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Abstract
This study synthesizes two different methods for estimating hydraulic conductivity (K) at large scales. We derive analytical

approaches that estimate K and apply them to the contiguous United States. We then compare these analytical approaches to
three-dimensional, national gridded K data products and three transmissivity (T) data products developed from publicly available
sources. We evaluate these data products using multiple approaches: comparing their statistics qualitatively and quantitatively and
with hydrologic model simulations. Some of these datasets were used as inputs for an integrated hydrologic model of the Upper
Colorado River Basin and the comparison of the results with observations was used to further evaluate the K data products. Simulated
average daily streamflow was compared to daily flow data from 10 USGS stream gages in the domain, and annually averaged
simulated groundwater depths are compared to observations from nearly 2000 monitoring wells. We find streamflow predictions
from analytically informed simulations to be similar in relative bias and Spearman’s rho to the geologically informed simulations.
R-squared values for groundwater depth predictions are close between the best performing analytically and geologically informed
simulations at 0.68 and 0.70 respectively, with RMSE values under 10 m. We also show that the analytical approach derived by this
study produces estimates of K that are similar in spatial distribution, standard deviation, mean value, and modeling performance
to geologically-informed estimates. The results of this work are used to inform a follow-on study that tests additional data-driven
approaches in multiple basins within the contiguous United States.

Introduction
While groundwater is the world’s largest accessi-

ble freshwater resource, it is intrinsically difficult to
characterize. Direct observations of groundwater can
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only be made using a limited number of approaches,
primarily monitoring wells, which are restrictive in scale.
Remote sensing has been used to create global-scale
soil moisture products like Soil Moisture Active Passive
(SMAP) and Soil Moisture and Ocean Salinity mission
(SMOS); however, these products are most accurate up to
5 cm in depth and lend themselves better to land-surface
applications than groundwater availability applications
(Jackson et al. 2012; Velpuri et al. 2015; O’Neill et al
2020). Coarse estimates of groundwater anomalies can
be made using remote sensing products like GRACE (the
Gravity Recovery and Climate Experiment), but these
estimates are made over large scales on the order of
102 − 104

km
2 (Tapley et al. 2004; Scanlon et al. 2018).

Management of this vital resource is made even more
challenging by the complex interrelation of groundwater
with unsaturated zone soil moisture, surface water, and
even the lower atmosphere (Maxwell and Condon 2016;
Forrester and Maxwell 2020).

Hydrogeologic properties are similarly hard to
observe. Hydraulic conductivity (K) is typically inferred
in groundwater models using a calibration or param-
eter estimation approach (Hill and Tiedeman 2007).
While common practice for more local to regional
systems, calibration approaches are still computationally
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impractical at large scales (Zell and Sanford 2020;
Condon et al. 2021; Gleeson et al. 2021). Developing
an accurate subsurface architecture becomes even more
important given the uncertainties and that alternate
subsurface representations are rarely explored (Ene-
mark et al. 2019, 2020). Integrated hydrologic models
simulate surface and subsurface flow simultaneously.
They can be used in a predictive sense and to connect
information from disparate observations like ground-
water wells and stream gages. For example, Foster
et al. (2020) used numerical experiments to find that
low-resolution models may underpredict the effects of
climate change on mountain headwater streamflows,
and Forrester and Maxwell (2020) used scenario testing
to determine how lateral groundwater flow affects
evapotranspiration in complex terrain. Continental-scale
models are essential in many cases, as some of the
processes governing the hydrologic cycle, as well as
many perturbations to the hydrologic cycle, function
at large scales (Eagleson 1986; Barthel 2014; Bierkens
et al. 2015).

Physically based hydrologic models require the prop-
erties of the domain being simulated. K is a critical input
to any subsurface model (Freeze and Cherry 1979). This
subsurface parameter is important for accurate numerical
modeling of groundwater systems and is a key compo-
nent of the analytical equations of groundwater flow as
well. For modeling, an accurate 3D gridded represen-
tation of hydraulic conductivity is important for model
performance (Turner 1992). As mentioned above, cal-
ibration of hydraulic conductivity is a standard prac-
tice in groundwater modeling, but computational demand
makes the calibration of high-resolution, continental-
scale models to groundwater head or water table depths
(WTD) and streamflow simultaneously, infeasible (Con-
don et al. 2021; Gleeson et al. 2021; O’Neill et al. 2021).
A common approach has been to assemble subsurface
properties based on large scale datasets (e.g., Huscroft
et al. 2018; de Graaf et al. 2020), however newer
approaches are evolving that are semi-analytical (e.g.,
Luo et al. 2010; Tashie et al. 2021) that provide an
alternate pathway to populating hydraulic conductivity
values.

Our study develops and compares multiple
continental-scale hydraulic conductivity spatial models
for the contiguous United States using two steps. The first
step is a mapping component in which several methods
are used to estimate the saturated subsurface hydraulic
conductivity of the contiguous United States and adjacent
hydrologic regions. These include existing datasets, new
combinations of existing data products and analytical
solutions for hydraulic conductivity calculated based on
different assumptions. The second component of our anal-
ysis is to evaluate how each hydraulic conductivity map
influences the performance of an integrated hydrologic
model for an example test domain. We use selected 3D K
fields as input to a ParFlow-CLM integrated hydrologic
model that simulates surface water and groundwater
simultaneously for a major U.S. river basin, the Upper

Colorado. Modeling results are compared to observed
streamflow and WTD for each subsurface data product.
This process assesses the performance of the hydraulic
conductivity fields themselves and the approaches used
to develop them and their underlying assumptions.

Understanding Hydraulic Conductivity
The challenge of mapping hydraulic conductivity

lies in the inability to observe it completely. Unlike
hydrologic features such as topography or stream density,
hydraulic conductivity cannot currently be observed or
inferred using remote sensing techniques. Adding to this
challenge is the fact that hydraulic conductivity can vary
by 10 orders of magnitude or more between differing
subsurface media (Heath 1983), and the boundaries of
these subsurface media are difficult to map at high
spatial resolution. Although K can be measured directly
in a lab using core samples or in situ using slug and
pump tests, these methods are restrictive in scale and
can be expensive (Hornberger et al. 1998). Lab testing
core samples measures the conductivity of a single
point in space at a very small support scale, meaning
that the effects of subsurface heterogeneity go largely
unaccounted. While slug and pump tests directly measure
the effective hydraulic conductivity of real groundwater
systems, their results are only representative of the nearby
subsurface on the order of meters to hundreds of meters
(Hornberger et al. 1998).

