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Abstract
Integrated hydrological modeling is an effective method for understanding interactions between parts of the hydrologic cycle,

quantifying water resources, and furthering knowledge of hydrologic processes. However, these models are dependent on robust
and accurate datasets that physically represent spatial characteristics as model inputs. This study evaluates multiple data-driven
approaches for estimating hydraulic conductivity and subsurface properties at the continental-scale, constructed from existing
subsurface dataset components. Each subsurface configuration represents upper (unconfined) hydrogeology, lower (confined)
hydrogeology, and the presence of a vertical flow barrier. Configurations are tested in two large-scale U.S. watersheds using an
integrated model. Model results are compared to observed streamflow and steady state water table depth (WTD). We provide
model results for a range of configurations and show that both WTD and surface water partitioning are important indicators of
performance. We also show that geology data source, total subsurface depth, anisotropy, and inclusion of a vertical flow barrier
are the most important considerations for subsurface configurations. While a range of configurations proved viable, we provide a
recommended Selected National Configuration 1 km resolution subsurface dataset for use in distributed large-and continental-scale
hydrologic modeling.

Introduction
Hydrological modeling is commonly used to better

understand the distribution of water resources on the
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Earth. These models can help to represent hydrogeologic
processes and quantify groundwater, which is essential
for a thorough knowledge of the hydrologic system.
The quality of groundwater simulation within models
is highly dependent on having the accuracy of the
subsurface datasets. This is particularly challenging when
modeling water resources across at continental scales
because of the of lack large-scale, seamless subsurface
datasets (Gleeson et al. 2014, 2021; Maxwell et al. 2015;
Condon et al. 2021).

While many studies have tested sensitivity to
hydraulic conductivity generally (e.g., Araya and
Ghezzehei 2019; de Pue et al. 2019; Foster and
Maxwell 2019), sensitivity to parameters is tested within
a single assumed geologic structure and it is less common
to explore larger uncertainty in the geologic framework
itself. This is a type of model uncertainty that is rarely
tested yet may play an important role in model perfor-
mance (Enemark et al. 2019). Given the importance of
hydraulic conductivity on not only groundwater flow but
also streamflow (e.g., Srivastava et al. 2014; Foster and
Maxwell 2019; Abimbola et al. 2020) and the challenges
large-scale models face in reproducing water table depth
observations (e.g., Reinecke et al. 2020), the development
and evaluation of large-scale hydrostratographic datasets
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is an ongoing community effort (e.g., Condon et al. 2021;
Gleeson et al. 2021).

The purpose of this study is to compile a nationally
consistent hydrostratigraphy dataset (i.e., the geologic
properties below the soil) from existing subsurface
datasets for use in continental-scale hydrological modeling
applications. To accomplish this, we generate various
subsurface configurations constructed from published
subsurface datasets and evaluate the performance of these
configurations using an integrated, hydrologic model in
two regional test subdomains. We provide an open source
and validated subsurface dataset for the continental United
States based on a data-driven approach with the most
current available data (Condon et al. 2020, 2021; Zell and
Sanford 2020; Gleeson et al. 2021). We present a Selected
National Configuration that we find is an optimal and
seamless subsurface conceptual model for the continental
United States (U.S.) and that will undergo additional
testing in a high-resolution, integrated hydrological model
over the contiguous United States.

Background
The primary goal of this study is to further under-

standing of the way that subsurface permeability is char-
acterized in large-scale hydrological models. Immense
amounts of observational data are needed to accurately
represent these different components of the subsurface
across continental scales. Unfortunately, subsurface data
in the United States often collected and made avail-
able at the discretion of local or state entities (Maxwell
et al. 2015). Therefore, there are few continuous and
seamless subsurface datasets available for the entire
United States (Condon et al. 2021).

A growing number of datasets do exist at the
global and continental scale that characterize subsurface
properties and that are relevant to this study. Gleeson
et al. (2014) and Huscroft et al. (2018) have developed
spatially distributed global permeability maps with the
Global Hydrogeology MaPS 1.0 and 2.0 (henceforth
referred to as GLHYMPS 1.0 and GLHYMPS 2.0 ).
The U.S. Geological Survey (USGS) has extensively
mapped primary aquifer systems over the North American
continent (Back et al. 1988; USGS 2003) and has more
recently expanded these maps to include Secondary
Hydrogeologic Regions (Belitz et al. 2019), which
characterizes the hydrogeologic regions outside of the
Primary Aquifers by lithology and geologic age.

Beyond classification of geologic types, work
has been completed to characterize depth to bedrock.
Shangguan et al. (2017) provided a global estimate of
unconsolidated material depth at a spatial resolution of
250 m and an absolute depth to bedrock up to 540 m.
Pelletier et al. (2016) quantified spatial variations in
unweathered bedrock up to 50 m in depth.

Finally, soil is an integral component of the
subsurface system. While there are various soil products
available for the CONUS, the main United States soil
surveys are STATSGO and SSURGO (Soil Survey Staff,

NRCS), the latter being the highest detail soil survey in
the United States (Chaney et al. 2019). Outside of the
United States, the gridded Global Soil Dataset for use in
Earth System Models (GSDE) (Shangguan et al. 2014;
Dai et al. 2019b, 2019c) uses various regional soil data to
compile a global soils dataset. Soil is a well-documented
component of the subsurface with many of the previously
mentioned datasets having undergone evaluation and com-
parison (Wang and Melesse 2006; Mednick et al. 2008;
Williamson et al. 2013; Dai et al. 2019a).

