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A B S T R A C T

Can far-from-equilibrium material response under arbitrary loading be inferred from equilibrium
data and vice versa? Can the effect of element transmutation on mechanical behavior be
predicted? Remarkably, such extrapolations are possible in principle for systems governed
by stochastic differential equations, thanks to a set of exact relations between probability
densities for trajectories derived from the path integral formalism (Chen and Horing, 2007;
Nummela and Andricioaei, 2007; Kieninger and Keller, 2021). In this article, we systematically
investigate inferences (in the form of ensemble-averages) drawn on system/process 𝑆 based on
stochastic trajectory data of system/process 𝑆̃, with quantified uncertainty, to directly address
the aforementioned questions. Interestingly, such inferences and their associated uncertainty do
not require any simulations or experiments of 𝑆. The results are exemplified over two illustrative
examples by means of numerical simulations: a one-dimensional system as a prototype for
polymers and biological macromolecules, and a two-dimensional glassy system. In principle,
the approach can be pushed to the extreme case where 𝑆̃ is simply comprised of Brownian
trajectories, i.e., equilibrium non-interacting particles, and 𝑆 is a complex interacting system
driven far from equilibrium. In practice, however, the ‘‘further’’ 𝑆̃ is from 𝑆, the greater the
uncertainty in the predictions, for a fixed number of realizations of system 𝑆̃.

1. Introduction

Predicting the far-from-equilibrium response of materials is of great scientific and practical interest. Any dynamically-loaded
ystem, from an RNA strand being stretched by optical tweezers to steel being cold-rolled, is driven away from equilibrium.
oreover, one may be interested in equilibrium and non-equilibrium quantities like free energies or rheological/flow properties,
nd wish to infer them from experiments or simulations of potentially different systems or loading conditions. On the simulation
ide, molecular dynamic simulations have a computational cost and associated time scale limitations that currently precludes the
irect exploration of material behavior at low strain rates (Yan and Sharma, 2016). Similarly, it is difficult in many dissipative
xperimental systems to probe the free energy landscape by evaluating the work at infinitesimally slow loading rates (Collin et al.,
005). Ultimately, extrapolations of material behavior over loading conditions or material systems is crucial for the inverse problem
f material design.
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Attempting to make predictions about one system based on knowledge of another has a long history: approximating the system of
nterest as a perturbation on a more easily-soluble one is a standard technique across mechanics and physics (Hashin and Shtrikman,
963; Zwanzig, 1954), and the idea finds applications in equilibrium free energy calculations with techniques such as thermodynamic
ntegration (Rickman and LeSar, 2002), umbrella sampling (Torrie and Valleau, 1977) or metadynamics (Laio and Parrinello, 2002;
aio and Gervasio, 2008). Other approaches used to infer equilibrium information from non-equilibrium data, coming from either
imulations or experiments, include fluctuation theorems, such as the Jarzynski relation (Jarzynski, 1997) or Crooks’ fluctuation
heorem (Crooks, 1999). More recently, in the context of simulating non-equilibrium behavior, hyperdynamics methods (Voter,
997; Kim et al., 2013) have emerged as a means to accelerate the simulation of rare events and alleviate the time-scale bottleneck.
hese may be abstractly viewed as non-equilibrium analogues of the previous approaches, where the potential is modified to have
faster-evolving system, e.g., by converting a large energy barrier into a smaller one, and the results are then corrected to emulate
hose of the original system. These approaches are distinct from methods such as transition path sampling (Bolhuis et al., 2002),
orward flux sampling (Allen et al., 2009), milestoning (Faradjian and Elber, 2004), parallel replica dynamics (Voter, 1998), and
arallel trajectory splicing (Perez et al., 2016), which leave the potential untouched and extend the temporal reach of the simulation
ia sophisticated algorithms that preserve the statistics of the original system. For a review on accelerated molecular dynamics
ethods we refer the reader to Perez et al. (2009) and Voter et al. (2002).
In 2007, an exact correspondence between trajectory probabilities in two different systems was derived and exploited (Chen and

oring (2007), Nummela and Andricioaei (2007) – see also earlier works with similar ideas, e.g., Zuckerman and Woolf (1999))
o accelerate the sampling of trajectories that overcome both energetic barriers (e.g., surface diffusion in a crystal) and entropic
arriers (e.g., nanopore traversal by a polymer; see also Shin et al. (2010)). The fundamental idea in each case is this: add a bias to
he system potential 𝑉 → 𝑉 ∶= 𝑉 +𝑉𝑏𝑖𝑎𝑠, perform simulations of the system governed by 𝑉 , and use the exact relations (discussed in
etail below) to reweight the probability of the simulated trajectories so that they are statistically equivalent to those of the original
ystem governed by 𝑉 . The potential 𝑉𝑏𝑖𝑎𝑠 can be highly general, and could for example be selected to ‘‘fill in’’ a deep potential well
n which the system is trapped, or to point the system towards a particular location of interest in space. This is distinct from other
ccelerated molecular dynamics formulations as the reweighting is exact for each trajectory, it does not require an a priori knowledge
f the reaction coordinates, it could potentially be applied to experimental data, and no time rescaling is performed. There is also
o requirement that the system’s evolution can be characterized by long sojourns in deep potential wells, punctuated by occasional
ransitions between them, meaning that path integral hyperdynamics can be applied even to systems with no well-defined transition
tate, such as the energetic barriers mentioned above. Furthermore, we are interested not only in accelerating rare event sampling
though this provides an intuitive example), but more generally in the statistical connections between distinct systems. Rather than
ccelerating the simulation of a system’s evolution, we focus on the computation of ensemble-average quantities, arbitrarily far
rom equilibrium. The method’s principal shortcoming lies in the reweighting of the trajectories: adding too extreme a bias will
estroy the statistics of the quantity one is trying to compute for a fixed computational cost (Ikonen et al., 2011); and this issue
imits in practice the approach to systems of relatively small size and short time simulations. In other words, choosing a large bias
ill greatly accelerate the sampling of rare trajectories, at the cost of introducing great uncertainty in the statistical conclusions.
ere, our interest lies not only in accelerated sampling strategies, but also in understanding non-equilibrium material behavior, and
ts connection to equilibrium properties. We extend the path integral hyperdynamics approach to include time-dependent, out-of-
quilibrium boundary conditions, of interest in mechanics, and fully quantify, for the first time, the statistical uncertainty that the
iasing procedure introduces.
The paper is organized as follows. In Section 2 below, we give a detailed derivation of the procedure to obtain expectation

alues of a given statistical observable  in system 𝑆 from data generated by stochastic simulations of system 𝑆̃. Next, in Section 3,
e quantify the uncertainty introduced by the biasing procedure in terms of the difference of interparticle potentials and loading
onditions between the target (𝑆) and simulated (𝑆̃) systems/processes. These results are then exemplified in Section 4 over a 1D
mass–spring chain subjected to a non-equilibrium, time-dependent boundary condition. While this example is simple, it has proved
useful as a prototype for polymeric chains and biological macromolecules, and it is here used to showcase the various possibilities
offered by the formalism. In particular, we firstly investigate element transmutation, in which systems 𝑆 and 𝑆̃ have different
interatomic potentials. Secondly, we consider going from equilibrium to non-equilibrium conditions for the same material, and
finally, we take the method to its extreme by letting system 𝑆̃ be a simple Brownian motion, and 𝑆 a nonlinear interacting chain
with time-dependent boundary conditions. A second physical system is explored in Section 5, where the caging in two-dimensional
glassy systems is predicted from the liquid state. Finally, Section 6 contains our conclusions, and several appendices give further
technical details of the calculations for completeness.

2. Predicting the non-equilibrium behavior of a material/process from that of a reference one

The goal of the present manuscript is to predict the evolution of an observable (𝑡) (e.g., instantaneous stress, work done on
the system, diffusion coefficient) for a material and loading conditions 𝑆, from that of 𝑆̃. This general objective thus includes, as
particular cases, virtual element transmutation for given loading conditions (e.g., response for different interparticle potentials),
as well as different loading conditions for a given material (e.g., predicting the response to an excitation from the equilibrium
behavior). In all cases, the material systems are here considered to be composed of particles, whose motion obey overdamped
Langevin dynamics. That is, the position of each particle 𝐫𝑖 evolves as

𝜂𝐫̇𝑖 = −
𝜕𝑉 (𝐫,𝝀(𝑡))

+
√

2𝑘𝐵𝑇 𝜂 𝝃̇𝑖, 𝑖 = 1,… , 𝑁 (1)
2

𝜕𝐫𝑖
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where 𝜂 is the effective viscosity, 𝑘𝐵 the Boltzmann constant, 𝑇 the temperature and 𝝃̇𝑖 is a vector of independent white noise
i.e., each component is assumed Gaussian with zero mean and variance given by ⟨𝝃̇𝑖(𝑡)𝝃̇𝑗 (𝑡′)⟩ = 𝛿𝑖𝑗𝛿(𝑡− 𝑡′)𝐈𝑑 , with 𝐈𝑑 being the 𝑑 × 𝑑
identity matrix, 𝑑 being the dimension of the problem and ⟨⋅⟩ being the ensemble average). In addition, the total potential energy
of the system 𝑉 is considered to depend on all particles positions 𝐫 as well as, potentially, time-dependent boundary conditions 𝝀(𝑡).
These equations are commonly used to model systems in aqueous solution, such as biological macromolecules (Raj and Purohit,
2011) and colloids (Markutsya et al., 2014), or as the basis of stochastic thermostats in molecular dynamics simulations (Hijazi et al.,
2018) when the system is coupled to a heat bath. Although the proposed framework may be easily generalized to the case where
external forces are present (Nummela and Andricioaei, 2007), or to the underdamped case where inertia is not negligible (Chen and
Horing, 2007; Kieninger and Keller, 2021), in what follows we consider the simpler case of Eq. (1).

We here aim at predicting observables of material/process 𝑆, (characterized by potential 𝑉 and loading protocol 𝝀(𝑡)), from
data on material/process 𝑆̃ (with potential 𝑉 and protocol 𝝀̃(𝑡)), both evolving according to the overdamped Langevin dynamics. To
achieve this goal, we resort to the path integral formalism, which provides an equivalent representation to the stochastic dynamics
given by Eq. (1) (Chaichian and Demichev, 2018). More precisely, for system 𝑆, the probability density of trajectories 𝐫(𝑡), 0 < 𝑡 < 𝜏
for given initial conditions 𝐫(0) = 𝐫0, is given by

(𝐫(𝑡)|𝐫0) = 1

𝑒−𝛽 , where  = 1

4𝜂 ∫

𝜏

0

𝑁
∑

𝑖=1

|

|

|

|

𝜂𝐫̇𝑖 +
𝜕𝑉
𝜕𝐫𝑖

|

|

|

|

2
𝑑𝑡, (2)

where  is a normalization factor that ensures that the path probability distribution is normalized to one, and 𝛽 = (𝑘𝐵𝑇 )−1 is the
inverse temperature. Similarly, for system 𝑆̃ with potential 𝑉 , and same time range and initial conditions as system 𝑆, the path
probability density reads

̃(𝐫(𝑡)|𝐫0) = 1

𝑒−𝛽̃ , where ̃ = 1

4𝜂 ∫

𝜏

0

𝑁
∑

𝑖=1

|

|

|

|

𝜂𝐫̇𝑖 +
𝜕𝑉
𝜕𝐫𝑖

|

|

|

|

2
𝑑𝑡. (3)

The derivations and precise meaning of Eqs. (2) and (3) is provided in Appendix A, where it is observed that the normalization
factor  is identical for both expressions (when using the Itô interpretation for the integrals inside the exponentials).

Then, the expected value of a given observable , in each ensemble (𝑆 or 𝑆̃) with the same initial conditions, is given by
⟨(𝜏)⟩𝑆 = ∫ 𝐫 (𝜏)(𝐫(𝑡)|𝐫0) and ⟨(𝜏)⟩𝑆̃ = ∫ 𝐫 (𝜏) ̃(𝐫(𝑡)|𝐫0), respectively, where ∫ 𝐫 denotes integration over all paths 𝐫
ith 𝐫(0) = 𝐫0. These two observables may then be related in a straight-forward manner as (see Appendix B for detailed proof)

⟨⟩𝑆 =
⟨


̃

⟩

𝑆̃
=
⟨

𝑒−𝛽𝑏𝑖𝑎𝑠
⟩

𝑆̃ , with

𝑏𝑖𝑎𝑠 =  − ̃ = 1
4𝜂 ∫

𝜏

0

𝑁
∑

𝑖=1

𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝐫𝑖

⋅
(

𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝐫𝑖

− 2
√

2𝑘𝐵𝑇 𝜂 𝝃̇𝑖
)

𝑑𝑡,
(4)

nd 𝑉𝑏𝑖𝑎𝑠 = 𝑉 (𝐫, 𝝀̃) − 𝑉 (𝐫,𝝀). In other words, the trajectories of an evolving material/process can be reweighted to obtain the
nsemble average of any observable for a different system or process. Eq. (4) has been previously derived by Chen and Horing
2007) to accelerate particle simulations, though the possible change (albeit trivial) in boundary conditions 𝝀 was not considered.
pseudo-code describing in detail the steps to realize Eq. (4) using an Euler–Maruyama time discretization scheme (Kloeden and
laten, 1999) is shown in Algorithm 1. There, observables  of very different nature are considered for completeness, though their
reatment is identical. These could be the expected evolution of a single particle, or an average over the whole system, and they
ay also be instantaneous in nature (e.g., force at a given time), or dependent on the full evolution (e.g., work done over a given
ime interval, mean squared displacement or particle overlap). Examples of all of the above will be provided in Sections 4 and 5. We
remark that although the theoretical description above and pseudo-code solely consider changes in the potential energy, both the
temperature and the viscosity may be varied as well; in this case, the normalization factors  of the path probability distributions
will be distinct for the two systems, and hence their ratio, now distinct from one, will have to be included in ∕̃ . Similarly, the
interparticle forces may not necessarily be potential in nature, though that will be the case for the examples considered in Sections 4
and 5.

An attentive reader may discover that the calculation of 𝑏𝑖𝑎𝑠 effectively requires the calculation of the forces for the potential 𝑉
associated to the system one is ultimately interested in, hence wondering about the computational efficiency of such an approach.
While this is certainly the case, the benefits could be manifold. First, an appropriate choice for 𝑉 could greatly accelerate the
dynamics for a system that is trapped in an energetic or entropic barrier, as noted in the introduction. This has been exploited
by several authors (Chen and Horing, 2007; Nummela and Andricioaei, 2007). Second, since the forces are computed from the
trajectories of system 𝑆̃, these calculations could be done a posteriori and be trivially parallelized in time. This second point is quite
interesting on its own, as perfect time parallelization has always been thought of being impossible due to the sequential nature of
time. Yet, temporal parallelization of molecular dynamic simulations is a very active area of research aimed at enabling long-time
simulations (Perez et al., 2016). Finally, an entire family of interparticle potentials characterized by a proportionality constant,
may be predicted with minimal added computational cost compared to that of a single potential. An example of the latter will be
provided in Section 5, where this point will be explained in further detail.

