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A B S T R A C T

We propose a thermodynamics-based learning strategy for non-equilibrium evolution equations
based on Onsager’s variational principle, which allows us to write such PDEs in terms of two
potentials: the free energy and the dissipation potential. Specifically, these two potentials are
learned from spatio-temporal measurements of macroscopic observables via proposed neural
network architectures that strongly enforce the satisfaction of the second law of thermody-
namics. The method is applied to three distinct physical processes aimed at highlighting the
robustness and versatility of the proposed approach. These include (i) the phase transformation
of a coiled-coil protein, characterized by a non-convex free-energy density; (ii) the one-
dimensional dynamic response of a three-dimensional viscoelastic solid, which leverages the
variational formulation as a tool for obtaining reduced order models; and (iii) linear and
nonlinear diffusion models, characterized by a lack of uniqueness of the free energy and
dissipation potentials. These illustrative examples showcase the possibility of learning partial
differential equations through their variational action density (i.e., a function instead), by
leveraging the thermodynamic structure intrinsic to mechanical and multiphysics problems.

1. Introduction

The free energy and dissipation potential fully characterize the reversible and irreversible material response under given
xcitations, including processes such as elasticity, viscoplasticity or reaction–diffusion2 (Maugin, 1992; Ortiz and Stainier, 1999;
Silhavy, 2013; Arroyo et al., 2018). Notably, these provide a variational characterization of the partial differential equations
overning the non-equilibrium dynamics, potentially far away from equilibrium, through the so-called Onsager’s variational
rinciple (Onsager, 1931a,b; Doi, 2011; Peletier, 2014; Arroyo et al., 2018; Mielke et al., 2016). This variational structure not
only provides a sense of optimality, which is of marked intellectual beauty, but it is also profoundly powerful from a qualitative and
quantitative perspective. Indeed, such variational structure leads to reciprocity of physical interactions, which has been described as
‘the most fundamental law of Nature revealed up to now’ (Berdichevsky, 1989); it leads to evolution equations that are automatically
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1 Equal contribution.
2 We here restrict ourselves to passive systems that satisfy microscopic reversibility or fluctuation symmetry, and may hence be described by a free energy

nd dissipation potential. This therefore excludes active material systems, which can exhibit odd-elasticity (Scheibner et al., 2020) or non-symmetric transport
oefficients (Bowick et al., 2022). We remark though that active forces may be modeled as non-conservative forces exerting power on the system, and included
s such in Onsager’s variational principle (Wang et al., 2021a).
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compliant with the second law of thermodynamics (under mild assumptions on the dissipation potential) (Arroyo et al., 2018); the
symmetries of the action can reveal conserved quantities through the acclaimed Noether’s theorem (Arnold, 2013); and the principle
can further encode stability information that would otherwise not be easily accessible from the equations themselves. Furthermore,
recent advances in large deviation theory have provided strong microscopic foundations to this principle for a broad class of
stochastic processes (Mielke et al., 2016; Kraaij et al., 2020). From an applications’ standpoint, variational principles have also
proven extremely powerful for modeling (Peletier, 2014; Doi, 2011; Arroyo et al., 2018), as a tool for approximations (e.g., reduced
order models) (Doi, 2015), homogenization (Dal Maso, 2012), variational bounds (Hashin and Shtrikman, 1963), numerical
methods (Glowinski, 2015), error estimates (Radovitzky and Ortiz, 1999), as well as to formulate variational integrators (Betsch,
2016).

Obtaining an accurate characterization of the free energy and the dissipation potential is thus an important scientific quest,
which, as noted above, may be seen as more fundamental and insightful than directly discovering the associated partial differential
equations. This goal is, however, endowed with multiple challenges. Firstly, neither the free energy nor the dissipation potential
can be measured directly; only some of the derivatives of the free energy are accessible numerically or experimentally. Secondly,
statistical mechanics approaches to learn dissipation potentials are only now emerging (Montefusco et al., 2021) and are currently
limited to purely dissipative phenomena (i.e., no coupling to elasticity for instance). Thirdly, their characterization from non-
equilibrium data suffers from issues related to sampling of rare events (Huang et al., 2021), which are notoriously difficult,
particularly, in an experimental setting. Fourthly and finally, free energy and dissipation potentials are often only computed at
specific points, and thus a fitting process is further required to deliver continuous potentials, which is not always trivial (Teichert
et al., 2019).

In this work, we demonstrate that it is possible to directly learn thermodynamic consistent free energy and dissipation potentials
from data, while the form of the PDEs naturally follows from Onsager’s variational principle and the variables describing the system.
For this, we propose neural network architectures, called Variational Onsager Neural Networks (VONNs), that leverage recent
advances in machine learning, notably, Integrable Deep Neural Networks (IDNN) (Teichert et al., 2019, 2020), Physics Informed
Neural Networks (PINNs) (Raissi et al., 2019), and Fully/Partially Input Convex Neural Networks (FICNN and PICNN) (Amos et al.,
2017; Bünning et al., 2021). We remark that this approach is in stark contrast with classical literature on PDE and ODE discovery,
where the structure of the equations is known a priori based on physical knowledge up to certain parameters (Raissi and Karniadakis,
2018; Raissi et al., 2019), or follow (through potentially non-linear functions) from a library of functions/operators and sparsity-
promoting techniques. Examples of the latter include, without being comprehensive, sparse identification of nonlinear dynamics
(SINDy) (Brunton et al., 2016), PDE functional identification of nonlinear dynamics (PDE-FIND) (Rudy et al., 2017), PDE-Net (Long
et al., 2018), variational system identification (VSI) (Wang et al., 2019) and related strategies (González-García et al., 1998; Raissi,
2018; Lee et al., 2020). The absence of a library of operators leads to minimal restrictions on the form of the resulting PDEs (these
are ultimately constrained by the variables used to described the system as will become clearer in the following sections); and
greatly reduces human intervention in the setup of the learning strategy.

The proposed approach is also distinct from emerging works on metriplectic dynamical systems that aim at encoding thermody-
namic consistency for irreversible processes (Hernández et al., 2021; Hernandez et al., 2021; Šípka and Pavelka, 2021; Lee et al.,
2021; Zhang et al., 2021). These cited investigations are nonvariational, restricted to systems governed by quadratic dissipation
potentials, and currently limited to describing the evolution by ODEs. More specifically, they are based on the non-variational
formulation of the General Equation for Non-Equilibrium Reversible–Irreversible Coupling (GENERIC) formalism (Grmela and
Öttinger, 1997; Öttinger, 2005), where the evolution equations are written in terms of an energy, an entropy and two operators,
which satisfy certain symmetries (or anti-symmetries) as well as degeneracy conditions for thermodynamic consistency.

We remark that in this investigation, the form of the free energy and dissipation potential densities are fully unconstrained, up
to thermodynamic requirements and frame indifference (invariance under the change of observer). It would of course be possible,
if so desired, to restrict the functional form of such functions, and reduce the problem to a parameter identification one. Such an
inverse problem of material properties identification has been widely treated in the literature, particularly in the context of elastic
properties, with strategies such as the constitutive equation gap method (CEGM) (Geymonat et al., 2002; Florentin and Lubineau,
2010) or the virtual fields method (VFM) (Pierron et al., 2007). A more flexible approach, denoted as variational system identification
(VSI) (Wang et al., 2021b) aims at not only finding the suitable elastic parameters, but to identify the terms that govern the physics
of the problem from a spectrum of admissible ones.

Finally, we note that although the present work combines Onsager’s variational principle and PINNs, it is not to be confused with
what is noted in the literature as variational PINNs (VPINNs) (Kharazmi et al., 2021). While we aim at learning the action density
of the governing variational principle, the goal of VPINNs is to leverage the weak form of the evolution equations (i.e., the residual
is projected onto test functions), to reduce the number of derivatives of the neural networks and hence make the calculations more
efficient.

The paper is structured as follows. Section 2 introduces Onsager’s variational principle and discusses its application to inelastic
processes in solid mechanics and to diffusion problems. Next, the proposed thermodynamically-consistent neural networks to learn
the free energy and dissipation potential, and the loss function used for training are introduced in Section 3. The resulting learning
strategy is then applied to three different models: a phase transformation model in Section 4, a viscoelastic model in Section 5 and
linear and nonlinear diffusion models in Section 6. For each of these examples, the model description, data generation, specific
2

network architectures and training results are discussed in detail. Finally, some conclusions and outlooks are provided in Section 7.
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2. Onsager’s variational principle

Onsager’s variational principle, also sometimes referred to as Variational Modeling in the mathematics literature (Peletier, 2014),
as its origins in the celebrated papers by Onsager on the reciprocal relations in irreversible processes and their connection to the
ime-reversibility of the underlying dynamics (Onsager, 1931b; Onsager and Machlup, 1953). In its original form though, it was
imited to linear irreversible thermodynamics with Gaussian fluctuations around the deterministic evolution, i.e., near equilibrium.
his spurred extensions to the non-linear regime, essential for instance in the modeling of plasticity, through the introduction of
issipation potentials, not necessarily quadratic. These more general dissipation potentials have become widely used throughout
he years in the thermodynamics, mechanics and mathematics literature (Halphen and Nguyen, 1975; Maugin, 1992; Grmela
nd Öttinger, 1997; Cocks et al., 1998; Svendsen, 2004; Mielke, 2011a; Silhavy, 2013). However, a microscopic connection akin
o Onsager and Machlup (1953) was lacking. Remarkably, large deviation theory has recently enabled the generalization of Onsager’s
onnection between microscopic and macroscopic symmetries to the non-linear realm, in the context of both reversible and non-
eversible stochastic processes (Mielke et al., 2016; Kraaij et al., 2020). Furthermore, these results have provided a microscopic
justification for the variational structure of the limiting (deterministic) non-equilibrium evolution equations, endowing these with
strong statistical mechanics foundations; see also Li et al. (2019) and Montefusco et al. (2021).

For systems at constant temperature, and for which inertia is negligible, Onsager’s variational principle reads (Doi, 2011; Arroyo
et al., 2018)

min
𝐰

[𝐳,𝐰], (1)

where  is the Rayleighian, defined as

[𝐳,𝐰] = ̇ [𝐳,𝐰] +[𝐳,𝐰] + [𝐳,𝐰], (2)

and 𝐳 and 𝐰 are, respectively, the state variables and the process variables (the latter describe how the system dissipates energy,
and are related to 𝐳̇ through the so-called process operator). In addition,  [𝐳] is the system’s free energy, [𝐳,𝐰] is the dissipation
potential, and [𝐳,𝐰] is the power supplied by the external forces. This variational principle establishes a competition between
energy release and dissipation, and can be used to model a wide range of phenomena, including elastic solids undergoing phase
transformations (Torres-Sánchez et al., 2019) and viscoplasticity (Radovitzky and Ortiz, 1999), phase field models (Liu and Wang,
2020), reaction–diffusion systems (Mielke, 2011b), active soft matter (Wang et al., 2021a), liquid crystals (Doi, 2011), as well as
multiphysics problems that combine several of the above (Arroyo et al., 2018). Systems with constraints, such as incompressibility,
also exhibit such a variational structure, where the constraints can be naturally added to the variational principle by means of
Lagrange multipliers (Arroyo et al., 2018). We refer the reader to Doi (2011), Peletier (2014) and Arroyo et al. (2018) for a
comprehensive review on the subject, including many worked examples.

We remark that the equations resulting from Onsager’s variational principle
𝛿̇
𝛿𝐰

+ 𝛿
𝛿𝐰

+ 𝛿
𝛿𝐰

= 𝟎 (3)

may be seen as fully analogous to the Euler–Lagrange equations, where  plays the role of the potential energy 𝑉 . Indeed, neglecting
the kinetic energy, the Lagrangian reads 𝐿(𝑞) = −𝑉 (𝑞), where 𝑞 are the generalized coordinates, and the Euler–Lagrange equations
take the form (Goldstein, 2001, Chapter 1)

�
�
�✒

0
𝑑
𝑑𝑡
𝜕𝐿
𝜕𝑞̇𝑗

− 𝜕𝐿
𝜕𝑞𝑗

+ 𝜕𝐷
𝜕𝑞̇𝑗

= 𝑄𝑗 . (4)

Here, 𝐷 is the so-called Rayleigh’s dissipation function, and 𝑄𝑗 are non-conservative generalized forces, often, external forces applied
on the system.

For the specific case where  = 0 (i.e., no external forces doing work on the system), and mild conditions on the dissipation
potential, the free energy  becomes a Lyapunov function of the dynamics, i.e., ̇ ≤ 0, in accordance with the second law of
thermodynamics. These conditions are: (i) [𝐳,𝐰] is convex on the second argument 𝐰, (ii) [𝐳, 𝟎] = 0, and (iii) the minimum of 
with respect to 𝐰 is zero (Mielke et al., 2016; Arroyo et al., 2018; Kraaij et al., 2020) .

In the presence of inertia, Eqs. (3) can be generalized to
𝑑
𝑑𝑡
𝛿
𝛿𝐰

+ 𝛿̇
𝛿𝐰

+ 𝛿
𝛿𝐰

+ 𝛿
𝛿𝐰

= 𝟎, (5)

where  is the kinetic energy of the system, as expected from Lagrangian mechanics. These equations may be cast variationally
as well in a time discretized setting, as done by Radovitzky and Ortiz (1999). See as well (Kraaij et al., 2020) for the variational
formulation of the evolution equations for non-isothermal processes in the presence of inertia.