Hydraulic conductivity, when mapped at continental
and global scales, is often assigned by subsurface
hydrogeology (Gleeson et al. 2014; Huscroft et al. 2018).
This approach finds the best available mapping of
geology for a region and assigns a value of K for
each geological unit. We will refer to this type of
approach as geologically informed throughout. The factor
that determines the accuracy of this approach is often
data availability—in regions where geology is mapped
closely, K can be mapped similarly. One advantage of
geologically informed approaches is that they can be
performed efficiently over large areas when the geology
has been mapped and it allows for local calibration and/or
smaller-scale subdivision of these geologic units.

Analytical approaches to estimating K leverage
assumptions on groundwater flow to work backwards from
observed hydrology to subsurface hydraulic properties.
The advantage of these approaches is that they may
capture the effective hydraulic conductivity at the scale of
interest. This means that they would, ideally, capture the
effect of features like faults, karst, and fracture systems at
scale; however, this is untested in practice. Additionally,
they do not suffer from discontinuities at administrative
boundaries, which are sometimes found in geology maps.

A methodology developed by Luo and colleagues is
an analytical K estimation approach that uses the geomor-
phology and hydrology of a domain (Luo et al. 2010; Luo
and Pederson 2012). We provide details on the applica-
tion of this approach below but summarize briefly here.
Streams are assumed to be gaining, meaning that they
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receive baseflow from groundwater, and the density of
streams in a domain is assumed to negatively correlated
to the permeability of that domain (Pederson 2001; Luo
et al. 2010). This approach assumes that catchments are
generally in steady-state when considering the long-term
averages of recharge and spring flows. Using this assump-
tion, a mass balance can be performed over a catchment,
and hydraulic conductivity can be estimated by making
the DuPuit-Forchheimer assumptions and rearranging the
groundwater equation (Luo et al. 2010). This approach,
and similar approaches, represents promise as they address
the problem of effective K versus local K. They also
represent efficient methods for estimating hydraulic con-
ductivity at large scales. To our knowledge, no study has
evaluated the results of such methods with an integrated
hydrologic model.

In addition to relating hydraulic conductivity with
stream density, our study also assumes a relationship
between topography and the water table of unconfined
aquifer units. The relationship between topography and
the water table of unconfined aquifers has been recognized
since the 19th century (King 1899). It is commonly said
in hydrology that the water table behaves as a “subdued
replica of the ground surface,” and we will use this princi-
pal to equate large-scale averages in topographic slope to
average hydraulic gradient (Desbarats et al. 2002). There
remains, however, some question over how and when this
relationship can be used. Desbarats et al. (2002) explains
the advantages and challenges of relating topography and
groundwater elevation in application when producing two
models to map groundwater depth using a digital elevation
model. Haitjema and Mitchell-Bruker (2005) discuss the
circumstances under which water tables are topography
controlled and conversely recharge controlled, but ulti-
mately conclude that there is nearly always some degree
of correlation at large scales.

We will use Luo’s approach as an example of
an analytical approach from literature and Huscroft’s
GLHYMPS 2.0 data product as an example of a geolog-
ical K mapping from literature. It is important, however,
to acknowledge approaches that we do not consider in
our analysis. There are many continental and global-scale
K products that make use of pedotransfer functions to
estimate hydraulic properties of soil from more easily
measurable properties (e.g. Gupta et al. 2021; Jarvis et al.
2013; Montzka et al. 2017; Rahmati et al. 2018). These
approaches could be considered a subcategory of geolog-
ically informed approaches. We choose not to include a
pedotransfer approach or product because their focus is
on shallower soil units, and ours is up to 1.2 km of sub-
surface hydrostratigraphy. We have also not included the
Tashie et al. (2021) analytically informed K data prod-
ucts who use hydrograph recession analysis to estimate
the watershed-scale effective hydraulic conductivity of the
contiguous United States, or the shallow calibrated trans-
missivities of Zell and Sanford (2020), both of which
were not available when this work was being undertaken
and are for shallower systems than we consider in this
work.

Methods
Our process for this study begins with using sev-

eral methods to map saturated subsurface hydraulic
conductivity for the contiguous United States. We cate-
gorize these approaches as geological , meaning that K is
assigned based on knowledge of the subsurface geology
and analytical , meaning that they rely on a mathematical
formulation. We create six hydraulic conductivity maps
using an analytical approach from literature; we create six
more maps using an analytical approach derived in this
study, and we compare with three geologically-derived
maps; two of which were compiled or edited for this study,
and a third which was taken directly from literature. These
two-dimensional products are then combined into a 3D K
field. We discuss and evaluate the statistics of the K fields
derived from these different approaches.

These three-dimensional K fields are then used as
subsurface inputs to the integrated hydrological model,
ParFlow-CLM of the Upper Colorado River Basin
(UCRB) to evaluate how each mapping influences model
performance. ParFlow-CLM simulates surface water and
groundwater simultaneously and is driven by hourly atmo-
spheric forcing for an entire water year. Simulated daily
streamflows are compared to daily flow data from 10
USGS stream gages in the domain, and annually averaged
simulated groundwater depths are compared to observa-
tions from nearly 2000 monitoring wells. We would like
to emphasize here that this test basin is intended only
to illustrate the ways that different K data products can
influence model behavior. This is not indented to be an
exhaustive national modeling study.

We perform all mapping analyses over the contiguous
United States and areas outside the United States con-
nected to major U.S. river basins. Figure 1 provides an
outline of the full study area with the UCRB modeling
subdomain delineated in black. This spatial extent was
chosen to include all areas that drain to United States,
such as the Columbia River Basin and the full Rio Grande
Basin, for future modeling efforts. Mapping is done in
2D at high resolution with grid cells of 1 km2. Analytical
approaches average hydrologic parameters of a catchment
at the U.S. Geological Survey (USGS) Hydrologic Unit
Code, HUC12 scale; HUC12s are watershed areas mapped
by the USGS on the order 102 km2 on average. Geologi-
cally informed K maps, those with vector geometry orig-
inally, are rasterized at the aforementioned one-kilometer
resolution as are the borders of the HUC12 catchments.
Table 1 provides a full list of the hydraulic conductivity
products considered in this study.

Geological Methods
The geologically informed maps use existing datasets

to assign K values (Figure 2, Table 1). The first of the geo-
logically informed data products is the GLHYMPS 2.0
dataset from Huscroft et al. (2018), referred to from here
forward as Geological K Case 1 . This product is com-
posed of two vertical layers, with the top layer extending
from the surface to an estimated depth of bedrock pro-
vided by Shangguan et al. (2017) and the second layer
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Figure 1. Hydraulic conductivity mapping domain with modeling subdomain: the contiguous United States and inward-
flowing watersheds and the Upper Colorado River Basin (UCRB).

beneath. The upper layer predominantly represents uncon-
solidated areas, while the lower layer predominantly rep-
resents the underlying geology (Huscroft et al. 2018). It
is important to note that these layers are properties of the
dataset itself, independent of model layers. When apply-
ing the dataset to our modeling application, we assign
properties of the top layer to cells with centers above
Shangguan’s estimate of depth to bedrock and properties
of the bottom layer to cells with centers beneath it. A
depiction of this vertical disaggregation can be seen in
Figure 3.