While the appeal of the path reweighting strategy is clear from the above discussion, and its applications are, in appearance,
limitless, it is worth noting the sampling issues that arise as the two interparticle potentials and/or boundary conditions diverge
from each other. To illustrate this point, consider a single degree of freedom system (𝑁 = 1) consisting of a mass connected to two
3
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Algorithm 1 Pseudo-code for predicting material/process 𝑆 from material/process 𝑆̃ with overdamped Langevin dynamics

// Overdamped Langevin dynamics for material/process 𝑆̃ and prediction for material/process 𝑆
𝜎 = 2𝑘𝐵𝑇 𝜂
for all 𝑁𝑅 realizations do

Set initial condition 𝐫0 and 𝑡0 = 0;
for 𝑛 from 0 to 𝑛𝑇 = 𝑇 ∕𝛥𝑡 do

𝝀̃𝑛+1 = 𝝀̃𝑛 + ̇̃𝝀(𝑡𝑛)𝛥𝑡;
𝝀𝑛+1 = 𝝀𝑛 + 𝝀̇(𝑡𝑛)𝛥𝑡;
for 𝑖 from 1 to 𝑁 do

Generate noise 𝛥𝝃𝑛𝑖 with standard normal distribution;

Compute ∇𝑖𝑉 𝑛 = 𝜕𝑉
𝜕𝐫𝑖

|

|

|

|𝐫̃𝑛 ,𝝀̃𝑛
, ∇𝑖𝑉 𝑛 = 𝜕𝑉

𝜕𝐫𝑖

|

|

|

|𝐫̃𝑛 ,𝝀𝑛
and ∇𝑖𝑉 𝑛

𝑏𝑖𝑎𝑠 = ∇𝑖𝑉 𝑛 − ∇𝑖𝑉 𝑛;

𝐫̃𝑛+1𝑖 = 𝐫̃𝑛𝑖 +
1
𝜂

[

−∇𝑖𝑉 𝑛𝛥𝑡 +
√

𝜎𝛥𝝃𝑛𝑖
]

; // Update new displacement field

// Compute the observables of interest, such as
𝐅̃𝑛
𝑒𝑥 = 𝜕𝑉 𝑛

𝜕𝝀̃𝑛
, 𝐅𝑛

𝑒𝑥 = 𝜕𝑉 𝑛

𝜕𝝀𝑛 ; // external force
𝑊 𝑛+1 = 𝑊 𝑛 + 𝐅̃𝑛

𝑒𝑥 ⋅
̇̃𝝀𝑛𝛥𝑡, 𝑊 𝑛+1 = 𝑊 𝑛 + 𝐅𝑛

𝑒𝑥 ⋅ 𝝀̇
𝑛𝛥𝑡 ; // total work

̃
𝑛
= 1

𝑁
∑𝑁

𝑖=1
‖

‖

‖

𝐫̃𝑛𝑖 − 𝐫̃0𝑖
‖

‖

‖

2
; // mean squared displacement

𝑄̃𝑛(𝑎) = 1
𝑁

∑𝑁
𝑖=1 𝐻

(

𝑎 − ‖

‖

‖

𝐫̃𝑛𝑖 − 𝐫̃0𝑖
‖

‖

‖

)

; // particle overlap

// Compute the bias factors
𝑏𝑖𝑎𝑠(𝑡𝑛+1) = 𝑏𝑖𝑎𝑠(𝑡𝑛) +

1
4𝜂

∑𝑁
𝑖=1 ∇𝑖𝑉 𝑛

𝑏𝑖𝑎𝑠 ⋅
(

∇𝑖𝑉 𝑛
𝑏𝑖𝑎𝑠𝛥𝑡 − 2

√

𝜎 𝛥𝝃𝑛𝑖
)

;

𝑏𝑖𝑎𝑠(𝑡𝑛+1) = 𝑒−𝛽𝑏𝑖𝑎𝑠(𝑡𝑛+1)

// Summing the observables of interest over all realizations, with ̃𝑛 denoting, for
instance, 𝐫̃𝑛, 𝐅̃𝑛

𝑒𝑥, 𝑊 𝑛, ̃
𝑛
or 𝑄̃𝑛(𝑎), and 𝑛 denoting 𝐫̃𝑛, 𝐅𝑛

𝑒𝑥, 𝑊 𝑛, ̃
𝑛
or 𝑄̃𝑛(𝑎)

⟨

̃𝑛⟩
𝑆̃ =

⟨

̃𝑛⟩
𝑆̃ + ̃𝑛,

⟨𝑛𝑏𝑖𝑎𝑠(𝑡𝑛)⟩𝑆̃ = ⟨𝑛𝑏𝑖𝑎𝑠(𝑡𝑛)⟩𝑆̃ + 𝑛𝑏𝑖𝑎𝑠(𝑡𝑛),
 (𝑡𝑛) =  (𝑡𝑛) + 𝑏𝑖𝑎𝑠(𝑡𝑛),

// Update time
𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡;

// Compute the ensemble average for all times, with ̃ denoting, for instance, 𝐫̃, 𝐅̃𝑒𝑥, 𝑊 , ̃ or
𝑄̃(𝑎), and  denoting 𝐫̃, 𝐅𝑒𝑥, 𝑊 , ̃ or 𝑄̃(𝑎)

⟨

̃
⟩

𝑆̃ = 1
𝑁𝑅

⟨

̃
⟩

𝑆̃ ; // for process 𝑆̃

 = 1
𝑁𝑅



⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = 1
𝑁𝑅

⟨𝑏𝑖𝑎𝑠⟩𝑆̃ ; // prediction for process 𝑆

linear springs, with spring constant 𝑘 = 1. The end of one of the springs is held fixed, while the end of the second is being pulled
at a constant velocity 𝑣𝑝= 0.01, so that the resulting equation of motion is

𝜂𝑥̇ = −2𝑘𝑥 + 𝑘𝑣𝑝𝑡 +
√

2𝑘𝐵𝑇 𝜂 𝜉̇. (5)

In this example, the aim is to predict the behavior of this system from a particle undergoing Brownian motion, i.e., 𝑉1 = 0 and an
intermediate harmonic potential 𝑉2 with spring constant 𝑘̃ = 1∕2. Figs. 1(a)–(b) show the three interparticle potentials considered as
well as the results of the Langevin simulations for each system, together with the predictions based on Eq. (4). While the predictions
and the validations are indistinguishable, the normalized histogram of the path probability ratio 𝑏𝑖𝑎𝑠 ∶= ∕̃ in Figs. 1(c)–(d),
clearly show that these become more heavy-tailed with time for a given potential 𝑉 , or for a fixed time, as the difference between
the potentials 𝑉 and 𝑉 becomes larger. In other words, the fraction of trajectories which have a significant 𝑏𝑖𝑎𝑠, and hence a
significant contribution to the ensemble average, decreases with time and 𝑉𝑏𝑖𝑎𝑠. On a practical level, these heavier tails imply larger
errors for the empirical averages of Eq. (4) for a fixed number of realizations of system 𝑆̃. Quantifying a priori these estimates is
therefore crucial to assess the accuracy of the predictions without the need of validations. This is precisely the goal of the next
section.

Finally, we remark that similar sampling issues arise as the system size increases. To illustrate this fact, consider a one-
dimensional mass–spring chain consisting of 𝑁 particles being pulled at constant strain rate (the case 𝑁 = 1 being the example

̃

4

just considered). Then, if one aims at predicting the response for potential 𝑉 from a given 𝑉 , it is observed that the normalized
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24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

a
a

o

// Overdamped Langevin dynamic simulations for material/process 𝑆 (for comparison, optional)
for all 𝑁𝑅 realizations do

Set initial conditions 𝐫0 and 𝑡0 = 0;
for 𝑛 from 0 to 𝑛𝑇 = 𝑇 ∕𝛥𝑡 do

𝝀𝑛+1 = 𝝀𝑛 + 𝝀̇(𝑡𝑛)𝛥𝑡;
for 𝑖 from 1 to 𝑁 do

Generate noise 𝛥𝝃𝑛𝑖 according to a standard normal distribution;

Compute ∇𝑖𝑉 𝑛 = 𝜕𝑉
𝜕𝐫𝑖

|

|

|

|𝐫𝑛 ,𝝀𝑛
;

𝐫𝑛+1𝑖 = 𝐫𝑛𝑖 +
1
𝜂

[

− 𝜕𝑉
𝜕𝐫𝑖

𝛥𝑡 +
√

𝜎𝛥𝝃𝑛𝑖
]

; // Update new displacement field

// Compute the observables of interest
𝐅𝑛
𝑒𝑥 = 𝜕𝑉 𝑛

𝜕𝝀𝑛 ; // external force
𝑊 𝑛+1 = 𝑊 𝑛 + 𝐅𝑛

𝑒𝑥 ⋅ 𝝀̇
𝑛𝛥𝑡 ; // total work

𝑛 = 1
𝑁

∑𝑁
𝑖=1

‖

‖

‖

𝐫𝑛𝑖 − 𝐫0𝑖
‖

‖

‖

2
; // mean squared displacement

𝑄𝑛(𝑎) = 1
𝑁

∑𝑁
𝑖=1 𝐻

(

𝑎 − ‖

‖

‖

𝐫𝑛𝑖 − 𝐫0𝑖
‖

‖

‖

)

; // particle overlap

// Summing the observables of interest over all realizations, with 𝑛 denoting, for
instance, 𝐫𝑛, 𝐅𝑛

𝑒𝑥, 𝑊 𝑛, 𝑛 or 𝑄𝑛(𝑎)
⟨𝑛

⟩𝑆 = ⟨𝑛
⟩𝑆 + 𝑛,

// Update time
𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡;

// Compute the ensemble average for all times, with  denoting, for instance, 𝐫, 𝐅𝑒𝑥, 𝑊 ,  or
𝑄(𝑎)

⟨⟩𝑆 = 1
𝑁𝑅

⟨⟩𝑆 ; // for process 𝑆

histogram for 𝑏𝑖𝑎𝑠 becomes more heavy tailed as 𝑁 increases; see Fig. 2. For these reasons, the path reweighting approach is often
limited in practice to small systems, and predictions over relatively short intervals of time.

3. Uncertainty quantification

From Eq. (4) it is immediate to see that
⟨

𝑒−𝛽𝑏𝑖𝑎𝑠
⟩

𝑆̃ = 1. Although this identity is exactly satisfied for the exact probability density,
n empirical average, i.e., ∶=

∑𝑁𝑅
𝑟=1

1
𝑁𝑅

𝑒−𝛽𝑏𝑖𝑎𝑠,𝑟 , where 𝑁𝑅 is the number of realizations, may deviate from 1 if insufficient samples
re used. In general, more realizations will be needed the further apart systems/processes 𝑆̃ and 𝑆 are, as noted in the previous
section. Such a distance can be measured by means of the Kullback–Leibler divergence, or relative entropy, between two probability
distributions ̃ , and  , which, in this case, is equal to

𝐷𝐾𝐿
(

̃ ∥ 
)

=
⟨

log ̃


⟩

𝑆̃
= 𝛽⟨𝐼𝑏𝑖𝑎𝑠⟩𝑆̃ . (6)

In practice, we will quantify the uncertainty of our predictions (for general observables ) using the standard error of the mean
f 𝑏𝑖𝑎𝑠 ∶= ∕̃ = 𝑒−𝛽𝑏𝑖𝑎𝑠

𝜎 =
𝜎𝑏𝑖𝑎𝑠
√

𝑁𝑅
, (7)

where 𝜎2𝑏𝑖𝑎𝑠
∶= ⟨2

𝑏𝑖𝑎𝑠⟩𝑆̃ − ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃
is the variance of 𝑏𝑖𝑎𝑠, and  =

∑𝑁𝑅
𝑟=1

1
𝑁𝑅

𝑏𝑖𝑎𝑠,𝑟. We use this standard error 𝜎 as an estimate
for |

|

 − 1|
|

.

3.1. Linear uncertainty propagation estimate

The simplest approach to estimate 𝜎2𝑏𝑖𝑎𝑠
is to consider the time-discretized evaluation of 𝑏𝑖𝑎𝑠 as a nonlinear function of

𝛥𝜉𝑛 = 𝜉𝑛+1𝑖 − 𝜉𝑛𝑖 , where the indices 𝑖 and 𝑛 here refer to the degrees of freedom 𝑖 = 1,… , 𝑁𝑑 (𝑑 is the dimension of the problem),
and discrete time 𝑡𝑛, respectively, and to use the classical formulas for propagation of uncertainty (Taylor, 1997, Chapter 3), i.e.,

𝜎2𝑏𝑖𝑎𝑠
≃

𝑁𝑑
∑

𝑛𝑇 −1
∑

(

𝜕𝑏𝑖𝑎𝑠
𝑛
|

|

|𝛥𝝃=𝟎

)2
𝜎2𝛥𝜉𝑛 =

𝑁𝑑
∑

𝑛𝑇 −1
∑

(

𝜕𝑏𝑖𝑎𝑠
𝑛
|

|

|𝛥𝝃=𝟎

)2
𝛥𝑡. (8)
5

𝑖=1 𝑛=0 𝜕𝛥𝜉𝑖 𝑖 𝑖=1 𝑛=0 𝜕𝛥𝜉𝑖
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h
𝑁

Fig. 1. (a) Interparticle potentials for the simulated (𝑉1 and 𝑉2) and targeted (𝑉 ) systems. (b) Ensemble average of the displacement for the simulated (𝑉1
and 𝑉2) and targeted systems (𝑉 ), as well as the predictions from the first to the latter (𝑉1 with bias and 𝑉2 with bias). (c) Time evolution of the normalized
istogram for 𝑏𝑖𝑎𝑠 from 𝑉1 to 𝑉 . (d) Comparison between the normalized histogram of 𝑏𝑖𝑎𝑠 at 𝑡 = 1 from 𝑉1 to 𝑉 and from 𝑉2 to 𝑉 . Parameters are chosen as
= 1, 𝜂 = 5, 𝛽 = 104, 𝑉𝑠1(𝑢) = 0, 𝑉𝑠2(𝑢) =

1
4
𝑢2, 𝑉𝑠(𝑢) =

1
2
𝑢2, 𝑁𝑅 = 105.

Fig. 2. Comparison between the normalized histogram of 𝑏𝑖𝑎𝑠 at 𝑡 = 1 when predicting the evolution of a mass–spring chain with a quadratic potential 𝑉𝑠(𝑢) =
1
2
𝑢2

from independent Brownian particles 𝑉𝑠(𝑢) = 0, for systems with different particle numbers 𝑁 = 1, 2, 3. The systems are being pulled at the constant strain rate
(i.e., 𝑣𝑝 = 0.01, 0.015, 0.02 for each of the three cases, respectively). Parameters are chosen as 𝜂 = 5, 𝛽 = 104, 𝑁𝑅 = 105.

This equation arises from a linear approximation of the function 𝑏𝑖𝑎𝑠({𝛥𝜉𝑛𝑖 }), and further makes use of the fact that 𝛥𝜉𝑛𝑖 are
uncorrelated, and 𝜎2𝛥𝜉𝑛𝑖

= 𝛥𝑡. The notation |

|

|𝛥𝝃=𝟎
is used to denote that the partial derivatives are evaluated at the mean value

of 𝛥𝝃, which is zero.
6
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Fig. 3. Prediction of the standard deviation of 𝑏𝑖𝑎𝑠 with the linear (blue dashed line) and nonlinear (orange dotted line) uncertainty estimates, together with
𝜎𝑏𝑖𝑎𝑠

as directly computed from simulation data (green solid line). The simulation parameters are 𝑁 = 1, 𝑁𝑅 = 105, 𝑘𝐵𝑇 = 10−4, 𝜂 = 5, 𝑣𝑝 = 0.01, 𝛥𝑡 = 10−3,
rom Brownian motion to quadratic potential with 𝑘 = 1. For the nonlinear uncertainty quantification estimates, the time discretization used is 𝑛𝑇 = 100 and the
eference trajectory is chosen as 𝐱𝑟 = 𝟎.

