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Abstract

Water table depth (WTD) has a substantial impact on the connection between groundwater dynamics and land surface
processes. Due to the scarcity of WTD observations, physically-based groundwater models are growing in their ability to map WTD at
large scales; however, they are still challenged to represent simulated WTD compared to well observations. In this study, we develop
a purely data-driven approach to estimating WTD at continental scale. We apply a random forest (RF) model to estimate WTD over
most of the contiguous United States (CONUS) based on available WTD observations. The estimated WTD are in good agreement with
well observations, with a Pearson correlation coefficient (r) of 0.96 (0.81 during testing), a Nash-Sutcliffe efficiency (NSE) of 0.93
(0.65 during testing), and a root mean square error (RMSE) of 6.87 m (15.31 m during testing). The location of each grid cell is rated
as the most important feature in estimating WTD over most of the CONUS, which might be a surrogate for spatial information. In
addition, the uncertainty of the RF model is quantified using quantile regression forests. High uncertainties are generally associated
with locations having a shallow WTD. Our study demonstrates that the RF model can produce reasonable WTD estimates over most
of the CONUS, providing an alternative to physics-based modeling for modeling large-scale freshwater resources. Since the CONUS
covers many different hydrologic regimes, the RF model trained for the CONUS may be transferrable to other regions with a similar

hydrologic regime and limited observations.
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Introduction

Groundwater is an important terrestrial compartment
of the hydrologic cycle with broad implications for human
health, food security, terrestrial ecosystems, and energy
production (van der Gun 2020). Water table depth (WTD)
refers to the depth of the upper surface of the water
saturated aquifers to the land surface and plays a critical
role in the linkage between groundwater dynamics and
land surface processes (Kollet and Maxwell 2008). During
times of drought, shallow groundwater provides baseflows
to surface water bodies such as rivers and lakes and
maintains water in the soil and vegetations, which later
acts as a source term of evapotranspiration (ET) to the
atmosphere (York et al. 2002; Maxwell et al. 2007,
2011; Fan et al. 2013; Maxwell and Condon 2016;
Condon and Maxwell 2019; Furusho-Percot et al. 2019;
Hartick et al. 2022; Ryken et al. 2022). Moreover, due
to unsustainable anthropogenic activities, groundwater is
being depleted extensively in many parts of the world,
which is reflected in the depletion of WTD (Koch
et al. 2019). Therefore, a high-resolution WTD map helps
better characterize freshwater availability and aid in our
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understanding of the connection between groundwater
dynamics and land surface processes.

Lack of WTD observations is a global challenge
(Fan et al. 2013; Rust et al. 2018; Liesch and Wun-
sch 2019; Ma et al. 2022). In the United States, we
are fortunate to have about 1 million WTD monitor-
ing wells from the U.S.Geological Survey (USGS) and
local environmental agencies as well as remotely sensed
data from the Gravity Recovery and Climate Experiment
(GRACE) satellite mission launched in 2002. However,
the WTD monitoring wells are sparse at the scale of
individual watersheds or farms (where local decision mak-
ing happens). GRACE terrestrial water storage anomalies
are of good spatial coverage, but their spatial resolution
is coarse, around 300km, and they account for varia-
tions in both near-surface water and groundwater storage
(Chen et al. 2016).

Traditionally, physically-based groundwater models
have been used to estimate WTD at large scales, such
as Fan et al. (2013) and de Graaf et al. (2015) for
the globe, and Maxwell et al. (2015) for most of the
contiguous United States (CONUS). Owing to the com-
putational expense of running these simulations, large-
scale groundwater models are typically not calibrated
(Condon et al. 2021; Gleeson et al. 2021). Reinecke
et al. (2020) compared simulated WTD from several
groundwater models with well observations in Canterbury,
New Zealand, including those of Fan et al. (2013) and de
Graaf et al. (2015). They showed that all simulated WTD
had large discrepancies when compared to observations.

