Design Considerations for a Sustainable Scholarly Big Data
Service

Jian Wu
Computer Science
Old Dominion University
Norfolk, Virginia, USA
jlwu@odu.edu

Kavya S. Puranik
Computer Science & Engineering
Pennsylvania State University
University Park, Pennsylvania, USA
kzp5555@psu.edu

ABSTRACT

The advancement of web programming techniques, such as Ajax
and jQuery, and datastores, such as Apache Solr and Elasticsearch,
have made it much easier to deploy small to medium scale web-
based search engines. However, developing a sustainable search
engine that supports scholarly big data services is still challenging
often because of limited human resources and financial support.
Such scenarios are typical in academic settings or small businesses.
Here, we showcase how four key design decisions were made by
trading-off competing factors such as performance, cost, and effi-
ciency, when developing the Next Generation CiteSeerX (NGX),
the successor of CiteSeerX, which was a pioneering digital library
search engine that has been serving academic communities for
more than two decades. This work extends our previous work in
Wau et al. (2021) and discusses design considerations of infrastruc-
ture, web applications, indexing, and document filtering. These
design considerations can be generalized to other web-based search
engines with a similar scale that are deployed in small business or
academic settings with limited resources.

CCS CONCEPTS

« Information systems — Search engine indexing; Document
filtering; Digital libraries and archives.

KEYWORDS

digital library search engine, citeseerx, infrastructure, architecture

ACM Reference Format:

Jian Wu, Shaurya Rohatgi, Manoj K. Angadi, Kavya S. Puranik, and C. Lee
Giles. 2022. Design Considerations for a Sustainable Scholarly Big Data
Service. In Forum for Information Retrieval Evaluation (FIRE *22), December
9-13, 2022, Kolkata, India. ACM, New York, NY, USA, 5 pages. https://doi.
org/10.1145/3574318.3574340

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

FIRE 22, December 9-13, 2022, Kolkata, India

© 2022 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0023-1/22/12.

https://doi.org/10.1145/3574318.3574340

Shaurya Rohatgi
Information Sciences & Technology
Pennsylvania State University
University Park, Pennsylvania, USA
szr207@ist.psu.edu

Manoj K. Angadi
Computer Science & Engineering
Pennsylvania State University
University Park, Pennsylvania, USA
mxa5887@psu.edu

C. Lee Giles

Information Sciences & Technology
Pennsylvania State University
University Park, Pennsylvania, USA
clg20@psu.edu

1 INTRODUCTION

Google has dominated the search engine market for more than 20
years. However, a general search engine like Google may not satisfy
all search needs from users. Vertical search engines have played
vital roles in searching focused document collections. Digital library
search engines (DLSEs) are a type of vertical search engine that
serves digital academic documents. Examples of DLSEs included
CiteSeer [10], Microsoft Academic ([21]; retired in 2021), Google
Scholar [12], and Semantic Scholar [9]. Google Scholar obtains its
documents from Google with a large portion of metadata directly
from publishers or automatically extracted using a proprietary ex-
tractor. Google Scholar does not cache documents. Instead, the
search engine result page (SERP) redirects users to URLs where
the documents could be downloaded, such as CiteSeerX. Seman-
tic Scholar maintains a copy of open-access papers but the search
architecture is proprietary and unlikely to be deployed for build-
ing institutional DLSEs, most likely due to the highly customized
design and running cost. CiteSeerX released a framework called
SeerSuite [20], which could be used for deploying a DLSE for an
institutional document collection. With the updates of software,
such as operating systems (OSs) and web development frameworks,
many components that were used for building SeerSuite exhibit
security vulnerabilities and/or no longer supported. The infrastruc-
ture that was used to support relatively medium-size document
collection has shown scalability bottlenecks, and is no longer suit-
able for a sustained service for scholarly big data. Therefore, it
is necessary to design a new framework to provide an accessible,
usable, scalable, and sustainable scholarly big data service. The
new framework, called the Next Generation CiteSeerX (NGX), is
designed as a general framework that can be deployed for other
digital documents.

Previously we [23] analyzed the strengths and weaknesses of the
CiteSeerX design, and proposed a new design for the NGX with a
revised architecture, enhanced hardware, and software framework.
In this paper, we extend [23] and focus on several key design con-
siderations for the frontend and backend. We compare different
design options and justify our choices based on analytical or ex-
perimental results. Our goal is to present these design decisions
and articulate the factors to consider when making trade-offs so as
to justify our decisions. Although these decisions were made for

https://orcid.org/0000-0003-0173-4463
https://doi.org/10.1145/3574318.3574340
https://doi.org/10.1145/3574318.3574340
https://doi.org/10.1145/3574318.3574340

FIRE "22, December 9-13, 2022, Kolkata, India

Server ‘ #Instance ‘ Type ‘ #Core | RAM Storage
Web x2 Cloud 2 16GB | 30GB HDD
ES master x3 Cloud 2 16GB | 154GB HDD
ES data x4 Physical 16 96GB 1.6TB SSD
EIS x1 Physical 80 187GB 11TB SSD
Crawling x1 Physical 24 60GB | 30TB HDD
Repository X2 Virtual - - 50TB HDD

Table 1: Major hardware used for deploying NGX. ES: Elastic-
search. EIS: Extraction-Ingestion System. Repository is on a
storage array network (NAS) mounted to other servers.