The second geologically informed data product is
created by assigning K values from Heath (1983) to a
geology map created by the USGS (Belitz et al. 2019).
This K field will be referred to as Geological K Case

2 mapping hereinafter. The USGS geology map used
is the union of the USGS Principal Aquifer dataset
and Secondary Hydrogeologic Regions dataset (Belitz
et al. 2019). Combined, these two maps cover the entirety
of the United States. Outside of U.S. borders, Geological
K Case 1 geology values are used.

Our study considers a third geology-informed data
product for comparison. This K field uses the geometries
from Geological K Cases 1 and 2 but assigns estimates of
K from Maxwell et al. (2015) to each rock type. Described
in detail in Maxwell et al. (2015), these values are a
combination of the Gleeson et al. (2011) values and other
literature values. This is a two-layer product—the upper
layer is the top layer of the Geological K Case 1 map, and

the bottom layer is the Geological K Case 2 geometry. As
in Geological K Case 1 , the top layer is mapped down
to the Shangguan estimated depth of bedrock. The idea
supporting this approach is that the top layer of Geological
K Case 1 focuses on the unconsolidated, near-surface
units, and Geological K Case 2 focuses on deeper units.
Unconsolidated areas are mapped as bedrock in the lower
layer below the depth to bedrock product. This is done
because the underlying dataset is vertically-averaged, and
unconsolidated areas are expected to be accounted for by
Geological K Case 1 in the upper layer. We will refer
to this product as Geological K Case 3 . All K fields are
summarized in Table 1.

Analytical Methods
As mentioned previously, we use two analytical

approaches in this study. Using these two analytical
approaches with different assumptions, we create and
assess a total of 12 mappings—9 for actual hydraulic con-
ductivity (L/T ) and 3 for transmissivity (L/T 2)—based
on the combination of analytical approach and assump-
tions (Table 1) and input data (Figures S1 through S6).

The first analytical approach that we implement was
developed by Luo et al. (2010). From here forward, this
approach will be referred to as the Literature Analytical

Approach . This method starts with the conceptual diagram
shown in Figure 4, develops an equation for steady-state
flux to the stream and inverts for hydraulic conductivity.
Luo et al. (2010) and Luo and Pederson (2012) derive this
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Table 1
Summary and Description of Subsurface Data Products and the Resulting K Fields

Name Layers Method Assumptions

Geological K Case 1 (K Case G1) 2 K values from Huscroft et al. (2018); Shangguan
depth to bedrock (2016)

NA

Geological K Case 2 (K Case G2) 1 USGS Primary Aquifers and Secondary Hydrologic
Regions assigned K values by this study

NA

Geological K Case 3 (K Case G3) 2 GLYMPS 2.0 geometry over USGS Primary
Aquifer geometry assigned K by this study;
Shangguan depth to bedrock (2016)

ParFlow Indicators

Analytical K Case 1 (K Case A1) 1 Literature analytical method (Luo et al. 2010) with
drainage density and aquifer depth (H) larger
than 100 m

H ≥ 100 m

Analytical K Case 2 (K Case A2) 1 Literature analytical method (Luo et al. 2010) with
drainage density and valley depth (d) limited to
aquifer depth

d ≤ H

Analytical K Case 3 (K Case A3) 1 Literature analytical method (Luo et al. 2010) with
drainage density and aquifer depth (H) set to a
constant value

H = 200 m

Analytical K Case 4 (K Case A4) 1 Literature analytical method (Luo et al. 2010) with
average effective flow length (same as Case A1
above but with effective flow length)

H ≥ 100 m

Analytical K Case 5 (K Case A5) 1 Literature analytical method (Luo et al. 2010) with
average effective flow length (same as case A2
but with effective flow length)

d ≤ H

Analytical K Case 6 (K Case A6) 1 Literature analytical method (Luo et al. 2010) with
average effective flow length (same as case A3
but with effective flow length)

H = 200 m

Analytical K Case 7 (K Case A7) 1 This study’s analytical method using average
effective flow length

NA

Analytical K Case 8 (K Case A8) 1 This study’s analytical method using drainage
density

NA

Analytical K Case 9 (K Case A9) 1 This study’s analytical method using average
effective flow length

Model slopes and
flow lengths

Analytical T Case 1 (T Case A1) 1 This study’s analytical method using average
effective flow length

NA

Analytical T Case 2 (T Case A2) 1 This study’s analytical using drainage density NA
Analytical T Case 3 (T Case A3) 1 This study’s analytical method using average

effective flow length
Model slopes and

flow lengths

equation for flux based on the Dupuit equation. We briefly
rederive the Luo et al. (2010) formulation here starting
from Darcy’s law combined with a simple statement of
continuity. If we start with the Darcy equation:

q ′ = −Kb
(

!h

!x

)
(1)

Where K is the effective hydraulic conductivity [L/T],
h is the hydraulic head [L], x is a distance along the
hillslope, b is the average aquifer thickness expressed as
b = (H−(H−d))

2 , and q’ is the flux from both hillslopes that
drain into the stream as shown. If we assume no underflow
(or inter-basin flow) from neighboring hillslopes, we can
say that q ′ = 2RW where R is the effective recharge [L/T],
W is the length from hilltop to stream [L] and the factor
of two appears because q’ represents the flow from both
hillslopes shown in Figure 4. H is the aquifer thickness
[L], assumed to be from the bedrock to the top of the
hillslope and d is the valley depth [L], or the change in

elevation or topography from the top of the hillslope to
the stream.

The change in head in (1) may be written as !h =
(h − d) − H [L] and the distance becomes !x = W [L].
If we combine and simplify we get:

2RW = K

2W

(
H 2 − (H − d)2) (2)

When we solve (2) for K we get:

K = 4RW 2
(
H 2 − (H − d)2

) (3)

Which is the same as Equation 2 in Luo and Peder-
son (2012). Note that this same solution is obtained using
the Dupuit derivation and setting the constants of inte-
gration based on the system as shown in Figure 4. This
analytical solution assumes that catchments are effectively
drained, aquifer thickness is equal to depth-to-bedrock,
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Figure 2. Geologically informed hydraulic conductivity data products. See Table 1 for definitions.

and groundwater flow is horizontal. As the length from
hilltop to stream is not always easily determined, the
drainage density [L−1] may be used in place of W .