It is worth an additional mention that there are analyt-
ical approaches to estimate subsurface properties that we
do not focus on in this study. For example, de Graaf et al.
developed continental aquifer parameterizations based on
local hydrogeological data (de Graaf et al. 2020), Gupta
et al., Montzka et al., and Jarvis et al., estimate hydraulic
properties from soil using pedotransfer functions (Jarvis
et al. 2013; Montzka et al. 2017; Gupta et al. 2021), and
Luo et al. and Tashie et al. estimate hydraulic conduc-
tivity with analytical approaches (Luo et al. 2010; Tashie
et al. 2021). While these methodologies are valuable, we
focus on data-driven approaches in this study; a compan-
ion article evaluates analytical approaches such as the Luo
et al-type compared to data-driven approaches (Swilley
et al. this issue).

Methods
When considering how to physically represent the

subsurface, there is a range of complexity to consider.
Figure 1 depicts important components of the hydroge-
ologic structure in a conceptual model that was used to
organize the different test cases considered in this study.
While this figure simplifies properties of the subsurface for
the purpose of large-scale modeling, the following section
describes the conceptual model and the important hydros-
tratigraphic components relevant at continental-scales.

The soil column comprises the uppermost layer,
usually representing the top one to two meters of the

Figure 1. Conceptual model of the most pertinent subsur-
face properties addressed in this paper. Because this is a
conceptual diagram, impacts to water table behavior may
not be explicitly represented.

2 D. Tijerina-Kreuzer et al. Groundwater NGWA.org

 17456584, 0, D
ow

nloaded from
 https://ngw

a.onlinelibrary.w
iley.com

/doi/10.1111/gw
at.13357 by Princeton U

niversity Library, W
iley O

nline Library on [30/10/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



subsurface. At the bottom of the subsurface is imper-
meable bedrock, typically used as a no-flow boundary
in hydrologic models and acts as a true no-flow layer.
Between the soil and bedrock are heterogeneous geologic
materials, represented as upper and lower geologies of
unconfined and confined aquifer systems, respectively.
While these geologies are mapped as specific types, the
boundary between unconfined and confined aquifer sys-
tems is further delineated with a confining layer (referred
to in this study as a vertical flow barrier).

There are additional considerations needed to depict
a more realistic hydrostratigraphy, for example, within
these geologic materials, anisotropy may be considered
to better represent preferential flow as a result of strat-
ification. Additionally, because hydrologic conductivity
varies depending on slope, another component to con-
sider is the e-folding relationship between terrain slope
and hydrologic conductivity decay with subsurface depth
(Fan et al. 2007).

We acknowledge that this conceptual model is a
simplification of the underlying geology across the United
States. It best represents regions where confined aquifers
are bedrock aquifers, such as the intermountain west;
or areas where a distinct confining layer exists, such
as over the north-central United States. Other regions
may be poorly represented by this conceptual model.
Examples include previously glaciated areas or regions
with extensive fine-grain, alluvial deposits, such as the
Mississippi Alluvial Plain (Gratzer et al. 2020). We use
this model to describe the tests conducted in this study
and conceptualize how the subsurface might be configured
within a continental-scale hydrology simulation.

Datasets
Using a selection of previously published hydroge-

ological data in conjunction with our conceptual sub-
surface model, we create combinations of the different
subsurface datasets to test the viability of several con-
figurations. In this study, the test datasets consist of
GLHYMPS 1.0 , GLHYMPS 2.0 , and USGS (a combi-
nation of the Primary Aquifers map and the Secondary
Hydrogeologic Regions map) for the upper and lower
geology mapping, as well as the Shangguan depth to
bedrock dataset. Our approach combines, reprojects, and
resamples these different gridded datasets to the sim-
ulation grid to test different inputs of our conceptual
model by comparing simulation results from two real
world domains. It should be noted that while many
of these datasets have been used extensively for a
range of applications (e.g., Sutanudjaja et al. 2014; de
Graaf et al. 2015; Maxwell and Condon 2016; Hellwig
et al. 2020; Coon and Shuai 2022), to our knowledge, no
comprehensive evaluation to hydrologic observations has
been completed.

For the lower geology below the soil, three datasets
are tested. First, GLHYMPS 1.0 globally maps perme-
ability and porosity at high resolutions with an average
polygon size of about 100 km2 (Gleeson et al. 2014).

This dataset is a synthesis of global permeability and
lithology maps. GLHYMPS 2.0 is an improved permeabil-
ity mapping of the initial GLHYMPS 1.0 dataset, resulting
in a two-layer permeability maps of global unconsoli-
dated sediments (Huscroft et al. 2018). The third dataset
is a combination of the USGS Primary Aquifer system
and the Secondary Hydrogeologic Regions. The Primary
Aquifer system maps the most productive aquifers in the
United States, but only account for about 60% of the
conterminous United States. The Secondary Hydrogeo-
logic Regions is a complementary dataset that character-
izes the other 40% of the Primary Aquifer system map.
The average polygon size for the Secondary Hydroge-
ologic Regions is 46,000 km2 (Belitz et al. 2019). For
this study, these datasets are combined to describe conti-
nental hydrostratigraphy and are henceforth referred to as
USGS .