This abstract formalism will be put into practice in this paper in the context of solid mechanics and diffusive phenomena,
where the notions of state and process variables will be made precise in the following two subsections. For the purpose of this
investigation, we will consider that these variables are measurable though not necessarily controllable through external parameters
(such as external force in solid mechanics). Although this theoretical working assumption is not always satisfied in practice, it is
common in thermodynamics with internal variables (Maugin, 1999). Furthermore, in all the cases considered, it will be assumed
for simplicity that both the free energy and the dissipation potential have a density associated to them, i.e.,  [𝐳] = ∫𝛺 𝑓 (𝐳) 𝑑𝑉 and
[𝐳,𝐰] = ∫𝛺 𝜓(𝐳,𝐰) 𝑑𝑉 , where 𝛺 is the reference domain. It is precisely these densities that we will aim at learning from trajectory
3

ata, so as to fully discover the partial differential equations characterizing the evolution of the system.
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2.1. Onsager’s variational principle in solid mechanics

For the purpose of this study, we limit ourselves to isothermal processes in homogeneous solids. Following the classical notation
n continuum mechanics (Gurtin et al., 2010), we denote by 𝝋(𝐗, 𝑡) the deformation mapping at material point 𝐗 in the reference
omain 𝛺 and time 𝑡. The velocity and acceleration fields are denoted as 𝐯(𝐗, 𝑡) = 𝝋̇(𝐗, 𝑡) and 𝐚(𝐗, 𝑡) = 𝝋̈(𝐗, 𝑡), respectively, and the
eformations of the body are locally characterized by the deformation gradient 𝐅 = ∇𝝋. Furthermore, we will adopt the formalism
f irreversible thermodynamics with internal variables (Maugin, 1999) in order to describe inelastic phenomena. These internal
ariables, denoted by 𝐪, may include, for instance, viscous strains in the context of viscoelasticity, or the plastic deformation tensor
nd hardening variables in the context of plastic solids. Consistent with the notation of the previous section, we then denote by 𝐳
he ensemble of state variables, 𝐳 = {𝐅,𝐪}, while the process variables will here simply correspond to 𝐰 = {𝐯, 𝐪̇}.
Next, we follow the general Eqs. (5), to obtain the equations governing the evolution of the state variables. First, we recall

the various functionals:  = ∫𝛺
1
2𝜌|𝐯|

2 𝑑𝑉 , where 𝜌 is the mass density;  = ∫𝛺 𝑓 (𝐂,𝐪) 𝑑𝑉 , where the free energy density
epends on 𝐅 through the right Cauchy–Green tensor 𝐂 = 𝐅𝑇𝐅 to ensure material frame indifference;  = ∫𝛺 𝜓(𝐂,𝐪, 𝐯, 𝐪̇) 𝑑𝑉 ;
nd  = − ∫𝜕𝛺2

𝐭̄ ⋅ 𝐯 𝑑𝑆 − ∫𝛺 𝜌𝐛 ⋅ 𝐯 𝑑𝑉 , where 𝐭̄ are the imposed tractions on 𝜕𝛺2, and 𝐛 are the body forces per unit mass. Then, the
quations governing the system’s evolution naturally follow as

∇ ⋅
(

𝜕𝑓
𝜕𝐅

)

+ 𝜌𝐛 = 𝜌𝐚 + 𝜕𝜓
𝜕𝐯
, in 𝛺 (6)

𝜕𝑓
𝜕𝐅

⋅ 𝐍 = 𝐭̄, on 𝜕𝛺2 (7)
𝜕𝑓
𝜕𝐪

+
𝜕𝜓
𝜕𝐪̇

= 𝟎, in 𝛺, (8)

where 𝐍 is the outward normal to the reference domain. These equations, are the well-known equilibrium equations (in the interior
and boundary of the domain) and evolution equations of the internal variables. The term 𝜕𝐯𝜓 in Eq. (6) represents a dissipative
force, such as viscous drag (an example of this will be shown in Section 4). As for Eqs. (8), these may be equivalently found in the
iterature as 𝐲 = 𝜕𝐪̇𝜓 , with 𝐲 = −𝜕𝐪𝑓 being the thermodynamic forces conjugate to the internal variables. Eqs. (6)–(8) in a time
discrete setting, are also often denoted as variational constitutive updates in the computational mechanics community (Ortiz and
Stainier, 1999), where it has proven useful for error estimation and for implementing adaptative meshing strategies (Radovitzky
and Ortiz, 1999).

Finally, we note that the conditions set on the dissipation potential density for thermodynamic consistency are also necessary to
uniquely determine the free energy and dissipation potential, at least for problems with a single scalar internal variable 𝑞. Indeed,
without the condition 𝜓(𝐳, 𝟎) = 0 and 𝜕𝐰𝜓(𝐳, 𝟎) = 𝟎, it would be possible to add and subtract an arbitrary constant 𝐶 to Eq. (8),
hence arbitrarily modifying the dissipation potential density by 𝐶𝑞̇ and the free energy density by −𝐶𝑞.

2.2. Onsager’s variational principle for diffusion processes

We now turn our attention to diffusive processes in a given domain 𝛺, and denote by 𝑐(𝐗, 𝑡) the concentration of the diffusive
substance of interest at a spatial point 𝐗 and time 𝑡. By local conservation, 𝑐̇ ∶= 𝜕𝑐

𝜕𝑡 is related to the flux 𝐣 as

𝑐̇ = −∇ ⋅ 𝐣. (9)

or simplicity, we will consider that the boundary of the domain is impermeable, i.e., 𝐣 ⋅ 𝐍 = 0, or that the simulation domain is
haracterized by periodic boundary conditions.
We further consider that the system is fully characterized by the concentration field, i.e., 𝑧 = 𝑐, while dissipation is naturally

ssociated to the flux 𝐣 or some function of 𝐣 (such as the ratio 𝐣∕𝑐 for the classical diffusion problem Arroyo et al. (2018)). Without
oss of generality, we choose the flux as the process variables, i.e., 𝐰 = 𝐣, and hence Eq. (9) characterizes the process operator
ntroduced earlier.
We may now follow Eq. (3), with  = ∫𝛺 𝑓 (𝑐) 𝑑𝑉 ,  = ∫𝛺 𝜓(𝑐, 𝐣) 𝑑𝑉 , and  = 0 to deliver

∇𝑓 ′(𝑐) +
𝜕𝜓(𝑐, 𝐣)
𝜕𝐣

= 𝟎, (10)

hich represents the constitutive relation for the flux 𝐣 as a function of 𝑐 and ∇𝑐. This equation, combined with the mass conservation
aw Eq. (9), fully characterizes the evolution of the concentration.
As discussed in the general setting, thermodynamic consistency requires, assuming sufficient smoothness, that 𝜓(𝑐, 𝟎) = 0 and

𝐣𝜓(𝑐, 𝟎) = 𝟎. Such requirements are also useful to avoid modifying 𝑓 (𝑐) and 𝜓(𝑐, 𝐣) by an arbitrary additive function 𝑔(𝑐), similarly
o what occurred in the equations for solid mechanics. However, it is important to note that even with these thermodynamic
onstraints and the physically-intuitive condition 𝑓 (0) = 0, the uniqueness of 𝑓 (𝑐) and 𝜓(𝑐, 𝐣) is still not guaranteed. As a
ounterexample, we remark the existence of two distinct physical processes, namely a zero-range process (ZRP) and the symmetric
imple exclusion process (SSEP), that have distinct free energy and dissipation potential densities, while they are both governed
y the same macroscopic diffusion equation, 𝑐̇ = ∇ ⋅ (𝐷∇𝑐), where 𝐷 is the diffusivity. More specifically, ZRP and SSEP are
tochastic particle processes on a lattice, whose free energy and continuum evolution equations may be analytically computed
4

rom the underlying particle dynamics; see Embacher et al. (2018) Section 4.1 with 𝑔(𝑘) = 𝑘 and Section 4.2 for a review
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Fig. 1. Schematic of the general architecture used to learn the free energy and dissipation potential densities, 𝑓 and 𝜓 , from spatio-temporal data of the state
and process variables, 𝐳 and 𝐰, as well as boundary data, if applicable.

of the ZRP and SSEP, respectively. The corresponding free energy and dissipation potential densities for the ZRP considered
are given by 𝑓𝑍𝑅𝑃 (𝑐) = 𝛽−1

[

𝑐 log 𝑐 − 𝑐
]

and 𝜓𝑍𝑅𝑃 (𝑐, 𝐣) = ‖𝐣‖2 ∕(2𝐷𝛽𝑐), while these two functions for the SSEP are given by
𝑓𝑆𝑆𝐸𝑃 (𝑐) = 𝛽−1

[

𝑐 log 𝑐 + (1 − 𝑐) log(1 − 𝑐)
]

and 𝜓𝑆𝑆𝐸𝑃 (𝑐, 𝐣) = ‖𝐣‖2 ∕[2𝐷𝛽𝑐(1−𝑐)]. By substituting these potential densities into Eq. (10),
it is immediate to see that both the ZRP and SSEP lead to the same constitutive relation 𝐣 = −𝐷∇𝑐.

While the lack of uniqueness just discussed implies that it is impossible to recover the physical functions 𝑓 and 𝜓 from spatio-
temporal data on 𝑐 and 𝐣 alone, one may still uniquely recover the constitutive relation for 𝐣 and hence, the macroscopic evolution
equation for the concentration. Actually, Eq. (10) may be equivalently rewritten by means of a single function 𝜓̂(𝑐, 𝐣) ∶= 𝜓(𝑐, 𝐣)∕𝑓 ′′(𝑐)
as

𝜕𝜓̂(𝑐, 𝐣)
𝜕𝐣

= −∇𝑐. (11)

For both the ZRP and SSEP above described, 𝜓̂ = ‖𝐣‖2∕(2𝐷) and thus, they both follow the same constitutive relation 𝐣 = −𝐷∇𝑐 and
evolution equation for 𝑐.

3. Variational Onsager Neural Networks (VONNs)

We here describe the general trainable architecture used to learn the free energy and dissipation potential densities for a given
process from spatio-temporal data of the state and process variables, as well as boundary data, if applicable. As schematically shown
in Fig. 1, the free energy density and the dissipation potential density are each represented by an independent neural network, and
their corresponding training parameters (weights and biases), 𝜽𝑓 and 𝜽𝜓 , are learned by minimizing a loss function in the spirit
of Physics-Informed Neural Network (PINNs). Here, this loss corresponds to the 𝐿2 norm squared of the residual of the governing
equations (𝑃𝐷𝐸𝑠) and boundary conditions (𝐵𝐶𝑠), which may be naturally obtained from the free energy, dissipation potential
and external power, by means of Onsager’s variational principle, as discussed in Section 2. Since only partial derivatives of 𝑓 and
𝜓 participate in the training process, their associated neural networks are denoted in the literature as Integrable Neural Networks
(INN), or Integrable Deep Neural Networks (IDNN) when the number of hidden layers is larger than one (Teichert et al., 2019).
For the case of the dissipation potential, we will further strongly impose the convexity condition with respect to 𝐰 in the neural
network by means of Partially Input Convex Integrable Neural Network (PICINN), or a Fully Input Convex Integrable Neural Network
(FICINN) when 𝜓 is independent of 𝐳 (Amos et al., 2017; Bünning et al., 2021). We remark that no convexity restrictions will be
imposed on the free energy, as one of our applications of interest will be on a system exhibiting a phase transformation, which
is precisely characterized by a non-convex free energy density. The specificities of the individual networks as well as the strategy
used to impose further physical conditions, such as 𝜓(𝐳, 𝟎) = 0, 𝜕𝐰𝜓(𝐳, 𝟎) = 𝟎, or 𝑓 (𝟎) = 0, are discussed in detail in the following
subsections.

Finally, we note that, as it is customary in the PINNs literature, the inputs and outputs of the neural networks are normalized
and rescaled, respectively, to ensure that both, the input and output, are approximately of scale one — this is known to facilitate the
learning task and improve the robustness of the neural networks (Kissas et al., 2020). Specifically, the state and process variables
𝐳 and 𝐰 are normalized to 𝑧̃𝑖 =

(

𝑧𝑖 − 𝜇𝑧𝑖
)

∕𝜎𝑧𝑖 and 𝑤̃𝑖 =
(

𝑤𝑖 − 𝜇𝑤𝑖
)

∕𝜎𝑤𝑖 for each component 𝑖, where 𝜇𝑧𝑖 , 𝜇𝑤𝑖 and 𝜎𝑧𝑖 , 𝜎𝑤𝑖 are the

means and standard deviations of the state and process variables, respectively. The rescaling factors are obtained from dimensional
analysis, and are hence problem specific. The specific rescaling strategy is detailed for each example analyzed in the corresponding
sections.
5
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Fig. 2. Schematics of the (a) Integrable Neural Network (INN), (b) Fully Input Convex Integrable Neural Network (FICINN) and (c) Partially Input Convex
Integrable Neural Network (PICINN).

3.1. Free energy density

The non-dimensional free energy density 𝑓 (𝐳̃) (i.e., where both the input and output are normalized to be of order one) is
epresented by an Integrable (Deep) Neural Network (INN). The general architecture of the INN with 𝑘 hidden layers is depicted in
ig. 2(a). Mathematically, the activation values 𝒚𝑖+1 of each layer 𝑖 + 1 can be expressed as

𝒚𝑖+1 = 𝑔𝑖
(

𝑾 𝑖𝒚𝑖 + 𝒃𝑖
)

, 𝑖 = 0,… 𝑘, (12)

where 𝑾 𝑖, 𝒃𝑖 and 𝑔𝑖(⋅) are the weights, biases and activation functions, and 𝒚0 = 𝐳̃. We note that 𝒚𝑖 and 𝒃𝑖 are vectors, while 𝑾 𝑖 is
a matrix, and that 𝑾 𝑖𝒚𝑖 denotes a standard matrix vector multiplication.