Drainage density (D), while not depicted in Figure 4,
is roughly equivalent to 1/2W , where W is the average
flow length to the nearest stream for water that falls in
a catchment (Luo et al. 2010). D can be estimated by
dividing the total length of streams in a catchment by the
catchment’s area. W can be calculated by averaging the
downstream distance from every location in a watershed
to the nearest stream. If drainage density is used then
Equation 3 becomes:

K = R

D2
[
H 2 − (H − d)2

] (4)

Both terms, D and W , will be tested by our analytical K
cases. These parameters are derived using the National
Hydrography Dataset (NHD) Plus stream map (U.S.

Geological Survey 2019). Parameters such as: recharge,
aquifer thickness, valley depth, and drainage density,
are averaged over each USGS HUC12 catchment (U.S.
Geological Survey 2019). These parameters are used in
Equation 4 to estimate K for each catchment and are
illustrated in Figure 4.

Hydraulic gradient is assumed to be a function of
aquifer thickness and valley depth, which is defined as
the average depth of erosion along streams. Valley depth
can be approximated by taking the black top hat transform
of a digital elevation model (Rodriguez et al. 2002). This
study performs the black top hat transform at ∼30 m
resolution over the entire contiguous United States, as
shown in Figure S5. The resulting black top hat transform
is then averaged at 250 m resolution for storage and use.
To convert this 250 m black top hat product to valley
depth, it is then averaged along the NHD streams for each
catchment.

6 J.S. Swilley et al. Groundwater NGWA.org
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Figure 3. Conceptual model of 3D hydraulic conductivity
and vertical discretization of test domain (not drawn to
scale). Note that certain features identified here may change
depending on the case simulated such as the presence of the
flow barrier as described in Table 3, or the discrete nature
of K values for the Geological cases.

Aquifer thickness is assumed to be equivalent to
the depth of bedrock. This means that the Literature

Analytical Approach assumes that unconsolidated areas
are fully saturated some distance away from their
draining streams and that bedrock geologies do not
contribute to baseflow. Further assumptions on the value
of aquifer thickness and valley depth are necessary as
well in this approach. The mathematical formula of
the Literature Analytical Approach produces negative
hydraulic conductivities when valley depth is more than
twice aquifer thickness. We test three assumptions that
remedy this problem: (1) assuming aquifer thickness is
greater than or equal to 100 m; (2) assuming valley depth
is less than or equal to aquifer thickness; (3) assuming
aquifer thickness is a constant 200 m. These assumptions
are outlined in Table 1. Finally, recharge was estimated by
subtracting average evapotranspiration from precipitation
(Tran et al. 2020). These two parameters were averaged
over each catchment for calculation.

The second analytical approach, which is first pro-
posed in the current study, is a variation of the Luo’s

method where the hydraulic gradient is assumed to be
equivalent to topographic slope (Zhang et al. 2021). This
new formulation alleviates the need for the additional
assumptions on aquifer thickness and valley depth. This
study’s approach is used for the creation of both hydraulic
conductivity sets and transmissivity (T) sets. The formulas
for these methods are provided below by Equations 5 and
6. For two cases, one K and one T, slopes and flow lengths
from the UCRB ParFlow model were used instead of the
true landscape slopes and flow lengths to assess the impor-
tance of inner consistency when modeling permeabilities.

K = −RW

SH
(5)

T = −RW

S
(6)

K—hydraulic conductivity (L/T).
T—transmissivity (L2/T).
R—average recharge (L/T).
W—effective flow length (L).
H—aquifer thickness (L).
S—topographic slope (L/L).

In some areas of our domain, we did not have suffi-
cient data for one or more of the required input param-
eters. Gaps in the input data hampered the application
of the analytical solutions in these regions, primarily in
HUC12s with limited NHD Plus stream data. To address
this, we implement two data filling techniques. No-data
areas inside of U.S. borders are filled using simple nearest
neighbor interpolation for smoothness. No-data areas out-
side of the U.S. borders, which are larger on average, are
extrapolated using a linear ridge model from Scikit Learn
(Pedregosa et al. 2011). For both hydraulic conductiv-
ity and transmissivity, the extrapolation model is trained
on recharge and elevation, as our analytical solutions are
sensitive to both of these parameters. Table 2 shows the
percentages of the domain interpolated and extrapolated
for each analytical case.

Modeling Methods
The UCRB is approximately 284,898 km2 in area

and covers portions of Wyoming, Colorado, Utah,

Figure 4. Conceptual model of hydrologic catchment properties modified after (Luo et al. 2010).
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Table 2
Percentages of Domain Interpolated and

Extrapolated

K Field
Interpolation

%
Extrapolation

%
Total
%

Analytical K Case 1 15.79 5.72 21.51
Analytical K Case 2 16.18 5.72 21.90
Analytical K Case 3 15.77 5.72 21.49
Analytical K Case 4 15.88 5.72 21.60
Analytical K Case 5 17.00 5.72 22.72
Analytical K Case 6 15.83 5.72 21.55
Analytical K Case 7 2.63 5.72 8.35
Analytical K Case 8 15.78 5.72 21.50
Analytical K Case 9 3.06 5.72 8.78

New Mexico, and Arizona (Figure 1). It encompasses
high-elevation mountain headwaters, lower prairie land
and even deserts, making it hydrologically diverse. The
UCRB is also topographically constrained and large in
extent, meaning that the lateral flow through the edges
of the domain are much smaller than other subbasins.
The UCRB also has a range of topography and a mix
of rain and snow processes across its extent. Despite
the water management present in this system (which
was not considered in the simulations) we still felt this
was an optimal choice as a test domain. Modeling is
performed for the water year of 1983 in the UCRB. The
water year chosen and UCRB domain are advantageous
as there is clear seasonality in flow regimes due to snow
melt allowing baseflow and peak flows to be analyzed
separately. We use this opportunity to disentangle the
surface water controls of subsurface hydraulic conduc-
tivity (e.g., Foster and Maxwell 2019). The dramatic
snowmelt-driven peak flows of 1983 also allow us to
observe model performance in extreme conditions.

The model used for simulations is ParFlow-CLM,
a 3D integrated hydrologic model, coupled to the land
surface model, CLM (Ashby and Falgout 1996; Jones
and Woodward 2001; Maxwell and Miller 2005; Kollet
and Maxwell 2006, 2008; Maxwell 2013). The UCRB
is modeled at 1 km horizontal resolution and varying
vertical resolution; the vertical discretization can be seen
in Figure 3. CLM, a land surface model, is used in all
simulations, and hourly NLDAS meteorological forcing
for the water-year of 1983 drives meteorological inputs
(Xia et al. 2014). Eight meteorological variables (wind,
two component solar, pressure, temperature, precipitation,
humidity) were bilinearly interpolated to each grid cell
to create this forcing dataset which was then used to
drive the CLM portion of ParFlow-CLM. Each simulation
case was spun up using a two-step approach, first a
steady state P-ET forcing product followed by 2 years of
transient simulation. Soil data from STATSGO2 makes up
the first 2 m of each model domain, with our hydraulic
conductivity fields beneath (Figure 3) (Soil Survey
Staff n.d.). An additional advantage of Geological K Case
3 is that the soil layers have spatially variable porosities

Figure 5. Model domain: Upper Colorado River Basin
above Lee’s Ferry.

and van Genuchten water retention properties. These
properties are associated with the geologic indicators
in ParFlow-CLM used in this test case, documented
by Condon and Maxwell (Condon and Maxwell 2013;
Condon and Maxwell 2014).