As discussed in detail in Appendices A and B, 𝑏𝑖𝑎𝑠 may be expressed using the Itô interpretation as

𝑏𝑖𝑎𝑠 = exp

[

−
𝛽
4𝜂

𝑁𝑑
∑

𝑗=1

𝑛𝑇 −1
∑

𝑚=0

𝜕𝑉𝑏𝑖𝑎𝑠(𝐱𝑚)
𝜕𝑥𝑚𝑗

[

𝜕𝑉𝑏𝑖𝑎𝑠(𝐱𝑚)
𝜕𝑥𝑚𝑗

𝛥𝑡 − 2
√

𝜎𝛥𝜉𝑚𝑗

]]

, with

𝑥𝑚𝑗 = 𝑥0𝑗 +
𝑚−1
∑

𝑝=0
𝛥𝑥𝑝𝑗 , 𝛥𝑥𝑝𝑗 = 𝑥𝑝+1𝑗 − 𝑥𝑝𝑗 and 𝛥𝑥𝑝𝑗 = −

𝜕𝑉 (𝐱𝑝)
𝜕𝑥𝑗𝑝

𝛥𝑡
𝜂

+

√

𝜎
𝜂

𝛥𝜉𝑝𝑗 ,

(9)

where 𝜎 = 2𝑘𝐵𝑇 𝜂 and 𝑥𝑚𝑗 stands for the position of degree of freedom 𝑗 (𝑗 = 1,… , 𝑁𝑑) at time 𝑡𝑚.
Noting that 𝑏𝑖𝑎𝑠 depends on 𝛥𝜉𝑛𝑖 directly and through 𝑥𝑚𝑗 for 𝑚 > 𝑛, one obtains for the simplest case of 𝑉 = 0 that

𝜕𝑏𝑖𝑎𝑠
𝜕𝛥𝜉𝑛𝑖

= 𝑏𝑖𝑎𝑠

[

−
𝛽
4𝜂

(𝑁𝑑
∑

𝑗=1

𝑁𝑇 −1
∑

𝑚=𝑛+1
2
𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑚𝑗

𝜕2𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑚𝑗 𝜕𝑥

𝑚
𝑖

√

𝜎
𝜂

𝛥𝑡 −
𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑛𝑖

2
√

𝜎

)]

. (10)

or such a case, the variance of 𝑏𝑖𝑎𝑠 may then be easily computed as

𝜎2𝑏𝑖𝑎𝑠
=

𝛽
2𝜂

2
𝑏𝑖𝑎𝑠

𝑁𝑑
∑

𝑖=1

𝑛𝑇 −1
∑

𝑛=0

[

𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑛𝑖

−
𝑁
∑

𝑗=1

𝑛𝑇 −1
∑

𝑚=𝑛+1

𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑚𝑗

𝜕2𝑉𝑏𝑖𝑎𝑠
𝜕𝑥𝑚𝑗 𝜕𝑥

𝑚
𝑖

𝛥𝑡
𝜂

]2

𝛥𝑡
|

|

|

|

|𝛥𝝃=𝟎
. (11)

As will be seen later on in Fig. 3 by means of an example, this uncertainty propagation method, albeit simple for 𝑉 = 0, does
not capture well the variance of 𝑏𝑖𝑎𝑠 even for very simple physical systems. This is likely due to the importance of nonlinear effects
induced by the exponential of 𝑏𝑖𝑎𝑠. Furthermore, its generalization to simulated systems with 𝑉 ≠ 0 is rather intricate, due to the
many nested sums that this would require.

3.2. Nonlinear uncertainty quantification estimate

To resolve the above two issues, we resort instead to perform a linear approximation to the bias potential gradient in the exponent
of 𝑏𝑖𝑎𝑠 and then estimate 𝜎2𝑏𝑖𝑎𝑠

directly as ⟨2
𝑏𝑖𝑎𝑠⟩𝑆̃ − ⟨𝑏𝑖𝑎𝑠⟩

2
𝑆̃
. Specifically, we expand the bias potential gradient linearly from a

reference trajectory 𝐱𝑟(𝑡) as

∇𝑉𝑏𝑖𝑎𝑠(𝐱, 𝑡) = ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑟(𝑡) + ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑟(𝑡) 𝛿𝐱 + 𝑂(‖𝛿𝐱‖2), (12)

where 𝛿𝐱 = 𝐱 − 𝐱𝑟. Similarly, the noise term in the Langevin equations associated to system 𝑆̃ may be approximated as
√

𝜎𝛥𝝃𝑛 = 𝜂
(

𝐱𝑛+1 − 𝐱𝑛
)

+ ∇𝑉 (𝐱𝑛, 𝑡𝑛)𝛥𝑡
= 𝜂

(

𝛥𝐱𝑛𝑟 + 𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡 + ∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐱𝑛𝛥𝑡 + 𝑂(‖𝛿𝐱‖2 𝛥𝑡),

(13)

here we have used an Itô representation for the discretized equations and defined 𝛥𝐱𝑛𝑟 = 𝐱𝑛+1𝑟 − 𝐱𝑛𝑟 . Using the above two
pproximations, and the change of variables 𝛿𝐲𝑛 =

(

𝜂∕
√

𝜎𝛥𝑡
)

𝛿𝐱𝑛, introduced for convenience, the exponents in 𝑏𝑖𝑎𝑠 and ̃ have
a quadratic form in 𝛿𝐲𝑛. As a result, both ⟨𝑏𝑖𝑎𝑠⟩𝑆̃ and ⟨2

𝑏𝑖𝑎𝑠⟩𝑆̃ may be computed analytically. These derivations are quite involved
and are therefore relayed to Appendix C. The resulting expression for ⟨𝑏𝑖𝑎𝑠⟩𝑆̃ is

⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = 1
√

𝑒
1
2 𝐛

T𝐀−1𝐛+𝑐 . (14)
7

det 𝐀



Journal of the Mechanics and Physics of Solids 161 (2022) 104779S. Huang et al.

T

t

o
u

o

Here, 𝑐 is a constant defined as,

𝑐 = − 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡, (15)

the vector 𝐛 consists of 𝑛𝑇 small 𝑁𝑑-dimensional vectors,

𝐛 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐛1
𝐛2
⋮
𝐛𝑛𝑇

⎞

⎟

⎟

⎟

⎟

⎠

, (16)

with

𝐛𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
√

𝛥𝑡
𝜎

[

𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

− 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛−1𝑟

)]

, 𝑛 < 𝑛𝑇

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

, 𝑛 = 𝑛𝑇

(17)

and the matrix 𝐀 may be written as,

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐀11 𝐀12 ⋯ 𝐀1𝑛𝑇

𝐀21 𝐀22 ⋯ 𝐀2𝑛𝑇

⋮ ⋮ ⋱ ⋮
𝐀𝑛𝑇 1 𝐀𝑛𝑇 2 ⋯ 𝐀𝑛𝑇 𝑛𝑇

⎞

⎟

⎟

⎟

⎟

⎠

(18)

with each 𝑁𝑑 ×𝑁𝑑 matrix block defined as,

𝐀𝑝𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐈 + Γ𝑛Γ𝑛, (𝑝, 𝑞) = (𝑛, 𝑛) with 𝑛 = 1,… , 𝑛𝑇 − 1

− Γ𝑛, (𝑝, 𝑞) = (𝑛 + 1, 𝑛) or (𝑛, 𝑛 + 1) with 𝑛 = 1,… , 𝑛𝑇 − 1

𝐈, (𝑝, 𝑞) = (𝑛𝑇 , 𝑛𝑇 )

𝟎, otherwise

(19)

with

Γ𝑛 = 𝐈 − 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 𝛥𝑡. (20)

The matrix 𝐀 is thus symmetric. As detailed in Appendix C, it may also be shown that the equations det(𝐀) = 1 and 𝐛T𝐀−1𝐛 = −2𝑐
are identically satisfied in this discretized setting leading to ⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = 1. We remark that in these derivations, the ensemble average
for ⟨𝑏𝑖𝑎𝑠⟩𝑆̃ is analytically computed, i.e., it does not result from an empirical average.

As for ⟨2
𝑏𝑖𝑎𝑠⟩𝑆̃ , this reads

⟨2
𝑏𝑖𝑎𝑠⟩𝑆̃ = 1

√

det(𝐀𝑠𝑞)
𝑒
1
2 𝐛

T
𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞+𝑐𝑠𝑞 , (21)

where the coefficients 𝐀𝑠𝑞 , 𝐛𝑠𝑞 and 𝑐𝑠𝑞 can be expressed as,

𝐀𝑠𝑞 = 2𝐀 − 𝐀̃, (22)

𝐛𝑠𝑞 = 2𝐛 − 𝐛̃, (23)

𝑐𝑠𝑞 = 2𝑐 − 𝑐. (24)

Here, 𝐀̃, 𝐛̃ and 𝑐 are the defined as the analogues of 𝐀, 𝐛, and 𝑐, respectively, with the potential 𝑉 replaced by 𝑉 .
Therefore, the resulting expression for the variance of 𝑏𝑖𝑎𝑠 is,

𝜎2𝑏𝑖𝑎𝑠
=
⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ − ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃

= 1
√

det(𝐀𝑠𝑞)
𝑒
1
2 𝐛

T
𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞+𝑐𝑠𝑞 − 1.

(25)

he details of its implementation are detailed in Algorithm 2.
To illustrate the improved performance of this estimate compared to the classical uncertainty propagation approach, consider

he single one degree of freedom system discussed at the end of Section 2 with 𝑉 = 0. Fig. 3 shows the value of 𝜎𝑏𝑖𝑎𝑠
as a function

of time, directly obtained from numerical simulations, together with the estimates given by Eqs. (11) and (25). As it may there be
bserved, the difference in accuracy is striking, even for this rather simple example. Consequently, the later examples will make
se of the nonlinear propagation of uncertainty strategy described in this section.
We remark that the accuracy of the uncertainty quantification (UQ) estimates here derived will strongly depend on the form
8

f the bias potential that the trajectories explore. Eq. (25) is nominally exact for a quadratic bias (such as the one used in Fig. 3),
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Algorithm 2: Pseudo-code for nonlinear uncertainty quantification

Choose a reference trajectory 𝐱𝑟(𝑡)
for all selected 𝑡 < 𝑇 at which to estimate the uncertainty do

Set timestep as 𝛥𝑡 = 𝑡∕𝑛𝑇 ;
for all 𝑛 from 0 to 𝑛𝑇 do

𝜏𝑛 = 𝑛𝛥𝑡;
Compute 𝐱𝑛𝑟 , 𝐱̇𝑛𝑟 , ∇𝑉 |𝐱𝑛𝑟 , ∇𝑉 |

|𝐱𝑛𝑟
, ∇∇𝑉 |𝐱𝑛𝑟 , ∇∇𝑉 |

|𝐱𝑛𝑟
at time 𝜏𝑛;

Compute 𝑐 and 𝑐𝑠𝑞 as in Eqs. (15) and (24);
Initialize 𝐛 and 𝐛𝑠𝑞 as zero vectors with size 𝑁𝑑𝑛𝑇 , 𝐀 and 𝐀𝑠𝑞 as zero matrices with size 𝑁𝑑𝑛𝑇 ×𝑁𝑑𝑛𝑇
for all 𝑛 from 1 to 𝑛𝑇 − 1 do

Compute vector components 𝐛𝑛 and 𝐛𝑛𝑠𝑞 as in Eqs. (16) and (23);
Compute 𝚪𝑛 and 𝚪̃𝑛 as in Eq. (20);
Compute matrix blocks 𝐀𝑝𝑞 and 𝐀𝑝𝑞

𝑠𝑞 for (𝑝, 𝑞) = (𝑛, 𝑛), (𝑛 + 1, 𝑛) and (𝑛, 𝑛 + 1) as in Eqs. (19) and (22);
Compute 𝐛𝑛𝑇 , 𝐛𝑛𝑇𝑠𝑞 as in Eqs. (16), (23) and 𝐀𝑛𝑇 𝑛𝑇 , 𝐀𝑛𝑇 𝑛𝑇

𝑠𝑞 as in Eqs. (19), (22);
Solve 𝐮𝑠𝑞 from 𝐀𝐬𝐪𝐮𝐬𝐪 = 𝐛𝐬𝐪;
Compute 𝐛T𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞 = 𝐛𝑠𝑞 ⋅ 𝐮𝑠𝑞 ;

Compute det
(

𝐀𝑠𝑞
)

;
𝜎2𝑏𝑖𝑎𝑠

(𝑡) = 1
√

det
(

𝐀𝑠𝑞
)

exp
(

1
2𝐛

T
𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞 + 𝑐𝑠𝑞

)

− 1.

though it is expected to only give an estimate for general potentials. In the example of Section 4, quartic potentials will be considered,
while Section 5 will examine systems with Hertzian and Lennard-Jones potentials. These last two potentials strongly deviate from
quadratic, with the Hertzian not even displaying a unique minimum, and will thus allow us to explore the degree of accuracy of
these estimates for a wide range of systems.

3.3. Connection between the two strategies

While the two UQ approaches previously discussed in Sections 3.1 and 3.2 are quite distinct in their starting point and final
onclusions, Eq. (11) may actually be recovered following the same strategy as for the nonlinear estimate under various simplifying
ssumptions. In particular, assuming 𝐱𝑟(𝑡) = 𝟎 (hence, 𝛥𝐱𝑛𝑟 = 𝟎, and 𝛿𝐱𝑛 = 𝐱𝑛), 𝑉 = 0 (hence, 𝑉 = −𝑉𝑏𝑖𝑎𝑠), and only keeping linear
terms in the integrand of 𝑏𝑖𝑎𝑠, such integrand can be approximated as

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) ⋅
(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)𝛥𝑡 − 2
√

𝜎𝛥𝝃𝑛
)

≃ ‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟=𝟎
‖

‖

‖

2
𝛥𝑡 − 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟=𝟎 ⋅

[

𝜂
(

𝐱𝑛+1 − 𝐱𝑛
)

− ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟=𝟎 𝐱
𝑛𝛥𝑡

]

.
(26)

ext, following the discrete Langevin equations for system 𝑆̃, we replace in the above expression 𝜂(𝐱𝑛+1 − 𝐱𝑛) =
√

𝜎𝛥𝝃𝑛, and
𝑛 =

∑𝑛−1
𝑚=0 𝛥𝐱

𝑚 =
∑𝑛−1

𝑚=0

√

𝜎
𝜂 𝛥𝝃𝑚. Furthermore, we note that expanding around 𝐱𝑟 = 𝟎 is identical to expanding around 𝛥𝝃 = 𝟎.

hen, 𝑏𝑖𝑎𝑠 can be written as a function of 𝛥𝝃, and ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃ and

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ may be computed analytically, giving (for details see
Appendix D)

⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃ ≃ exp

[

− 1
𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)‖‖
2 𝛥𝑡

]

|

|

|

|

|

|𝛥𝝃=𝟎

exp

⎡

⎢

⎢

⎢

⎣

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)2|
|

|

|

|

|

|𝛥𝝃=𝟎

⎤

⎥

⎥

⎥

⎦

(27)

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ ≃ exp

[

− 1
𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)‖‖
2 𝛥𝑡

]

|

|

|

|

|

|𝛥𝝃=𝟎

exp

⎡

⎢

⎢

⎢

2𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)2|
|

|

|

|

|

⎤

⎥

⎥

⎥

(28)
9

⎣
|𝛥𝝃=𝟎

⎦
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Finally, assuming that the second exponential terms in both ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃ and

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ are small, we approximate exp (𝑥) ≃ 1 + 𝑥,
obtaining the following expression for the variance of 𝑏𝑖𝑎𝑠

𝜎2𝑏𝑖𝑎𝑠
=
⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ − ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃

= exp

[

− 1
𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)‖‖
2 𝛥𝑡

]

|

|

|

|

|

|𝛥𝝃=𝟎

⎡

⎢

⎢

⎣

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚) ⋅ ∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)2
⎤

⎥

⎥

⎦

|

|

|

|

|

|

|𝛥𝝃=𝟎

.