As an alternative to physically-based modeling,
machine learning (ML) methods are able to learn com-
plex nonlinear relationships between groundwater dynam-
ics and atmospheric and land surface processes from
historical data (Ma et al. 2021a, 2021b, 2022). Their
low background knowledge requirement, fast simulation
time, and acceptable accuracy have led to their increas-
ing use in groundwater resource modeling, as documented
in the review articles, Rajaee et al. (2019) and Osman
et al. (2022). Among the available studies, most of them
focus on the use of ML techniques to predict the tem-
poral variations in the groundwater system at aquifer
and watershed scales, for example, Sun (2013); Gholami
et al. (2015); Zhang et al. (2018); Vu et al. (2021); and
Wunsch et al. (2022). However, few studies (Bechtold
et al. 2014; Koch et al. 2019, 2021; Gonzalez and
Arsanjani  2021; Lendzioch et al. 2021; Schneider
et al. 2022) have assessed the ability of data-driven mod-
eling to estimate the spatial changes in WTD. These
studies focus on small areas with limited hydrogeological
settings.

The successful application of advanced ML methods
such as convolutional neural networks and Long Short-
Term Memory networks relies on large amounts of
spatially or temporally continuous data, but they do
not apply to the estimation of the spatial changes in
WTD that has sparse point observations. Random forest
(RF) is a tree-based ML method that has a relatively
simple architecture (Osman et al. 2022). As such, RF
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is useful in the case of limited training data. Koch
et al. (2019) have successfully employed a RF model
to predict a WTD map for a wintertime minimum event
in Denmark (~15,000 km?), demonstrating the promising
model performance in reproducing the spatial details of
WTD.

In this study, we apply a RF model to map WTD
for the same study domain as Maxwell et al. (2015), that
is, most of the CONUS (~6.3 million km?). The study
domain incorporates a wide range of geologic, climatic,
and topographic conditions (Gleeson et al. 2011), leading
to many different hydrogeological settings and sophisti-
cated groundwater systems, which poses challenges for
such large-scale reconstruction. The WTD data estimated
by the RF model are compared to WTD observations. An
additional feature of RF is the ability to estimate param-
eter sensitivity and uncertainty. As such, we conduct a
sensitivity analysis to input variables, and evaluate the
uncertainty of the RF model using quantile regression
forests. The comprehensive analysis of the performance
of the RF model over most of the CONUS provides new
insights for groundwater hydrology.

Methods

Study Area and Data

This study is performed in the same area as Maxwell
et al. (2015), that is, most of the CONUS. The study
domain (refer to Figure 1 for the domain extent) spans
approximately 6.3 million km? (3342km x 1888 km) at
1-km lateral grid spacing, encompassing the majority
of eight major river basins in the United States at
high resolution (Maxwell and Condon 2016; O’Neill
et al. 2021).

Figure 1 displays long-term mean WTD observations
over the study domain. In general, WTD observations are
sparse at the watershed scale, and are unevenly distributed
within the study domain. The observed WTD mean data
were derived from historical WTD measurements over
1914 to 2023 at 263,417 USGS WTD monitoring wells
and long-term mean WTD measurements over 1927 to
2009 at 262,724 wells from Fan et al. (2013), with a
minor overlap (~10%) between the wells in the two data
sets. Approximately 61% of the USGS WTD monitoring
wells (159,887 wells) only have a single observation. For
wells with one observation, we use its observation as the
long-term mean value for that well, which may introduce
additional uncertainty. All WTD data have been validated
using at least two of the following four criteria. First,
the attribute ‘“reliability_cd” in the USGS metadata is
“C,” indicating that the data have been checked by the
reporting agency. Second, the data are limited in range
from 0 to 300m to exclude deep confined aquifers that
have little connections to the physics of the water system.
Third, the z score for the difference between the data
at the studied time step and the data at the last step is
<3, so that 99.7% of the data at a well are included.
Fourth, the data at a well are considered to have a strong
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Figure 1. Map of long-term mean water table depth (WTD) observations over most of the CONUS with an inset zooming
into the Upper Colorado River Basin (UCRB), one of the principal headwater basins in the United States. There are no WTD

observations in the blank areas.

similarity with its neighbors within a spatial distance
of 0.02° (~2km), according to the results of the Local
Outlier Factor algorithm (Breunig et al. 2000). The spatial
distance of 0.02° is selected to account for the 1-km grid
cell where the well is located and its adjacent 1-km grid
cells.