An important attribute we test in this study is the pres-
ence of a vertical flow barrier, which emulates a physical
delineation and vertical flow reduction between uncon-
fined and confined aquifers. Depth to bedrock acts as a
lower boundary condition for land surface and hydro-
logic models. Shangguan et al. (2017) discussed how a
constant depth to bedrock can affect model performance
(e.g., Gochis et al. 2010) and outlined multiple studies
which demonstrated the benefits of a dynamic depth to
bedrock (e.g., Peterman et al. 2014; Brunke et al. 2016).
Shangguan et al. (2017) (henceforth referred to as Shang-
guan) compiled global observations from soil profile data,
borehole data, and remote sensing to inform a machine
learning model, which resulted in global depth to bedrock
estimates at a spatial resolution of 250 m. Shangguan
was used in this study to determine the location of the
vertical flow barrier because of its high spatial resolu-
tion and deeper bedrock estimates, up to 540 m. The
dataset was mapped to a 1 km2 grid over the United States
(Figure 2).

Soil data is comprised of SSURGO soils data within
US borders and GSDE data for soil outside of the US. A
description of the soil mapping (Schaap and Leij 1998)
for this study is described in Maxwell et al. (2015).
We use this soil dataset for the top 2 m (top 4 model
subsurface layers) for all subsurface configuration tests.
Soil data remains unchanged for the different tests. While
soil parameters may influence groundwater-surface water
dynamics, there is much more confidence in soil data for
the United States than in the deeper subsurface. Thus,
we focused on testing the data components of the deeper
hydrogeology here.

Test Configurations
The tests conducted in this study are based on

a tiered approach with progressive increases in com-
plexity. Over the course of preliminary development
and testing, a large number of subsurface configurations
were created and used as test inputs in simulations
(see SI Table 1). However, only selected configu-
rations will be discussed here. We test four main
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Figure 2. The Shangguan depth to bedrock mapped to the 1 km national grid. The red area signifies where the vertical flow
barrier (VFB) overlays each geology model layer.

configuration types that are illustrated as conceptual
models in Figure 3:

1 One subsurface dataset is applied as a Vertically
Homogeneous geology where all 6 layers within the

same 1 km2 lateral grid cell contain the same geologic
type (Figure 3a).

2 The second test type builds upon the first (1), replicating
the Vertically Homogeneous geology where all 6 layers
within one 1 km2 lateral grid cell contain the same

4 D. Tijerina-Kreuzer et al. Groundwater NGWA.org
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(a) (b)

(c) (d)

Figure 3. Diagrams depicting conceptual models of general subsurface configuration test cases. Top figures represent a
Vertically Homogeneous geology layer model, omitting (a) and including (b) a vertical flow barrier. Bottom figures represent a
Simple Bedrock Layering model, omitting (c) and including (d) a vertical flow barrier. Because these are conceptual diagrams,
water table behavior by configuration may not be explicitly represented.

geologic type, but applies vertical flow barrier at
specified depth (Figure 3b) where a vertical flux
reduction is applied so that vertical flow is reduced,
but not eliminated. In this approach, tests are set up to
define the vertical flow barrier either at the Shangguan
depth to bedrock or at a constant depth.

3 The third test employs a Simple Bedrock Layering
technique where one geology dataset overlays a second
geology dataset (Figure 3c). These two geology sets
are disaggregated at the Shangguan bedrock depth. The
goal of this layering approach is to represent unconfined
and confined aquifer systems more realistically by
applying a lower permeability geology at a depth where
bedrock may be located.

4 The fourth test type builds upon the third (3), replicating
the same Simple Bedrock Layering, but applies a ver-
tical flow barrier (Figures 3d and 4) at the intersection
of the two geology sets where a vertical flux reduction
occurs so that vertical flow is reduced, but not elim-
inated. In this approach, tests are set up to define the
vertical flow barrier at the Shangguan depth to bedrock.

We tested two vertical flow barriers—a constant
flow barrier at a depth of 192 m and a variable depth
flow barrier defined at the Shangguan depth to bedrock
(Figures 2 and Figure S1). In both cases, a vertical
flux reduction value of 0.001 (−) was assigned at
the cell interface, so that the barrier maintained lateral

6 D. Tijerina-Kreuzer et al. Groundwater NGWA.org
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Figure 4. Conceptual model showing the upper (orange
tones) and lower (gray tones) geology mapping and soils
(brown tones). The vertical discretization is specific to the
final subsurface dataset (figure not drawn to scale). Adapted
from Swilley et al. (this issue).

flow and slowed vertical flow between model subsurface
layers (Figure 4). This feature represents the boundary
between the deeper confined aquifer systems and the
upper unconfined aquifer systems that are dynamically
connected to surface water. The configurations that use the
vertical flow barrier are represented with the conceptual
models in Figure 3b and 3d.

In addition to these primary test cases, we applied
additional changes to configurations to test other sub-
surface factors. These included subsurface thickness,
anisotropy changes to specified geology types, and an
e-folding technique which represents the relationship
between hydraulic conductivity, depth, and topography.
These methods are described later in the results.