(29)

his exactly corresponds to the variance given by the linear variance propagation method in Eq. (11).

. Example 1: Pulling experiments on one-dimensional mass–spring chains

.1. Model description and overview of the cases to be examined

The first example that we examine is a prototype for polymers (Doi and Edwards, 1988) and biological macromolecules such as
NA and coiled-coil proteins (Raj and Purohit, 2011). In particular, the model consists of 𝑁 particles following Langevin dynamics,

connected through 𝑁 +1 identical springs, as shown in Fig. 4. The first spring is fixed to a wall, while the last one has a prescribed
displacement boundary condition of the form 𝑥𝑁+1 = 𝜆(𝑡) = 𝑣𝑝𝑡, where 𝑣𝑝 is a constant pulling velocity. Denoting by 𝑉𝑠 the potential
energy of an individual spring for the system being simulated (system 𝑆̃), the governing equations read

{

𝜂𝑥̇𝑖 = 𝑉 ′
𝑠 (𝑥𝑖+1 − 𝑥𝑖) − 𝑉 ′

𝑠 (𝑥𝑖 − 𝑥𝑖−1) +
√

𝜎𝜉̇𝑖, 𝑖 = 1, 2,… , 𝑁 − 1

𝜂𝑥̇𝑁 = 𝑉 ′
𝑠 (𝜆(𝑡) − 𝑥𝑁 ) − 𝑉 ′

𝑠 (𝑥𝑁 − 𝑥𝑁−1) +
√

𝜎𝜉̇𝑁 .
, (30)

where 𝜎 = 2𝑘𝑏𝑇 𝜂.
In the following, we will consider three specific combinations of systems 𝑆 and 𝑆̃ to demonstrate the versatility of the approach

and the quality of the UQ estimates. These include

∙ Element transmutation. In this first example, we will aim at predicting the behavior of material 𝑆 from 𝑆̃ (different potential
energies), while subjected to the same pulling protocol. This is similar to the implementation of hyperdynamics (Chen and
Horing, 2007) or path reweighting method (Kieninger and Keller, 2021), where the potential is the only varying parameter
between the simulated and the predicted system.

∙ Predicting the far-from-equilibrium response of a material from its equilibrium behavior. Here, the potential energy will
remain the same, while the pulling velocity will change from 0 (equilibrium) to a finite value (away from equilibrium).

∙ For the last example, we will change both the potential energy and the pulling protocol. In particular, we will consider
the extreme case of predicting the non-equilibrium response of a nonlinear interacting mass–spring chain from independent
Brownian particles, i.e., 𝑉 = 0.

In each of these cases, we will consider observables that widely range in nature: from the expected evolution of each particle,
o the instantaneous force exerted on the system at a given time, to the work done over a given time interval, which of course
epends on the full evolution. For all cases, we choose 𝑁 = 10 particles, temperature 𝑘𝐵𝑇 = 10−4, viscosity 𝜂 = 5, interparticle
potentials 𝑉𝑠 and 𝑉𝑠 of quartic form, i.e.,

1
2𝑘2𝑥

2 + 1
4𝑘4𝑥

4, and we will perform 𝑁𝑅 = 105 realizations of system 𝑆̃. The Langevin
quations will be numerically simulated using an Euler–Maruyama scheme (Kloeden and Platen, 1999) with a time step 𝛥𝑡 = 10−3.
or comparison purposes, material/process 𝑆 will also be simulated, and the same number of realizations will be used to directly
stimate the ensemble averages.
For the uncertainty quantification estimates, we choose the reference trajectory 𝐱𝑟(𝑡) = 𝟎 and use 100 time steps in the

iscretization for each evaluated time point. That is, for each time at which the variance of 𝑏𝑖𝑎𝑠 is computed, a value of 𝑛𝑇 = 100
s chosen in the calculation of the coefficients 𝐀𝑠𝑞 , 𝐛𝑠𝑞 and 𝑐𝑠𝑞 , according to Eqs. (22), (23) and (24), respectively. We remark that
although 𝐱𝑟(𝑡) = 𝟎 does not correspond in all cases to the expected trajectory of system/process 𝑆̃, this choice greatly simplifies the
calculations and leads to remarkably accurate estimates for 𝜎2𝑏𝑖𝑎𝑠

and |

|

 − 1|
|

.

4.2. Case 1: Element transmutation: from material 𝑆̃ to material 𝑆 subjected to the same pulling protocol

This first case demonstrates the capability of the method for predicting the non-equilibrium response of a system with an
anharmonic potential, namely 𝑉𝑠(𝑢) =

1
2𝑘2𝑢

2 + 1
4𝑘4𝑢

4 (material 𝑆) from a harmonic one, 𝑉 = 1
2 𝑘̃2𝑢

2, (material 𝑆̃), under the same
pulling protocol 𝜆̇(𝑡) = ̇̃𝜆(𝑡) = 𝑣𝑝. Here, we choose 𝑘̃2 = 0.5, 𝑘2 = 1, 𝑘4 = 100 and 𝑣𝑝 = 0.01. Figs. 5 (a-c) show the results for the
nsemble averages of the displacement of each particle ⟨𝑥𝑖⟩, the external force applied on the system ⟨𝐹𝑒𝑥⟩ and the external work
𝑊 ⟩. The blue solid lines, green dashed lines and orange dotted lines represent, respectively, the results from Langevin simulations
or system 𝑆 with potential 𝑉 , those for system 𝑆̃ with potential 𝑉 , and the prediction of system 𝑆 from 𝑆̃ using Eq. (4). In particular,
he lines from bottom to the top in Fig. 5(a) represent the particles from 1 to 𝑁 = 10. As it is there observed, all predictions are
n excellent agreement with the validation data. Only very minor differences for the average displacement and external force are
10
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a
w

Fig. 4. Schematic of the 1D mass–spring system used in Example 1. Reprinted from Huang et al. (2021) Harnessing fluctuation theorems to discover free energy
nd dissipation potentials from non-equilibrium data, Vol 145, Shenglin Huang, Chuanpeng Sun, Prashant K. Purohit, Celia Reina, Page 3, Copyright (2021),
ith permission from Elsevier.

Fig. 5. Prediction of the non-equilibrium behavior of material 𝑆 with quartic interatomic potential 𝑉𝑠(𝑢) =
1
2
𝑘2𝑢2+

1
4
𝑘4𝑢4 from material 𝑆̃ with quadratic potential

𝑉𝑠(𝑢) =
1
2
𝑘̃2𝑢2 under the same pulling velocity 𝜆̇(𝑡) = ̇̃𝜆(𝑡) = 𝑣𝑝(𝑡), where 𝑘̃2 = 0.5, 𝑘2 = 1, 𝑘4 = 100 and 𝑣𝑝(𝑡) = 0.01. (a-c) Results for the ensemble averages of three

different observables: (a) the displacement of each particle ⟨𝑥𝑖⟩, with 𝑖 = 1,… , 10 from bottom to top, (b) the external force ⟨𝐹𝑒𝑥⟩ and (c) the external work
⟨𝑊 ⟩. The blue solid lines and green dashed lines are the results from Langevin simulations for material 𝑆 and 𝑆̃, respectively. The orange dotted lines are the
predictions for material 𝑆 from material 𝑆̃. (d, e) Validation of the uncertainty quantification estimates by evaluating the time evolution of (d) the standard
deviation of 𝑏𝑖𝑎𝑠 and (e) the deviation of the empirical factor  from one. The solid blue lines are the exact values from the data and the orange dotted lines
are the predictions using the nonlinear uncertainty quantification method.

observed after around 𝑡 ∼ 8, where the predictions become slightly more stochastic in nature. These increases in the errors are to be
expected as noted at the end of Section 2 and can be predicted using the nonlinear uncertainty quantification estimates discussed
in Section 3.2. We recall that these estimates aim at predicting the deviation of the empirical average  =

∑𝑁𝑅
𝑟=1

1
𝑁𝑅

𝑏𝑖𝑎𝑠,𝑟 from
one through 𝜎 = 𝜎𝑏𝑖𝑎𝑠

∕
√

𝑁𝑅, which itself is used as a measure of how well the path probability distribution of the system 𝑆
(the one not simulated) is captured. Figs. 5(d, e) show the estimated growing standard deviation of factor 𝑏𝑖𝑎𝑠 in a log–log scale
and the deviation of  from one in a log-linear scale, respectively, compared to the corresponding values directly calculated from
Langevin simulations. Remarkably, without simulation data for either system 𝑆 or system 𝑆̃, the derived estimates perfectly predict
the standard deviation of 𝑏𝑖𝑎𝑠, which spans four decades, and the deviation of  . As time increases, the deviation of  finally
reaches 3%, which is tolerable and agrees well with the small errors in the observables. We note that the accuracy of these results is
striking, as the bias potential is not purely quadratic (for which the estimates would be exact), but instead include a non-negligible
quartic contribution.

4.3. Case 2: From equilibrium to non-equilibrium for the same material

In contrast to the first case, this second case illustrates the prediction of the non-equilibrium response of a given system (finite
pulling velocity) given its equilibrium behavior (zero pulling velocity). The interatomic potential considered is 𝑉𝑠(𝑢) = 𝑉𝑠(𝑢) =
1𝑘 𝑢2 + 1𝑘 𝑢4, with 𝑘 = 1 and 𝑘 = 100, and the pulling velocity for the aimed non-equilibrium process is 𝜆̇(𝑡) = 𝑣 = 0.01.
11
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Fig. 6. Predicton of the non-equilibrium behavior under pulling velocity 𝜆̇(𝑡) = 𝑣𝑝(𝑡) > 0 (process 𝑆) from the equilibrium response, i.e., ̇̃𝜆(𝑡) = 0, (process 𝑆̃)
for the same material with quartic interatomic potential 𝑉𝑠(𝑢) = 𝑉𝑠(𝑢) =

1
2
𝑘2𝑢2 +

1
4
𝑘4𝑢4, where 𝑘2 = 1, 𝑘4 = 100 and 𝑣𝑝(𝑡) = 0.01. (a-c) Results for the ensemble

averages of three different observables: (a) the displacement of each particle ⟨𝑥𝑖⟩, (b) the external force ⟨𝐹𝑒𝑥⟩ and (c) the external work ⟨𝑊 ⟩. The blue solid
ines and green dashed lines are the results from Langevin simulations with process 𝑆 and process 𝑆̃, respectively. The orange dotted lines are the prediction
or process 𝑆 from process 𝑆̃. (d, e) Validation of the uncertainty quantification estimates by evaluating the time evolution of (d) the standard deviation of 𝑏𝑖𝑎𝑠
nd (e) the deviation of the empirical factor  from one. The solid blue lines are the exact values from the data and the orange dotted lines are the predictions
sing the nonlinear uncertainty quantification method.

igs. 6(a-c) depict the prediction for the average displacement of each particle, average external force and average work. While
ll the predictions are in good agreement with the true results at the beginning, the errors start to become more significant from
bout 𝑡 ∼ 6, at which point the ensemble averages appear to be more stochastic in nature. This increased stochasticity results from
decrease in the number of trajectories that contribute in practice to the ensemble average and is directly related to the heavier
ails of 𝑏𝑖𝑎𝑠 discussed in Section 2. The larger errors, as compared to Case 1 studied in Section 4.2, are also understandable from
sampling perspective. In the process to be predicted, all the particles (especially the last few ones) are moving rightward in the
ost probable trajectories induced by the positive pulling velocity. However, these trajectories are highly unlikely to be observed
t equilibrium, where the right end is fixed. Hence, the predicted evolution of the observables (especially the average displacement
or the last particle and, consequently, the average external force and work) are biased. Figs. 6(d, e) show the growing standard
eviation of factor 𝑏𝑖𝑎𝑠 and the deviation of the normalization factor  from one. The latter reaches an error of 0.1 at around
∼ 8, at which time the prediction for the observables becomes very poor and are no longer reliable. Here, again, the uncertainty
uantification estimates provide an excellent prediction of the sampling errors.

.4. Case 3: From Brownian particles to the non-equilibrium response of an interacting particle system

The third and final case considered is aimed at demonstrating an extreme example for the path reweighting strategy. Specifically,
e choose to predict the non-equilibrium behavior of an anharmonic chain from independent Brownian particles, i.e., 𝑉 = 0. Here,
aterial/process 𝑆 is also set as a quartic interatomic potential 𝑉𝑠(𝑢) =

1
2𝑘2𝑢

2+ 1
4𝑘4𝑢

4 with 𝑘2 = 1 and 𝑘4 = 100 with pulling velocity
̇ (𝑡) = 𝑣𝑝 = 0.01. Figs. 7(a-c) depict the predictions for the average displacement, average external force and average work. Despite
he extreme nature of the example, the predictions are still reasonably good up to 𝑡 = 10, and actually better than that of Case 2
bove. Here, the Brownian particles can freely move, while those of Case 2 are constrained due to the boundary conditions and
nteratomic potential for system 𝑆̃. This significantly reduces the sampling errors that govern the accuracy of the predictions. Finally,
igs. 7(d, e) show the growing standard deviation of 𝑏𝑖𝑎𝑠 with time and the deviation of  from one. Again, the UQ estimates
erfectly predict both quantities over six decades in 𝜎𝑃𝑏𝑖𝑎𝑠 . Moreover, the error of | − 1| reaches 10% at 𝑡 ∼ 6, after which the
umber of realizations of system 𝑆̃ is insufficient to accurately make predictions of system 𝑆.

. Example 2: Caging in two-dimensional glassy systems

One of the most ubiquitous examples of out-of-equilibrium behavior, and one that we are regularly familiar with from everyday
12

xperience, is that of glasses (Stillinger and Debenedetti, 2013; Charbonneau et al., 2017). Glassy dynamics is observed in a wide
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Fig. 7. Prediction of the non-equilibrium behavior for material 𝑆 with quartic interatomic potential 𝑉𝑠(𝑢) =
1
2
𝑘2𝑢2 +

1
4
𝑘4𝑢4, with 𝑘2 = 1, 𝑘4 = 100, under pulling

velocity 𝜆̇(𝑡) = 𝑣𝑝(𝑡) = 0.01 from Brownian trajectories. (a-c) Results for the ensemble averages of three different observables: (a) the displacement of each
article ⟨𝑥𝑖⟩, (b) the external force ⟨𝐹𝑒𝑥⟩ and (c) the external work ⟨𝑊 ⟩. The blue solid lines and green dashed lines are the results from Langevin simulations of
ystem/process 𝑆 and 𝑆̃, respectively. The orange dotted lines are the prediction for material/process 𝑆 from 𝑆̃. (d, e) Validation of the uncertainty quantification
stimates by evaluating the time evolution of (d) the standard deviation of 𝑏𝑖𝑎𝑠 and (e) the deviation of the empirical factor  from one. The solid blue lines
are the exact values from the data and the orange dotted lines are the predictions using the nonlinear uncertainty quantification method.

range of length scales (from nanoparticles to grains) spanning a variety of industries from building materials (concrete) to paints
(colloidal suspensions) and household goods (foams & gels) (Bonn et al., 2017; Nicolas et al., 2018). Despite the ubiquity of glassy
systems, the study of equilibrium statistical mechanics leaves us ill-equipped to answer many questions surrounding the theory of
glasses, though there has been significant recent progress (Berthier and Biroli, 2011). In these final examples, we aim to predict
features of the glassy dynamics from the motions of particles in the equilibrium, fluid phase of 2D glass-formers. Supercooled liquids
above their glass transition temperature exhibit a characteristic onset of ‘‘caged’’ dynamics, whereby particles vibrate in cages formed
by their neighbors before thermal fluctuations enable hopping past the cage. This phenomenon of particle localization is usually
called ‘‘caging" and can be observed in many dynamical quantities. The mean squared displacement (), familiar to many from
the study of Brownian motion, is sufficient to explain such behavior. The emergence of sub-diffusive (slope < 1) trends in the log–log
fits to  is a hallmark of the onset of particle caging; these cages prevent particles from moving freely throughout the sample.
The observance of a plateau at long times is indicative of strongly caged dynamics, indicating that the duration of the cage grows
as the material is cooled towards the glass transition.