Modeled stream flows are compared to observed
flows from USGS stream gages at 10 locations in the
UCRB (Figure 5). We take an unweighted arithmetic mean
of streamflow at USGS gage points so that headwaters
have suitable representation. Simulated WTD is compared
to observation well data (Fan et al. 2013). In this
comparison, WTD is calculated as a free water table below
the ground surface, averaged over the water year, which
is consistent with the Fan et al. (2013) database.

We ran a total of 10 simulations beginning with
one K case from each analytical approach and our three
geological K maps for comparison. After concluding
the first five simulations, we moved forward with an
additional five simulations; this time making use of a
model element referred to as a vertical flow barrier, which
simulates confining units by reducing flow at specified
model cell interfaces (Marshall et al. 2022). The depth at
which the vertical flow barrier is applied can be constant
or can vary laterally (see Figure 3). We apply the flow
barrier to reduce, but not eliminate, vertical flow between
simulated deeper groundwater systems and the unconfined
upper units that typically interact more dynamically with
surface water. For four analytical cases, we apply the
vertical flow barrier at the depth that was used to define
the aquifer thickness when calculating K thus reducing the
transmissivity of the simulated unconfined upper aquifer
to the same as was implied by the approach. We also
ran a simulation using the Geological K Case 1 product
combined with a vertical flow barrier at Shangguan’s
estimate of depth to bedrock for comparison. Table 3

8 J.S. Swilley et al. Groundwater NGWA.org
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Table 3
Modeling Simulations

Subsurface Vertical Flow Barrier Depth

Geological K Case 1 Vertical flow barrier not used
Geological K Case 2 Vertical flow barrier not used
Geological K Case 3 Vertical flow barrier not used
Analytical K Case 1 Vertical flow barrier not used
Analytical K Case 7 Vertical flow barrier not used
Geological K Case 1 Variable-depth flow barrier: SFBZ
Analytical K Case 1 (modified) Variable-depth flow

barrier: mSFBZ
Analytical K Case 7 Variable-depth flow barrier: SFBZ
Analytical K Case 3 Constant, 192 m-depth flow barrier:

CFBZ
Analytical T case 1 Constant, 192 m-depth flow barrier:

CFBZ

Notes: CFBZ indicates a constant-depth flow barrier and SFBZ indicates a
variable-depth flow barrier at Shangguan’s depth to bedrock. The modified
variable-depth flow barrier (mSFBZ) is located at a depth of 100 m or
Shangguan’s estimate of depth to bedrock, whichever is greater.

provides a full list of the modeling simulations run and
the method of assigning a vertical flow barrier.

Results

Hydraulic Conductivity Data Product Results
We evaluate six hydraulic conductivity data products

using the Literature Analytical Approach , and three
hydraulic conductivity solutions and three transmissivity
solutions for the using this study’s analytical approach.
The spatial distribution of K in five representative
hydraulic conductivity products can be seen in Figure 6.
We see the two analytical approaches produce K maps
that are very similar in value and spatial distribution.
When comparing geological K maps with analytical maps,
a few features are present in all. This includes the
Mississippi Embayment and California’s Central Valley;
the High Plains aquifer is also faintly visible. Areas
that disagree between analytical and geological K maps

Figure 6. Comparison of analytically and geologically derived hydraulic conductivity data products. White inland areas in
all products represent lakes without any estimated value of K.

NGWA.org J.S. Swilley et al. Groundwater 9
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Table 4
Statistical Comparison of Analytically and Geologically Derived Hydraulic Conductivity Values

Log-Transformed Data Untransformed Data

Name Mean STD Mean STD

Geological K Case 1 (top layer) −5.79 1.90 9.83E-05 1.39E-04
Geological K Case 1 (bottom layer) −6.77 1.54 6.40E-06 2.19E-05
Geological K Case 2 −5.37 1.69 1.80E-04 3.28E-04
Geological K Case 3 (top layer) −4.64 0.33 2.99E-05 2.02E-05
Geological K Case 3 (bottom layer) −4.88 0.23 1.53E-05 8.81E-06
Analytical K Case 1 −5.68 0.69 9.65E-06 3.72E-05
Analytical K Case 2 −4.77 0.82 8.83E-05 2.44E-04
Analytical K Case 3 −6.01 0.70 5.09E-06 2.90E-05
Analytical K Case 4 −5.31 0.70 2.71E-05 1.13E-04
Analytical K Case 5 −4.41 0.77 1.57E-04 3.38E-04
Analytical K Case 6 −5.63 0.72 1.46E-05 7.09E-05
Analytical K Case 7 −5.45 0.79 2.77E-05 1.38E-04
Analytical K Case 8 −5.41 0.76 2.16E-05 8.80E-05
Analytical K Case 9 −3.80 0.92 3.58E-03 4.53E-02
Analytical T Case 1 −4.10 0.72 1.00E-03 1.43E-02
Analytical T Case 2 −4.06 0.65 3.11E-04 9.35E-04
Analytical T Case 3 −2.45 0.80 3.49E-02 1.90E-01

Note: Conductivities in in m/s, transmissivities in m2/s.

include the Midwest and Basin and Range. Our large-scale
mean conductivities resemble those of geology-informed
approaches from literature as seen in Table 4. Figures S7
and S8 present all nine hydraulic conductivity maps and
all three transmissivity maps from analytical approaches.

We find that K values derived from analytical
approaches are slightly higher on average with smaller
standard deviations than K values derived from geologi-
cally informed approaches (Table 4, Figure 7). The excep-
tion to this finding is Geological K Case G3 , which has a
higher mean and smaller standard deviation than the ana-
lytically derived K fields. Analytical cases 2 and 5 trend
toward the highest Ks among the Literature Analytical

Approach cases. Both of these cases assume that valley
depth d was less than or equal to aquifer thickness H. This
result highlights the sensitivity of the Literature Analyt-

ical Approach to the relationship of valley depth with
aquifer thickness. Analytical K Case 9 and Analytical T

Case 3 appear to be outliers among the Study Analyti-

cal Approach results . This is due to the fact that model
slopes, which are calculated at a resolution of 1000 m, the
resolution of the hydrologic model, instead of 250 m, were
used to infer hydraulic gradient, thus decreasing slope and
increasing K values. Table 4 offers a statistical compari-
son of all K products and Figure 7 presents the probability
density functions of each analytically derived set and the
probability mass function of each geologically informed
product.