Simulations Using an Integrated Model
To test these different combinations of subsurface

data, we apply each as a subsurface input file to the
integrated hydrologic model ParFlow, which simultane-
ously solves for variably saturated groundwater flow and
overland flow (Jones and Woodward 2001; Maxwell and
Miller 2005; Kollet and Maxwell 2008; Maxwell 2013;
Kuffour et al. 2020). ParFlow is coupled to the Common
Land Model (PF-CLM), simulating hydrologic compo-
nents from the bedrock to the canopy, as well as land
surface energy fluxes (O’Neill et al. 2021). The integration
of subsurface and surface water allows streams to form
naturally at topographic convergence zones and overland
flow is solved with a two-dimensional kinematic wave
equation.

PF-CLM requires an indicator file consisting of sub-
surface inputs of distributed soil types, geologic units, and
the following hydrologic properties for each subsurface

unit: permeability, specific storage, porosity, and van
Genuchten parameters. Subsurface properties from test
datasets are vertically disaggregated and permeability
indicator values are assigned to cell centers based on com-
mon geologic types. In this study, the final indicator values
are based upon the continental scale model ParFlow-
CONUSv1 model inputs (Maxwell et al. 2015; O’Neill
et al. 2021) and are listed in the Supporting Information
(Table S2). Our model has the input data requirements
of a traditional land surface model (e.g., land cover,
soil, and meteorological forcing) and that of a traditional
groundwater model (e.g., subsurface hydrostratigraphy),
thus testing these subsurface configurations with PF-CLM
is relevant to other hydrologic and subsurface modeling
applications which would require similar distributed data
inputs. Figure 4 shows a conceptual model of the geology
data within the PF-CLM gridded structure.

For this study, PF-CLM was run in two representative
test subdomains (Figure 5) for each configuration at a
lateral resolution of 1 km2 with a 10-layer subsurface.
The subsurface depth varied depending on the test
configuration and was set at either 1192 m or 392 m
with soil comprising the top 2 m (or the top 4 model
layers) of the subsurface. The Upper Colorado River
Basin (UCRB) is a 280,000 km2 subdomain with complex
topography which has been used in past model input
testing (Tran et al. 2020). The Delaware-Susquehanna
Basin (DSB) is a 103,000 km2 subdomain and an area
surrounding the Delaware Bay. This coastal domain
possesses diverse terrain and a range of climatology,
making it informative for testing subsurface properties.
Both the UCRB and DSB were selected because they
are part of the USGS Integrated Water Science study
basins and serve as intensive regional testbeds (van Metre
et al. 2020).

Each PF-CLM simulation was forced with 1 year
of transient CW3E Retrospective Forcing (Pan and
Lettenmaier 2023), developed from the NLDAS-2 forcing
product (Xia et al. 2015a, 2015b). Each configuration was
run over Water Year 2003 (October 1, 2002 to September
30, 2003). To initialize the model, each subdomain
underwent a steady state spin-up, where the model was
forced with potential recharge and the groundwater table
was initialized; followed by a transient spin-up, where
the model was forced with 2 years of the CW3E transient
forcing. Through this process, a dynamic equilibration of
the groundwater and surface water systems was achieved,
and these resulting initial conditions were used to initialize
each test simulation. It is also important to note that
these simulations are considered predevelopment, in
that they do not account for anthropogenic influences
such as irrigation, groundwater pumping, or dams.
Simulations were conducted on the NCAR Cheyenne
high performance computing system (Computational and
Information Systems Laboratory 2019).

Model Evaluation
To understand how each subsurface configuration

performs in a PF-CLM simulation, we examine both
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Figure 5. The inset maps show the Upper Colorado River Basin (brown) and Delaware-Susquehanna Basin (green) model
test domains. The gray map of the CONUS shows the extent of the final dataset.

spatial groundwater behavior and streamflow dynamics.
Annual average PF-CLM water table depth (WTD) was
compared to long term, steady state WTD observations
from (Fan et al. 2007, 2013). For the United States, Fan
et al. collected water table observations from over 500,000
sites between 1927 and 2009. This dataset was used to
evaluate long-term, steady-state PF-CLM annual averaged
WTD for the different subsurface configuration runs in
each subdomain. A Pearson correlation coefficient (R) was
calculated for each subsurface configuration to determine
general groundwater performance in each subdomain. To
evaluate streamflow, we compared daily streamflow from
PF-CLM to observations from USGS gages. Modeled
versus observed hydrographs were visually inspected to
determine general streamflow performance, particularly to
observe baseflow dynamics.

Even with a seemingly comprehensive number of
streamflow and groundwater observations, the evaluation
of model performance was still a mix of a quantitative
and qualitative evaluation. WTD observations are sparse
in time and were used to evaluate spatial configuration,
streamflow was used to evaluate temporal performance.
While additional measures may be important in some
circumstances, these two measures were chosen because
they provide insight into many, if not all, aspects of the
hydrologic system.

It was important for this study to analyze results of
both steady-state WTD and temporal streamflow dynam-
ics to better understand general groundwater behavior and
watershed response from varying the hydrogeologic input
dataset. In considering steady state WTD, we observe

spatial groundwater patterns, which are influenced by
geology and hydrogeology factors. Streamflow timeseries
are important to show watershed response to the hydros-
tratigraphy data, particularly the groundwater-surface
water interactions, such as baseflow. This approach
informs how different subsurface configurations com-
pare to each other and how each may affect model
output.