5.1. Model description and overview of the cases to be examined

Here, we explore two model systems, a bidisperse mixture of Hertzian disks and the standard Kob–Anderson type Lennard-Jones
glass, shown in Fig. 8. The Hertzian system is defined by an interparticle potential

𝑉𝑖𝑗 (𝑟) =

⎧

⎪

⎨

⎪

⎩

0.4𝜖
(

1 − 𝑟
𝜎𝑖𝑗

)2.5
𝑟 ≤ 𝜎𝑖𝑗

0 𝑟 > 𝜎𝑖𝑗

(31)

with a 50:50 A:B mixture, where 𝜎𝐴𝐵 = 1.2𝜎𝐴𝐴 and 𝜎𝐵𝐵 = 1.4𝜎𝐴𝐴. A constant packing fraction of 1.0𝜎−2𝐴𝐴 is used. The Lennard-Jones
system uses the usual interparticle potential with a numerical cut-off distance

𝑉𝑖𝑗 (𝑟) =

⎧

⎪

⎨

⎪

⎩

4𝜖𝑖𝑗

[

( 𝜎𝑖𝑗
𝑟

)12
−
( 𝜎𝑖𝑗

𝑟

)6
]

𝑟 ≤ 2.5𝜎𝑖𝑗

0 𝑟 > 2.5𝜎𝑖𝑗
(32)

in a 60:40 A:B mixture, where the interaction lengths are set to 𝜎𝐴𝐵 = 0.8𝜎𝐴𝐴 and 𝜎𝐵𝐵 = 0.88𝜎𝐴𝐴, the energies are set to 𝜖𝐴𝐵 = 1.5𝜖𝐴𝐴
and 𝜖𝐵𝐵 = 0.5𝜖𝐴𝐴, and a packing fraction of 1.1𝜎−2𝐴𝐴 is selected. We choose this species ratio and packing fraction to reduce the chance
of crystallization within the system, as the usual 80:20 mixture used in 3D is more prone to do so in 2D (Brüning et al., 2008; Flenner
13
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Fig. 8. Initial configurations used in Example 2. (a) Hertzian system in a 50:50 mixture. Dark blue particles are A type and light blue are B type. (b) Lennard-Jones
system in a 60:40 mixture. Dark red are A type and light red are B type. The radii of the particles reflect a size of 0.5𝜎𝑖𝑖 for particle species 𝑖. The black dashed
square is the boundary of the simulation box.

and Szamel, 2015). Both systems are composed of 10 particles and 𝜎𝐴𝐴 is taken to be 1 universally. Additionally, the simulations
are performed in a square, periodic box, where any two particles are considered to interact through their shortest distance, and
no external forcing is applied to the configurations. As above, the Euler–Mayurama method (Kloeden and Platen, 1999) is used to
integrate the overdamped Langevin dynamics of the system with parameters 𝜂 = 5, and 𝛥𝑡 = 10−3. We compare our results among
two different temperatures 𝑘𝐵𝑇 ∈ {10−1, 10−2}. In the unbiased simulations, we choose pairings of 𝜖 and 𝑘𝐵𝑇 such that we observe
phenomenology consistent with dynamical arrest if we were to increase 𝜖 or decrease 𝑘𝐵𝑇 . Thus, we use 𝜖 = 10.0 when 𝑘𝐵𝑇 = 10−1

and 𝜖 = 1.0 when 𝑘𝐵𝑇 = 10−2 in the Hertzian case, and 𝜖𝐴𝐴 = 0.1 when 𝑘𝐵𝑇 = 10−1 and 𝜖𝐴𝐴 = 0.01 when 𝑘𝐵𝑇 = 10−2 in the
Lennard-Jones model. A total of 𝑁𝑅 = 107 realizations of the liquid phase in each system were simulated to perform predictions,
and another 𝑁𝑅 = 105 are produced to validate the accuracy of these results.

To analyze the results of our simulations we compute two dynamical quantities, the mean squared displacement  and the
particle overlap 𝑄(𝑎), defined as

 =

⟨

1
𝑁

𝑁
∑

𝑖=1
‖𝛥𝐫𝑖‖2

⟩

, (33)

𝑄(𝑎) =

⟨

1
𝑁

𝑁
∑

𝑖=1
𝐻(𝑎 − ‖𝛥𝐫𝑖‖)

⟩

, (34)

where 𝐻 is the Heaviside step function. The overlap 𝑄(𝑎) quantifies the fraction of particles that have moved some distance 𝑎 within
the simulation box. The overlap function in this context conveys essentially the same information as the self-intermediate scattering
function, also commonly used in the glassy literature. We choose 𝑎 = 0.1 in all simulations to display the onset of caged dynamics
at accessible timescales.

While the glass transition can normally be observed by lowering the system temperature until plateaus are viewed in quantities
like the  and 𝑄(𝑎), we here vary instead the energy scale 𝜖 relative to 𝑘𝐵𝑇 to increase the height of energetic barriers and
induce caging. We prepare the initial state of each system to be completely force balanced, thus making the initial dynamics nearly
degenerate regarding the energy scale 𝜖. Initially, states are sampled from a spatially uniform distribution and the configurations
are subsequently quenched to their inherent structure using gradient descent (Tsalikis et al., 2008). In each system, we only employ
ne initial configuration, where we observe phenomenology consistent with caged dynamics to generate our realizations.
Since we only modify the potential through a scaling coefficient between our reference and target systems, we can pull the

ifference in 𝑉 and 𝑉 through the integration. This leaves us with two terms in the computation of 𝑏𝑖𝑎𝑠, denoted below as 1 and
2

𝜕𝑉𝑏𝑖𝑎𝑠
𝜕𝐫𝑖

=
(

1 − 𝜖
𝜖

) 𝜕𝑉
𝜕𝐫𝑖

= − (𝜒 − 1) 𝜕𝑉
𝜕𝐫𝑖

, (35)

𝑏𝑖𝑎𝑠 =
(𝜒 − 1)2
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‖

‖
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𝜕𝐫𝑖

‖

‖

‖

‖

2
𝑑𝑡 + (𝜒 − 1)

√

𝑘𝐵𝑇
2𝜂 ∫

𝜏

0

𝑁
∑

𝑖=1

𝜕𝑉
𝜕𝐫𝑖

⋅ 𝝃̇𝑖 𝑑𝑡 = 2(𝜒 − 1)2 − 1(𝜒 − 1). (36)

With this equation in hand, we can compute any member of this family of potentials at virtually no added computational cost; we
simply compute the forces for 𝑉 once, and then apply Eq. (36) for each desired 𝑉 . In our results, we employ this method to generate

̃

14

predictions at 10 different target potentials with ratios 𝑉 ∕𝑉 = 𝜒 sampled logarithmically from 1.259 to 10.0.
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Fig. 9. Observables for the Hertzian case with 𝑘𝐵𝑇 = 10−1, highlighting the transition to caging. Mean squared displacement (a,b) and particle overlap (c)
alculated from 𝑉 (black dashed line) and validation datasets (bold lines). Prediction points in which | − 1| < 0.1 are plotted with solid dots, otherwise they
are plotted with faint lines to highlight the prediction’s deviation from validation. (d) Deviation in  from unity, indicating when we can be confident in the
ccuracy of the predicted observables.

.2. Results

First, we look at both systems with 𝑘𝐵𝑇 = 10−1. In the Hertzian case, shown in Fig. 9, we find good agreement between our
rediction and the validation data over a wide range of times. In biases as high as 𝜒 = 10.0, the curves track well, and we can observe
dramatically slower dynamics as indicated by the slopes of  in Fig. 9(a,b). From Fig. 9(a) we can see in our simulation of 𝑉
black dashed line) initially diffusive behavior until 𝑡 ∼ 0.2, followed by a period of slight sub-diffusivity, and the reemergence of
iffusive behavior after 𝑡 ∼ 3.0. As we increase 𝜒 , the dynamics become more sluggish until we observe a prolonged plateau for
> 5.0. We find the same signatures of caged dynamics in 𝑄(0.1) shown in Fig. 9(c). The length of time before the accuracy of the
ethod breaks down is strongly dependent upon the value of 𝜒 used, where a 𝜒 of 10.0 breaks down at 𝑡 ∼ 0.2, while 𝜒 = 1.259
s accurate well beyond 𝑡 = 10.0. While the caging plateau seen beyond 𝜒 ∼ 5.0 appears to be just out of reach, the sub-diffusive
ehavior that we can predict is still strong evidence for predicting the onset of caged dynamics from diffusive dynamics.
Similar tends are seen in the data from the Lennard-Jones model, shown in Fig. 10. We find that the predictions break down at

horter times than seen in the Hertzian case. This is likely due to the more rapid emergence of large forces in the Lennard-Jones
odel compared to the Hertzian system when deviating from the minima of the potential. To further explore this relationship
etween the potentials, dynamics, and confidence in our predictions, we compute the instantaneous diffusion coefficients 𝐷 from
ur  curves using a simple forward difference method as 𝐷(𝑡𝑛) =

(

(𝑡𝑛+1) −(𝑡𝑛)
)

∕(4𝛥𝑡). In Fig. 11 we see that the
ofter repulsion of the Hertzian model leads to a gradual reduction of the diffusion coefficient as the configurations escape the
inima, but we find this drop in 𝐷 to happen more rapidly in the Lennard-Jones model. Surprisingly, we find that the breakdown
f our prediction appears to occur universally when 𝐷 drops below ∼ 0.003. This cutoff appears to be set by both the number of
ealizations and the temperature used for our simulation.
Lastly, we examine how these behaviors change through lowering 𝜖 and 𝑘𝐵𝑇 simultaneously by an order of magnitude. By

educing the temperature of the system to 𝑘𝐵𝑇 = 10−2, we observe improved accuracy in our results given the same length of time
n our simulations at 𝑘𝐵𝑇 = 10−1. In Fig. 12(a,b), our predictions track almost perfectly at all observed 𝜒 for both the Hertzian and
ennard-Jones models. Though this is mostly unsurprising, as we expect this equal reduction in the temperature and energy scale to
ield a similar effective temperature of simulations and push our observations out farther in time. In Fig. 12(c,d), we find that the
threshold 𝐷 in which we observed the breakdown in our predictions is further reduced by an order of magnitude, matching well
with our reduction in temperature. This is a curious result, as it seems that this method of modeling possesses an inherent limitation
on the slow dynamical processes we can resolve that is dependent on our choices of temperature and realizations employed.
15
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Fig. 10. Observables for the Lennard-Jones case with 𝑘𝐵𝑇 = 10−1, highlighting the transition to caging. Mean squared displacement (a,b) and particle overlap
(c) calculated from 𝑉 (black dashed line) and validation datasets (bold lines). Prediction points in which | − 1| < 0.1 are plotted with solid dots, otherwise
they are plotted with faint lines to highlight the prediction’s deviation from validation. (d) Deviation in  from unity, indicating when we can be confident in
the accuracy of the predicted observables.

Fig. 11. Instantaneous diffusion coefficient calculated for both the Hertzian (a) and Lennard-Jones (b) models, at 𝑘𝐵𝑇 = 10−1. Prediction points are plotted as
ots, and validation as solid lines. Y-scales in both plots are shared. The predictions appear to breakdown at a fixed diffusion rate of about 𝐷 ∼ 0.003 that is
ndependent of the potential employed.

.3. Uncertainty quantification

In the following, we compare the UQ estimates for the standard deviation of 𝑏𝑖𝑎𝑠 with the data, for the two extreme biases
onsidered, i.e., 𝜒 = 1.26 and 𝜒 = 10.0, of the Hertzian and the Lennard-Jones systems. These are shown in Fig. 13 for both
emperatures studied, i.e., 𝑘𝐵𝑇 = 0.1 and 𝑘𝐵𝑇 = 0.01. Here, we use 𝑛𝑇 = 100 for the time discretization and choose the initial
equilibrium) configuration as the reference trajectory. We recall that such estimates were built upon a quadratic approximation of
he bias potential, while the biases for the systems considered are themselves Hertzian and Lennard-Jones. These potentials deviate
rom simple quadratic forms, particularly the Hertzian, which does not have a unique minimum but rather an extended zero plateau
eyond a certain threshold. Moreover, the phenomenon here studied is that of diffusion, whereby particle trajectories will visit all
16
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Fig. 12.  for the Hertzian (a) and Lennard-Jones (b) models, at 𝑘𝐵𝑇 = 10−2. Corresponding instantaneous diffusion coefficient in the Hertzian (c) and
ennard-Jones (d) models. Y-scales in both sets of plots are shared. In all cases, prediction points are plotted as dots, and validation as solid lines.

Table 1
Ratio of the standard deviation of 𝑏𝑖𝑎𝑠 between the data and UQ prediction for the Lenard-Jones and Hertzian potentials.

𝜎𝑏𝑖𝑎𝑠
(data)∕𝜎𝑏𝑖𝑎𝑠

(predictions)

𝜒 = 1.26 𝜒 = 10.0

low time large time low time large time

Lennard-Jones 𝑘𝐵𝑇 = 0.01 1.10 (𝑡 = 0.01) 2.60 (𝑡 = 10) 1.12 (𝑡 = 0.01) 2.84 (𝑡 = 0.3)

𝑘𝐵𝑇 = 0.1 1.34 (𝑡 = 0.01) 2.69 (𝑡 = 1) 1.70 (𝑡 = 0.01) 5.29 (𝑡 = 0.03)

Hertzian 𝑘𝐵𝑇 = 0.01 2.97 (𝑡 = 0.01) 2.52 (𝑡 = 10) 2.96 (𝑡 = 0.01) 23.5 (𝑡 = 1)

𝑘𝐵𝑇 = 0.1 2.95 (𝑡 = 0.01) 8.10 (𝑡 = 10) 3.02 (𝑡 = 0.01) 25.2 (𝑡 = 0.1)

parts of the potential, as opposed to be constrained to the neighborhood of a given position. Yet, despite all these rather unfavorable
circumstances, the UQ estimates provide remarkably good predictions for the Lennard-Jones system, and mostly results within the
same order of magnitude for the Hertzian system. To be more specific, we provide in Table 1 the ratio between the data and the
predictions for 𝜎𝑏𝑖𝑎𝑠

at two significant times of the predictions for all cases shown in Fig. 13. These times are chosen to be the
lowest time depicted (𝑡 = 10−2) and the time prior to the plateau and subsequent decay of the standard deviation of 𝑏𝑖𝑎𝑠 observed
in the data (this time is case dependent, and hence specified in the table). This behavior is a strong signature of the reduced number
of relevant trajectories participating in the ensemble averages, which in turn implies that the estimate of 𝜎𝑏𝑖𝑎𝑠

obtained from the
data ceases to be accurate. Comparisons between the data and the predictions beyond this point are therefore not meaningful.

