 
DInSAR algorithm for use in multipass radar sounding of ice 
sheets by implementing a maximum likelihood estimator that 
jointly estimates the vertical displacement, the cross-track 
internal layer slope, and the unknown baseline error due to GPS 
and Inertial Navigation System (INS) errors. 

II. METHODOLOGY 

A. Wideband Signal Model 

To formulate the wideband signal model, we decompose the 
wideband signals into several narrowband signals using a filter 
bank. The received signal is a superposition of signals from 
multiple sources that are received by the sensor array 
simultaneously.  For  sources, if we consider a narrowband 
component with a center frequency  at snapshot index , we 
can write the received signal as: 

                       (2) 

 where   1, … ,  and   1, … , ;  is the steering 
matrix,  is the source signal, and  is the additive noise. Since 
the steering vectors of  don’t depend on , we write a single 
matrix expression for all snapshots as: 

                           (3) 

 where  is    ,  is   ,  is   ,  is   , 
and   . 

B. Maximum Likelihood Estimator (MLE) 

DOA estimation using MLE maximizes the likelihood that 
the received signal came from a particular angle (). By 
assuming that the noise  is a stationary, ergodic, and Gaussian 
process of zero mean and variance  with statistically 
independent samples, we can write the joint density function of 
the sampled data as:  

          (4) 

The log likelihood function is given by: 

             (5) 

 where the constant terms have been disregarded. We can 
further write the log-likelihood function as: 

            (6) 

 where   


 is the 

projection of the steering matrix and   is the trace operator. 
For deterministic MLE, the maximum likelihood estimate is 
done by maximizing the deterministic cost function below, 
assuming that the noise variance and target signal are unknown 
but non-random [3]: 

                                         (7) 

MLE seeks to maximize the cost function,  such that: 

                                          (8) 

C. Wideband Maximum Likelihood Estimator (WMLE) 

 Wideband MLE is realized by subdividing the signal 
bandwidth into  sub-bands and the narrowband MLE is 
applied to the combined likelihood function. This is the 
summation of all the individual likelihood functions assuming 
the sub-bands are independent [4]. The wideband MLE cost 
function then becomes: 

                    (9) 

 where is the narrowband MLE cost function at 
frequency . Wideband MLE maximizes the cost function 
such that: 

            (10) 

D. Multipass Interferometry 

 Multipass DInSAR techniques are applied to the MCoRDS 
data to measure the vertical displacement of englacial layers 
[5]. MCoRDS [6] is a multichannel radar, developed by the 
Center for Remote Sensing and Integrated Systems (CReSIS) 
that has up to 15 cross-track antenna elements (4 on the left 
wing, 7 on the fuselage, and 4 on the right wing), which are 
used for array processing [6]. The scattering sources for the 
DInSAR measurements are quasi-specular near-horizontal 
englacial layers throughout the ice column as shown in Fig. 1. 

The phase difference between two radar passes taken at 
different times gives an indication of the average vertical 
velocity of the layer under investigation between those two 
passes [5].  

 

Fig. 1.   Multipass geometry 
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 If we consider a set of  passes (  1, … … , ), the cross-
track geometry shown in Fig. 1 shows that ,  and , are the 

 and  components respectively of the  baseline vector 
between pass 1 and the  pass.     is the Direction of Arrival 
(DOA) of the signal in air, and   is the cross-track slope of 
the internal layer, .    is also equal to the DOA within the 
ice. Using (1), which makes use of the plane wave 
approximation, and subtracting the phase for pass  from that 
of pass 1, we get the interferometric phase, ,  due to the spatial 
baseline and layer displacement for pass  relative to pass 1 as: 

          (11) 

 where  is the wavenumber in air, by Snell’s law     
      where    is the refraction index of ice, and , is 

the range displacement of layer, . The layer slope is assumed 
to remain the same over the collection period of the passes.  

 We can now use classic tomographic synthetic aperture 
radar (SAR) techniques [7] with (11) to estimate . We briefly 
present the algorithmic steps employed in DInSAR processing 
below (summarized in Fig. 2). 