Results
Over the broad duration of this study, over 80 dif-

ferent configurations were tested (Table S1). These sim-
ulations produced an immense volume of information
and data and many were very poor performing (e.g.,
Figure S4). As such, we will only present results from the
primary datasets and the most pertinent subsurface config-
urations that represent examples from the four main test
types (Figure 3) and highlight model performance. Table 1
shows the primary 12 runs. These configurations repre-
sent the core datasets (i.e., GLHYMPS 1.0 , GLHYMPS
2.0 , USGS , Shangguan depth to bedrock) and the main
subsurface components from Figure 1 (i.e., bedrock repre-
sentation, vertical flow barrier, effective subsurface thick-
ness, and anisotropy). The table describes which dataset
was used for the upper and lower geology, if a depth
to bedrock was applied, and lists WTD statistics and
qualitative streamflow notes for both UCRB and DSB
subdomains. A full description of each configuration and
a complete list of all configurations tested can be found
in the Supplementary Information (Text S1).

8 D. Tijerina-Kreuzer et al. Groundwater NGWA.org
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(a) (b)

Figure 6. Maps of the UCRB subdomain geology layers for the (a) USGS Vertically Homogeneous (Test 1 ) and (b) USGS
Simple Bedrock Layering (Test 2 ) configurations. Colors represent geology indicator values. Note that Geology Layer 1
signifies the deepest subsurface layer.

Vertically Homogeneous and Simple Bedrock Layering
Configurations

The results here focus on the PF-CLM simulations
from the UCRB and DSB subdomains. As mentioned in
the methods, our tests are based on a tiered approach
starting with a Vertically Homogeneous, distributed sub-
surface. Bedrock is an important boundary in hydrologic
modeling so one of the first components to test was
whether a Simple Bedrock Layering approach (Figure 3c)
is an improvement to a Vertically Homogeneous geology
(Figure 3a).

Test 1 and Test 2 from Table 1 are examples
of this. Both tests use the USGS combined Primary
Aquifer and Secondary Hydrogeologic Region dataset.
Test 1 (Figure 6a) represents the Vertically Homogeneous
subsurface with all 6 geologic layers identified with the
same indicator, resulting in the same geologic type below
the soil at each 1 km lateral grid cell. Alternatively,
Test 2 (Figure 6b) uses the same USGS dataset but
imposes bedrock layering occurring at the depth of
Shangguan with a constant, low permeability bedrock
with a hydraulic conductivity of 0.005 m/h (PF-CONUS
indicator 19, Table S2).

Results show that overall, both the Vertically
Homogeneous (Test 1 ) and Simple Bedrock Layering
(Test 2 ) configurations have promising WTD correla-
tions for the UCRB (R correlation of 0.87 and 0.77,
respectively) and DSB (R correlation of 0.65 and 0.54,
respectively). However, when inspecting hydrographs
(Figure 7), baseflow for the DSB Vertically Homogeneous
case is either significantly over- or underpredicted except
(Test 1 , Figure 7a and 7b). This is an interesting result
that demonstrates how evaluating model results for
both water table depth and streamflow limit the overall
parameter space. That is, while multiple subsurface

models may exhibit equally good match to water table
depth, these subsurface architectures do not all produce
the same streamflow response as hydraulic conductivity
values will partition water differently into changes in
streamflow and subsurface storage with time (Foster and
Maxwell 2019). Given that higher hydraulic conductivity
values increase the baseflow response and decrease peak
flows, particularly in snowmelt dominated systems like
the UCRB, the ability of different configurations to match
the base and peak flows provides an important control on
the subsurface configuration.

Vertical Flow Barrier
DSB Test 3 and Test 4 are examples of adding in a

flow barrier along with the USGS geology dataset. Test
3 applies a constant flow barrier set at a depth of 192 m
or just above the deepest model subsurface layer. The
average WTD correlation was 0.54, the same as the DSB
USGS Simple Bedrock Layering (Test 2 ). The constant
flow barrier (Test 3 ) did not improve model performance
for either WTD or streamflow, with at nearly all gages
underpredicting flow. However, when a variable depth
flow barrier based on Shangguan depth to bedrock was
applied (Test 4 ) there are significant improvements in
performance (Figure 8). The average WTD correlation in
DSB for Test 4 was 0.63 and baseflow and peak flows
closely match observations.

Improvements with a vertical flow barrier are also
seen for the UCRB subdomain in tests that use the
GLHYMPS 1.0 Vertically Homogeneous configuration
omitting (Test 5 ) and adding (Test 6 ) the Shang-

guan flow barrier especially in the UCRB domain
(Figure 9). These tests both have the same WTD cor-
relation of 0.86, but there are dramatic differences in
baseflow—without the flow barrier applied, baseflow

NGWA.org D. Tijerina-Kreuzer et al. Groundwater 9
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(a) (b)

(c) (d)

Figure 7. Examples of streamflow for the USGS Vertically Homogeneous configuration Test 1 (a, c) and USGS Simple Bedrock
Layering configuration Test 2 (b, d). Red lines indicate observations and blue lines indicate simulations. Streamflow is in cubic
meters per hour.

(a)

(b)

(c)

Figure 8. Streamflow examples in the DSB for (a) no flow barrier, (b) constant flow barrier, and (c) Shangguan flow barrier.
Red lines indicate observations and blue lines indicate simulations. Streamflow is in cubic meters per hour.