The inset of Figure 1 zooms into the Upper Colorado
River Basin (UCRB), one of the principal headwater
basins in the United States. The elevations in the UCRB
change substantially from peaks higher than 3300 m at
the Rocky Mountains to around 900 m at Lee’s Ferry in
Arizona. The big differences in elevations lead to spatial
variations in the climate, from alpine conditions in the
east to semiarid in the west. The Colorado River provides
water for major cities such as Los Angeles, Phoenix,
and Las Vegas and more than 40 million people (Tran
et al. 2020).

Here, the RF model is constructed using 1-km
gridded mean WTD observations, which are estimated by
averaging the long-term mean WTD observations from
all the wells located at the same 1-km grid cell. WTD
observations are available for a total of 208,665 grid cells
(~3% of all the grid cells). A map showing the number
of wells per 1-km grid cell over most of the CONUS is
provided in Figure S1. The number of wells at a grid
cell with WTD observations varies from 1 to 594, with a
median of 2 and a standard deviation of 3.38. For grid cells
with more than one WTD monitoring wells, the standard
deviation of WTD at a grid cell varies from 0 to 134.75 m,
with a median of 0.16 m. In the UCRB, only 2246 grid
cells have WTD observations, about 0.77% of all the grid
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cells in the basin. The lack of WTD observations impedes
the understanding of its hydrologic system.

The input variables of the RF model are annual
mean precipitation, annual mean temperature, precipi-
tation minus evapotranspiration (PME), elevation, topo-
graphic slope, natural log of hydraulic conductivity (InK),
x, and y locations. The x and y locations represent the
locations of a grid cell in the study domain on the x and
y axes, respectively. Anthropogenic impacts are not con-
sidered in the inputs, due to the lack of data. Figure S2
illustrates the Spearman’s rank correlation coefficients
between the input variables. The strongest positive and
negative correlations are found between annual mean pre-
cipitation and PME (0.89) and between annual mean tem-
perature and y location (—0.83), respectively. All the input
variables are available at a spatial resolution of 1 km over
most of the CONUS. The input data are the same as those
used by Maxwell et al. (2015), except for annual mean
precipitation, annual mean temperature, and InK. The
annual mean precipitation and temperature data were com-
puted from the precipitation and temperature data inter-
polated from the North American Land Data Assimilation
System Phase 2 (NLDAS-2; Xia et al. 2015; Cosgrove
et al. 2003). The InK data were derived from a continental-
scale subsurface K dataset developed by Tijerina-Kreuzer
et al. (2023). Table 1 presents an overview of the input
variables used in the RF model. The input variables
are further divided into three groups based on physi-
cal relationships, namely climatological-related variables,
geology-related variables, and location, for which infor-
mation is also provided in Table 1.
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Table 1

Overview of the Input Variables used in the Random Forest Model.

Input Variable Data Source

Group

Annual mean precipitation

North American Land Data Assimilation System Phase 2

Climatology-related

(NLDAS-2; Xia et al. 2015; Cosgrove et al. 2003)

Annual mean temperature

PME Maxwell et al. (2015)

Elevation Geology-related

Topographic slope

InK Tijerina-Kreuzer et al. (2023)

X Not applicable Location

y

RF Model Input Data

We build a RF model (Figure 2) for the entire Climatology-related and
study domain (i.e., most of the CONUS). RF is a ML geology-related data
. .. and location

method proposed by Breiman (2001), consisting of a oA Sw,
collection of decision trees. In this study, a number of W subdam 2t
deci.sion trees. are conlstructetd to learp the linkage be.tween Tree 1. Tree 2 Tree m_
the input variables (i.e., climatological-related variables, C \< O O
geology-related variables, and location) and the output -~ N /- g\ - B
variable (i.e., long-term mean WTD) during training, and }" R / \ - B (
then the median prediction of these trees is calculated @) O

as the estimated WTD, similar to other approaches for
soil moisture (Abbaszadeh et al. 2019). To increase
the diversity within the ensemble of decision trees, we
produce a unique bootstrap sample of the original training
set for each decision tree. Based on sampling with
replacement, each bootstrap sample contains a part of the
original samples but remains the original sample size. This
technique is known as “bagging.” In addition, a randomly
selected subgroup of input variables is used to train each
decision tree. In the training process, each decision tree
recursively divides a random subset of the training data
obtained from the aforementioned processes into more
homogenous groups by decision rules at nodes (circles in
Figure 2; Koch et al. 2019). The ensemble of the slightly
different decision trees in the RF model results in a robust
prediction for WTD estimates.