A key aspect of INNs, in contrast to regular NNs, is that the activation functions 𝑔𝑖(⋅) should be chosen so that their derivatives
𝑔′𝑖 (⋅) are also common activation functions. In this paper, we use the SoftPlus activation function 𝑔𝑖(𝑥) = log (1 + 𝑒𝑥) for all layers
in the INN, as in Teichert et al. (2019). This activation function is infinitely differentiable, and its derivative is also a common
ctivation function, namely, the logistic function, 𝑔′𝑖 (𝑥) = 1∕ (1 + 𝑒−𝑥).
In general, the free energy density 𝑓 (𝐳) may then be simply recovered from the output of the INN 𝑓 (𝐳)3 as 𝑓 (𝐳) = 𝑓 ∗𝑓 (𝐳), where

∗ is the characteristic scale of 𝑓 (𝐳). However, since only derivatives of the free energy participate in the evolution equations, we
trongly impose 𝑓 (𝟎) = 0, by defining 𝑓 (𝐳) as

𝑓 (𝐳) = 𝑓 ∗ [𝑓 (𝐳) − 𝑓 (𝟎)
]

. (13)

n addition, in other problems, the derivative of the free energy with respect to 𝐳 or some components of 𝐳 is expected to vanish at
he reference state 𝐳 = 𝟎. This is the case, for instance, in the context of viscoelasticity, where the stresses are expected to be zero

3 𝑓 (𝐳) is defined, with slight abuse of notation, as the composition of 𝑓 (𝐳̃) with 𝐳̃(𝐳) defined component-wise as 𝑧̃ =
(

𝑧 − 𝜇
)

∕𝜎
6

𝑖 𝑖 𝑧𝑖 𝑧𝑖 .
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at zero value of the strain 𝜀𝜀𝜀 and viscous strain 𝜀𝜀𝜀𝑣, i.e., 𝜕𝜀𝜀𝜀𝑓 (𝜀𝜀𝜀 = 𝟎, 𝜀𝜀𝜀𝑣 = 𝟎) = 𝟎. Such condition may as well be strongly enforced by
defining the free energy density 𝑓 (𝜀𝜀𝜀,𝜀𝜀𝜀𝑣) as

𝑓 (𝜀𝜀𝜀,𝜀𝜀𝜀𝑣) = 𝑓 ∗

[

𝑓 (𝜀𝜀𝜀,𝜀𝜀𝜀𝑣) − 𝑓 (𝟎, 𝟎) − 𝜕𝑓
𝜕𝜀𝜀𝜀

|

|

|

|

|𝜀𝜀𝜀=𝟎,𝜀𝜀𝜀𝑣=𝟎
∶ 𝜀𝜀𝜀

]

. (14)

Here, the symbol ∶ denotes the contraction with respect to both indices; that is, for two general second order tensors 𝐀 and 𝐁,
𝐀 ∶ 𝐁 ∶= 𝐴𝑖𝑗𝐵𝑖𝑗 , where Einstein summation convention is applied.

.2. Dissipation potential density

The dissipation potential density is required to satisfy, as discussed in Section 2, that (i) 𝜓(𝐳,𝐰) is convex with respect to the
process variables 𝐰, (ii) 𝜓(𝐳, 𝟎) = 0, and (iii) min𝐰 𝜓(𝐳,𝐰) = 0. This last condition may be equivalently expressed as 𝜕𝐰𝜓(𝐳,𝐰 = 𝟎) = 𝟎
or smooth functions 𝜓 , in view of conditions (i) and (ii).
To ensure the convexity condition (i) with respect to 𝐰, we utilize a Partially Input Convex Neural Network (PICNN), or a Fully

nput Convex Neural Network (FICNN) when the dissipation potential density is only a function of the process variables 𝐰 (Amos
et al., 2017; Bünning et al., 2021). We remark that the loss function may still be non-convex with respect to the parameters of
he network 𝜽𝜓 , hence making the training problem non-convex. Moreover, since only the derivatives of the dissipation potential
ensity enter the training process, as occurred with the free energy density, we combine the notions of PICNN/FICNN with that
f INN, and hence call these architectures Partially Input Convex Integrable Neural Networks (PICINNs) and Fully Input Convex
ntegrable Neural Networks (FICINNs), respectively.
We first describe in detail the simpler case of the FICINN used to represent 𝜓 = 𝜓(𝐰). Its architecture with 𝑘 hidden layers is

depicted in Fig. 2(b) and consists of a traditional feed-forward network (though without the connection between the input layer
and the first hidden layer), combined with ‘‘passthrough’’ layers that connect the input layer with the units in the following layers.
Mathematically, the activation values 𝒚𝑖+1 (vector) of layer 𝑖 + 1 are described by the following relation

𝒚𝑖+1 = 𝑔𝑖
(

𝑾 𝑦
𝑖 𝒚𝑖 +𝑾 𝑤

𝑖 𝐰̃ + 𝒃𝑖
)

, 𝑖 = 0,… 𝑘, (15)

here 𝑾 𝑦
𝑖 and 𝑾 𝑤

𝑖 are the weight matrices, 𝒃𝑖 are the bias vectors and 𝑔𝑖(⋅) the activation functions. Furthermore, 𝒚0 = 𝐰̃ is the
ormalized input, and𝑾 𝑦

0 = 𝟎. Here, the convexity with respect to 𝐰 is guaranteed by using non-negative weights𝑾 𝑦
𝑖 , for 𝑖 = 1,… , 𝑘,

nd activation functions 𝑔𝑖(⋅) that are convex and non-decreasing (Amos et al., 2017). These conditions for 𝑔𝑖(⋅) naturally result from
he fact that the sum (with non-negative weights) of convex functions is convex, and that the composition of a convex function and
convex and non-decreasing function is convex (Boyd et al., 2011). Furthermore, learning 𝜓 from its derivatives requires that both
𝑖(⋅) and 𝑔′𝑖 (⋅) are common activation functions. Here, we utilize the SoftPlus activation function for all layers, which is smooth,
onvex, non-decreasing and its derivative is also a common activation function.
For the general case where the dissipation potential density depends on both 𝐳 and 𝐰, we utilize a PICINN to ensure convexity

ith respect to 𝐰 only. The architecture for the PICINN with 𝑘 hidden layers is shown in Fig. 2(c). This may be viewed as a
ombination of an INN and a FICINN, with a complex feed-forward structure from each layer of the INN to the following layer in
he FICINN. This architecture can be mathematically defined by the following recurrence relation

𝒙𝑖+1 = 𝑔𝑥𝑖
(

𝑾 𝑧𝑥
𝑖 𝒙𝑖 + 𝒃𝑧𝑥𝑖

)

, 𝑖 = 0, 1,… , 𝑘 − 1

𝒚𝑖+1 = 𝑔𝑖
(

𝑾 𝑦
𝑖
[

𝒚𝑖◦𝑔
𝑦𝑥
𝑖

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)]

+𝑾 𝑤
𝑖
[

𝐰̃◦
(

𝑾 𝑤𝑥
𝑖 𝒙𝑖 + 𝒃𝑤𝑥𝑖

)]

+𝑾 𝑥
𝑖 𝒙𝑖 + 𝒃𝑖

)

, 𝑖 = 0, 1,… , 𝑘,
(16)

here 𝒙𝑖 and 𝒚𝑖 are the vectors of activation values for layer 𝑖 in the non-convex portion and convex portion, respectively, 𝑾 𝑧𝑥
𝑖 ,𝑦

𝑖 , 𝑾
𝑦𝑥
𝑖 , 𝑾

𝑤
𝑖 , 𝑾

𝑤𝑥
𝑖 and 𝑾 𝑥

𝑖 are weight matrices, 𝒃
𝑧𝑥
𝑖 , 𝒃

𝑦𝑥
𝑖 , 𝒃

𝑤𝑥
𝑖 and 𝒃𝑖 are bias vectors, and 𝑔𝑥𝑖 (⋅), 𝑔𝑖(⋅) and 𝑔

𝑦𝑥
𝑖 (⋅) are the activation

unctions for layer 𝑖. Furthermore, 𝒙0 = 𝐳̃ and 𝒚0 = 𝐰̃ are the normalized inputs, 𝑾 𝑦
0 = 𝟎, and the symbol ◦ represents the Hadamard

roduct or element-wise product, depicted as well in Fig. 2(c). Here, the convexity of PICINN with respect to 𝐰 is ensured by setting
he weights 𝑾 𝑦

𝑖 to be non-negative, the activation functions 𝑔𝑖(⋅) to be convex and non-decreasing and the function 𝑔𝑦𝑥𝑖 (⋅) to be
non-negative. These conditions have been proposed in literature (Amos et al., 2017; Bünning et al., 2021), though the proof is
there not provided. For completeness, such a proof is given in Appendix A. Similarly to the FICINN, learning 𝜓 from its derivatives
requires that 𝑔𝑖(⋅), 𝑔′𝑖 (⋅), 𝑔

𝑥
𝑖 (⋅), 𝑔

𝑥
𝑖
′(⋅), 𝑔𝑦𝑥𝑖 (⋅) and 𝑔𝑦𝑥𝑖

′(⋅) are common activation functions. Based on the requirements discussed above,
we choose the activation functions to be the SoftPlus function.

Both, the FICINNs and the PICINNs just introduced require some weights 𝑊 to be non-negative. From a practical perspective,
this is ensured by applying a trick similar to that of Sivaprasad et al. (2020), where 𝑊 is defined as a function of 𝑊̃ as

𝑊 =

{

𝑊 + exp(−𝜖), 𝑊 ≥ 0
exp(𝑊 − 𝜖), 𝑊 < 0.

(17)

Here, 𝜖 is a positive constant, which is chosen as 𝜖 = 5 in this work (Sivaprasad et al., 2020), and 𝑊̃ is allowed to take any real
value. These auxiliary weights 𝑊̃ are then chosen as the trainable parameters for the neural networks instead of 𝑊 .

Finally, thermodynamic conditions (ii) and (iii), and the rescaling of the FICINN/PICINN output 𝜓̃ , can be jointly considered,
by defining the dissipation potential density 𝜓 as

𝜓(𝐳,𝐰) = 𝜓∗
[

𝜓̃(𝐳,𝐰) − 𝜓̃(𝐳, 𝟎) − 𝜕𝜓̃
𝜕𝐰

|

|

|

|𝐰=𝟎
⋅ 𝐰

]

, (18)

where 𝜓∗ is the characteristic scale of 𝜓 . It is worth noting that the linear terms in 𝐰 added to 𝜓̃ do not affect its convexity, and
7

hus the resulting function 𝜓 satisfies the three required thermodynamic conditions.
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3.3. Loss function and training

Analogously to Physics Informed Neural Networks (PINNs), we build the loss function as the sum of the squared residuals of
he equations governing the dynamics (PDEs) and the boundary conditions (BCs). To be more precise, denoting 𝝃 ∶= {𝐳,𝐰} and
𝐩 ∶= {𝑓, 𝜓}, and defining 𝝃̂ as boundary fields (such as boundary tractions), we abstractly write the PDEs and BCs obtained from
Onsager’s variational principle as

𝑘𝐩 (𝝃) = 0, 𝑘 = 1,… , 𝑛𝑃𝐷𝐸𝑠, and
𝑘𝐩 (𝝃) = ℎ𝑘

(

𝝃, 𝝃̂
)

, 𝑘 = 1,… , 𝑛𝐵𝐶𝑠.
(19)

Here, 𝑛𝑃𝐷𝐸𝑠 and 𝑛𝐵𝐶𝑠 are the numbers of PDEs and BC equations, respectively; 𝑘 and 𝑘 represent the operators for the
orresponding equations; and ℎ𝑘

(

𝝃, 𝝃̂
)

is a function related to the boundary information. Further denoting the input data for the
DEs and BCs as

{

𝝃𝑗𝑃𝐷𝐸𝑠
}𝑁𝑃𝐷𝐸𝑠

𝑗=1
and

{

𝝃𝑗𝐵𝐶𝑠, 𝝃̂
𝑗
𝐵𝐶𝑠

}𝑁𝐵𝐶𝑠

𝑗=1
, respectively, the loss function to be minimized may then be expressed as

 = 𝜶𝑃𝐷𝐸𝑠 ⋅ 𝑃𝐷𝐸𝑠 + 𝜶𝐵𝐶 ⋅ 𝐵𝐶𝑠, (20)

here the loss vectors, 𝑃𝐷𝐸𝑠 and 𝐵𝐶𝑠, have components

𝑘𝑃𝐷𝐸𝑠 =
1

𝑁𝑃𝐷𝐸𝑠

𝑁𝑃𝐷𝐸𝑠
∑

𝑗=1

|

|

|

|

𝑘𝐩
(

𝝃𝑗𝑃𝐷𝐸𝑠;𝜽
)

|

|

|

|

2
, 𝑘 = 1,… , 𝑛𝑃𝐷𝐸𝑠, and (21)

𝑘𝐵𝐶𝑠 =
1

𝑁𝐵𝐶𝑠

𝑁𝐵𝐶𝑠
∑

𝑗=1

|

|

|

|

𝑘𝐩
(

𝝃𝑗𝐵𝐶𝑠;𝜽
)

− ℎ𝑘
(

𝝃𝑗𝐵𝐶𝑠, 𝝃̂
𝑗
𝐵𝐶𝑠

)

|

|

|

|

2
, 𝑘 = 1,… , 𝑛𝐵𝐶𝑠, (22)

and 𝜶𝑃𝐷𝐸𝑠 and 𝜶𝐵𝐶 denote the corresponding weight vectors for the loss terms. In these equations, the vector 𝜽 = {𝜽𝑓 ,𝜽𝜓} contains
the collection of all the parameters of the neural networks and 𝐩(𝝃;𝜽) denotes the approximation of 𝐩(𝝃) by the networks.