10 D. Tijerina-Kreuzer et al. Groundwater NGWA.org
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(a)

(b)

Figure 9. Streamflow examples in the UCRB for (a) no flow barrier (Test 5 ) and (b) Shangguan flow barrier (Test 6 ) for the
GLHYMPS 1.0 Vertically Homogeneous configuration. Red lines indicate observations and blue lines indicate simulations.
Streamflow is in cubic meters per hour.

is significantly overpredicted. High baseflow and lower
peaks are also exhibited in the UCRB (Figure 7d),
with the Simple Bedrock Layering and without a verti-
cal flow barrier. These tests emphasize the importance
of groundwater-surface water interactions and show that
even if the depth to water table remains the same, the
contribution to streamflow differs greatly.

This further highlights the discussion for Test 1 and
Test 2 , above, that multiple constraints provide better
evaluation of subsurface datasets. Given the dependence
of baseflow on overall transmissivity of the system; the
flow barrier acts to reduce transmissivity of the system
which lowers baseflow. This is in contrast with changes
in overall subsurface depth or an impermeable bedrock
(e.g., Figure 3a) as this allows for simulation of an aquifer
system that is in more direct contact with streamflow and
land surface processes, and a confined aquifer system
that is somewhat removed from the surface flow, but
still present and connected. Representation of both of
these systems was considered important given that often
groundwater extraction may occur from such a lower,
confined system.

Additional Tests
To evaluate the influence of other subsurface fac-

tors, additional tests were run to supplement the main
test configurations. These included subsurface thickness,
anisotropy changes to specified geology types, and an
e-folding technique.

The depth of the PF-CLM model, or subsurface
thickness, was another consideration for how we rep-
resent aquifer systems in each configuration. Gleeson
et al. (2016) showed that circulated groundwater is
commonly found at depths up to 250 m and Mcintosh
et al. (2012) found Late Pleistocene recharge reach up
to 1000 m in sedimentary basins. Condon et al. (2020)
suggests that modelers should critically assess if “deep”
flow paths are relevant to a study area. Since our goal
is to generate a subsurface configuration for the entire
CONUS, it is likely that there are locations where deep
flow paths contribute to streamflow or a catchment water
balance, even if this is not the case across the entire
continent. Therefore, we conducted tests where a flow
barrier was applied and changed the total subsurface thick-
ness to either 1192 m or 392 m, which essentially changes
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the depth of the represented unconfined aquifer. This
test builds on the results of Swilley et al. (this issue)
that tested only a 1192 m total model thickness for the
UCRB.

One main consideration for reducing the subsurface
thickness has to do with the systematic biases on
transmissivity that result from vertical model resolution
and effective hydraulic conductivity. For example, the
1192 m deep, 10-layer subsurface has a bottom layer
that is 1000 m thick. If we apply a bedrock hydraulic
conductivity of 0.005 m/h, this results in a transmissivity
of 5 m2/h. Then consider the 392 m deep, 10-layer
subsurface has a bottom layer that is 200 m thick. If
that same bedrock hydraulic conductivity of 0.005 m/h
is applied, the transmissivity is 1 m2/h. Therefore, with
the deeper, thicker subsurface configuration, the bedrock
is five times more transmissive than the shallower
configuration. This has implications on the surface
water partitioning and the amount of baseflow present.
Swilley et al. (this issue) shows that both adding a
vertical flow barrier and reducing the subsurface model
layer thickness reduces the effective transmissivity and
reduces groundwater driven baseflow to streams in the
UCRB. This is consistent with findings in Foster and
Maxwell (2019) where higher hydraulic conductivity
values resulted in increased baseflow discharge because
of the high subsurface flow rate.

The DSB subdomain exhibits low baseflow in
nearly all primary tests. Decreasing the thickness of the
subsurface results in increased base flow and peaks that
more closely match observations. Test 5 and Test 7 in
the DSB use the same GLHYMPS 1.0 base dataset and
have an overall thickness of 1192 and 392 m, respectively.
Decreasing the thickness leads to worse WTD correlation,
but better baseflow matches. More indicative are the
tests where the vertical flow barrier is added (Test 2
and Test 4 , Figure 8). Adding a flow barrier improves
simulation results, particularly streamflow. Swilley et al.
(this issue) discuss that the addition of the flow barrier
decreases the effective subsurface thickness and illustrates
the groundwater-surface water interactions.

The representation of anisotropy can have a signifi-
cant impact on groundwater modeling and groundwater-
surface water interactions (Borghi et al. 2015). We
conducted many tests to better understand whether
anisotropy would impact model results in the two
test subdomains (Table S1). Our method of applying
anisotropy is as a tensor value in the z direction for cer-
tain geologic units, reducing it by a factor of 0.1 (with 1.0
in the x and y direction; see the ParFlow user’s manual

(Maxwell et al. 2023). Physically, this reduces the ver-
tical saturated hydraulic conductivity which limits flow
perpendicular to the topography and leaves the horizontal
values unchanged.