Hydrological Modeling Results
We make use of the UCRB ParFlow-CLM results

to assess the performance of our hydraulic conductiv-
ity products in application. The results at all 10 USGS
stream gages for each of our 10 simulations can be
found in Figures S9 to S18. As shown in Table 3, five

simulations were run without any vertical flow barrier
having an effective thickness (combined thickness of
model elements hydraulically connected to streams with-
out a retarding barrier) equivalent to the full model thick-
ness of 1192 m. We find that our models overpredict base-
flow in each of these simulations (Figure 8). Regardless
of overprediction, the literature and this study’s analytical
approaches perform similarly to each other, both predict-
ing just over twice the observed values having average rel-
ative biases across all 10 stream gages of 110% and 106%
respectively. These values are slightly higher than the 75%
seen in the Case G1 modeling and the 58% seen in Case
G2 but considerably less than the 652% relative bias from
the Case G3 simulation. Accuracy in timing appears to be
muted in all cases by the vast overprediction of baseflow.
Still, the two analytical approaches perform similarly with
an average Spearman’s Rho of 0.35 for both cases. The
timing in Case G1 is marginally worse with a Spearman’s
Rho of 0.34, Case G3 performs worst with a Rho of 0.20,
and Case G2 performs best with a Rho of 0.44.

Our results support the idea that aquifer hydraulic
conductivity is an important control on stream baseflow.
We see cases with higher hydraulic conductivity values
appear to display greater overprediction. This result is
clear when comparing the hydrographs of our K Case G1

simulation, which had the lowest basin-wide average K
with our K Case G3 simulation, which had the highest
basin-wide average K. Here, Case G1 overpredicts
10th-percentile flows by 230% on average across all 10
stream gages, and Case G3 overpredicts 10th-percentile
flows by 1520%. The G2 Case presents an anomaly in
that its K values are not lower than Case G1 , yet it
predicts lower baseflows. This suggests that the spatial
distribution of K along with the large-scale average has
impacts on streamflows.

10 J.S. Swilley et al. Groundwater NGWA.org
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Figure 7. Probability density and mass functions of hydraulic conductivity fields. Note here that T is transmissivity and K is
hydraulic conductivity. Note in this figure K Case G1 Top and K Case G1 Bottom are from the same case and represent the
Top Geology and Bottom Geology portions of Figure 3. Same is true here for K Case G3 Top and K Case G3 Bottom.

The impact of effective model thickness on stream-
flow is illustrated when a vertical flow barrier is imposed
on the model at specified depths. With the spatially
variable vertical flow barrier at an estimated depth to
bedrock, we see a dramatic decrease in simulated baseflow
(Figure 9). However, it appears that the variable-depth
vertical flow barrier has caused a systematic underpredic-
tion in streamflow for both Case G1 with a relative bias
of −30% at Lee’s Ferry and Analytical K Case A7 with a
relative bias of −77% at Lee’s Ferry. Our headwaters per-
form better with the vertical flow barrier, however. This
is reflected in an arithmetic mean relative bias across all
gages of −58% for the Analytical K Case A7 Approach
and 3% for Case G1 . Additionally, we see an improve-
ment of timing, as the Spearman’s Rho our Analytical K
Case A7 Approach increases from 0.35 to 0.53, and Case
G1 improves from 0.34 to 0.49.

By comparing simulated groundwater depths with
nearly 2000 annually averaged monitoring well observa-
tions, comparisons between observed and predicted WTD
result in RSME values ranging from 8.9 to 12.5 m across
10 simulations. As in our surface water comparisons,
the Literature Analytical Approach and the Study Analyt-
ical Approach compare similarly with RMSEs of 9.25 m
and 9.24 m respectively. Our two analytical approaches

outperform K Case G1 and K Case G3 in terms of R
and R2, but the Geological K Case 2 map performs best
overall. Correlation plots are shown in Figure 10 (with-
out vertical flow barrier) and Figure 11 (with vertical flow
barrier). The similarity in performance between Analytical
cases 1 and 7 and the Geological K Case 2 K field can be
seen in their correlation coefficients and respective plots.
We associate this similarity in performance with the sim-
ilarity in area-weighted mean K seen between these three
products.

We find that all cases and approaches underpredict
groundwater depth, meaning that the elevation of the
simulated water table is too high. This can be seen in
Table 5, where the mean deviation between observed
groundwater depths and simulated groundwater depths is
positive for all cases. Our addition of vertical flow barriers
improves this bias but hurts groundwater depth predictions
holistically (Figure 11). It can be seen, however, that the
improvement of streamflow estimates due to the vertical
flow barrier is larger than the worsening of the waters
table depth. Maps of predicted and observed WTD can
be found for all 10 simulations in Figures S20 to S29.
These K fields present the errors in observed-predicted
WTD and can be used to further demonstrate the spatial
distribution of this error.

NGWA.org J.S. Swilley et al. Groundwater 11
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Figure 8. Hydrograph results at four representative stream gages in the UCRB.

Figure 9. Hydrograph results for four selected stream gages.

12 J.S. Swilley et al. Groundwater NGWA.org
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Figure 10. Density scatterplots of simulated groundwater
depth and observed groundwater depth from Fan (Fan
et al. 2013) in the UCRB for simulations without a vertical
flow barrier. Note that colors represent the density of points
that fall within a range of values, brighter colors signify that
many points fall along the same location.

Discussion
We find analytical hydraulic conductivity fields

to be smoother than geologically informed ones. In
the Geological cases the effective K values was not
distributed within indicator categories as there is not
much information on this at large scale. Some work
suggests that distributions in K around effective values are
important at smaller scales and finer resolution and that
runoff processes may average up at the hillslope scale
(Meyerhoff and Maxwell 2011). The Analytical Cases
distribute K values throughout as each value is determined
via the analytical approximation at the resolution applied,
one of the reasons for conducting this comparison. This
finding is consistent with groundwater finding preferential
flow paths around or through geologic features with low
hydraulic conductivity, such that even areas mapped with
predominantly low K geologies would have a resulting
higher effective K. The same could be seen in areas
that have primarily high K, but poor connectivity due
to low K in a few areas to bottleneck flow; although,
this is less common. Higher hydraulic conductivities

Figure 11. Density scatterplots of simulated groundwater
depth and observed groundwater depth from Fan (Fan
et al. 2013) in the UCRB for simulations that include a
vertical flow barrier. Note that colors represent the density
of points that fall within a range of values, brighter colors
signify that many points fall along the same location.

at larger scales have been noted in literature and are
generally accepted as a naturally occurring phenomenon
(Neuman 1994; Schulze-Makuch et al. 1999). Smoother
transitions in K also arise from averaging the data over
HUC12 regions and limitations in the input datasets. For
example, analytical approaches are sensitive to stream
density, which is limited by the scale at which it was
mapped.