E. DInSAR algorithm 

The generalized methodology can be separated into two 
steps: coregistration, and estimation of interferometric phase. 
We first describe the processes involved in each of these steps 
before outlining the joint maximum likelihood estimator that 
unites these steps in a single framework. 

Coregistration 

SAR interferometry requires pixel-to-pixel matching 
between common features in SAR image pairs. Thus 
coregistration, which aligns the SAR images from two passes, 
is an essential step for the accurate determination of phase 
difference. We refer to the reference image as the baseline 
image and use the term monitor images to refer to the images 
that we process relative to the baseline image. Coregistration of 
monitor SAR images from each channel of MCoRDS and from 
each pass is applied with a time shift to all passes based on the 
correlation of each monitor image with the baseline image. The 
imprecise repeat-pass geometry combined with cross-track 
gradients in layer slope complicate the process of coregistering 
image pairs and require corrections for positioning of antenna 
elements (motion compensation) and the direction of arrival of 
englacial reflectors. These corrections represent the primary 
differences in airborne DInSAR compared to previous ground-
based englacial interferometry methodologies.   

Motion compensation 

After along-track resampling to interpolate data to a 
common radar coordinate system, a time-delay is applied in the 
frequency-domain to the monitor images to compensate for the 
differences in elevation between flights.  The monitor and 
baseline images are then later flattened relative to the surface 
using GPS baseline corrections. 

Estimation of direction of arrival 

 Cross-track slope compensation applies a phase correction 
after motion compensation and before array processing based 
on the estimated cross-track slope using (11).   

 

Fig. 2. DInSAR Algorithm 

The slopes are calculated using the Multiple Signal 
Classification (MUSIC) array processing method to estimate 
the DOA of the returned signal, which can be related to the 
reflector geometry and the mean slope of reflectors over a 
specified range bin using Snell’s law.  

Interferometric phase difference and displacement estimation 

 Calculation of the interferometric phase is done by cross 
correlating the complex images in the frequency domain. These 
complex correlation coefficients record the wrapped phase 
differences between the monitor and baseline profiles that can 
be unwrapped and used (with assumptions for the density and 
permittivity of the ice) to calculate relative displacement of the 
layers. The layer displacement with precise knowledge of the 
timing between measurements can be used to calculate the 
vertical velocity of the layer. 

F. Joint estimation 

 The process of coregistering images and incrementally 
applying corrections for layer slopes and antenna element 
positions can be unified with an inverse framework that solves 
for poorly constrained parameters that control each correction 
iteratively (Fig. 3). This method can also formally treat 
uncertainty in the spatial baseline, improving the estimates for 
the glaciological parameters of interest. Here, we apply the 
maximum likelihood estimator (MLE) algorithm, which can be 
used to estimate parameters of an assumed probability 
distribution given a set of observational data. We chose this 
method because MLE is the most efficient estimator when the 
model is correctly assumed and results in unbiased estimates 
for large samples. This method fits the data by maximizing a 
log-likelihood function, which we use to introduce the 
implementation of the algorithm.  

 From (5), the log likelihood function for the joint estimation 
of the parameters for each SAR pixel can be written as: 

         (12) 
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Fig. 3.  Joint estimation framework 

 where the subscript  and  represent range bin (rows) and 
range line (column) indices respectively, and  are 

baseline errors, ,, is the vertical velocity, and ,,is the 

slope. The steering matrix elements for pass  are defined as: 

    (13) 

 where  is the temporal baseline,   ,   ,,  
,   ,,   is the displacement derived from (11), and , 

is the range displacement. The steering vector above is obtained 
by taking into account the contributions from the layer motion 
and offsets added to all the monitor pass sensors because of the 
GPS error.  