Our results show compelling arguments for including
anisotropy as an additional methodology to the specified
subsurface data. For example, UCRB Test 8 and Test 9

(GLHYMPS 2 .0 over GLHYMPS 1.0 , Shangguan flow
barrier) differ in that Test 8 applies isotropic geology and

Test 9 applies anisotropic geology. Both Test 8 and Test 9
have a WTD correlation of 0.71, but there is a significant
reduction and improvement to baseflow representation
with the addition of anisotropy in Test 9 (Figure 10).
Similarly, adding anisotropy in Test 12 , compared to the
same configuration in Test 11 (GLHYMPS 1.0 , Shangguan
flow barrier) shows significant improvements in baseflow
for both UCRB and DSB and improvements to WTD for
UCRB with R correlations of 0.39 and 0.67 for Test 11
and Test 12 , respectively (DSB WTD R correlation was
0.31 for both Test 11 and Test 12 ) (Table 1).

While there is theoretical discussion of decreasing
hydraulic conductivity with depth, relatively few studies
have explored potential impacts at regional scales (e.g.,
Belcher et al. 2001; Fan et al. 2007; Jiang et al. 2009).
Belcher et al. (2001) compiled a substantial number of
aquifer tests and found a noisy relationship between
depth and hydraulic conductivity. We also explored a
relationship between hydraulic conductivity and slope,
to reflect the effects of topography by an e-folding
relationship derived by Fan et al. (2007) and instantiated
by Maxwell et al. (2015) exp

(
− z

f

)
, where z is the depth

below-ground surface in meters calculated at the midpoint
of a grid cell and f = a

1+b
√

S2
x+S2

y

, where S x ,y are the

topographic slopes in the x , y direction, a = 20, and
b= 125. The application of this relationship decreases the
hydraulic conductivity of the bottom layer with depth and
at places of steep topography. Simulations were conducted
that reduced the hydraulic conductivity as a function
of slope alone (a constant z , Single E-fold shown in
Figure 11a) compared to a decrease in conductivity with
depth (Multi E-fold shown in Figure 11b).

Results show (Table 1) that for all USGS and most
GLHYMPS test configurations (Tests 1 to 9 ), simulated
streamflow in the DSB was significantly underpredicted
(except for overprediction in Test 1 ). For the single
e-folding GLHYMPS 1.0 test with a vertical flow bar-
rier (Test 10 , Figure 11a), streamflow in the DSB
improved significantly, however WTD correlation was
only 0.17. Introducing the GLHYMPS 1.0 multi e-folding
(Test 11 , Figure 11b), increased DSB WTD correlation
to 0.31.

Selected National Configuration
For this study, we present a Selected National

Configuration which most reasonably represents the whole
of the continental United States (Figure 12) and builds
upon the components discussed in the results thus far. The
Selected National Configuration consists of GLHYMPS

1.0 for both upper and lower geologies, the Shangguan

depth to bedrock dataset for a vertical flow barrier,
anisotropy applied to specified geology types (excluding
sand, coarse grained unconsolidated material, and karst
aquifer materials); and implementation of multi-level
e-folding (Table 1, Test 12 ). It has a lateral resolution
of 1 km2, a depth of 392 m, and consists of 10 vertical
layers disaggregated between soil (top four layers) and
geology (lower six layers).

12 D. Tijerina-Kreuzer et al. Groundwater NGWA.org
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Figure 10. Examples showing compared WTD and streamflow for configurations applying isotropy and anisotropy to selected
geologic types. Each run uses GLHYMPS 2.0 upper, GLHYMPS 1.0 lower, 392 m depth, and Shangguan flow barrier. Red
lines indicate observations and blue lines indicate simulations.

(a) (b)

Figure 11. Comparison of (a) single-layer e-folding and (b) multilayer e-folding for the DSB subdomain. Colors represent
different geologic indicators and Geology Layer 1 is the deepest layer.

Ultimately, the Selected National Configuration was
chosen based on streamflow and WTD performance in
both the UCRB and DSB subdomain. This configuration
had WTD correlation in the UCRB (0.67) and DSB
(0.31), which is a much more stringent performance
metric than hydraulic head (e.g., Maxwell et al. 2015;
Reinecke et al. 2020) and, compared to the evaluation
of many large-scale simulations of WTD (Reinecke
et al. 2020, Figure 7), the performance shown here is
a favorable improvement over prior large-scale studies.
Additionally, hydrographs reveal that baseflow, flow
peaks, and flow volume are well represented for both
subdomains (Figure 13b and 13d).

Two other configurations performed comparably to
the Selected National Configuration: the USGS Vertically
Homogeneous configuration (Test 1 ) and the USGS

Simple Bedrock Layering with the vertical flow barrier
at Shangguan depth to bedrock (Test 4 ). Test 1 had
the best combined WTD correlation for both subdomains
(0.87 for UCRB and 0.65 for DSB), but when also
taking streamflow into account, this configuration tended
to either over- or underpredict baseflow and total flow in
both subdomains. For example, the Test 1 configuration

significantly overpredicted baseflow and underpredicted
flow peaks in the DSB (Figure 7a and S2). Test 4 also
had favorable WTD (0.86 for UCRB and 0.63 for DSB),
but again, considering streamflow dynamics, baseflow
and peak flow were underpredicted in both the UCRB
and DSB (Figure S3). These configurations highlight
baseflow and peak flow sensitivity to differing hydraulic
conductivities, also exemplified in Figures 8 and 9.