The loss weights 𝜶𝑃𝐷𝐸𝑠 and 𝜶𝐵𝐶 just introduced are often taken as constants and manually chosen after a time-consuming fine-
tuning process. Yet, these are critical to the training, and with an improper choice, fully-connected PINNs usually fail to achieve
stable and accurate results due to the discrepancy in convergence rates of the different terms in the loss function. In order to increase
the robustness of the learning process, we use a recently developed method with adaptive loss weights (Wang et al., 2022) for each
loss term during the training. In this method, the weights are chosen based on the trace (or the summation of the eigenvalues) of
the diagonal matrix blocks in the Neural Tangent Kernel (NTK) of the PINNs. For our architecture, the adaptive loss weights are
given by

𝜶𝑘𝑃𝐷𝐸𝑠 =
tr (𝐊)
tr
(

𝐊𝑘𝑘
) , 𝑘 = 1,… , 𝑛𝑃𝐷𝐸𝑠, (23)

𝜶𝑘𝐵𝐶𝑠 =
tr (𝐊)
tr
(

𝐊𝑙𝑙
) with 𝑙 = 𝑘 + 𝑛𝑃𝐷𝐸𝑠, 𝑘 = 1,… , 𝑛𝐵𝐶𝑠, (24)

where tr(⋅) denotes the trace of a matrix, and 𝐊 is the NTK matrix that consists of
(

𝑛𝑃𝐷𝐸𝑠 + 𝑛𝐵𝐶𝑠
)

×
(

𝑛𝑃𝐷𝐸𝑠 + 𝑛𝐵𝐶𝑠
)

matrix blocks
𝐊𝑘𝑙. Since the calculation of the weights 𝜶𝑃𝐷𝐸𝑠 and 𝜶𝐵𝐶 only requires the traces for the matrix blocks in the diagonal, we here only
provide the formula of the traces for simplicity. These read

tr
(

𝐊𝑘𝑘
)

=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑁𝑃𝐷𝐸𝑠
∑

𝑗=1

∑

𝜃∈𝜽

|

|

|

|

|

|

𝜕𝑘𝐩(𝝃
𝑗
𝑃𝐷𝐸𝑠;𝜽)
𝜕𝜃

|

|

|

|

|

|

2

, if 𝑘 = 1,… , 𝑛𝑃𝐷𝐸𝑠,

𝑁𝐵𝐶𝑠
∑

𝑗=1

∑

𝜃∈𝜽

|

|

|

|

|

|

𝜕𝑘−𝑛𝑃𝐷𝐸𝑠𝐩(𝝃
𝑗
𝐵𝐶𝑠;𝜽)

𝜕𝜃

|

|

|

|

|

|

2

, if 𝑘 = 𝑛𝑃𝐷𝐸𝑠 + 1,… , 𝑛𝑃𝐷𝐸𝑠 + 𝑛𝐵𝐶𝑠,

(25)

tr (𝐊) =
𝑛𝑃𝐷𝐸𝑠+𝑛𝐵𝐶𝑠

∑

𝑘=1
tr
(

𝐊𝑘𝑘
)

. (26)

We remark that ℎ𝑘 (⋅) does not participate in the derivatives above, as it was considered to be independent of 𝜽. Yet, these expressions
could be easily generalized in the event of such a dependence.

Eqs. (23)–(26) indicate that the loss weights 𝜶𝑃𝐷𝐸𝑠 and 𝜶𝐵𝐶𝑠 depend on the training parameters 𝜽 and, hence, these should be
updated during the training process.4 However, while we have observed that these weights may change in some of the following
examples, updating such weights only slightly reduces the loss during the training. Therefore, for simplicity, we only compute the
adaptive loss weights at the beginning of the training and treat them as constants during the training process. To this regard, we
note that all the weights in the NNs (INN, PICINN or FICINN) are initialized according to the Glorot initialization scheme and all
the biases are initialized as zero.

4 We note that these loss weights should be taken as constants when evaluating the gradient of the loss to ensure that the desired optimal value for the
8

etwork parameters 𝜃 is obtained. That is ∇ = 𝜶𝑃𝐷𝐸𝑠 ⋅ ∇𝑃𝐷𝐸𝑠 + 𝜶𝐵𝐶𝑠 ⋅ ∇𝐵𝐶𝑠.
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Fig. 3. Free energy density of Torres-Sánchez et al. (2019), obtained from molecular dynamics simulations. (a) Raw data obtained from the reference. (b) Free
nergy and (c) its derivative, interpolated from (a) at 50,000 equispaced strain values.

.4. Hardware and implementation

JAX is the main Python library for neural networks implementation and compilation in this paper. It includes Autograd, which
an automatically differentiate native Python and NumPy code, and it is here used to calculate the loss function and its gradient
n each training epoch. In addition, JAX includes XLA (Accelerated Linear Algebra), which allows just-in-time (JIT) compilation on
PUs and TPUs, in addition to CPUs. These two modules can dramatically increase the training speed and reduce memory usage,
llowing us to perform all of the following experiments simply using the NVIDIA TESLA P100 GPU on Google Colab.
Standard libraries such as Numpy, JAX Numpy, Scipy, Pandas, and Matplotlib are used for data pre- and post-processing. More

pecifically, Pandas is used for loading datasets, SciPy is used to interpolate with B-splines, and Matplotlib is used to visualize the
ata.

. Example 1. Phase transformation of coiled-coil proteins

Coiled-coil is a prevalent structural motif occurring in about 10% of the proteins, where 𝛼-helices are wrapped around each
ther (Rose and Meier, 2004; Torres-Sánchez et al., 2019). An important mechanical feature, key to several biological functions
nd emerging biomaterials, is its capability to undergo structural transformations, from the coiled state to an unwound state. This
hase transformation is characterized by a double-well free energy landscape, which may be obtained from molecular dynamic
imulations, and it is also strongly affected by hydrodynamic interactions with the solvent. In this example, we will aim at recovering
he non-convex free energy density and the dissipation potential densities characterizing the hydrodynamic interactions, directly
rom synthetic trajectory data in pulling experiments.

.1. Model description

We here model the mechanical response of the protein as a one-dimensional rod with length 𝐿, which is fixed at one end, 𝑋 = 0,
nd pulled at the other end, 𝑋 = 𝐿, as in Torres-Sánchez et al. (2019). In this example, the free energy density can be written as a
non-convex) function of the strain 𝜀, i.e., 𝑓 = 𝑓 (𝜀), and the dissipation potential density as a function of the velocity 𝑣, i.e., 𝜓 = 𝜓(𝑣).
urthermore, body forces and inertia may be considered negligible. Hence, by Onsager’s variational principle, the evolution of the
ystem is governed by

𝜕𝑓 ′(𝜀(𝑋, 𝑡))
𝜕𝑋

= 𝜓 ′(𝑣(𝑋, 𝑡)), (27)

𝑡 = 𝑓 ′(𝜀(𝐿, 𝑡)). (28)

.2. Data generation

To generate the training data, we use the double-well free energy landscape obtained from molecular dynamic simulations
n Torres-Sánchez et al. (2019), shown in Fig. 3(a), as well as their estimated dissipation potential 𝜓(𝑣) = 1

2 𝜂𝑣
2, with 𝜂 = 8 pN

ns nm−2. The rod size is 𝐿 = 9 nm and the pulling velocity at 𝑋 = 𝐿 is 𝑣𝑝∕2, where 𝑣𝑝 = 9.5 m∕s.
To describe the double-well free energy profile in Torres-Sánchez et al. (2019), 61 raw data points are captured (Fig. 3a) from

their simulation results. Then, 50,000 equispaced strain values are generated, and the corresponding values for the free energy den-
sity (Fig. 3b) and its derivative (Fig. 3c) are obtained by interpolation using the B-spline method (function interpolate.splrep
in Scipy, with smoothing condition 𝑠 = 10 000). Finally, the free energy density 𝑓 (𝜀) and its derivative 𝑓 ′(𝜀) are defined as the linear
interpolation of this finer dataset. The function 𝑓 ′(𝜀) is used for data generation, see Eq. (27), while 𝑓 (𝜀) is later used for validation
urposes.
9
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Fig. 4. Generated data for the phase transformation model. (a) Snapshots of the displacement field. (b) Applied traction at the pulling end.

Eq. (27) is solved in Python by the following finite difference scheme

𝑓 ′(𝜀𝑛𝑖+1) − 𝑓
′(𝜀𝑛𝑖 )

𝛥𝑋
= 𝜓 ′(𝑣𝑛𝑖 ) for 𝑖 = 1,… , 𝑁𝑋 − 1 (29)

ith

𝜀𝑛𝑖 =
𝑢𝑛𝑖 − 𝑢

𝑛
𝑖−1

𝛥𝑋
, 𝑣𝑛𝑖 =

𝑢𝑛+1𝑖 − 𝑢𝑛𝑖
𝛥𝑡

for 𝑖 = 1,… , 𝑁𝑋 − 1, (30)

𝑢𝑛0 = 0 and 𝑢𝑛𝑁𝑋 = 𝑣𝑝𝑡
𝑛∕2, (31)

here the 1D domain [0, 𝐿] is discretized into 𝑁𝑋 + 1 equispaced points (𝛥𝑋 = 𝐿∕𝑁𝑋), and time is discretized uniformly as well
ith a time step 𝛥𝑡. Here, 𝑢 denotes the displacement, and subscripts and superscripts refer to the spatial and temporal indices,
espectively, i.e., 𝑢𝑛𝑖 = 𝑢(𝑋𝑖, 𝑡𝑛).
The traction at the boundary may then be computed as

𝑡𝑛 = 𝑓 ′(𝜀𝑛𝑁𝑋 ). (32)

In the numerical experiment, we choose 𝑁𝑋 = 150, 𝛥𝑡 = 3×10−8 ns and take the total simulation time as 𝑇 = 0.42 ns. During the
imulation, the displacement field 𝑢𝑛𝑖 and the traction 𝑡

𝑛 at the pulling end are recorded, and the corresponding results are shown in
ig. 4. A propagating sharp discontinuity in the strain field can be clearly observed, indicative of the phase transformation taking
lace in the protein.

.3. Networks architecture and loss function

For this phase transformation problem we use an INN to represent the non-dimensional free energy density 𝑓 (𝜀̃) and a FICINN
o represent the non-dimensional dissipation potential density 𝜓̃(𝑣̃), each with 2 hidden layers and 25 neurons per layer. Their
imensional analogs are then computed by means of Eqs. (13) and (18), where the characteristic scales 𝑓 ∗ and 𝜓∗ are calculated
rom the data on the basis of dimensional analysis as

𝑓 ∗ = 𝜎𝑡𝜎𝜀𝐵𝐶 , (33)

𝜓∗ =
𝜎𝑡𝜎𝑣
𝛥𝑋

. (34)

Here, 𝜎𝑣 is the standard deviation of 𝑣𝑛𝑖 used for 𝑃𝐷𝐸 , 𝜎𝜀𝐵𝐶 is the standard deviation of 𝜀
𝑛
𝑁𝑋

used for 𝐵𝐶 , and 𝜎𝑡 is the standard
deviation of the input data of 𝑡𝑛 on the boundary.

The loss function  is defined based on the residual of the discretized Eqs. (29) and (32) as,

 = 𝛼𝑃𝐷𝐸𝑃𝐷𝐸 + 𝛼𝐵𝐶𝐵𝐶 , (35)

ith

𝑃𝐷𝐸 = 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸
∑

𝑗=1

|

|

|

|

|

𝑓 ′(𝜀𝑛𝑖+1;𝜽𝑓 ) − 𝑓
′(𝜀𝑛𝑖 ;𝜽𝑓 )

𝛥𝑋
− 𝜓 ′(𝑣𝑛𝑖 ;𝜽𝜓 )

|

|

|

|

|

2

, (36)

𝐵𝐶 = 1
𝑁

𝑁𝐵𝐶
∑

|

|

|

𝑡𝑛 − 𝑓 ′(𝜀𝑛𝑁𝑋 ;𝜽𝑓 )
|

|

|

2
. (37)
10
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Here, we have used the notation introduced in Section 3.3, and defined the input dataset for the PDE,
{

𝝃𝑗𝑃𝐷𝐸
}𝑁𝑃𝐷𝐸

𝑗=1
as 𝝃𝑗𝑃𝐷𝐸 =

𝜀𝑛𝑖 , 𝜀
𝑛
𝑖+1, 𝑣

𝑛
𝑖

)

, with 𝑁𝑃𝐷𝐸 ≤ (𝑁𝑋 − 1)𝑛𝑇 and 𝑗 as a one-dimensional index that denotes the flattened order of a subset of the two-
imensional index (𝑖, 𝑛), with 𝑖 = 1,… , 𝑁𝑋 − 1 and 𝑛 = 0,… , 𝑛𝑇 − 1. Similarly, the input dataset for the boundary conditions,
𝝃𝑗𝐵𝐶 , 𝝃̂

𝑗
𝐵𝐶

}𝑁𝐵𝐶

𝑗=1
, is defined as 𝝃𝑗𝐵𝐶 = 𝜀𝑛𝑁𝑋 and 𝝃̂𝑗𝐵𝐶 = 𝑡𝑛 with 𝑁𝐵𝐶 ≤ 𝑛𝑇 and 𝑗 as an index over a subset of 𝑛 = 0,… , 𝑛𝑇 − 1.

The following section will describe in detail the choice of the dataset used for the training process, aimed at reducing the highly-
nonuniform distribution. Finally, we remark that the neighbor information 𝜀𝑛𝑖+1 is packed together with the local data at (𝑖, 𝑛) in
𝝃𝑗𝑃𝐷𝐸 . Although this requires additional space to save the data, this strategy largely reduces the computational cost when calculating
the spatial gradient.

4.4. Data pre-processing strategy

Despite the apparent simplicity of this one-dimensional problem, the output dataset nears 2.1 billion data entries, induced by
the small time step required for numerical stability. This makes it nearly impossible, or at least impractical, to train with the whole
output dataset. A naïve approach to this problem is to select the data uniformly with a larger time step. However, this approach fails
to predict the correct free energy density and dissipation potential density, as shown in Fig. B.13 of Appendix B. The underlying
reason is that the double-well nature of the free energy landscape leads to strain values that are tightly concentrated around the
two wells, as depicted in Fig. 6, with almost no data in the vicinity of the free energy barrier.