As aforementioned, compared with other ML tech-
niques such as artificial neural networks, RF has a less
complicated structure and fewer hyperparameters (i.e.,
adjustable parameters that control model behavior and
complexity), and thus it requires less data for training.
Furthermore, RF often works well without heavy hyper-
parameter tuning and data normalization, which simplifies
the training process. On the other hand, RF faces a trade-
off between model performance and computational cost.
A more accurate prediction necessitates more decision
trees, leading to slower computation of results (Miiller
and Guido 2017).

Here, we randomly split the data at 208,665 grid
cells with WTD observations into a training set (80%
of the data, 166,932 grid cells) and a test set (20%
of the data, 41,733 grid cells) for the training and
testing processes, respectively. The random splitting of
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[WTD Estimate]

Figure 2. Schematic diagram showing how the random
forest (RF) model works in this study. The RF model is an
ensemble of decision trees. Each tree is slightly different from
each other, resulting in various outputs. The median of the
outputs from all decision trees in the RF model is computed
as estimated water table depth (WTD).

the data guarantees the generalizability of the RF model in
estimating WTD (i.e., the ability of the trained RF model
to handle previously unobserved data). To search for the
best hyperparameter configuration of the RF model, we
perform the five-fold cross-validation during training. In
the five-fold cross-validation, the original training set is
equally partitioned into five small sets (named folds, 20%
of the original training set). Of the five folds, a single
fold is preserved as the validation data for evaluating the
performance of the trained RF model, and the remaining
four folds (80% of the original training set) are used as
training data. The cross-validation process is repeated five
times, with each fold used once as the validation data. The
optimal values for the hyperparameters listed in Table 2
are selected based on average validation accuracies. The
cross-validation approach utilizes all the training data in
hyperparameter tuning, which is useful in this study where
the grid cells used for training are sparse over the study
domain. Finally, the entire training set is used to train
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Table 2
Hyperparameter Setting of the Random Forest Model.

Hyperparameter Description Range, Optimal Value
max_samples Percentage of samples used to train each tree 0.1-1.0, 0.8
max_features Number of features used to train each tree 1-8, 5

Total tree number
Maximum depth of a tree

n_estimators
max_depth
min_samples_leaf

100-1000, 300
100-1000, 900

Minimum required number of observations to split a node 1-5,1

the RF model with the optimal hyperparameter setting,
and the resulting model is tested on the test set for final
evaluation. A WTD map over most of CONUS is also
generated by the trained model. In this study, the RF
model is developed using scikit-learn, an open-source
ML python library (Pedregosa et al. 2011), with slight
modifications to obtain the median of tree outputs. Using
two AMD EPYC 7402 24-core processors, it takes about
4 min to train the optimal RF model and another 4 min to
simulate the CONUS WTD.

Permutation Importance of Input Variables

The calculation of permutation importance is com-
mon practice to analyze the sensitivity of the RF model
to input variables, for example, Schneider et al. (2022) and
Koch et al. (2019). The permutation importance is defined
as the decrease in model accuracy when randomly shuf-
fling the values of a single input variable (Breiman 2001),
reflecting the contribution of the input variable on model
performance. Here, the model accuracy is assessed by the
root mean square error (RMSE). To eliminate bias in the
outcome caused by a single permutation, we perform 30
different permutations of an input variable and compute
the relative mean decrease in model accuracy (i.e., the
mean increase in RMSE divided by the original RMSE)
as the permutation importance of the input variable.