 We can rewrite the joint estimation log-likelihood function 
as: 

            (14) 

 where   is the number of along-track samples in the 
complex SAR image (i.e., number of range lines in the azimuth 
dimension) and is the number of fast-time samples in the 
complex SAR image (i.e., number of snapshots in the range 
dimension) to consider in the joint estimation. As in (8) the joint 
maximum likelihood estimation is achieved by doing the 
maximization across all these log likelihood cost functions: 

          (16) 

G. Joint estimation simulation 

In order to evaluate the performance of our MLE framework 
under realistic conditions, we generated a set of synthetic radar 
data sets with various SNR ranging from 1 to 30. These radar 
data sets include a signal of subsurface glacier change. The 
surface accumulation in these synthetic experiments was 
chosen to be 1 ma-1 with a linear vertical velocity profile that 
decreased to zero at the glacier bed (i.e., no basal melt). We 
assume no along-track variability in sliding parameters, 
focusing only on uncertainty induced by spatial baseline and 
across-track slope range estimate errors.  

Each synthetic radar data set contains 2 passes, each pass 
containing radar images recorded from 15 separate antenna 

elements.  15 elements were chosen to match the number of 
elements on the airborne MCoRDS system. Each radar image 
in each data set contains 100 cross-track pixels and 50 along-
track pixels. 

The vertical velocities were used to generate 15 independent 
monitor images, assuming a single value for the cross-track 
slope, absolute slope, and absolute baseline error.  The values 
for cross-track slope and absolute slope were selected from 
uniform distributions between -1 and 1 degrees, while the 
baseline error was selected from a uniform distribution between 
0 and 0.1 m.   

 The joint MLE framework outlined above was run for each 
monitor-baseline image pair. The interior point method was 
used to calculate a search direction for the MLE parameters 
throughout the optimization. The optimum likelihood functions 
were then summed across all antenna element pairs. The joint 
estimate for the vertical velocity, cross-track slope, and baseline 
errors is the set of parameters that gives the highest summed 
likelihood across all antenna elements. These estimates can 
then be compared with known values used to derive the 
synthetic data, and used to evaluate MLE performance.  

III. RESULTS AND DISCUSSION 

A. Joint estimation simulation results 

 Results for the synthetic simulation described in the 
previous section are shown in Figures 5-7. Across all 
simulations, the root-mean-square-error (RMSE) determined 
by comparing the joint estimated parameters with their ground 
truth values was reduced as the signal-to-noise ratio (SNR) 
increased.  

 The MLE framework we have implemented provides a 
formal measure of the system errors and solutions for vertical 
ice-velocity. The flexibility of the adopted MLE framework 
makes it easy to include additional prior information that 
constrains the flow behavior and geometry of the layer slopes 
and vertical deformation. It also can be used to determine the 
covariance matrix that describes the degeneracy of errors and 
solutions for vertical deformation. This is an important first step 
toward evaluating the significance of higher-order terms in non-
linear models of vertical deformation. 

 The MLE framework allows us to incorporate additional 
observational constraints in the estimation of subsurface 
properties. This work could be expanded to include the surface 
horizontal velocity and snow accumulation rate as additional 
constraints on the inversion. The vertical velocity is equal to the 
surface accumulation when the ice sheet is in steady state and 
this may be estimated from other remote sensing 
measurements, firn core data or weather models [8]. Similarly, 
the horizontal velocity can be measured from satellite remote 
sensing measurements [9] and used with analytic descriptions 
of vertical velocity [10], or three-dimensional 
thermomechanically coupled models of ice flow [11].  
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Fig. 5.   RMSE plot for baseline errors 

 

Fig. 6.   RMSE plot for vertical velocity 

IV. CONCLUSION 

  We have developed an MLE framework that can be used to 
jointly estimate the baseline and slope errors in addition to the 
solutions for the ice vertical velocity. This framework reduces 
the dependence of a solution on the assumptions of a single 
correction and the ordering of applied corrections through the 
traditional DInSAR processing workflow. 

 Where repeat acquisitions exist in the NASA Operation 
IceBridge (OIB) radar data archive, we intend to apply the MLE 
framework for interferometric processing. This will result in the 
concurrent production of fine-resolution maps of the subglacial 
topography and direct observations of ice deformation and 
transport from measured englacial vertical velocities. These 
data products will be used to evaluate ice flow on various 
timescales, which will expand our understanding of glacier 
processes that affect ice discharge to the ocean and 
subsequently sea-level rise.  

 

Fig. 7.    RMSE plot for slope 
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