To address the above issue, we here implement a data pre-processing strategy that selects data uniformly in the input space of
the functions to be trained. According to Eqs. (35)–(37), the free energy density 𝑓 (𝜀) is primarily determined from the BC, while
the dissipation potential density 𝜓(𝑣) is learned from the PDE. Therefore, for the boundary dataset

{

𝝃𝑗𝐵𝐶 , 𝝃̂
𝑗
𝐵𝐶

}𝑁𝐵𝐶

𝑗=1
, we select 𝑁𝐵𝐶

boundary data
(

𝝃𝑗𝐵𝐶 , 𝝃̂
𝑗
𝐵𝐶

)

such that the corresponding boundary strains 𝜀𝑛𝑁𝑋 are distributed uniformly within its range. Similarly,

for the PDE dataset
{

𝝃𝑗𝑃𝐷𝐸
}𝑁𝑃𝐷𝐸

𝑗=1
, we select 𝑁𝑃𝐷𝐸 data 𝝃𝑗𝑃𝐷𝐸 such that the corresponding velocities 𝑣𝑖𝑛 are distributed uniformly.

n both cases, this uniform data selection is achieved by the following steps: (i) generate a uniform mesh grid with 𝑁𝐵𝐶 (or 𝑁𝑃𝐷𝐸)
odes spanning the full range of boundary strain 𝜀𝑛𝑁𝑋 (or velocity 𝑣𝑖𝑛), (ii) search the closest boundary strain 𝜀

𝑛
𝑁𝑋

(or velocity 𝑣𝑖𝑛)

or each node, and (iii) save the indices of the selected data (eliminating duplicates) and record the boundary data
(

𝝃𝑗𝐵𝐶 , 𝝃̂
𝑗
𝐵𝐶

)

(or
DE data 𝝃𝑗𝑃𝐷𝐸) corresponding to those indices.
In this model we choose 3932 boundary data and 2228 PDE data, 80% of which (randomly selected) is used for training purposes

𝑁𝐵𝐶 = 3145, 𝑁𝑃𝐷𝐸 = 1782), while the remaining 20% is used for testing to prevent the model from overfitting. Fig. 5 shows a
omparison of the data histograms before and after applying the pre-processing strategy, clearly showing a reduction in the non-
niformity of the training data. This may be also observed in Fig. 6 for the boundary traction data as a function of the boundary
train data, where the data using the pre-processing strategy and that obtained from a uniform larger time step are compared (see
ppendix B for further discussions).

.5. Training and results

For this model, we train both the INN and FICINN for 30,000 epochs using an Adam optimizer with a learning rate of 3 × 10−4.
he training results are shown in Fig. 7, where the predictions are shown to have a very good agreement with the analytic values
f the free energy density 𝑓 (𝜀), the dissipation potential density 𝜓(𝑣) and their derivatives. Indeed, the relative 𝐿2 errors for 𝑓 (𝜀),
′(𝜀), 𝜓(𝑣) and 𝜓 ′(𝑣) within the data range shown are 3.25%, 1.22%, 0.77% and 1.02%, respectively, where this error for a general
unction 𝐴(𝑥) within an interval [𝑥1, 𝑥2] is defined as

err𝐴 =
∫ 𝑥2𝑥1

|

|

|

𝐴𝑎𝑛𝑎(𝑥) − 𝐴𝑝𝑟𝑒𝑑 (𝑥)
|

|

|

2
𝑑𝑥

∫ 𝑥2𝑥1
|

|

𝐴𝑎𝑛𝑎(𝑥)||
2 𝑑𝑥

× 100%. (38)

Here, 𝐴𝑎𝑛𝑎(𝑥) and 𝐴𝑝𝑟𝑒𝑑 (𝑥) represent the analytic and predictive values for 𝐴(𝑥), respectively.

5. Example 2. Dynamic response of a viscoelastic rod

Viscoelasticity is one of the most ubiquitous inelastic phenomena in materials, yet, it is simultaneously, the one whose models
encode some of the strongest phenomenological assumptions. Such models, or parameters within, are thus most often identified
from experimental observations, which makes it a task that is particularly well suited for machine learning techniques. In this
example, we aim at recovering the free energy and dissipation potential densities from synthetic data of the dynamic response of
a three-dimensional viscoelastic rod; in particular, we aim at obtaining a reduced one-dimensional model. To this regard we note
that Onsager’s variational principle may be used as an approximation tool to obtain an approximate description of the evolution
equations when a reduced representation of the system is used (Doi, 2015).
11
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Fig. 5. Data for the pulling experiment of a protein undergoing a phase transformation before applying the pre-processing strategy ((a) and (b)) and after
applying the pre-processing strategy ((c) and (d)).

Fig. 6. Comparison of the BC data when selected uniformly in the input space (blue dots) versus uniformly in time (orange triangles).

5.1. Model description

We consider a three-dimensional viscoelastic material, whose elastic response is described by a linear isotropic material with
bulk and shear modulus 𝐾 and 𝐺, respectively, while the viscoelastic response is modeled by means of a Prony series with viscous
shear moduli 𝐺𝑣𝛼 and relaxation times 𝜏𝛼 for 𝛼 = 1,… , 𝑛. Its constitutive relation may then be written as

𝝈 = 3𝐾𝜀𝜀𝜀𝑣𝑜𝑙 + 2𝐺𝜀𝜀𝜀𝑑𝑒𝑣 +
𝑛
∑

2𝐺𝑣𝛼
(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

, (39)
12
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Fig. 7. Comparison between the analytic values and the predictions from the training model for (a) the free energy density 𝑓 (𝜀), (b) the stress 𝑓 ′(𝜀), (c) the
issipation potential density 𝜓(𝑣) and (d) the viscous force 𝜓 ′(𝑣).

here 𝝈 is the stress tensor, 𝜀𝜀𝜀𝑣𝑜𝑙 ∶= 1
3 tr(𝜀𝜀𝜀)𝐈 and 𝜀𝜀𝜀

𝑑𝑒𝑣 ∶= 𝜀𝜀𝜀 − 𝜀𝜀𝜀𝑣𝑜𝑙 are the volumetric and deviatoric strain tensors, respectively, and
he internal variables (viscous strains 𝜀𝜀𝜀𝑣𝛼) obey the following evolution equations

𝜏𝛼𝜀̇𝜀𝜀
𝑣𝛼 = 𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼 , 𝛼 = 1,… , 𝑛. (40)

The equilibrium equations and evolution Eqs. (40) have a variational characterization à la Onsager, with state and process
ariables 𝐳 =

{

𝜀𝜀𝜀,𝜀𝜀𝜀𝑣1,… , 𝜀𝜀𝜀𝑣𝑛
}

and 𝐰 =
{

𝐯, 𝜀̇𝜀𝜀𝑣1,… , 𝜀̇𝜀𝜀𝑣𝑛
}

, and with the following free energy and dissipation potential densities

𝑓3𝐷
(

𝜀𝜀𝜀, {𝜀𝜀𝜀𝑣𝛼}𝑛𝛼=1
)

= 1
2
𝐾 (tr𝜀𝜀𝜀)2 + 𝐺𝜀𝜀𝜀𝑑𝑒𝑣 ∶ 𝜀𝜀𝜀𝑑𝑒𝑣 +

𝑛
∑

𝛼=1
𝐺𝑣𝛼

(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

∶
(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

(41)

𝜓3𝐷
(

{𝜀̇𝜀𝜀𝑣𝛼}𝑛𝛼=1
)

=
𝑛
∑

𝛼=1

1
2
𝜂𝛼𝜀̇𝜀𝜀

𝑣𝛼 ∶ 𝜀̇𝜀𝜀𝑣𝛼 , where 𝜂𝛼 = 2𝐺𝑣𝛼𝜏𝛼 . (42)

hat is, these evolution equations may be cast as

∇ ⋅ 𝝈 = ∇ ⋅
(

𝜕𝑓3𝐷
𝜕𝜀𝜀𝜀

)

= 𝜌𝐚 (43)

𝜕𝜓3𝐷
𝜕𝜀̇𝜀𝜀𝑣𝛼

+
𝜕𝑓3𝐷
𝜕𝜀𝜀𝜀𝑣𝛼

= 𝟎, for 𝛼 = 1,… , 𝑛, (44)

here 𝐚 is the acceleration.
The specific example here considered consists of a slender three-dimensional viscoelastic bar of the type just described, with one

nd fixed to a wall (only normal displacements to the wall are zero), while the other end is subjected to a prescribed excitation along
he direction of the bar (defined as direction 1). This problem naturally admits a one-dimensional characterization, that we will aim
t discovering. For validation purposes, we have analytically derived in Appendix C the one-dimensional constitutive equation and
evolution equations. Denoting for simplicity 𝜎 = 𝜎11, 𝜀 = 𝜀11 and 𝜀𝑣𝛼 = 𝜀𝑣𝛼11 for 𝛼 = 1,… , 𝑛, these equations read

𝜎 = 𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼) , (45)

𝜏 𝜀̇𝑣𝛼 = 𝜀 − 𝜎 − 𝜀𝑣𝛼 , (46)
13
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Table 1
Density 𝜌, elastic material properties (Young’s modulus 𝐸 and Poisson’s ratio 𝜈), and viscoelastic
properties (viscous shear modulus 𝐺𝑣 and relaxation time 𝜏) used in the pulling experiment.
𝐸 (Pa) 𝜈 𝜌 (kg/m3) 𝐺𝑣 (Pa) 𝜏 (s)

7.5 × 105 0.49 970 7.5 × 104 0.01

with

𝜃 = 1 +
𝐺 +

∑𝑛
𝛼=1 𝐺𝑣𝛼
3𝐾

, 𝐸1𝐷 = 3𝐺
𝜃

and 𝐸1𝐷𝛼 =
3𝐺𝑣𝛼
𝜃

, 𝜂1𝐷𝛼 = 3
2
𝜂𝛼 for 𝛼 = 1,… , 𝑛.

(47)

Eq. (46) and the equilibrium equation may be equivalently written as a function of the one-dimensional free energy and dissipation
potential density as

𝜕
𝜕𝑋

(

𝜕𝑓1𝐷
𝜕𝜀

)

= 𝜌𝑎 (48)

𝜕𝜓1𝐷
𝜕𝜀̇𝑣𝛼

+
𝜕𝑓1𝐷
𝜕𝜀𝑣𝛼

= 0, for 𝛼 = 1,… , 𝑛, (49)

here these potentials read

𝑓1𝐷
(

𝜀, {𝜀𝑣𝛼}𝑛𝛼=1
)

∶= 𝑓3𝐷
(

𝜀𝜀𝜀
(

𝜀, {𝜀𝑣𝛼}𝑛𝛼=1
)

, {𝜀𝜀𝜀𝑣𝛼 (𝜀𝑣𝛼)}𝑛𝛼=1
)

= 1
2
𝜃𝐸1𝐷𝜀

2 +
𝑛
∑

𝛼=1

1
2
𝜃𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼)

2 − 𝜃
18𝐾

[

𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼)

]2

𝜓1𝐷({𝜀̇𝑣𝛼}𝑛𝛼=1) ∶= 𝜓3𝐷
(

{𝜀̇𝜀𝜀𝑣𝛼(𝜀̇𝑣𝛼)}𝑛𝛼=1
)

=
𝑛
∑

𝛼=1

1
2
𝜂1𝐷𝛼 (𝜀̇𝑣𝛼)

2 .

(50)

Similarly, the boundary condition can be written as,
𝜕𝑓1𝐷
𝜕𝜀

|

|

|

|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
= 𝑡. (51)

That is, the one-dimensional approximate evolution equations, Eqs. (48), (49) and (51), may also be directly recovered from
nsager’s variational principle, by selecting the state and process variables as 𝐳 =

{

𝜀, 𝜀𝑣1,… , 𝜀𝑣𝑛
}

and 𝐰 =
{

𝑣, 𝜀̇𝑣1,… , 𝜀̇𝑣𝑛
}

,
espectively. In the following, we will denote the 1D forms of free energy density 𝑓1𝐷 and dissipation potential density 𝜓1𝐷 as
and 𝜓 so as to simplify the notation and be consistent with the notation used in the network architecture.

.2. Data generation and pre-processing

The pulling experiment previously described is numerically simulated using the finite element method with COMSOL
ultiphysics® (COM) and the Solid Mechanics Module. The computational domain is a bar with diameter 0.001 m and length 1 m, as
hown in Fig. 8, though axial symmetry is used to perform two-dimensional simulations. The bar is homogeneous and its constitutive
esponse is given by a generalized Maxwell model with one Maxwell element (Christensen, 2012). The material properties for the
ylinder are given in Table 1, and the corresponding bulk and shear moduli can be found as 𝐾 = 𝐸∕ [3 (1 − 2𝜈)] = 1.25 × 107 Pa
nd 𝐺 = 𝐸∕ [2 (1 + 𝜈)] = 2.52 × 105 Pa. The mesh contains 750 quadrilateral elements, and quadratic shape functions are used for
he finite element analysis. The system starts at rest with a roller boundary condition applied at one end of the cylinder and a
isplacement boundary condition applied to the opposite face. This displacement boundary condition is 𝑢1(𝑟, 𝜑,𝑋 = 1 m, 𝑡) = 𝑓 (𝑡) =
0.01 m)

[

1 − cos (2𝜋 ((1 Hz) + (9 Hz/s)𝑡) 𝑡)
]

such that the frequency varies from 1 Hz to 10 Hz in the total 1 s of time simulated.
he remaining boundaries are subject to free boundary conditions, where 𝑟, 𝜑 and 𝑋 are the radial distance, azimuth and axial
oordinate, respectively, and 𝑢1 refers to the displacement in the axial direction. A generalized-𝛼 method with 𝛼 = 0.95 and a time
tep of 0.0001 s is used for the time integration (Chung and Hulbert, 1993). Data from the simulations is further post-processed
y averaging all fields across 251 equally-spaced planes (i.e, 𝛥𝑋 = 0.004) perpendicular to the axis of the cylinder at 1000 time
teps (i.e, 𝛥𝑡 = 0.001). The specific output data are strain, viscous strain, acceleration, and the traction at the pulling end, while the
iscous strain rate is computed from this data by means of a finite difference scheme. These averaged data are then used to obtain
he one-dimensional model. The corresponding results for strain 𝜀, viscous strain 𝜀𝑣, applied traction 𝑡 and the trajectories of each
patial points in the input space of 𝜀 − 𝜀𝑣 − 𝜀̇𝑣 are shown in Fig. 9. This data is randomly split into training data (80%) and testing
ata (20%).