Some of our input variables are closely linked (illus-
trated in Figure S2), which may lead to an underes-
timation of their importance. To overcome this weak-
ness, we also study the permutation importance of
three groups of the input variables that are physically
related (i.e., climatological-related variables, geology-
related variables, and location), as suggested by Koch
et al. (2019). The permutation importance of a group of
input variables is calculated as the relative increase in
RMSE when collectively permuting the input variables in
the group.

Quantile Regression Forests

The RF model provides information about the full
distribution of the estimated WTD generated by the
involved decision trees, not only about the median. This
is the basis of implementing quantile regression forests
introduced by Meinshausen (2006). The main idea of the
approach is to address the uncertainty associated with the
RF model based on the quantiles of the distribution of the
tree outputs at each grid cell (Meinshausen 2006; Koch
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et al. 2019). Here, we utilize the coefficient of variation
of the outputs from the 300 decision trees in the RF
model to express the uncertainty, which is calculated by
the standard deviation of the 300 tree outputs divided by
their mean.

Results and Discussion

Estimated WTD Map over the Study Domain

Figure 3 displays long-term mean WTD estimates
generated by the RF model for the study domain. WTD
varies in space, from 0 to 299.59 m. The WTD mean and
median are 18.29 m and 11.43 m, respectively. In general,
deeper WTD is in the more arid western regions, while
shallower WTD is in the more humid eastern regions.
In addition, shallow WTD exists along river channels.
These findings are consistent with Maxwell et al. (2015).
The inset of Figure 3 presents the estimated WTD in
the UCRB, varying from Om in the east to 299.31m
in the west, which is reasonable. As aforementioned,
because of the spatial heterogeneity of elevations, there
are distinct climates in the basin. The larger precipitation
(1000 mm/year) in the eastern regions due to the alpine
climate results in more recharge to the local groundwater
systems and thus shallower WTD. Moreover, it is worth
mentioning that the high-resolution UCRB WTD map is
produced using the RF model based on the sparse WTD
observations shown in the inset of Figure 1 (only about
0.77% of the grid cells with WTD observations). Yet, there
also appear to be WTD artifacts in locations such as the
Ohio River Basin, which require further investigation.

The scatter plot in Figure 4A and 4B demonstrates
good agreement between the estimated and observed
WTD for all 208,665 grid cells with WTD observations
and 41,733 grid cells used for testing, where most data
points are concentrated along the 1:1 line. As shown
in Figure 4C, the estimated and observed WTD have
similar distributions, with the peaking at 2 to 5 m. Overall,
the RF model achieves a Pearson correlation coefficient
(r) of 0.96, a Nash—Sutcliffe efficiency (NSE) of 0.93,
and a RMSE of 6.87m for all grid cells with WTD
observations, and a r of 0.81, a NSE of 0.65, and a RMSE
of 15.31m in the testing process. Maxwell et al. (2015)
used a physically-based groundwater model to simulate
WTD in the same study domain, gaining a r of 0.25
and a RMSE of 30.03m at all grid cells with WTD

Y. Ma et al. Groundwater 5

ASULDIT suowwo)) aAnear) dqesrjdde oy £q paurA0S are sa[onIe YO asn Jo Sa[nI 10J A1eIqr] uIjuQ AS[IA\ UO (SUONIPUOI-PUL-SULIA) WO K[1M’ ATRIQI[SUI[UO//:5d)I) SUONIPUO) PUB SWIT, ) 998 *[€Z07/01/1€] U0 Areiqr aurjuQ AS[IA ‘79€€T18MS/T [ 11°01/10p/wod K[’ Kreiqrjour[uo-em3uy/:sdny woij papeofumo( ‘0 ‘8S9SHL1
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Figure 3. Map of long-term mean water table depth (WTD) estimates from the RF model for most of the CONUS with an
inset zooming into the Upper Colorado River Basin (UCRB).
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Figure 4. (A) Scatter plot of all estimated versus observed water table depth (WTD), (B) scatter plot of test estimated versus
observed WTD, and (C) probability density function plot of estimated and observed WTD for most of the CONUS, where the
estimated WTD are produced by the RF model at all grid cells with WTD observations (in total 208,665 grid cells) and the
grid cells used for testing (in total 41,733 grid cells). The Pearson correlation coefficient (r), Nash—Sutcliffe efficiency (NSE),