Resolution and extent of the data products was a
secondary deciding factor. GLHYMPS 1.0 is higher res-
olution than USGS —the average polygon size for the
USGS Secondary Hydrogeologic Regions is approxi-
mately 46,000 km2 (Belitz et al. 2019), compared to a
polygon size for GLHYMPS 1.0 of approximately 100 km2

(Gleeson et al. 2014). Additionally, the USGS Primary
Aquifer and Secondary Hydrogeologic Region mapping
is limited to the contiguous U.S. boundary. GLHYMPS
being a global dataset, includes data outside of the United
States. This is important for continuity in subsurface data
across political boundaries, for example, continental scale
modeling applications that include transboundary water-
sheds extending into Mexico and Canada (see Figure 12
boundaries).
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Figure 12. The selected national configuration (GLHYMPS1.0, Shangguan flow barrier, 392 m, multilevel e-folding,
anisotropy) for the entire CONUS at 1 km resolution. Colors indicate different geologic types representing the geologic
indicators in PF-CLM. Geology Layer 1 is the deepest layer.

One of the advantages to the methods in this study is
that both WTD and streamflow were accounted for in each
configuration test. While some of the configurations had
higher correlation between modeled and observed WTD,
many of these had very poor performing streamflow.
Thus, the final configuration was selected to capture
overall performance regarding groundwater-surface water
interactions. For these reasons, we determine that the
USGS configurations Test 1 and Test 4 may be good
alternative datasets depending on the region, but that the
Selected National Configuration is the optimal dataset for
the CONUS. These results emphasize the challenges of
developing a seamless and conceptually consistent dataset
over the continent, in contrast to developing discrete,
small-scale calibrated models.

The data for the Selected National Configuration,
as well as the other primary configurations discussed
in the results are publicly available via HydroFrame
(hydroframe.org) and the Princeton Hydrologic Data
Center (PHDC).

Conclusions
We present a systematic analysis for testing conti-

nental scale subsurface datasets for use in hydrological
modeling. We evaluated a range of configurations com-
piled from available subsurface datasets using an inte-
grated hydrologic model. We compared simulation results
to observations to evaluate the performance of each sub-
surface configuration on groundwater-surface water inter-
actions.

Our main findings show that the thickness of the
subsurface is important for representing the connectivity
between groundwater and surface water. Drawing upon
the conceptual models shown in Figure 3, we can
draw some general conclusions from this work. Vertical
homogeneity (Figure 3a and 3b) results in too large a
lateral transmissivity for reasonable domain thicknesses.
This results in very large flows, especially baseflows. The
addition of the vertical flow barrier, or confining unit
(Figure 3b and 3d) limits the overall transmissivity of
the subsurface that is in contact with the stream network
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Figure 13. Evaluation of WTD and streamflow in the UCRB (a, b) and the DSB subdomain (c, d) for the Selected National
Configuration dataset.

and reduces baseflow and increases streamflow response
to precipitation events. The three-dimensional bedrock
layering improves the fidelity of spatial groundwater
distribution (Figure 3c and 3d) but without the confining
layer still results in baseflow that is too large. Therefore,
we find that the configurations that include a vertical
flow barrier, and thus decrease the overall thickness,
significantly improve simulation results, particularly for
baseflow. Moreover, we find that while groundwater
simulation may be a focal point for using these datasets,
it is vital to also observe the performance of simulated
streamflow and consider surface water and groundwater
partitioning.

Additionally, changes in subsurface configuration will
also shift the overall water balance in the basin. In our
simulations, precipitation (i.e., basin inflow) is the same
across all cases and the changes in storage are minimal.
Therefore, the primary changes we expect to see are shifts
between the relative importance of ET and streamflow.
Increasing K with depth tends to increase base flow and
total streamflow. Conversely, higher overall K values are
generally correlated with deeper water table depths and
decreased ET (suggested by Kollet and Maxwell 2008,

among others). Consistent with these trends, in our
simulations the average K values range from 0.0172 to
0.0321 m/h for the DSB and 0.0150 to 0.0249 m/h for the
UCRB. We see generally higher streamflow in the highest
K case and lower streamflow in the lowest K case.

We have settled on a Selected National Configuration,
which we have highlighted and results in good overall
model performance when considering both WTD and
streamflow in the two test subdomains. However, the
USGS configuration also had favorable results for WTD
and could be used as an alternate model. The Selected
National Configuration dataset is publicly available and
can be used in a range of hydrologic and hydrogeologic
modeling applications.

The overarching goals of this study were to increase
understanding of how subsurface permeability character-
ization impacts hydrologic model results and to com-
pile a nationally consistent hydrostratigraphy dataset from
existing subsurface datasets for use in continental-scale
hydrological modeling applications. While testing mul-
tiple subsurface configurations using a national-scale
model remains computationally expensive and gener-
ally unfeasible, testing in smaller subdomains enabled
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many subsurface cases to be implemented and evaluated.
As a next step, we plan to test the Selected National
Configuration at the national scale as a subsurface input to
the updated ParFlow-CONUSv2 continental-scale hydro-
logical model. The results of this simulation will provide
more information about large-scale performance and areas
of potential improvement.

Defining large-scale geology accurately is a very
challenging problem and our goal is to find an optimal
dataset for the entire CONUS. We fully recognize that
this is a work in progress and that there is always room
for development as new data emerge and methodologies
progress for characterizing the subsurface. This is a
snapshot of the work as we evolve better hydrology
models of the United States.
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