.3. Networks architecture and loss function

For this viscoelastic problem, we use an INN to represent the non-dimensional free energy density 𝑓 (𝜀̃, 𝜀̃𝑣) and a FICINN to
̇ 𝑣
14

epresent the non-dimensional dissipation potential density 𝜓̃(𝜀̃ ), each with 2 hidden layers and 25 neurons in each layer. Their
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Fig. 8. Computational domain used in the simulation of the pulling experiment of a viscoelastic rod.

Fig. 9. Data for the viscoelastic model. Snapshots for (a) the strain field and (b) the viscous strain field. (c) Time evolution of the applied traction. (d) Trajectories
for all spatial points in the input space of 𝜀-𝜀𝑣-𝜀̇𝑣.

dimensional analogs are then computed by means of Eqs. (14) and (18), where the characteristic 𝑓 ∗ and 𝜓∗ are calculated from the
data on the basis of dimensional analysis as,

𝑓 ∗ = MaxMin
(

𝑡
)

MaxMin
(

𝜀𝐵𝐶
)

, (52)

𝜓∗ =
𝑓 ∗ MaxMin

(

𝜀̇𝑃𝐷𝐸𝑠
)

MaxMin
(

𝜀𝑣𝑃𝐷𝐸𝑠
) . (53)

Here, MaxMin(𝐴) refers to the difference between the maximum and the minimum of 𝐴 within the data, and the subscripts PDEs
and BC refer to the data used for the PDEs (related to the interior spatial points, i.e., 𝑖 = 1,… , 𝑁𝑋 − 1) and for the BC (𝑖 = 𝑁𝑋),
respectively.

The loss function  is defined based on the discretized version of the equilibrium equation, Eq. (48), the evolution equation for
the internal variable, Eq. (49), and the boundary condition, Eq. (51), as,

 = 𝛼  + 𝛼  + 𝛼  , (54)
15

𝑒𝑞 𝑒𝑞 𝑖𝑛𝑡 𝑖𝑛𝑡 𝐵𝐶 𝐵𝐶
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with

𝑒𝑞 =
1

𝑁𝑃𝐷𝐸𝑠

𝑁𝑃𝐷𝐸𝑠
∑

𝑗=1

|

|

|

|

|

|

|

𝑓,𝜀
(

𝜀𝑛𝑖+1, (𝜀
𝑣)𝑛𝑖+1 ;𝜽𝑓

)

− 𝑓,𝜀
(

𝜀𝑛𝑖 , (𝜀
𝑣)𝑛𝑖 ;𝜽𝑓

)

𝛥𝑋
− 𝜌𝑎𝑛𝑖

|

|

|

|

|

|

|

2

, (55)

𝑖𝑛𝑡 =
1

𝑁𝑃𝐷𝐸𝑠

𝑁𝑃𝐷𝐸𝑠
∑

𝑗=1

|

|

|

𝜓,𝜀̇𝑣
(

(𝜀̇𝑣)𝑛𝑖 ;𝜽𝜓
)

+ 𝑓,𝜀𝑣
(

𝜀𝑛𝑖 , (𝜀
𝑣)𝑛𝑖 ;𝜽𝑓

)

|

|

|

2
, (56)

𝐵𝐶 = 1
𝑁𝐵𝐶

𝑁𝐵𝐶
∑

𝑗=1

|

|

|

|

𝑡𝑛 − 𝑓,𝜀
(

𝜀𝑛𝑁𝑋 , (𝜀
𝑣)𝑛𝑁𝑋 ;𝜽𝑓

)

|

|

|

|

2
, (57)

and

(𝜀̇𝑣)𝑛𝑖 =
(𝜀𝑣)𝑛+1𝑖 − (𝜀𝑣)𝑛𝑖

𝛥𝑡
. (58)

Here, we have used as well the notation introduced in Section 3.3, and defined the input dataset for the PDEs,
{

𝝃𝑗𝑃𝐷𝐸𝑠
}𝑁𝑃𝐷𝐸𝑠

𝑗=1
,

s 𝝃𝑗𝑃𝐷𝐸𝑠 =
(

𝜀𝑛𝑖 , 𝜀
𝑛
𝑖+1, (𝜀

𝑣)𝑛𝑖 , (𝜀
𝑣)𝑛𝑖+1 , (𝜀̇

𝑣)𝑛𝑖 , 𝑎
𝑛
𝑖

)

with 𝑁𝑃𝐷𝐸𝑠 ≤ (𝑁𝑋 − 1)𝑛𝑇 and 𝑗 as a 1D index that denotes the flattened order of a

ubset of the 2D index (𝑖, 𝑛) with 𝑖 = 1,… , 𝑁𝑋 − 1 and 𝑛 = 0,… , 𝑛𝑇 − 1. Similarly, the input dataset for the boundary conditions,
𝝃𝑗𝐵𝐶 , 𝝃̂

𝑗
𝐵𝐶

}𝑁𝐵𝐶

𝑗=1
, is defined as 𝝃𝑗𝐵𝐶 =

(

𝜀𝑛𝑁𝑋 , (𝜀
𝑣)𝑛𝑁𝑋

)

and 𝝃̂𝑗𝐵𝐶 = 𝑡𝑛 with 𝑁𝐵𝐶 ≤ 𝑛𝑇 and 𝑗 as an index over a subset of 𝑛 = 0,… , 𝑛𝑇 − 1.

5.4. Training and results

For this viscoelastic problem, no data pre-processing is applied, and the neural networks are trained for 30,000 epochs using an
Adam optimizer with a learning rate of 10−4. Fig. 10 shows the training results for the free energy density 𝑓 (𝜀, 𝜀𝑣), the dissipation
potential density 𝜓(𝜀̇𝑣) and their derivatives 𝜎(𝜀, 𝜀𝑣) = 𝑓,𝜀(𝜀, 𝜀𝑣), 𝜎𝑣(𝜀, 𝜀𝑣) = 𝑓,𝜀𝑣 (𝜀, 𝜀𝑣), and 𝑓𝑣(𝜀̇𝑣) = 𝜓 ′(𝜀̇𝑣). Here 𝜓 and its derivative
are plotted within the maximum and minimum value of the training data for 𝜀̇𝑣, while 𝑓 and 𝜎 are plotted within a rectangular
domain that bounds the quasi-elliptic region spanned by the data (see input space of 𝜀−𝜀𝑣−𝜀̇𝑣 in Fig. 9(d)). Consequently, the corners
of this squared domain reflect the extrapolation of 𝑓 (𝜀, 𝜀𝑣) and its derivative beyond the training dataset. Even when counting for
these extrapolations, all the predictions have a very good agreement with the analytic values. The relative 𝐿2 errors for 𝑓 , 𝜎, 𝜎𝑣, 𝜓
and 𝑓𝑣 within the plotted range are 0.59%, 0.29%, 7.86%, 2.80% and 2.40%, respectively.

To emphasize the importance of the adaptive loss weights on the training process, we show the results of the training with
constant loss weights guessed on the basis of dimensional analysis in Fig. D.14 of Appendix D. In this case, the relative 𝐿2 errors
or 𝑓 , 𝜎, 𝜎𝑣, 𝜓 and 𝑓𝑣 increase by about an order of magnitude, leading to appreciable deviations from the analytic functions.

. Example 3. Linear and nonlinear diffusion processes

As a last set of examples, we apply the proposed material characterization strategy to two one-dimensional diffusion problems,
amely, a linear and a nonlinear diffusion model. Following Section 2.2, we use the concentration 𝑐 and the flux 𝑗 as the state and
rocess variables, respectively, and hence write the free energy density and dissipation potential densities as 𝑓 (𝑐) and 𝜓(𝑐, 𝑗). In
ontrast to the two previous examples, 𝜓 here depends on both the state and the process variable, and thus a Partially Input Convex
ntegrable Neural Network (PICINN) shall be used to discover it from data. Furthermore, these examples are characterized by a lack
f uniqueness in 𝑓 and 𝜓 , as discussed in Section 2.2, making them particularly interesting to analyze.

.1. Model description

The linear and nonlinear diffusion models considered are

𝑐̇ = 𝜕2𝑐
𝜕𝑋2

and (59)

𝑐̇ = 𝜕
𝜕𝑋

[

𝑚(𝑐)
𝜕 log(2𝑚(𝑐))

𝜕𝑋

]

, (60)

espectively, where 𝑚(𝑐) is defined through the inverse function 𝑐(𝑚) as

𝑐(𝑚) =
√

2𝑚
𝐼1

(

2
√

2𝑚
)

𝐼0
(

2
√

2𝑚
) , (61)
16

and 𝐼𝑖 are the modified Bessel functions of the first kind.
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Fig. 10. Comparison between the analytic values and the predictions from the training model for (a) the free energy density 𝑓 (𝜀, 𝜀𝑣), (b) the stress
(𝜀, 𝜀𝑣) = 𝑓,𝜀(𝜀, 𝜀𝑣), (c) the configurational stress 𝜎𝑣(𝜀, 𝜀𝑣) = 𝑓,𝜀𝑣 (𝜀, 𝜀𝑣), (d) the dissipation potential density 𝜓(𝜀̇𝑣) and (e) the dissipative force 𝑓𝑣(𝜀̇𝑣) = 𝜓 ′(𝜀̇𝑣).

These two models arise, for instance, as the hydrodynamic limit of two symmetric zero range processes (ZRPs), that is, of two
article jump processes on a lattice with different jump rate functions; for details see Embacher et al. (2018). For these specific
rocesses, the free energy and dissipation potential densities can be analytically computed and read as

𝑓 (𝑐) = 𝛽−1 (𝑐 log 𝑐 − 𝑐) , and 𝜓(𝑐, 𝑗) =
𝑗2

2𝛽𝑐
, (62)

for the linear model, and

𝑓 (𝑐) = 𝛽−1
[

𝑐 log(2𝑚(𝑐)) − log 𝐼0
(

2
√

2𝑚(𝑐)
)]

, and 𝜓(𝑐, 𝑗) =
𝑗2

2𝛽𝑚(𝑐)
, (63)

for the nonlinear one. However, we recall, as discussed in Section 2.2, that there may be different physical processes, characterized
by distinct free energy densities 𝑓 (𝑐) and dissipation potential densities 𝜓(𝑐, 𝑗) that give rise to the same evolution equation. The
only requirement is that the auxiliary function 𝜓̂(𝑐, 𝑗) = 𝜓(𝑐, 𝑗)∕𝑓 ′′(𝑐) is unique. Hence, only the auxiliary functions 𝜓̂(𝑐, 𝑗) = 𝑗2∕2
and 𝜓̂(𝑐, 𝑗) = 𝑗2∕

[

2𝑚′(𝑐)
]

may be uniquely determined from data for these linear and nonlinear models.

6.2. Data generation

The diffusion models considered are simulated with MATLAB on the one-dimensional domain [0, 1] with periodic boundary
conditions starting with an initial concentration profile 𝑐(𝑋, 0) = 0.5 + 0.49 sin (4𝜋𝑋). The domain is uniformly discretized into
𝑁𝑋 = 99 elements of length 𝛥𝑋 = 1∕𝑁𝑋 , and a constant time step 𝛥𝑡 is used for the temporal evolution. Then, denoting 𝑐𝑛𝑖 ∶= 𝑐(𝑋𝑖, 𝑡𝑛)
and 𝑗𝑛

𝑖+ 1
2

∶= 𝑗
(

𝑋𝑖+𝑋𝑖+1
2 , 𝑡𝑛

)

, the linear diffusion model given by Eq. (59) is solved by the forward time central space (FTCS)

cheme (Lascaux, 1976)
𝑐𝑛+1𝑖 − 𝑐𝑛𝑖

𝛥𝑡
=
𝑐𝑛𝑖+1 − 2𝑐𝑛𝑖 + 𝑐

𝑛
𝑖−1

𝛥𝑋2
and 𝑗𝑛

𝑖+ 1
2
=
𝑐𝑛𝑖+1 − 𝑐

𝑛
𝑖

𝛥𝑋
, (64)

and the nonlinear model is evolved according to a conservative FTCS scheme

𝑐𝑛+1𝑖 − 𝑐𝑛𝑖
𝛥𝑡

=
𝑚𝑛
𝑖+ 1

2

(

log 2𝑚𝑛𝑖+1 − log 2𝑚𝑛𝑖
)

− 𝑚𝑛
𝑖− 1

2

(

log 2𝑚𝑛𝑖 − log 2𝑚𝑛𝑖−1
)

𝛥𝑋2
,

and 𝑗𝑛 1 =
𝑚𝑛
𝑖+ 1

2

(

log 2𝑚𝑛𝑖+1 − log 2𝑚𝑛𝑖
)

.

(65)
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Fig. 11. Dataset for (a–c) the linear and (d–f) nonlinear diffusion models. Snapshots of (a, d) concentration fields and (b, e) flux fields. (c, f) Trajectories for
all spatial points in the input space of 𝑐 − 𝑗.

The total simulation time is 𝑇 = 0.025, and the time steps 𝛥𝑡 = 2.55 × 10−5 and 𝛥𝑡 = 1.01 × 10−5 are used to simulate the linear and
nonlinear models, respectively.