Our experiments with the vertical flow barrier suggest
that the thickness of model units hydraulically connected
to streams plays a large role on governing baseflow.
This in turn suggests that these higher Ks would perform
best in a hydrologic model with a shallower subsurface,
or one with a model feature to limit baseflow like a
vertical barrier. The results from our implementation of
the Literature Analytical Approach , we see the influence
of input parameters on resulting K values. For example, in
Analytical K Cases 2 and 5 , we see the sensitivity of the
approach to valley depth (d). In these cases, valley depth
was assumed to be less than or equal to depth to bedrock
(H). This assumption forced shallower valley depths than

NGWA.org J.S. Swilley et al. Groundwater 13
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Table 5
Groundwater Depth Prediction Performance

Statistics

Subsurface R2
RMSE

(m)

Mean
Deviation:
Obs-Calc

(m)

Geological K Case 1 0.40 12.5 0.24
Geological K Case 2 0.70 8.9 1.68
Geological K Case 3 0.67 9.9 1.90
Analytical K Case 1 0.68 9.3 1.52
Analytical K Case 7 0.68 9.2 1.62
Geological K Case 1 (SFBZ) 0.41 12.3 0.28
Analytical K Case 1 (mSFBZ) 0.59 10.1 0.46
Analytical K Case 7 (SFBZ) 0.62 9.8 1.55
Analytical K Case 3 (CFBZ) 0.60 10.2 0.43
Analytical T case 1 (CFBZ) 0.58 10.4 0.37

Note: CFBZ indicates a constant-depth flow barrier and SFBZ indicates a
variable-depth flow barrier at Shangguan’s depth to bedrock. The modified
variable-depth flow barrier (mSFBZ) is located at a depth of 100 m or
Shangguan’s estimate of depth to bedrock, whichever is greater.

calculated by the black-top-hat transform in areas with
steep topography and shallow depths to bedrock. We made
this assumption to increase the number of catchments
in which we could analytically calculate K (in cases
where valley depth is greater than twice the bedrock depth
this approach results in negative values of K, which are
obviously non-physical). In Literature Analytical Cases

1, 3, 4, and 6, we left valley depth unchanged and
made assumptions regarding bedrock depth. We see closer
agreement in these cases highlighting the influence of
the black-top-hat transform result on K. This transform
was readily performed by existing python libraries, which
make it easy to do, but choosing the parameters for the
transform is less intuitive. The black-top-hat transform
requires the mapper to specify a search window shape
and radius, which is a difficult to infer from physical
parameters.

The Study Analytical Approach , like the Literature

Analytical Approach , is sensitive to input parameters
as is illustrated in the cases with model slopes and
flow lengths: Analytical K Case 9 and T Case 3 . The
mathematical reason for these outliers is that we have
effectively flattened the slope and increase the flow
lengths in nearly all catchments. In application, the two
analytical approaches explored were both doable with
readily available Python tools. Topographic slope to infer
hydraulic gradient may or may not be a more accurate
proxy for hydraulic gradient but requires no parameter
such as the black-top-hat’s window size and conceptually
seems to perform better in steeply contoured mountainous
aquifers.

Of course, this study has limitations. The hydrologic
model we used should be considered an example appli-
cation case and not a perfect assessment of the physical
truth. The total transmissivity of model units interacting
with streams is shown to have a large impact on stream-
flow. We show that high K leads to higher streamflow

and lower WTD. We hypothesize that this is the result of
more lateral groundwater flow to streams, and less water
lost to evapotranspiration (ET). While WTD is clearly
linked to ET (e.g. Kollet and Maxwell 2008) K-ET rela-
tionships have mostly been demonstrated at much smaller
scales (e.g. Atchley and Maxwell 2011). The high stream-
flow values of the K Case G3 simulation and the lower,
more accurate, streamflows of the cases with flow barri-
ers are supportive of this. When looking at groundwater
levels in comparison to observations, we see shallower
predicted water tables over the majority of the domain.
This systematic error could be a result of model physics,
as it is constant across high and low values of K. We
hypothesize that the 1 km resolution of our model may not
fully capture the steep topography of the domain, resulting
in lower simulated hydraulic gradients and consequently
higher water tables. It is also possible that the positive
errors covary with the location of the wells. This is possi-
ble if wells are preferentially drilled in specific areas with
a physical reason to bias one way or another in our model.
Consider that the majority of wells may likely be drilled in
lowland areas where groundwater is most accessible and
contributes to streamflow where streambeds have incised
down to the water table. Our model simulates streams
without incision, so it is likely that we see a slight shal-
low bias for WTD in lowland areas. A challenge in this
work is that there is not a clear “winner” among the
cases. Some cases have better streamflow, some better
WTD and some of the cases are better for streamflow. For
example, Case G1 SFBZ matches the flows the best but
has poorer groundwater performance when compared to
Case A7 SFBZ . These examples highlight the challenges
of determining a single best subsurface over a continental
scale basin.

Conclusions
This study addressed the challenge of characterizing

hydraulic conductivity at the continental scale comparing
both analytical and geologically informed approaches.
We used an analytical approach from literature as well
as novel approach derived in this study to produce
nine hydraulic conductivity maps and three transmissivity
maps for the contiguous United States and adjacent
hydrologic regions. We compared the results of analytical
approaches to each other and to hydraulic conductivity
values from literature finding them to be similar in mean
value, standard deviation, and in some instances, spatial
trend. We tested K data products from both analytical
approaches and three geology-informed approaches in
a fully integrated hydrologic model of a basin-scale
watershed—something unique to this study.

We found that the hydraulic conductivity of the
subsurface plays a role in surface water partitioning,
which highlights the interconnectedness of groundwater,
soil moisture, and surface water. Specifically, we saw
higher mean K values produce more simulated streamflow
causing higher relative bias in the form of over-prediction,
a result similar to prior studies conducted at smaller
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scales (Foster and Maxwell 2019). This supports holistic
approaches to conceptualizing and modeling hydrology.
We found that limiting the thickness and consequently
the effective transmissivity of simulated aquifer units by
use of a vertical flow barrier has important impacts for
surface water as well, primarily in the form of reducing
baseflow, which is groundwater driven. Conversely, we
found that peak flows, which were snowmelt dominated
and largely runoff driven in our domain, are affected less
by model subsurface configuration.