and root mean square error (RMSE) between estimated and observed WTD are presented here. Note the log scale used for
the axes in (A) and (B).
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observations. There is no obvious relationship between
the density of WTD observations in a water basin and
the RF model performance (Figure S3). Although we
do not explicitly include anthropogenic impacts (e.g.,
groundwater pumping) in the RF model, the model
preserves its performance at wells with documented
pumping activities (not shown here). Thus, we suspect that
the RF model might be capable of learning or inferring
pumping from WTD observations; however, that is not
explored in any detail in this study. Moreover, we compare
the estimated and observed WTD in the Ohio River Basin
where WTD artifacts are observed in Figure 3 (Figure S4).
In the Ohio River Basin, the RF model performs relatively
poorly during testing with a r of 0.58. The distribution
of the estimated WTD also shows significant differences
from the observed WTD at the grid cells used for testing
(Figure S4C).

Sensitivity Analysis of the RF Model to Input Variables
The sensitivity of the RF model to input variables
is assessed based on permutation importance, which is
expressed by the relative increase in RMSE. Figure 5
summarizes the permutation importance of the eight input
variables and the three groups of input variables computed
on the test set, revealing the contribution of input variables
or groups of input variables to the generalizability of
the trained RF model. The input variables in order of
decreasing importance are x location (65.47%), y location
(60.02%), elevation (43.10%), annual mean temperature
(21.91%), annual mean precipitation (17.37%), PME
(8.55%), InK (8.46%), and topographic slope (1.21%).
Due to the importance of x and y locations in the input
variables, their group location (79.98%) also plays the
most critical role in estimating WTD over the study
domain. The RF model used in this study are not able

Importance of input variables (based on the test set)
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Figure 5. Input variable importance of the trained random
forest model. The permutation importance is calculated
based on the relative increase in the test root mean square
error (RMSE). Permutation is applied to both single input
variables (blue) and groups of input variables (gray).
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to exploit the spatial dependencies in the data, and the
location of each grid cell might be a surrogate for spatial
information in the model, which is important in modeling
groundwater flow. The WTD is calculated from the
difference between local elevation and the upper surface
of the water saturated aquifers (i.e., water table). As
such, it is reasonable that elevation is the third important
input variable. When x and y locations are removed from
the input, the RF model still achieves good performance
in estimating WTD over most of the CONUS, with
a test NSE of 0.57, and elevation plays the most
important role. Condon et al. (2015) also demonstrated
the importance of elevation on WTD in eight major
river basins over CONUS using a modified k-regression
algorithm. The geology-related variables (51.66%) to
which elevation belongs are the second important group
of input variables. In the same group, there are also
InK and topographic slope. Topographic slope is found
to have the least contribution to the estimation of WTD
over CONUS in this study, contrary to the findings of
Condon et al. (2015) and Condon and Maxwell (2015).
This discrepancy might be explained by the latter two
studies focusing on linear correlations between variables.
Finally, the climatology-related variables (46.34%) are
considered as less important, consisting of annual mean
precipitation, annual mean temperature, and PME. As
aforementioned, PME is precipitation minus ET, which
is somewhat redundant with annual mean precipitation
and temperature. Hence, PME shows less importance here.
The permutation importance calculated on the training set
(Figure S5) provide similar results.

Uncertainty Analysis

Figure 6 displays the resulting uncertainty based on
quantile regression forests, which is represented by the
coefficient of variation of the outputs of all 300 decision
trees in the RF model at each grid cell. Similar to the
estimated WTD presented in Figure 3, the uncertainty
changes spatially, from 0.02 to 17.29, with a mean of
0.98 and a median of 0.96. Uncertainties are higher
in most western regions including the Great Basin,
UCRB, and Pacific Northwest Basin, and lower in some
eastern regions such as the Lower Mississippi River
Basin and Great Lakes Basin. High uncertainties are
also observed along river channels, though not all river
channels as we see changes in the uncertainty as we
move downstream from, for example, the Platte River
to the Mississippi. Figure S6 shows a close connection
between the uncertainty and the estimated WTD. In
general, high uncertainties are linked to the locations
with a shallow WTD and vice versa. It is important
to note that the uncertainty in WTD is quite large
(over 10) in some regions. To reduce the uncertainty,
we may improve the performance of individual decision
trees in the RF model by, for example, increasing input
variables and training data. These uncertainties are an
important outcome of the statistical approach used here
and provide more transparency in the model estimates and
indication of where additional characterization data or
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Figure 6. Uncertainty map showing the coefficient of variation of the outputs of all 300 decision trees in the random forest