In order to avoid the dataset to be too large, only 201 snapshots (including the initial time) of 𝑐 and 𝑗 are outputted at a coarser
time step for both models. Fig. 11(a, b, d, e) show the evolution of the concentration fields 𝑐(𝑋) and flux 𝑗(𝑋) at various instances of
time, and Fig. 11(c, f) shows the distribution of this reduced dataset in the input space of 𝑐− 𝑗. Here, as well, we randomly separate
this data, so that 80% is used for training and the remainder 20% is used for testing.

6.3. Networks architecture and loss function

Although the free energy and dissipation potential densities cannot be uniquely determined from the data, we still consider
independent NNs to approximate each of these potentials, as opposed to a single one for the auxiliary function 𝜓̂(𝑐, 𝑗). This is
because the convexity of 𝜓̂ with respect to 𝑗 is not guaranteed as long as the convexity of 𝑓 (𝑐) is unknown. Hence, we use an INN to
represent the non-dimensional free energy density 𝑓 (𝑐), and a PICINN to represent the non-dimensional dissipation potential density
𝜓̃(𝑐, 𝑗). The INN used has 2 hidden layers with 10 neurons for each layer, and the PICINN has 2 hidden layers with 10 neurons for
each layer of the classical portion (shown as 𝒙𝑖 in Fig. 2(c)) and 10 neurons for each layer of the convex portion (shown as 𝒚𝑖 in
Fig. 2(c)), i.e., 20 neurons in total per layer.

The dimensional potentials 𝑓 and 𝜓 are then computed by means of Eqs. (13) and (18) from the output of the two networks.
Since these potentials are not unique, the characteristic scales are simply set as

𝑓 ∗ = 1, (66)

𝜓∗ = max (|𝑗|) , (67)

where the maximum is computed over the whole range of the input data.
The loss function  is defined based on the discretized version of Eq. (10) as,

 = 1
𝑁𝑃𝐷𝐸

𝑁𝑃𝐷𝐸
∑

𝑗=1

|

|

|

|

|

𝑓 ′(𝑐𝑛𝑖+1;𝜽𝑓 ) − 𝑓
′(𝑐𝑛𝑖 ;𝜽𝑓 )

𝛥𝑋
+ 𝜓,𝑗

(

𝑐𝑛𝑖 , 𝑗
𝑛
𝑖+ 1

2
;𝜽𝜓

)

|

|

|

|

|

2

. (68)

ince there is only one term in the loss function, no loss weight is required during the training process. Using the notation introduced
n Section 3.3, the input dataset

{

𝝃𝑗𝑃𝐷𝐸
}𝑁𝑃𝐷𝐸

𝑗=1
is defined as 𝝃𝑗𝑃𝐷𝐸 =

(

𝑐𝑛𝑖 , 𝑐
𝑛
𝑖+1, 𝑗

𝑛
𝑖+ 1

2

)

with 𝑁𝑃𝐷𝐸 ≤ 𝑁𝑋 (𝑁𝑇 + 1) and 𝑗 as a 1D index
18

that denotes the flattened order of a subset of the 2D index (𝑖, 𝑛) with 𝑖 = 0,… , 𝑁𝑋 − 1 and 𝑛 = 0,… , 𝑛𝑇 .
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Fig. 12. Training results. Subfigures (a) and (b) show the predicted results for the linear diffusion model; while subfigures (c) and (d) depict the predicted
esults for the nonlinear diffusion model.

.4. Training and results

For both the linear and nonlinear diffusion examples, the models are trained for 12,000 epochs using an Adam optimizer with
learning rate of 8 × 10−4. The training results are shown in Fig. 12. Here, subfigures (a) and (b) depict the auxiliary function

𝜓̂(𝑐, 𝑗) for the linear diffusion model without and with extrapolation, and subfigures (c) and (d) show the corresponding results for
he nonlinear example. Overall, the predictions exhibit a very good agreement with the analytical results in the region of available
ata, and only slightly larger differences are observed upon extrapolation. The relative 𝐿2 errors of 𝜓̂ for the results shown in
ig. 12(a)–(d) are 1.02%, 2.13%, 0.90% and 4.75% respectively.

7. Conclusions

In this paper, we designed neural networks, called Variational Onsager Neural Networks (VONNs), to discover non-equilibrium
PDEs by learning the action density of the associated variational principle, namely, the free energy and the dissipation potential
densities. By leveraging the variational structure, the proposed learning strategy only requires as input the state and process variables
that describe the system and its evolution, while the operators of the ensuing PDEs and associated BCs will automatically follow
from such choice and Onsager’s variational principle. Furthermore, the proposed neural networks architecture to learn the potentials
strongly enforces the second law of thermodynamics, hence guaranteeing the thermodynamic consistency of the learned evolution
equations. For this, we combine the essence of Physics-Informed Neural Networks (PINNs), Integrable Deep Neural Networks (IDNNs)
and Fully/Partial Input Convex Neural Networks (FICNNs/PICNNs), and further make use of the recently developed adaptative loss
weight strategy to obtain a robust learning strategy with minimal user intervention.

We demonstrate this approach on a wide range of physical processes, including the phase transformation of a coiled-coil protein
(characterized by a non-convex free energy density), the one-dimensional approximation of the viscoelastic response of a three-
dimensional model, and linear and nonlinear diffusion phenomena. In all cases, the free energy and dissipation potential densities are
learned with great accuracy from spatio-temporal measurements of macroscopic observables, obtained from specific non-equilibrium
processes. These results indicate that this new paradigm represents a promising and versatile avenue for learning the PDEs governing
general non-equilibrium phenomena, as well as to construct physically based reduced-order models with guaranteed thermodynamic
consistency.
19
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Natural extensions of the current work include its integration with the VPINNs strategy to increase the computational efficiency,
ts application to higher-dimensional problems where the model is potentially unknown, and the addition of surface effects, of
mportance, for instance, in sharp interface models. These will be the focus of future investigations.
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Appendix A. Convexity for the PICINNs

In this section, we prove the conditions on the activation functions and weights that ensure the convexity of the PICINNs with
respect to 𝐰̃. Toward this goal, we denote the dependence of 𝒚𝑖+1 on the input variables 𝐳̃ and 𝐰̃ with the function 𝒚𝑖+1(𝐳̃, 𝐰̃) while
we denote the dependence of 𝒚𝑖+1 on the previous layer 𝒙𝑖 and 𝒚𝑖 and the input variable 𝐰̃ through the passthrough as 𝒚̂𝑖+1(𝒙𝑖, 𝒚𝑖, 𝐰̃),
i.e.,

𝒚𝑖+1 = 𝒚𝑖+1(𝐳̃, 𝐰̃)
= 𝒚̂𝑖+1(𝒙𝑖, 𝒚𝑖, 𝐰̃) = 𝑔𝑖

(

𝒀 𝑖(𝒙𝑖, 𝒚𝑖, 𝐰̃)
)

, 𝑖 = 0, 1,… , 𝑘,
(A.1)

where 𝒀 𝑖(𝒙𝑖, 𝒚𝑖, 𝐰̃) is given by (see Eq. (16))

𝒀 𝑖(𝒙𝑖, 𝒚𝑖, 𝐰̃) = 𝑾 𝑦
𝑖
[

𝒚𝑖◦𝑔
𝑦𝑥
𝑖

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)]

+𝑾 𝑤
𝑖
[

𝐰̃◦
(

𝑾 𝑤𝑥
𝑖 𝒙𝑖 + 𝒃𝑤𝑥𝑖

)]

+𝑾 𝑥
𝑖 𝒙𝑖 + 𝒃𝑖. (A.2)

The first order derivative of
(

𝒚𝑖+1
)

𝑚 (the 𝑚-th component of 𝒚𝑖+1) with respect to 𝑤̃𝑛 (the 𝑛-th component of 𝐰̃) can be readily
computed as,

𝜕
(

𝒚𝑖+1
)

𝑚
𝜕𝑤̃𝑛

=
∑

𝑝

𝜕
(

𝒚̂𝑖+1
)

𝑚

𝜕
(

𝒚𝑖
)

𝑝

(

𝜕𝒚𝑖
)

𝑝

𝜕𝑤̃𝑛
+
𝜕
(

𝒚̂𝑖+1
)

𝑚
𝜕𝑤̃𝑛

= 𝑔′𝑖
((

𝒀 𝑖
)

𝑚
)

[

∑

𝑝

(

𝑾 𝑦
𝑖
)

𝑚𝑝 𝑔
𝑦𝑥
𝑖

(

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)

𝑝

) 𝜕
(

𝒚𝑖
)

𝑝

𝜕𝑤̃𝑛
+
(

𝑾 𝑤
𝑖
)

𝑚𝑛
(

𝑾 𝑤𝑥
𝑖 𝒙𝑖 + 𝒃𝑤𝑥𝑖

)

𝑛

]

,

(A.3)

here 𝑚, 𝑛, 𝑝 are indices for vector/matrix components and Einstein summation convention is not applied here. We have further
sed the fact that 𝒙𝑖 does not depend on 𝐰̃.
Similarly, the second order derivative of 𝒚𝑖+1 with respect to 𝐰̃ can be written component-wisely as,

𝜕2
(

𝒚𝑖+1
)

𝑚
𝜕𝑤̃𝑛𝜕𝑤̃𝑙

= 𝑔′′𝑖
((

𝒀 𝑖
)

𝑚
)

[

∑

𝑝

(

𝑾 𝑦
𝑖
)

𝑚𝑝 𝑔
𝑦𝑥
𝑖

(

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)

𝑝

) 𝜕
(

𝒚𝑖
)

𝑝

𝜕𝑤̃𝑛
+
(

𝑾 𝑤
𝑖
)

𝑚𝑛
(

𝑾 𝑤𝑥
𝑖 𝒙𝑖 + 𝒃𝑤𝑥𝑖

)

𝑛

]

[

∑

𝑞

(

𝑾 𝑦
𝑖
)

𝑚𝑞 𝑔
𝑦𝑥
𝑖

(

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)

𝑞

) 𝜕
(

𝒚𝑖
)

𝑞

𝜕𝑤̃𝑙
+
(

𝑾 𝑤
𝑖
)

𝑚𝑙
(

𝑾 𝑤𝑥
𝑖 𝒙𝑖 + 𝒃𝑤𝑥𝑖

)

𝑙

]

+ 𝑔′𝑖
((

𝒀 𝑖
)

𝑚
)
∑

𝑝

(

𝑾 𝑦
𝑖
)

𝑚𝑝 𝑔
𝑦𝑥
𝑖

(

(

𝑾 𝑦𝑥
𝑖 𝒙𝑖 + 𝒃𝑦𝑥𝑖

)

𝑝

) 𝜕2
(

𝒚𝑖
)

𝑝

𝜕𝑤̃𝑛𝜕𝑤̃𝑙
,

(A.4)

where 𝑙, 𝑚, 𝑛, 𝑝, 𝑞 are indices for vector/matrix components.
In view of this recurrence relation, partial convexity of the PICINN with respect to 𝐰̃ (i.e., 𝜕

2(𝒚𝑘+1)𝑚
𝜕𝐰̃𝜕𝐰̃ is positive semi-definite for

ll 𝑚) is ensured if 𝑔′′𝑖 (⋅) ≥ 0 and 𝑔′𝑖 (⋅) ≥ 0 (i.e., 𝑔𝑖(⋅) is convex and non-decreasing), 𝑾
𝑦
𝑖 ≥ 0 and 𝑔𝑦𝑥𝑖 (⋅) ≥ 0. Here, we have used the

act that a matrix 𝐀 with entries 𝐴 = 𝑎 𝑎 is positive semi-definite with 𝑎 being the components for an arbitrary vector 𝒂.
20
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Fig. B.13. Training results using the data that was selected uniformly in time for (a) the free energy density 𝑓 (𝜀), (b) the stress 𝑓 ′(𝜀), (c) the dissipation potential
ensity 𝜓(𝑣) and (d) the viscous force 𝜓 ′(𝑣).

ppendix B. On sample selection

This section provides an additional set of training results for the phase transformations example discussed in Section 4.1. This
s aimed at highlighting the importance of proper sample selection for obtaining accurate results.
We consider uniform spatio-temporal data, with 𝑁𝑋 = 150 and 𝛥𝑡𝑐𝑜𝑎𝑟𝑠𝑒 = 5000𝛥𝑡 = 1.5×10−4 ns, and use the adaptive loss weight

trategy to calculate the loss function. Similarly to the results shown in Section 4, the model is trained for 30,000 epochs using
an Adam optimizer with a learning rate of 3 × 10−4. The training results for the free energy and dissipation potential densities and
their derivatives are shown in Fig. B.13. Although much more data is here used in the training process compared to the results
of Fig. 7 (here, 𝑁𝐵𝐶 = 5000 × 80% = 4000 and 𝑁𝑃𝐷𝐸 = 5000 × 150 × 80% = 600,000), the predictions are markedly distinct from
the analytical functions. This can be easily explained by means of Fig. 6, where the boundary data (traction 𝑡 versus boundary
strain 𝜀𝐵𝐶 ) obtained from a uniform spatio-temporal sampling strategy is compared to the data selected on the basis of input space
uniformity. The former data mainly concentrates at the two ends of the strain range, while the middle part, associated with the
free energy barrier, is rarely captured. This is consistent with the results for 𝑓 ′(𝜀) shown in Fig. B.13(b), where the predictions only
agree with the analytic values where the data is available.