Finally, we make some remarks regarding the computation of the UQ estimates. These calculations were found to be extremely
fast and only requiring about a minute for each case in Matlab on a laptop. This is for the time discretization used, 𝑛𝑇 = 100, which
was sufficient to guarantee convergence in all cases, and for ∼100 time points. Yet, it is important to remark that, as the difference
between the target and simulated potentials increases, or as time increases, the spectrum of the eigenvalues of matrix 𝐀𝑠𝑞 become
increasingly large, which can lead to a poorly conditioned matrix and associated numerical issues. Indeed, a direct evaluation of
Eq. (25) using Matlab, will not produce results after a given time, as could be implied from Fig. 13. Although these numerical issues
could be potentially resolved by recourse to more sophisticated strategies, these were not pursued here, as the time range of the
predictions already surpassed the point of failure of the path reweighting strategy.
17
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Fig. 13. Validation of the uncertainty estimates for the Hertzian potential with (a) 𝜒 = 1.26, (b) 𝜒 = 10, and for the Lennard-Jones potential with (c) 𝜒 = 1.26,
(d) 𝜒 = 10. The time discretization for these estimates is set as 𝑛𝑇 = 100 and the reference trajectory is chosen as the initial configuration.

6. Conclusions

In this paper, we provide a statistical mechanics approach with quantified uncertainty to extrapolate material behavior to
distinct loading conditions or material systems. The approach is based on reweighting the probability density for trajectories,
building up on the ideas of Chen and Horing (2007), and enables the calculation of ensemble averages of arbitrary observables
f system/process 𝑆 from simulations (or, potentially, experimental data) of system/process 𝑆̃. The formalism is a priori exact and
ossesses many attractive features, such as acceleration of the dynamics under a suitable choice of the bias potential, enabling trivial
ime parallelization, or the full exploration of a family of potentials at virtually zero added computational cost. Yet, it suffers from
ampling issues as the ‘‘distance’’ between the predicted and simulated system increases, which become more apparent for large
imes or large particulate systems. In other words, for a fixed number of realizations of system 𝑆̃, the uncertainty in the predictions
or 𝑆 become increasingly large with the bias potential for a fixed time, or with time, for a fixed bias potential. Remarkably though,
he uncertainty of such predictions can be estimated a priori without requiring any simulations of 𝑆. Specifically, analytical formulas
or estimating the uncertainty were derived here based on a quadratic approximation of the bias potential (defined as the difference
etween the potentials of systems 𝑆̃ and 𝑆). These estimates proved to be remarkably accurate for systems with a strong quadratic
ias (and markedly more accurate than classical formulas for the propagation of uncertainty), and deliver estimates for the errors
ithin good order of magnitude for realistic potentials.
The above path reweighting strategy and uncertainty quantification estimates have been applied to two illustrative examples. The

irst example is a one-dimensional mass–spring chain, often used as a prototype for polymer chains or biological macromolecules.
his simple example is used to showcase the versatility of the approach, both in the type of observables that can be predicted
microscopic or macroscopic, and instantaneous or path dependent), and the types of inference that can be made from one
ystem to another (e.g., from one potential to another, from equilibrium to non-equilibrium, or the extreme case of predicting
he non-equilibrium behavior of an interacting particle system from independent Brownian particles). The second example is a two-
imensional glass-forming system with Hertzian or Lennard-Jones potential, where the emergence of particle caging is predicted
rom the liquid phase as the strength of the potential is increased. These two rather distinct examples (one elastic and the other
iffusive) illustrate the possibility of extrapolating material behavior under far-from-equilibrium conditions with a high degree of
ccuracy, for small systems and short times.
18
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Appendix A. Path integral representation of Langevin dynamics

We here consider the main equation discussed in the narrative, mainly,

𝜂𝑥̇ = − 𝜕𝑉
𝜕𝑥

+
√

𝜎 𝜉̇, (A.1)

where, for convenience, we restrict ourselves to the one dimensional case, and denote 𝜎 = 2𝑘𝐵𝑇 𝜂. This stochastic differential
equation has additive noise, i.e., 𝜎 is independent of 𝑥, and hence, its Itô and Stratonovich interpretation coincide.

In this appendix we derive the path integral representation of Eq. (A.1) (Chernyak et al., 2006; Kieninger and Keller, 2021),
ollowing both the Itô and Stratonovich interpretation, and demonstrate their equivalence.
Beginning with the Itô interpretation, we discretize Eq. (A.1) with a constant time step 𝛥𝑡, according to the Euler–Maruyama

cheme

𝜂(𝑥𝑛+1 − 𝑥𝑛) = −𝑉 ′(𝑥𝑛)𝛥𝑡 +
√

𝜎(𝜉𝑛+1 − 𝜉𝑛), (A.2)

where the superscript 𝑛 + 1 is associated to time step 𝑡𝑛+1 = 𝑡𝑛 + 𝛥𝑡 and 𝑉 ′ = 𝜕𝑉 ∕𝜕𝑥. Then, the probability of seeing a trajectory
{𝑥}𝑛𝑇0 ∶= {𝑥0, 𝑥1,… ., 𝑥𝑛𝑇 } given the initial conditions is given by the product of the transition probabilities 𝑄𝑛(𝑛 + 1, 𝑛) from each
point 𝑥𝑛 to the next


(

{𝑥}𝑛𝑇0 |𝑥0
)

=
𝑛𝑇 −1
∏

𝑛=0
𝑄𝑛(𝑛 + 1, 𝑛). (A.3)

Each transition probability 𝑄𝑛(𝑛 + 1, 𝑛), may be computed by means of a change of variables from the probability distribution
of 𝛥𝜉𝑛 = 𝜉𝑛+1 − 𝜉𝑛 (Elber and Shalloway, 2000). In particular, since 𝛥𝜉𝑛 is sampled from a Gaussian distribution with variance 𝛥𝑡,
(𝛥𝜉𝑛) =

(

1
2𝜋𝛥𝑡

)1∕2
𝑒−

(𝛥𝜉𝑛 )2
𝛥𝑡 . Hence, using Eq. (A.2), 𝑄𝑛(𝑛 + 1, 𝑛) will be of the form

𝑄𝑛(𝑛 + 1, 𝑛) = 1
𝑍𝑛 exp

[

− 1
2𝜎

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛)

)2
𝛥𝑡

]

, (A.4)

where the factors 𝑍𝑛 must ensure that the probability distribution is normalized to 1, i.e.,

𝑍𝑛 = ∫

∞

−∞
exp

[

− 1
2𝜎

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛)

)2
𝛥𝑡

]

𝑑𝑥𝑛+1. (A.5)

These are simple Gaussian integrals, which can be readily computed as

𝑍𝑛 =

√

2𝜋𝜎𝛥𝑡
𝜂

. (A.6)

Hence, the path probability distribution reads


(

{𝑥}𝑛𝑇0 |𝑥0
)

=

(𝑛𝑇 −1
∏ 𝜂

√

)

exp

[

− 1
𝑛𝑇 −1
∑

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛 + 𝑉 ′(𝑥𝑛)

)2
𝛥𝑡

]

, (A.7)
19
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or equivalently,


(

{𝑥}𝑛𝑇0 |𝑥0
)

=

(𝑛𝑇 −1
∏

𝑛=0

𝜂
√

2𝜋𝜎𝛥𝑡

)

𝑒−𝛽 , with  = 1
4𝜂

𝑛𝑇 −1
∑

𝑛=0

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛)

)2
𝛥𝑡. (A.8)

If, in contrast, we had started with a Stratonovich interpretation of Eq. (A.1), then, its discretized version would read

𝜂(𝑥𝑛+1 − 𝑥𝑛) = −𝑉 ′(𝑥𝑛+1∕2)𝛥𝑡 +
√

𝜎(𝜉𝑛+1 − 𝜉𝑛), (A.9)

where 𝑥𝑛+1∕2 is defined as 𝑥𝑛+1+𝑥𝑛
2 . The probability of observing a trajectory would then be expressed as


(

{𝑥}𝑛𝑇0 |𝑥0
)

=
𝑛𝑇 −1
∏

𝑛=0
𝑄𝑛(𝑛 + 1, 𝑛), with

𝑄𝑛(𝑛 + 1, 𝑛) = 1
𝑍𝑛 exp

[

− 1
2𝜎

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛+1∕2)

)2
𝛥𝑡

]

.

(A.10)

Similarly, the normalization factors 𝑍𝑛 must satisfy

𝑍𝑛 = ∫

∞

−∞
exp

[

− 1
2𝜎

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛+1∕2)

)2
𝛥𝑡

]

𝑑𝑥𝑛+1. (A.11)

We approximate this integral by doing a Taylor expansion of 𝑉 ′(𝑥𝑛+1∕2) around 𝑥𝑛, as

𝑉 ′(𝑥𝑛+1∕2) ≃ 𝑉 ′(𝑥𝑛) + 𝑉 ′′(𝑥𝑛)
(

𝑥𝑛+1∕2 − 𝑥𝑛
)

≃ 𝑉 ′(𝑥𝑛) + 𝑉 ′′(𝑥𝑛)𝑥
𝑛+1 − 𝑥𝑛

2
. (A.12)

Then, a simple Gaussian integration delivers

𝑍𝑛 ≃

√

2𝜋𝜎𝛥𝑡

𝜂
(

1 + 𝑉 ′′(𝑥𝑛) 𝛥𝑡2𝜂
) . (A.13)

The term in parenthesis may be further approximated by an exponential, and similarly, 𝑉 ′′ may be evaluated at 𝑥𝑛+1∕2 to first order,
i.e.,

𝑍𝑛 ≃

√

2𝜋𝜎𝛥𝑡
𝜂

exp
[

− 1
2𝜂

𝑉 ′′(𝑥𝑛+1∕2)𝛥𝑡
]

. (A.14)

The path probability distribution (to first order in 𝛥𝑡 in the exponential) may then be expressed as


(

{𝑥}𝑛𝑇0 |𝑥0
)

=

(𝑛𝑇 −1
∏

𝑛=0

𝜂
√

2𝜋𝜎𝛥𝑡

)

exp

[

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛+1∕2)

)2
𝛥𝑡 + 1

2𝜂
𝑉 ′′(𝑥𝑛+1∕2)𝛥𝑡

]

. (A.15)

Although this expression is, in appearance, distinct to Eq. (A.7), their exponents are actually identical to first order in 𝛥𝑡. Indeed,
after expanding the squares in (A.15), the cross term is the only one that requires special consideration. In particular, from Itô’s
ormula, it follows that

2𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
𝑉 ′(𝑥𝑛+1∕2) ≃ 2𝜂 𝑥

𝑛+1 − 𝑥𝑛

𝛥𝑡
𝑉 ′(𝑥𝑛) + 2𝜂 𝑥

𝑛+1 − 𝑥𝑛

𝛥𝑡
𝑉 ′′(𝑥𝑛)𝑥

𝑛+1 − 𝑥𝑛

2
+ (

√

𝛥𝑡)

≃ 2𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
𝑉 ′(𝑥𝑛) + 𝜎

𝜂
𝑉 ′′(𝑥𝑛) + (

√

𝛥𝑡).
(A.16)

The second term involving 𝑉 ′′(𝑥𝑛) then cancels with the last term in the exponent of Eq. (A.15), recovering Eq. (A.7). In views of
its simplicity, Eq. (A.7) is chosen for implementation purposes, as well as in the derivations in the following appendices.

Appendix B. Path integral transformation under change of potential

Following the discrete representation of the path integrals in Itô form used in Appendix A, we here prove Eq. (4) for 𝑁 = 1
in one dimension, without lost of generality. Towards that goal, we define 𝑉𝑏𝑖𝑎𝑠 = 𝑉 − 𝑉 and replace 𝑉 by 𝑉 − 𝑉𝑏𝑖𝑎𝑠 in the rate
functional 𝑏𝑖𝑎𝑠 of Eq. (A.8), and expand the squares as

 = 1
4𝜂

𝑛𝑇 −1
∑

𝑛=0

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛) − 𝑉 ′

𝑏𝑖𝑎𝑠(𝑥
𝑛)
)2

𝛥𝑡

= 1
4𝜂

𝑛𝑇 −1
∑

𝑛=0

[

(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛)

)2
+
(

𝑉 ′
𝑏𝑖𝑎𝑠(𝑥

𝑛)
)2 − 2𝑉 ′

𝑏𝑖𝑎𝑠(𝑥
𝑛)
(

𝜂 𝑥
𝑛+1 − 𝑥𝑛

𝛥𝑡
+ 𝑉 ′(𝑥𝑛)

)

]

𝛥𝑡.

(B.1)

Here, ̃ may be readily identified in the first term, and hence

𝑏𝑖𝑎𝑠 =  − ̃ = 1
4𝜂

𝑛𝑇 −1
∑

𝑛=0
𝑉 ′
𝑏𝑖𝑎𝑠(𝑥

𝑛)
[

𝑉 ′
𝑏𝑖𝑎𝑠(𝑥

𝑛)𝛥𝑡 − 2
√

2𝑘𝐵𝑇 𝜂
(

𝜉𝑛+1 − 𝜉𝑛
)

]

, (B.2)

where we have used the Langevin equation associated to 𝑉 .
20
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Appendix C. Nonlinear uncertainty quantification estimate

In this appendix we provide the detailed calculations that lead to the variance estimate for 𝑏𝑖𝑎𝑠 given by Eq. (25) in the narrative.
We begin by deriving an approximation for 𝑏𝑖𝑎𝑠 resulting from the expansions given in Eqs. (12) and (13). Directly inserting

such expansions in the integrand of 𝑏𝑖𝑎𝑠, this may be approximated as

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) ⋅
(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)𝛥𝑡 − 2
√

𝜎𝛥𝝃𝑛
)

≃ ‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 + ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛‖
‖

‖

2
𝛥𝑡

− 2
(

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 + ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛
)

⋅
[

𝜂
(

𝛥𝐱𝑛𝑟 + 𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡 + ∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐱𝑛𝛥𝑡

]

.

(C.1)

Expanding the products, and noting that 𝑉𝑏𝑖𝑎𝑠 − 𝑉 = −𝑉 ,

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) ⋅
(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)𝛥𝑡 − 2
√

𝜎𝛥𝝃𝑛
)

≃ ‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
𝛥𝑡 − 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

[

𝜂𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
]

+ 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛𝛥𝑡

)

− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅
[

𝜂
(

𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐱𝑛𝛥𝑡

]

− 2
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛
)

⋅
[

𝜂𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
]

− 2
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛
)

⋅
[

𝜂
(

𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐱𝑛𝛥𝑡

]

+ ‖

‖

‖

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛‖
‖

‖

2
𝛥𝑡

= ‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
𝛥𝑡 − 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

[

𝜂𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
]

− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅
[

𝜂
(

𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇∇𝑉 |𝐱𝑛𝑟 𝛿𝐱
𝑛𝛥𝑡

]

− 2
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛
)

⋅
[

𝜂𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
]

− 2
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛
)

⋅
[

𝜂
(

𝛿𝐱𝑛+1 − 𝛿𝐱𝑛
)

+ ∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐱𝑛𝛥𝑡

]

+ ‖

‖

‖

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐱
𝑛‖
‖

‖

2
𝛥𝑡.

(C.2)

Next, we define 𝛿𝐲𝑛 =
(

𝜂∕
√

𝜎𝛥𝑡
)

𝛿𝐱𝑛 and recall that form the definition of 𝜎, 𝛽
4𝜂 = 1

2𝜎 . Then, 𝑏𝑖𝑎𝑠 may be approximately written
s

𝑏𝑖𝑎𝑠 = 𝑒−𝛽𝑏𝑖𝑎𝑠 = exp

[

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0
∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) ⋅

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)𝛥𝑡 − 2
√

𝜎𝛥𝝃𝑛
)

]

≃ exp

[

−
𝑛𝑇 −1
∑

𝑛=0

{

1
2𝜎

[

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)]

𝛥𝑡

−
√

𝛥𝑡
𝜎

[

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅
(

𝛿𝐲𝑛+1 − 𝛿𝐲𝑛 + ∇∇𝑉 |𝐱𝑛𝑟 𝛿𝐲
𝑛 𝛥𝑡
𝜂

)

+
(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐲
𝑛
)

⋅
(

𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
𝜂

)]

− 1
𝜂

(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐲
𝑛
)

⋅
[

𝛿𝐲𝑛+1 − 𝛿𝐲𝑛 + 1
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐲𝑛𝛥𝑡

]

𝛥𝑡

+ 1
2𝜂2

‖

‖

‖

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐲
𝑛‖
‖

‖

2
𝛥𝑡2

}]

.