The findings of this study support the use of geo-
morphology and analytical approaches to make infer-
ences about subsurface hydrostratigraphy. We found that
analytical approaches yield estimates of K that produce
similar streamflow and WTD statistics compared to non-
analytical, geology-informed estimates from literature.
We also show that the analytical approach derived by
this study, referred to herein as the Study Analytical

Approach , produces estimates of K that are similar in
spatial distribution, standard deviation, mean value, and
modeling performance to estimates from the Literature

Analytical Approach (Luo et al. 2010). Moreover, the
Study Analytical Approach required fewer assumptions in
application.

Finally, we conclude that the underlying assumptions
of our analytical approaches, while imperfect, may be
useful for conceptualizing and modeling the subsurface
at large scales. For example, we do not capture the three-
dimensional heterogeneity of hydraulic conductivity, nor
do we capture anisotropy. However, our approach offers
utility as it has been successfully used to estimate effective
hydraulic conductivity at large scales.
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at 10 USGS stream gages within the UCRB
model—subsurface: Geological K Case 3.
Figure S14. Simulated and observed stream flows
at 10 USGS stream gages within the UCRB
model—subsurface: Analytical K Case 7, with spa-
tially variable vertical flow barrier at Shangguan’s
estimate of depth-to-bedrock.
Figure S15. Simulated and observed stream flows
at 10 USGS stream gages within the UCRB
model—subsurface: Geological K Case 1, with spatially
variable vertical flow barrier at Shangguan’s estimate of
depth-to-bedrock.
Figure S16. Simulated and observed stream flows
at 10 USGS stream gages within the UCRB
model—subsurface: Analytical K Case 1, with spa-
tially variable vertical flow barrier at Shangguan’s
estimate of depth-to-bedrock or 100 m, whichever is
deeper.
Figure S17. Simulated and observed stream flows
at 10 USGS stream gages within the UCRB
model—subsurface: Analytical K Case 3, with a
vertical flow barrier at a constant 192 m.
Figure S18. Simulated and observed stream flows
at 10 USGS stream gages within the UCRB
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model—subsurface: Analytical T Case 1, with a
vertical flow barrier at a constant 192 m.
Figure S19. Percentages of domain interpolated using
nearest neighbor and extrapolated using a linear ridge
model form Scikit Learn.
Figure S20. Simulated water table depths in the UCRB:
Geological K Case 1.
Figure S21. Simulated water table depths in the UCRB:
Geological K Case 2.
Figure S22. Simulated water table depths in the UCRB:
Geological K Case 3.
Figure S23. Simulated water table depths in the UCRB:
Analytical K Case 1.
Figure S24. Simulated water table depths in the UCRB:
Analytical K Case 7.
Figure S25. Simulated water table depths in the UCRB:
Geological K Case 1 SFBZ.
Figure S26. Simulated water table depths in the UCRB:
Geological K Case 1 mSFBZ.
Figure S27. Simulated water table depths in the UCRB:
Geological K Case 7 SFBZ.
Figure S28. Simulated water table depths in the UCRB:
Geological K Case 3 CFBZ.
Figure S29. Simulated water table depths in the UCRB:
Geological T Case 1 CFBZ.
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J.S. Famiglietti, M. Flörke, D.J. Gochis, P. Houser,
R. Hut, J. Keune, S. Kollet, R.M. Maxwell, J.T. Reager,
L. Samaniego, E. Sudicky, E.H. Sutanudjaja, N. van de
Giesen, H. Winsemius, and E.F. Wood. 2015. Hyper-
resolution global hydrological modelling: What is next?
Hydrological Processes 29, no. 2: 310–320. https://doi.org/
10.1002/hyp.10391

Condon, L.E., S. Kollet, M.F.P. Bierkens, G.E. Fogg, R.M.
Maxwell, M.C. Hill, H.-J.H. Fransen, A. Verhoef, A.F. van
Loon, M. Sulis, and C. Abesser. 2021. Global groundwater
modeling and monitoring: Opportunities and challenges.
Water Resources Research 57, no. 12: e2020WR029500.
https://doi.org/10.1029/2020WR029500

Condon, L.E., and R.M. Maxwell. 2014. Feedbacks between
managed irrigation and water availability: Diagnosing
temporal and spatial patterns using an integrated hydrologic
model. Water Resources Research 50, no.3: 2600–2616.
https://doi.org/10.1002/2013WR014868

Condon, L.E., and R.M. Maxwell. 2013. Implementation of
a linear optimization water allocation algorithm into a
fully integrated physical hydrology model. Advances in
Water Resources 60: 135–147. https://doi.org/10.1016/j.
advwatres.2013.07.012

Desbarats, A.J., C.E. Logan, M.J. Hinton, and D.R. Sharpe.
2002. On the kriging of water table elevations using
collateral information from a digital elevation model.
Journal of Hydrology 255, no. 1–4: 25–38. https://doi.org/
10.1016/S0022-1694(01)00504-2

Eagleson, P.S. 1986. The emergence of global-scale hydrology.
Water Resources Research 22, no. 9S: 6S–14S. https://doi.
org/10.1029/WR022i09Sp0006S

Enemark, T., L. Peeters, D. Mallants, B. Flinchum, and O. Bate-
laan. 2020. A systematic approach to hydrogeological
conceptual model testing, combining remote sensing and
geophysical data. Water Resources Research 56, no. 8:
e2020WR027578. https://doi.org/10.1029/2020WR027578

Enemark, T., L.J.M. Peeters, D. Mallants, and O. Batelaan. 2019.
Hydrogeological conceptual model building and testing: A
review. Journal of Hydrology 569: 310–329. https://doi.
org/10.1016/j.jhydrol.2018.12.007

Fan, Y., H. Li, and G. Miguez-Macho. 2013. Global patterns of
groundwater table depth. Science 339, no. 6122: 940–943.
https://doi.org/10.1126/science.1229881

Forrester, M.M., and R.M. Maxwell. 2020. Impact of lateral
groundwater flow and subsurface lower boundary condi-
tions on atmospheric boundary layer development over
complex terrain. Journal of Hydrometeorology 21, no. 6:
1133–1160. https://doi.org/10.1175/JHM-D-19-0029.1

Foster, L.M., K.H. Williams, and R.M. Maxwell. 2020. Resolu-
tion matters when modeling climate change in headwaters
of the Colorado River. Environmental Research Letters 15,
no. 10: 104031. https://doi.org/10.1088/1748-9326/aba77f

Foster, L., and R.M. Maxwell. 2019. Sensitivity analysis of
hydraulic conductivity and Manning’s n parameters lead
to new method to scale effective hydraulic conductivity
across model resolutions. Hydrological Processes 33, no.
3: 332–349. https://doi.org/10.1002/hyp.13327

Freeze, R.A., and J.A. Cherry. 1979. Groundwater . Englewood
Cliffs, NJ: Prentice-Hall.
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