(RF) model over most of the CONUS.

observations are needed. Moreover, we observe more
evident horizontal and vertical artifacts in Figure 6
compared to Figure 3. The uncertainty reflects the
distribution of tree outputs in the RF model and is
therefore more sensitive to outliers.

Conclusions

In this study, we develop a RF model to study the
spatial variations in WTD over most of the CONUS based
on available WTD observations and climatological and
geological datasets. Using the RF model, we generate a
map of long-term mean WTD estimates over most of the
CONUS with a spatial resolution of 1 km. We compare the
estimated and observed WTD in terms of data distribution,
correlation, and evaluation metrics », NSE, and RMSE.
The RF model performs very well for all 208,665 grid
cells with WTD observations, gaining a r of 0.96, a NSE
of 0.93, and a RMSE of 6.87 m. For 41,733 grid cells used
for testing, the RF model achieves a r of 0.81, a NSE of
0.65, and a RMSE of 15.31 m. The good performance can
be attributed to the fact that the RF model is fully data-
driven and provides a more direct approach to interpolate
WTD values over the study domain. In addition, the
location of each grid cell contributes most to the WTD
estimation of the RF model over the study domain, which
might be a substitute for spatial information. This is an
important aspect as the RF model is not mass conservative
yet learns the changes in WTD due to lateral flow likely
using the locations of grid cells as a surrogate for flow.
Moreover, there appears to be a strong linkage between
uncertainty (represented by the correlation of variation of
300 tree outputs in the RF model) and estimated WTD,
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with high uncertainties typically occurring in locations
with a shallow WTD.

There is still much room of improvement in the
developed RF model. The estimated WTD map (Figures 3
and 6) appears to be artifacts in some areas such as the
Ohio River Basin, which require further investigation.
In addition, large uncertainties (over 10) exist in the
WTD estimates from the RF model. Nevertheless, our
study shows the ability of RF in estimating spatial
variations in WTD in a larger study domain with more
complex hydrologic systems, that is, most of the CONUS.
Therefore, this study can be considered as an extension
of existing work, such as Koch et al. (2019), for a
more challenging region. The study demonstrates that the
developed RF model can produce good WTD estimates
over the study domain, thereby providing alternative
estimates of large-scale freshwater resources. In future, we
plan to extend the study to the entire CONUS. RF does not
account for the spatial resolution of input data. As such,
without additional training, the trained RF model may
generate a map with any spatial resolution by adjusting
the spatial resolution of its input data. The resulting WTD
map can be applied as the initial condition of a physically-
based groundwater model to improve model performance.
Particularly, for a region that has a similar hydrologic
regime with a region in the study domain, the trained
RF can be potentially transferred to the region, even if
observational data is limited.
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Figure S1. Map of the number of water table depth
monitoring wells per 1-km grid cell over most of the
contiguous United States.

Figure S2. Correlation heatmap showing Spearman’s rank
correlation coefficients between input variables.

Figure S3. Pearson correlation coefficients (r) for all grid
cells (blue) and grid cell used for testing (yellow) in water
basins with various densities of water table depth (WTD)
observations.

Figure S4. (A) Scatter plot of all estimated versus
observed water table depth (WTD), (B)scatter plot of
test estimated versus observed WTD, and (C) probability
density function plot of estimated and observed WTD
for the Ohio River Basin, where the estimated WTD are
produced by the RF model at all grid cells with WTD
observations and the grid cells used for testing.

Figure SS. Input variable importance of the trained
random forest model.

Figure S6. Relationship between estimated water table
depth (WTD) and the uncertainty of the random forest
(RF) model.
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