(C.3)

We now assume that 𝐱𝑟(𝑡0) = 𝐱(𝑡0) such that 𝛿𝐲0 = 𝜂∕
√

(𝜎𝛥𝑡)𝛿𝐱0 = 𝟎, and define 𝛥
(

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛−1𝑟

)

∶= ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 − ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛−1𝑟
, to

rewrite the exponent in 𝑏𝑖𝑎𝑠 in a quadratic form, i.e.,

𝑏𝑖𝑎𝑠 ≃ exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

[

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)]

𝛥𝑡

+
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

[

−𝛥
(

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛−1𝑟

)

+ ∇∇𝑉 |𝐱𝑛𝑟 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
𝛥𝑡
𝜂

+ ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟

(

𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
𝜂

)]

⋅ 𝛿𝐲𝑛

+
√

𝛥𝑡
𝜎

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑇 −1
𝑟

⋅ 𝛿𝐲𝑛𝑇

+ 1
2

𝑛𝑇 −1
∑

𝑛=1

1
𝜂

(

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐲
𝑛
)

⋅
[(

−2𝐈𝛥𝑡 + 2
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡2 − 1

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛥𝑡

2
)

𝛿𝐲𝑛
]

+1
𝑛𝑇 −1
∑ 2 (

∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛿𝐲
𝑛
)

⋅ 𝛿𝐲𝑛+1𝛥𝑡
}

.

(C.4)
21

2 𝑛=1 𝜂
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We recall that the path probability distribution for 𝐱(𝑡) in system 𝑆̃ is

̃
(

𝐱|𝐱0
)

=

(

𝜂
√

2𝜋𝜎𝛥𝑡

)𝑁𝑑𝑛𝑇

exp

(

− 1
2𝜎𝛥𝑡

𝑛𝑇 −1
∑

𝑛=0

‖

‖

𝜂𝛥𝐱𝑛 + ∇𝑉 (𝐱𝑛, 𝑡𝑛)𝛥𝑡‖
‖

2
)

. (C.5)

Expanding ∇𝑉 with respect to the reference path, and using the change of variables previously introduced, 𝛿𝐲𝑛 =
(

𝜂∕
√

𝜎𝛥𝑡
)

𝛿𝐱𝑛,
the path probability distribution for 𝛿𝐲(𝑡) reads

̃
(

𝛿𝐲|𝛿𝐲0
)

≃

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp
⎛

⎜

⎜

⎝

−1
2

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

‖

𝜂
√

𝜎𝛥𝑡
𝛥𝐱𝑛𝑟 +

√

𝛥𝑡
𝜎

∇𝑉 |

|𝐱𝑛𝑟
+ 𝛿𝐲𝑛+1 − 𝛿𝐲𝑛 + 𝛥𝑡

𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐲𝑛

‖

‖

‖

‖

‖

‖

2
⎞

⎟

⎟

⎠

. (C.6)

We remark that the prefactor has been modified as well to ensure that the probability distribution is normalized to one. Expanding
the squares in the exponential, one obtains

̃
(

𝛿𝐲|𝛿𝐲0
)

≃

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡

−
𝑛𝑇 −1
∑

𝑛=0

√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

⋅
(

𝛿𝐲𝑛+1 − 𝛿𝐲𝑛 + 𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
𝛿𝐲𝑛

)

− 1
2

𝑛𝑇 −1
∑

𝑛=0

[

‖

‖

‖

𝛿𝐲𝑛+1‖‖
‖

2
− 2𝛿𝐲𝑛+1 ⋅

((

𝐈 − 𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)

+𝛿𝐲𝑛 ⋅
((

𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
+ 𝛥𝑡2

𝜂2
∇∇𝑉 |

|𝐱𝑛𝑟
∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)]

}

.

(C.7)

Similarly to what we did for 𝑏𝑖𝑎𝑠, we assume 𝛿𝐲0 = 𝟎, and manipulate the exponent to convert it into a quadratic form in 𝛿𝐲𝑛,
i.e.,

̃
(

𝛿𝐲|𝛿𝐲0
)

≃

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡

−
𝑛𝑇 −1
∑

𝑛=1

√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

⋅
((

−𝐈 + 𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)

−
𝑛𝑇
∑

𝑛=1

√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛−1𝑟

)

⋅ 𝛿𝐲𝑛

− 1
2

𝑛𝑇 −1
∑

𝑛=1

[

−2𝛿𝐲𝑛+1 ⋅
((

𝐈 − 𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)

+𝛿𝐲𝑛 ⋅
((

𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
+ 𝛥𝑡2

𝜂2
∇∇𝑉 |

|𝐱𝑛𝑟
∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)]

−1
2

𝑛𝑇
∑

𝑛=1
‖𝛿𝐲𝑛‖2

}

=

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡

−
𝑛𝑇 −1
∑

𝑛=1

√

𝛥𝑡
𝜎

[

(

𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

− 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛−1𝑟

)]

⋅ 𝛿𝐲𝑛

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

|𝐱𝑛𝑇 −1
𝑟

)

⋅ 𝛿𝐲𝑛𝑇

− 1
2

𝑛𝑇 −1
∑

𝑛=1

[

−2𝛿𝐲𝑛+1 ⋅
((

𝐈 − 𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)

+𝛿𝐲𝑛 ⋅
((

2𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
+ 𝛥𝑡2

𝜂2
∇∇𝑉 |

|𝐱𝑛𝑟
∇∇𝑉 |

|𝐱𝑛𝑟

)

𝛿𝐲𝑛
)]

−1
‖𝛿𝐲𝑛𝑇 ‖2

}

.

(C.8)
22
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Therefore, the average of 𝑏𝑖𝑎𝑠 can be approximated as,

⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = ∫ ⋯∫ 𝑏𝑖𝑎𝑠̃
(

𝛿𝐲|𝛿𝐲0
)

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇

≃ ∫ ⋯∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

[

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

+
‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2]

𝛥𝑡

+
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

[

−𝛥
(

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛−1𝑟

)

+ ∇∇𝑉 |𝐱𝑛𝑟 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
𝛥𝑡
𝜂

+ ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟

(

𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
𝜂

)

−
(

𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

+ 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛−1𝑟

)]

⋅ 𝛿𝐲𝑛

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

|𝐱𝑛𝑇 −1
𝑟

− ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑇 −1
𝑟

)

⋅ 𝛿𝐲𝑛𝑇

+ 1
2

𝑛𝑇 −1
∑

𝑛=1
(𝛿𝐲𝑛)T

[

1
𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟

(

−2𝐈𝛥𝑡 + 2
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡2 − 1

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛥𝑡

2
)

−
(

2𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
+ 𝛥𝑡2

𝜂2
∇∇𝑉 |

|𝐱𝑛𝑟
∇∇𝑉 |

|𝐱𝑛𝑟

)]

𝛿𝐲𝑛

− 1
2

𝑛𝑇 −1
∑

𝑛=1

(

𝛿𝐲𝑛+1
)T

(

−2𝐈 + 2
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡 − 2

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛥𝑡

)

𝛿𝐲𝑛

−1
2
‖𝛿𝐲𝑛𝑇 ‖2

}

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇 .

(C.9)

Recalling that 𝑉 − 𝑉𝑏𝑖𝑎𝑠 = 𝑉 , the resulting expression may be simplified to

⟨𝑏𝑖𝑎𝑠⟩𝑆̃ ≃ ∫ ⋯∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡

+
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

[

−
(

𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

+ 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛−1𝑟

)]

⋅ 𝛿𝐲𝑛

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

⋅ 𝛿𝐲𝑛𝑇

− 1
2

𝑛𝑇 −1
∑

𝑛=1
(𝛿𝐲𝑛)T

(

2𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟 +
𝛥𝑡2

𝜂2
∇∇𝑉 |𝐱𝑛𝑟 ∇∇𝑉 |𝐱𝑛𝑟

)

𝛿𝐲𝑛

+ 1
2

𝑛𝑇 −1
∑

𝑛=1

(

𝛿𝐲𝑛+1
)T 2

(

𝐈 − 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 𝛥𝑡

)

𝛿𝐲𝑛

−1
2
‖𝛿𝐲𝑛𝑇 ‖2

}

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇

= ∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

𝑒−
1
2 𝛿𝐲

T𝐀𝛿𝐲+𝐛⋅𝛿𝐲+𝑐𝑑𝛿𝐲

= 1
√

det(𝐀)
𝑒
1
2 𝐛

T𝐀−1𝐛+𝑐 ,

(C.10)

where 𝑐 is a constant defined as,

𝑐 = − 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡. (C.11)

Both vectors 𝐲 and 𝐛 consist of 𝑛𝑇 small 𝑁𝑑-dimensional vectors,

𝛿𝐲 =

⎛

⎜

⎜

⎜

⎜

𝛿𝐲1
𝛿𝐲2
⋮
𝑛𝑇

⎞

⎟

⎟

⎟

⎟

and 𝐛 =

⎛

⎜

⎜

⎜

⎜

𝐛1
𝐛2
⋮
𝑛𝑇

⎞

⎟

⎟

⎟

⎟

, (C.12)
23
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𝛿𝐲
⎠ ⎝

𝐛
⎠



Journal of the Mechanics and Physics of Solids 161 (2022) 104779S. Huang et al.

w

where,

𝐛𝑛 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

−
√

𝛥𝑡
𝜎

[

𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

− 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛−1𝑟

)]

, 𝑛 < 𝑛𝑇

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

, 𝑛 = 𝑛𝑇

(C.13)

The matrix 𝐀 is written as,

𝐀 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐀11 𝐀12 ⋯ 𝐀1𝑛𝑇

𝐀21 𝐀22 ⋯ 𝐀2𝑛𝑇

⋮ ⋮ ⋱ ⋮
𝐀𝑛𝑇 1 𝐀𝑛𝑇 2 ⋯ 𝐀𝑛𝑇 𝑛𝑇

⎞

⎟

⎟

⎟

⎟

⎠

(C.14)

ith each 𝑁𝑑 ×𝑁𝑑 matrix block defined as,

𝐀𝑝𝑞 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐈 + Γ𝑛Γ𝑛, (𝑝, 𝑞) = (𝑛, 𝑛) with 𝑛 = 1,… , 𝑛𝑇 − 1

− Γ𝑛, (𝑝, 𝑞) = (𝑛 + 1, 𝑛) or (𝑛, 𝑛 + 1) with 𝑛 = 1,… , 𝑛𝑇 − 1

𝐈, (𝑝, 𝑞) = (𝑛𝑇 , 𝑛𝑇 )

𝟎, otherwise

(C.15)

with

Γ𝑛 = 𝐈 − 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 𝛥𝑡. (C.16)

The matrices 𝜞 𝑛 are symmetric, and, hence, so is the matrix 𝐀. Furthermore, det (𝐀) = 1, as is shown below following an iterative
procedure, by which we add row 𝑛, multiplied by 𝜞 𝑛−1, to row 𝑛 − 1 from 𝑛 = 𝑛𝑇 to 𝑛 = 2. That is,

det(𝐀) =

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐈 + Γ1Γ1 −Γ1 𝟎 ⋯ 𝟎 𝟎 𝟎
−Γ1 𝐈 + Γ2Γ2 −Γ2 ⋯ 𝟎 𝟎 𝟎
−𝟎 −Γ2 𝐈 + Γ3Γ3 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈 + Γ𝑛𝑇 −2Γ𝑛𝑇 −2 −Γ𝑛𝑇 −2 𝟎
𝟎 𝟎 𝟎 ⋯ −Γ𝑛𝑇 −2 𝐈 + Γ𝑛𝑇 −1Γ𝑛𝑇 −1 −Γ𝑛𝑇 −1

𝟎 𝟎 𝟎 ⋯ 𝟎 −Γ𝑛𝑇 −1 𝐈

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐈 + Γ1Γ1 −Γ1 𝟎 ⋯ 𝟎 𝟎 𝟎
−Γ1 𝐈 + Γ2Γ2 −Γ2 ⋯ 𝟎 𝟎 𝟎
−𝟎 −Γ2 𝐈 + Γ3Γ3 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈 + Γ𝑛𝑇 −2Γ𝑛𝑇 −2 −Γ𝑛𝑇 −2 𝟎
𝟎 𝟎 𝟎 ⋯ −Γ𝑛𝑇 −2 𝐈 𝟎
𝟎 𝟎 𝟎 ⋯ 𝟎 −Γ𝑛𝑇 −1 𝐈

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐈 + Γ1Γ1 −Γ1 𝟎 ⋯ 𝟎 𝟎 𝟎
−Γ1 𝐈 + Γ2Γ2 −Γ2 ⋯ 𝟎 𝟎 𝟎
−𝟎 −Γ2 𝐈 + Γ3Γ3 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈 𝟎 𝟎
𝟎 𝟎 𝟎 ⋯ −Γ𝑛𝑇 −2 𝐈 𝟎
𝟎 𝟎 𝟎 ⋯ 𝟎 −Γ𝑛𝑇 −1 𝐈

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= ⋯

=

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

𝐈 𝟎 𝟎 ⋯ 𝟎 𝟎 𝟎
−Γ1 𝐈 𝟎 ⋯ 𝟎 𝟎 𝟎
−𝟎 −Γ2 𝐈 ⋯ 𝟎 𝟎 𝟎
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮
𝟎 𝟎 𝟎 ⋯ 𝐈 𝟎 𝟎
𝟎 𝟎 𝟎 ⋯ −Γ𝑛𝑇 −2 𝐈 𝟎
𝟎 𝟎 𝟎 ⋯ 𝟎 −Γ𝑛𝑇 −1 𝐈

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

= 1.

(C.17)

Next, we show that 𝐛T𝐀−1𝐛 + 2𝑐 = 0, which leads to ⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = 1. To do so, we introduce a vector 𝐮 with dimension 𝑁𝑑𝑛𝑇 such
that 𝐀𝐮 = 𝐛. Then, using as previously the notation 𝛥𝑥𝑛 = 𝑥𝑛+1 − 𝑥𝑛 and defining a backward finite difference 𝛥 𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛−1, and
24
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T
o

hence 𝛥𝑏𝛥𝑥𝑛 = 𝛥𝑏𝑥𝑛+1 − 𝛥𝑏𝑥𝑛 = 𝑥𝑛+1 − 2𝑥𝑛 + 𝑥𝑛−1, the 𝑛th timestep of 𝐀𝐮 = 𝐛 reads

(𝐀𝐮)𝑛 = −𝜞 𝑛−1𝐮𝑛−1 + (𝐈 + 𝜞 𝑛𝜞 𝑛)𝐮𝑛 − 𝜞 𝑛𝐮𝑛+1

= −𝛥𝑏𝛥𝐮𝑛 +
𝛥𝑡
𝜂

[

−𝛥𝑏

(

∇∇𝑉 |𝐱𝑛𝑟 𝐮
𝑛
)

+ ∇∇𝑉 |𝐱𝑛𝑟 𝛥𝐮
𝑛
]

+ 𝛥𝑡2

𝜂2
∇∇𝑉 |𝐱𝑛𝑟 ∇∇𝑉 |𝐱𝑛𝑟 𝐮

𝑛

= 𝐛𝑛 = −
√

𝛥𝑡
𝜎

[

𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

− 𝛥𝑏

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)]

, for 𝑛 < 𝑛𝑇

(𝐀𝐮)𝑛𝑇 = −𝜞 𝑛𝑇 −1𝐮𝑛𝑇 −1 + 𝐮𝑛𝑇

= 𝛥𝐮𝑛𝑇 −1 + 𝛥𝑡
𝜂

∇∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

𝐮𝑛𝑇 −1

= 𝐛𝑛𝑇 = −
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

, for 𝑛 = 𝑛𝑇 .