Appendix C. From 3D to 1D compressible viscoelasticity

We here derive the 1D viscoelastic evolution equations form the 3D model, given by Eqs. (39) and (40), under one-dimensional
loading conditions

𝝈 =
⎛

⎜

⎜

⎝

𝜎 0 0
0 0 0
0 0 0

⎞

⎟

⎟

⎠

(C.1)

and the assumptions that tr (𝜀𝜀𝜀𝑣𝛼(𝐗, 0)) = 0 and 𝜀𝑣𝛼𝑖𝑗 (𝐗, 0) = 0, for 𝑖 ≠ 𝑗.
First, we note by taking trace on both sides of Eq. (40) that

𝜏𝛼
𝑑
𝑑𝑡
tr (𝜀𝜀𝜀𝑣𝛼) = −tr (𝜀𝜀𝜀𝑣𝛼) , (C.2)

and, hence, 𝜀𝜀𝜀𝑣𝛼 is traceless at all times, since it is assumed to be traceless at 𝑡 = 0.
21
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Next, taking trace on both sides of Eq. (39), and noting the one-dimensional loading assumption,

tr (𝝈) = 𝜎 = 3𝐾tr (𝜀𝜀𝜀) . (C.3)

he 3D constitutive relation given by Eq. (39) then reads as

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝐾tr(𝜀𝜀𝜀) + 2𝐺𝜀𝑑𝑒𝑣11 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

(

𝜀𝑑𝑒𝑣11 − 𝜀𝑣𝛼11
)

= 𝜎

𝐾tr(𝜀𝜀𝜀) + 2𝐺𝜀𝑑𝑒𝑣22 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

(

𝜀𝑑𝑒𝑣22 − 𝜀𝑣𝛼22
)

= 0

𝐾tr(𝜀𝜀𝜀) + 2𝐺𝜀𝑑𝑒𝑣33 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

(

𝜀𝑑𝑒𝑣33 − 𝜀𝑣𝛼33
)

= 0

2𝐺𝜀𝑖𝑗 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

(

𝜀𝑖𝑗 − 𝜀𝑣𝛼𝑖𝑗
)

= 0, for 𝑖 ≠ 𝑗,

(C.4)

here we have used the fact that 𝜀𝑑𝑒𝑣𝑖𝑗 = 𝜀𝑖𝑗 for 𝑖 ≠ 𝑗. From the last equation, one can easily obtain the off-diagonal components of
, i.e.,

𝜀𝑖𝑗 =

∑𝑛
𝛼=1 𝐺𝑣𝛼𝜀

𝑣𝛼
𝑖𝑗

𝐺 +
∑𝑛
𝛼=1 𝐺𝑣𝛼

, for 𝑖 ≠ 𝑗. (C.5)

his equation, combined with Eq. (40), indicates that 𝜀𝑣𝛼𝑖𝑗 (𝐗, 𝑡) ≡ 0 for 𝑖 ≠ 𝑗 for all times as these are assumed zero at 𝑡 = 0.
Furthermore, by symmetry, it is immediate that 𝜀22 = 𝜀33 and 𝜀𝑣𝛼22 = 𝜀𝑣𝛼33 , and since 𝜀𝜀𝜀

𝑑𝑒𝑣 and 𝜀𝜀𝜀𝑣𝛼 are traceless, then 𝜀𝑑𝑒𝑣22 = 𝜀𝑑𝑒𝑣33 =
𝜀𝑑𝑒𝑣11 ∕2 and 𝜀𝑣𝛼22 = 𝜀𝑣𝛼33 = −𝜀𝑣𝛼11∕2. Denoting for simplicity 𝜀 = 𝜀11 and 𝜀𝑣𝛼 = 𝜀𝑣𝛼11 , the deviatoric part of strain can then be expressed
s,

𝜀𝑑𝑒𝑣11 = 𝜀 − 1
3
tr(𝜀𝜀𝜀) = 𝜀 − 𝜎

9𝐾
(C.6)

he constitutive equations for viscoelastic materials with 1D loading can thus be written as,

𝜎 = 𝐾tr(𝜀𝜀𝜀) + 2𝐺𝜀𝑑𝑒𝑣11 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

(

𝜀𝑑𝑒𝑣11 − 𝜀𝑣𝛼
)

= 𝜎
3
+ 2𝐺𝜀 +

𝑛
∑

𝛼=1
2𝐺𝑣𝛼 (𝜀 − 𝜀𝑣𝛼) −

(

2𝐺 +
𝑛
∑

𝛼=1
2𝐺𝑣𝛼

)

𝜎
9𝐾

(C.7)

𝜏𝛼 𝜀̇
𝑣𝛼 = 𝜀𝑑𝑒𝑣11 − 𝜀𝑣𝛼 = 𝜀 − 𝜎

9𝐾
− 𝜀𝑣𝛼 . (C.8)

After further simplification, these equations can be expressed as

𝜎 = 𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼) , (C.9)

ith

𝐸1𝐷 = 3𝐺
𝜃
, 𝐸1𝐷𝛼 =

3𝐺𝑣𝛼
𝜃

and 𝜃 = 1 +
𝐺 +

∑𝑛
𝛼=1 𝐺𝑣𝛼
3𝐾

, (C.10)

nd

𝜏𝛼 𝜀̇
𝑣𝛼 = 𝜀 − 𝜀𝑣𝛼 − 1

9𝐾

[

𝐸1𝐷𝜀 +
𝑛
∑

𝛾=1
𝐸1𝐷𝛾 (𝜀 − 𝜀𝑣𝛾 )

]

. (C.11)

Now, we look at the variational characterization of these equations and show how these result from Onsager’s variational
principle under the one-dimensional loading assumption. First, we recall the 3D version of the free energy and dissipation potential
density, i.e.,

𝑓3𝐷
(

𝜀𝜀𝜀, {𝜀𝜀𝜀𝑣𝛼}𝑛𝛼=1
)

= 1
2
𝐾 (tr𝜀𝜀𝜀)2 + 𝐺𝜀𝜀𝜀𝑑𝑒𝑣 ∶ 𝜀𝜀𝜀𝑑𝑒𝑣 +

𝑛
∑

𝛼=1
𝐺𝑣𝛼

(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

∶
(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

(C.12)

𝜓3𝐷
(

{𝜀̇𝜀𝜀𝑣𝛼}𝑛𝛼=1
)

=
𝑛
∑

𝛼=1

1
2
𝜂𝛼𝜀̇𝜀𝜀

𝑣𝛼 ∶ 𝜀̇𝜀𝜀𝑣𝛼 , (C.13)

here 𝜂𝛼 = 2𝐺𝑣𝛼𝜏𝛼 . The 3D equilibrium equations and evolution equation for the internal variables can be written by means of
hese potentials as

𝜌𝐚 = ∇ ⋅ 𝜎𝜎𝜎 = ∇ ⋅
(

𝜕𝑓3𝐷
)

(C.14)
22
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T

(

𝜕𝜓3𝐷
𝜕𝜀̇𝜀𝜀𝑣𝛼

+
𝜕𝑓3𝐷
𝜕𝜀𝜀𝜀𝑣𝛼

= 𝟎. (C.15)

The one-dimensional free energy density may then be obtained from the 3D one by inserting the one-dimensional loading ansatz,
i.e.,

𝑓1𝐷
(

𝜀, {𝜀𝑣𝛼}𝑛𝛼=1
)

∶= 𝑓3𝐷
(

𝜀𝜀𝜀
(

𝜀, {𝜀𝑣𝛼}𝑛𝛼=1
)

, {𝜀𝜀𝜀𝑣𝛼 (𝜀𝑣𝛼)}𝑛𝛼=1
)

= 1
2
𝐾 (tr𝜀𝜀𝜀)2 + 𝐺𝜀𝜀𝜀𝑑𝑒𝑣 ∶ 𝜀𝜀𝜀𝑑𝑒𝑣 +

𝑛
∑

𝛼=1
𝐺𝑣𝛼

(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

∶
(

𝜀𝜀𝜀𝑑𝑒𝑣 − 𝜀𝜀𝜀𝑣𝛼
)

= 1
2
𝐾 (tr𝜀𝜀𝜀)2 + 3

2
𝐺
(

𝜀𝑑𝑒𝑣11
)2 +

𝑛
∑

𝛼=1

3
2
𝐺𝑣𝛼

(

𝜀𝑑𝑒𝑣11 − 𝜀𝑣𝛼
)2

= 1
2
𝐾

( 𝜎
3𝐾

)2
+ 3

2
𝐺
(

𝜀 − 𝜎
9𝐾

)2
+

𝑛
∑

𝛼=1

3
2
𝐺𝑣𝛼

(

𝜀 − 𝜎
9𝐾

− 𝜀𝑣𝛼
)2

= 3
2
𝐺𝜀2 +

𝑛
∑

𝛼=1

3
2
𝐺𝑣𝛼 (𝜀 − 𝜀𝑣𝛼)

2 − 𝜃
18𝐾

[

𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼)

]2

= 1
2
𝜃𝐸1𝐷𝜀

2 +
𝑛
∑

𝛼=1

1
2
𝜃𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼)

2 − 𝜃
18𝐾

[

𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼)

]2

.

(C.16)

he corresponding derivatives are given by,

𝜕𝑓1𝐷
𝜕𝜀

= 𝐸1𝐷𝜀 +
𝑛
∑

𝛼=1
𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼) = 𝜎, (C.17)

𝜕𝑓1𝐷
𝜕𝜀𝑣𝛼

= −𝜃𝐸1𝐷𝛼 (𝜀 − 𝜀𝑣𝛼) +
𝜃𝐸1𝐷𝛼
9𝐾

[

𝐸1𝐷𝜀 +
𝑛
∑

𝛾=1
𝐸1𝐷𝛾 (𝜀 − 𝜀𝑣𝛼)

]

= −3𝐺𝑣𝛼 (𝜀 − 𝜀𝑣𝛼) +
𝐺𝑣𝛼
3𝐾

𝜎.

(C.18)

Similarly, the one-dimensional dissipation potential density can be obtained from the 3D density as

𝜓1𝐷
(

{𝜀̇𝑣𝛼}𝑛𝛼=1
)

∶= 𝜓3𝐷
(

{𝜀̇𝜀𝜀𝑣𝛼(𝜀̇𝑣𝛼)}𝑛𝛼=1
)

=
𝑛
∑

𝛼=1

1
2
𝜂𝛼𝜀̇𝜀𝜀

𝑣𝛼 ∶ 𝜀̇𝜀𝜀𝑣𝛼 =
𝑛
∑

𝛼=1

3
4
𝜂𝛼 (𝜀̇𝑣𝛼)

2 =
𝑛
∑

𝛼=1

1
2
𝜂1𝐷𝛼 (𝜀̇𝑣𝛼)

2 , (C.19)

Fig. D.14. Training results using constant loss weights estimated by dimensional analysis for (a) the free energy density 𝑓 (𝜀, 𝜀𝑣), (b) the stress 𝜎(𝜀, 𝜀𝑣) = 𝑓,𝜀(𝜀, 𝜀𝑣),
c) the configurational stress 𝜎𝑣(𝜀, 𝜀𝑣) = 𝑓,𝜀𝑣 (𝜀, 𝜀𝑣), (d) the dissipation potential density 𝜓(𝜀̇𝑣) and (e) the dissipative force 𝑓𝑣(𝜀̇𝑣) = 𝜓 ′(𝜀̇𝑣).
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where 𝜂1𝐷𝛼 = 3
2 𝜂𝛼 , and the corresponding derivative is given by,

𝜕𝜓1𝐷
𝜕𝜀̇𝑣𝛼

= 𝜂1𝐷𝛼 𝜀̇
𝑣𝛼 = 3𝐺𝑣𝛼𝜏𝛼 𝜀̇𝑣𝛼 . (C.20)

t may then be readily observed that the 1D equilibrium equation and evolution equation for the internal variable, resulting from
qs. (C.9) and (C.11), can be equivalently written by means of the 1D free energy and dissipation potentials, following Onsager’s
ariational principle, i.e.,

𝜌𝑎 = 𝜕𝜎
𝜕𝑋

= 𝜕
𝜕𝑋

(

𝜕𝑓1𝐷
𝜕𝜀

)

(C.21)

𝜕𝜓1𝐷
𝜕𝜀̇𝑣𝛼

+
𝜕𝑓1𝐷
𝜕𝜀𝑣𝛼

= 0. (C.22)

imilarly, the traction boundary conditions can be written as,

𝜎|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 =
𝜕𝑓1𝐷
𝜕𝜀

|

|

|

|𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦
= 𝑡. (C.23)

ppendix D. On adaptive loss weights

This section provides a set of training results for the viscoelastic example, discussed in Section 5, aimed at highlighting the
importance of the adaptive loss weights method for obtaining accurate results.

We use the same training dataset as that used in Section 5.4, but estimate instead the loss weights to be used in the loss function,
Eq. (54), based on dimensional analysis as

𝛼𝑒𝑞 =

[

𝐿
MaxMin

(

𝑡
)

]2

, (D.1)

𝛼𝑖𝑛𝑡 =

[

MaxMin
(

𝜀𝑣𝑃𝐷𝐸𝑠
)

𝑓 ∗

]2

, (D.2)

𝛼𝐵𝐶 =

[

1
MaxMin

(

𝑡
)

]2

, (D.3)

where 𝑓 ∗ is the characteristic scale of the free energy density given by Eq. (52). The ratio for these estimated loss weights are
1 ∶ 0.52 ∶ 1, respectively, while these same ratios for the adaptive loss weights is 1 ∶ 0.018 ∶ 87.1. Since the training process is known
to be sensitive to the choice of loss weights, the large difference between these two strategies could significantly impact the training
results. Indeed, after training for 30,000 epochs using an Adam optimizer and a learning rate of 10−4, similarly to the results of
Section 5.4, the predictions using loss weights based on dimensional analysis appreciably deviate from the true results; see Fig. D.14.
The relative 𝐿2 errors for the free energy density 𝑓 (𝜀, 𝜀𝑣), stress 𝜎(𝜀, 𝜀𝑣) = 𝑓,𝜀(𝜀, 𝜀𝑣), configurational stress 𝜎𝑣(𝜀, 𝜀𝑣) = 𝑓,𝜀𝑣 (𝜀, 𝜀𝑣),
dissipation potential density 𝜓(𝜀̇𝑣) and dissipative force 𝑓𝑣(𝜀̇𝑣) = 𝜓 ′(𝜀̇𝑣) within the plotted range are 6.78%, 4.82%, 30.25%, 32.58%
and 31.96%, respectively. These are about an order of magnitude larger than those obtained with the adaptive loss weights.
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