(C.18)

Here, it is assumed that 𝐮0 = 𝟎 so that the expressions remain valid for 𝑛 = 1. Equivalently, dividing by 𝛥𝑡2 and 𝛥𝑡, respectively,
these equations may be written as

𝛥𝑏
𝛥𝑡

𝛥𝐮𝑛
𝛥𝑡

−1
𝜂

[

−
𝛥𝑏
𝛥𝑡

(

∇∇𝑉 |𝐱𝑛𝑟 𝐮
𝑛
)

+ ∇∇𝑉 |𝐱𝑛𝑟
𝛥𝐮𝑛
𝛥𝑡

]

− 1
𝜂2

∇∇𝑉 |𝐱𝑛𝑟 ∇∇𝑉 |𝐱𝑛𝑟 𝐮
𝑛

=
𝛥𝑏
𝛥𝑡

(

𝛥𝐮𝑛
𝛥𝑡

+ 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 𝐮

𝑛
)

− 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟

(

𝛥𝐮𝑛
𝛥𝑡

+ 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 𝐮

𝑛
)

= 1
√

𝜎𝛥𝑡

[

1
𝜂
∇∇𝑉 |𝐱𝑛𝑟

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

−
𝛥𝑏
𝛥𝑡

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)]

, for 𝑛 < 𝑛𝑇 ,

𝛥𝐮𝑛𝑇 −1
𝛥𝑡

+ 1
𝜂
∇∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

𝐮𝑛𝑇 −1 = − 1
√

𝜎𝛥𝑡

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

, for 𝑛 = 𝑛𝑇 .

(C.19)

Introducing the following two operators,

𝐿+
𝑛 = 𝛥

𝛥𝑡
+ 1

𝜂
∇∇𝑉 |𝐱𝑛𝑟 and 𝐿−

𝑛 =
𝛥𝑏
𝛥𝑡

− 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟 , (C.20)

he above equations can be simplified as,

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐿−
𝑛𝐿

+
𝑛 𝐮

𝑛 = − 1
√

𝜎𝛥𝑡
𝐿−
𝑛

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

, for 𝑛 < 𝑛𝑇

𝐿+
𝑛𝑇 −1

𝐮𝑛𝑇 −1 = − 1
√

𝜎𝛥𝑡

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

.
(C.21)

By inspection, this second order equations can be simplified to a first order equation as,

𝐿+
𝑛 𝐮

𝑛 = − 1
√

𝜎𝛥𝑡

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

, for 𝑛 < 𝑛𝑇 . (C.22)

Moreover,

𝐛T𝐀−1𝐛 =
𝑛𝑇
∑

𝑛=1
𝐛𝑛 ⋅ 𝐮𝑛

=
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1
𝐮𝑛 ⋅ 𝐿−

𝑛

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

𝛥𝑡 −
√

𝛥𝑡
𝜎
𝐮𝑛𝑇 ⋅

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)

=
√

𝛥𝑡
𝜎

[𝑛𝑇 −1
∑

𝑛=1
𝐮𝑛 ⋅

(

𝛥𝑏
𝛥𝑡

− 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

𝛥𝑡 − 𝐮𝑛𝑇 ⋅

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

)]

= −
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

⋅
(

𝛥
𝛥𝑡

+ 1
𝜂
∇∇𝑉 |𝐱𝑛𝑟

)

𝐮𝑛𝛥𝑡

= −
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=0

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

⋅ 𝐿+
𝑛 𝐮

𝑛𝛥𝑡

= 1
𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

𝛥𝑡.

(C.23)

he previous to last equality represents the discrete analogue of integration by parts, while for the last equality we have made use
f Eq. (C.22). Therefore 𝐛T𝐀−1𝐛 + 2𝑐 = 0, which leads to ⟨ ⟩ = 1, as previously anticipated.
25
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Next, we follow a similar procedure to find the ensemble average of 2
𝑏𝑖𝑎𝑠 as

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ = ∫ ⋯∫ 2
𝑏𝑖𝑎𝑠̃

(

𝛿𝐲|𝛿𝐲0
)

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇

≃ ∫ ⋯∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

[

2 ‖‖
‖

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
‖

‖

‖

2
− 4 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 ⋅

(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

+
‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2]

𝛥𝑡

+
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

[

−2𝛥
(

∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛−1𝑟

)

+ 2 ∇∇𝑉 |𝐱𝑛𝑟 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟
𝛥𝑡
𝜂

+ 2 ∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟

(

𝛥𝐱𝑛𝑟 + ∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡
𝜂

)

−
(

𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

+ 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛−1𝑟

)]

⋅ 𝛿𝐲𝑛

−
√

𝛥𝑡
𝜎

(

𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ ∇𝑉 |

|𝐱𝑛𝑇 −1
𝑟

− 2 ∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑇 −1
𝑟

)

⋅ 𝛿𝐲𝑛𝑇

+ 1
2

𝑛𝑇 −1
∑

𝑛=1
(𝛿𝐲𝑛)T

[

1
𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟

(

−4𝐈𝛥𝑡 + 4
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡2 − 2

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛥𝑡

2
)

−
(

2𝐈 − 2𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟
+ 𝛥𝑡2

𝜂2
∇∇𝑉 |

|𝐱𝑛𝑟
∇∇𝑉 |

|𝐱𝑛𝑟

)]

𝛿𝐲𝑛

− 1
2

𝑛𝑇 −1
∑

𝑛=1

(

𝛿𝐲𝑛+1
)T

(

−2𝐈 + 2
𝜂
∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡 − 4

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠||𝐱𝑛𝑟 𝛥𝑡

)

𝛿𝐲𝑛

−1
2
‖𝐲𝑛𝑇 ‖2

}

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇 .

(C.24)

Recalling that 𝑉 −𝑉𝑏𝑖𝑎𝑠 = 𝑉 , and denoting by 𝜞̃ = 𝐈− 1
𝜂 ∇∇𝑉 |

|𝐱𝑛𝑟
𝛥𝑡 in analogy to (C.16), the resulting expression may be simplified

to

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ ≃ ∫ ⋯∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

exp

{

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

[

2
‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

‖

‖

‖

‖

‖

2

−
‖

‖

‖

‖

‖

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

‖

‖

‖

‖

‖

2]

𝛥𝑡

+
√

𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=1

[

−2
(

𝛥𝑡
𝜂

∇∇𝑉 |𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛𝑟

)

+ 2𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |𝐱𝑛−1𝑟

)

+
(

𝛥𝑡
𝜂

∇∇𝑉 |

|𝐱𝑛𝑟

)(

𝜂
𝛥𝐱𝑛𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛𝑟

)

− 𝛥

(

𝜂
𝛥𝐱𝑛−1𝑟
𝛥𝑡

+ ∇𝑉 |

|𝐱𝑛−1𝑟

)]

⋅ 𝛿𝐲𝑛

−
√

𝛥𝑡
𝜎

(

2𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
+ 2 ∇𝑉 |

𝐱𝑛𝑇 −1
𝑟

− 𝜂
𝛥𝐱𝑛𝑇 −1𝑟

𝛥𝑡
− ∇𝑉 |

|𝐱𝑛𝑇 −1
𝑟

)

⋅ 𝛿𝐲𝑛𝑇

− 1
2

𝑛𝑇 −1
∑

𝑛=1
(𝛿𝐲𝑛)T

(

2𝐈 + 2Γ𝑛Γ𝑛 − 𝐈 − Γ̃𝑛Γ̃𝑛) 𝛿𝐲𝑛

+ 1
2

𝑛𝑇 −1
∑

𝑛=1

(

𝛿𝐲𝑛+1
)T 2

(

2Γ𝑛 − Γ̃𝑛) 𝛿𝐲𝑛

−1
2
‖𝛿𝐲𝑛𝑇 ‖2

}

𝑑𝛿𝐲1 ⋯ 𝑑𝛿𝐲𝑛𝑇

= ∫

(

1
√

2𝜋

)𝑁𝑑𝑛𝑇

𝑒−
1
2 𝜹𝐲

T𝐀𝑠𝑞𝛿𝐲+𝐛𝑠𝑞 ⋅𝛿𝐲+𝑐𝑠𝑞𝑑𝛿𝐲

= 1
√

det(𝐀𝑠𝑞)
𝑒
1
2 𝐛

T
𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞+𝑐𝑠𝑞 ,

(C.25)

where the new coefficients 𝐀𝑠𝑞 , 𝐛𝑠𝑞 and 𝑐𝑠𝑞 can be expressed as,

𝐀𝑠𝑞 = 2𝐀 − 𝐀̃,
𝐛𝑠𝑞 = 2𝐛 − 𝐛̃,
𝑐𝑠𝑞 = 2𝑐 − 𝑐.

(C.26)

̃ ̃ ̃
26

Here, 𝐀, 𝐛 and 𝑐 are the defined as the analogues of 𝐀, 𝐛, and 𝑐, respectively, with the potential 𝑉 replaced by 𝑉 .
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A

b

Therefore, the variance of the bias probability is,

𝜎2𝑏𝑖𝑎𝑠
=
⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ − ⟨𝑏𝑖𝑎𝑠⟩
2
𝑆̃

= 1
√

det(𝐀𝑠𝑞)
𝑒
1
2 𝐛

T
𝑠𝑞𝐀

−1
𝑠𝑞 𝐛𝑠𝑞+𝑐𝑠𝑞 − 1.

(C.27)

ppendix D. From the nonlinear to the linear uncertainty quantification estimate

This appendix provides a detailed calculation of Eqs. (27) and (28) provided in Section 3.3. Following the approximations given
y Eq. (26) for the integrand of 𝑏𝑖𝑎𝑠 and the ones described right after, 𝑏𝑖𝑎𝑠 may be approximated by

𝑏𝑖𝑎𝑠 = 𝑒−𝛽𝑏𝑖𝑎𝑠 = exp

[

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0
∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) ⋅

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)𝛥𝑡 − 2
√

𝜎𝛥𝝃𝑛
)

]

≃ exp

[

−
𝑛𝑇 −1
∑

𝑛=0

1
2𝜎

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎
‖

‖

‖

2
𝛥𝑡

+ 1
√

𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎 ⋅ 𝛥𝝃
𝑛 − 1

𝜂
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎 ∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎 ⋅

𝑛−1
∑

𝑚=0
𝛥𝝃𝑚𝛥𝑡

)]

.

(D.1)

Next, the last two sums over 𝑛 and 𝑚 can be interchanged (∑𝑛𝑇 −1
𝑛=0

∑𝑛−1
𝑚=0 =

∑𝑛𝑇 −2
𝑚=0

∑𝑛𝑇 −1
𝑛=𝑚+1) and the labels 𝑚 and 𝑛 can be swapped,

leading to

𝑏𝑖𝑎𝑠≃exp

[

−
𝑛𝑇 −1
∑

𝑛=0

1
2𝜎

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎
‖

‖

‖

2
𝛥𝑡

+ 1
√

𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)

|

|

|

|

|

|𝛥𝝃=𝟎

⋅ 𝛥𝝃𝑛
⎤

⎥

⎥

⎦

.

(D.2)

Recalling now that the path probability density for the noise 𝛥𝝃 can be formally written as

̃ (𝛥𝝃) =

(

𝜂
√

2𝜋𝛥𝑡

)𝑁𝑑𝑛𝑇

exp

(

− 1
2𝛥𝑡

𝑛𝑇 −1
∑

𝑛=0
‖𝛥𝝃𝑛‖2

)

, (D.3)

the average of 𝑏𝑖𝑎𝑠 can be found by

⟨𝑏𝑖𝑎𝑠⟩𝑆̃ = ∫ ⋯∫ 𝑏𝑖𝑎𝑠̃ (𝛥𝝃) 𝑑𝛥𝝃0 ⋯ 𝑑𝛥𝝃𝑛𝑇 −1

≃ ∫ ⋯∫

(

1
√

2𝜋𝛥𝑡

)𝑁𝑑𝑛𝑇

exp

[

−
𝑛𝑇 −1
∑

𝑛=0

1
2𝜎

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎
‖

‖

‖

2
𝛥𝑡

+ 1
√

𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)

|

|

|

|

|

|𝛥𝝃=𝟎

⋅ 𝛥𝝃𝑛

− 1
2𝛥𝑡

𝑛𝑇 −1
∑

𝑛=0
‖𝛥𝝃𝑛‖2

]

𝑑𝛥𝝃0 ⋯ 𝑑𝛥𝝃𝑛𝑇 −1

=
𝑛𝑇 −1
∏

𝑛=0
∫

(

1
√

2𝜋𝛥𝑡

)𝑁𝑑

exp
[

− 1
2𝜎

‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎
‖

‖

‖

2
𝛥𝑡

+ 1
√

𝜎

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)

|

|

|

|

|

|𝛥𝝃=𝟎

⋅ 𝛥𝝃𝑛

− 1
2𝛥𝑡

‖𝛥𝝃𝑛‖2
]

𝑑𝛥𝝃𝑛

= exp

[

− 1
2𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)‖‖
2 𝛥𝑡

]

|

|

|

|

|

|𝛥𝝃=𝟎

exp

⎡

⎢

⎢

⎢

𝛥𝑡
2𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)2|
|

|

|

|

|

⎤

⎥

⎥

⎥

.

(D.4)
27

⎣
|𝛥𝝃=𝟎

⎦
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Similarly, the average of 2
𝑏𝑖𝑎𝑠 is given by

⟨

2
𝑏𝑖𝑎𝑠

⟩

𝑆̃ = ∫ ⋯∫ 2
𝑏𝑖𝑎𝑠̃ (𝛥𝝃) 𝑑𝛥𝝃0 ⋯ 𝑑𝛥𝝃𝑛𝑇 −1

≃ ∫ ⋯∫

(

1
√

2𝜋𝛥𝑡

)𝑁𝑑𝑛𝑇

exp

[

−
𝑛𝑇 −1
∑

𝑛=0

1
𝜎
‖

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)||𝛥𝝃=𝟎
‖

‖

‖

2
𝛥𝑡

+ 2
√

𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)

|

|

|

|

|

|𝛥𝝃=𝟎

⋅ 𝛥𝝃𝑛

− 1
2𝛥𝑡

‖𝛥𝝃𝑛‖2
]

𝑑𝛥𝝃0 ⋯ 𝑑𝛥𝝃𝑛𝑇 −1

= exp

[

− 1
𝜎

𝑛𝑇 −1
∑

𝑛=0

‖

‖

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛)‖‖
2 𝛥𝑡

]

|

|

|

|

|

|𝛥𝝃=𝟎

exp

⎡

⎢

⎢

⎢

⎣

2𝛥𝑡
𝜎

𝑛𝑇 −1
∑

𝑛=0

(

∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑛, 𝑡𝑛) −
1
𝜂

𝑛𝑇 −1
∑

𝑚=𝑛+1
∇∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)∇𝑉𝑏𝑖𝑎𝑠(𝐱𝑚, 𝑡𝑚)𝛥𝑡

)2|
|

|

|

|

|

|𝛥𝝃=𝟎

⎤

⎥

⎥

⎥

⎦

,

(D.5)

recovering the sought-after expressions.
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