NGX, we feel such designs will be appropriate in the development
of other vertical similar scale search engines.

2 RELATED WORK

Early vertical search engines were relatively small scale due to
hardware and software constraints, e.g., the virage image search
engine [2]. After 2000, geographic search engines received serious
attention from major search companies. In [16], the design con-
siderations of building a geographic search engine are discussed,
such as the choice between vector data model and a raster data
model. In [13], design considerations are outlined when migrating
from CiteSeer to CiteSeerX, where a new data model and stratified
architecture is introduced. In [4], different strategies are discussed
for search engine caching, although not limited to vertical search
engines. Since 2010, medical search engines and large scale DLSEs
architectures were proposed. For example, the iMed designers in-
corporated query interfaces and investigated how to make it easier
for users to find answers [15]. Similarly, the designers of Yale Image
Finder focused on backend designs featuring customized layout
analysis over images published in academic journals [28]. In [19],
comparing and making choices of Al technologies was discussed
for Arnetminer, a social-oriented academic search engine. In [26],
a new framework was proposed that incorporated different design
factors aiming at building a scalable and maintainable cloud-based
scholarly big data platform. Many ideas were adopted in the current
CiteSeerX system. Recently, knowledge graphs are used for pow-
ering search engines. For example, Huang et al. discussed design
considerations for building an oil gas information intelligent search
engine, including the choice of ontology, the named entity recogni-
tion model, and integration between Neo4]J and Elasticsearch (ES)
[11].

Our work is different in the sense we focus on comparing differ-
ent design considerations when migrating a large-scale production
system to a new infrastructure, which is hosted in an academic set-
ting with relatively limited resources. How to balance the usability,
maintainability, scalability, and sustainability is challenging. Please
note that we use NGX to identify the new system and CiteSeerX to
identify the current system.

3 NGX DESIGN OVERVIEW

To support scaling up the document collection and the new design,
we deploy the NGX on a new hardware infrastructure, shown in
Table 1. The new architecture contains a frontend and a backend.

Wu et al.
..‘ Browser Frontend |
'- host:443 i| [Container] |
Users :
EIS Noi
(Extraction and Production c ginx
Ingestion system) repository [Container]
Container |
! backend:8000
CRUD APIs i Server
Elastic search ; ¢
1| [Container]

Figure 1: The front-end and back-end architecture of NGX.

The frontend includes the web application, implemented using
Vue.js, Nuxt.js, Python, JavaScript, HTML, and CSS, which were
chosen for more efficient development and maintainability through
a component-based design and for better performance. The web
application inherited several key features from CiteSeerX, allowing
users to search, sort results, browse metadata, and download papers.
The CiteSeerX source code was packaged in a hierarchical structure,
which can be compiled by Apache Ant. This requires installation
of many prerequisite software and setting up the environment,
which takes time and may cause unexpected compatibility issues,
e.g., operating system (OS) upgrades. In NGX, we containerize our
client and server applications using Docker to streamline our de-
ployment process and increase the scalability. Using Docker images
also makes it easier to share the framework with the community
so it can be deployed in other environments and used for build-
ing a DLSE with different corpora. To provide a single-host and
secured deployment, we adopted docker-compose that runs multi-
ple containers as a single service. Each container runs in isolation
but can interact with each other when required. Figure 1 shows
the high-level architecture of the client and server application. We
implemented secure communications between remote server pro-
cesses using the SSL protocols of NGINX, an open source software
for web serving and other network services.

The backend includes an Extraction-Ingestion System (EIS), which
automatically converts PDF documents into a searchable text for-
mat, extracts metadata and content components (e.g., text, figures,
tables) from documents crawled from the Web, and indexes them.
All searchable data are stored in Elasticsearch (ES). The core com-
ponent of EIS is PDFMEF (PDF Multi-entity Extraction Framework)
[22]. It is a customizable and scalable framework for extracting
content from scholarly documents. PDFMEF encapsulates vari-
ous content classifiers and extractors, such as Apache PDFBox,
a learning-based academic paper classifier [5], an academic filter
[5], and figure extration PDFFIGURES2 [7], all to perform comprehen-
sive information extraction tasks. We employed GROBID [14] for
parsing and re-structuring raw documents into structured XML/TEI
encoded documents. We then pipelined the XML to extract various

Design Considerations for a Sustainable Scholarly Big Data Service

types of information. The PDFMEF is containerized and runs as
a separate entity. Containerizing PDFMEF allowed us to to scale
the service horizontally and run multiple instances of the service
as different containers. It also made the service easier and faster
to deploy. The EIS framework scaled well for ingestion and, since
ingestion to Elasticsearch is a network intensive operation, we used
a multi-threaded service that makes full use of system resources.
The system was designed to process document batches using all
available cores to perform extraction and then ingestion. The in-
gestion process is coupled together with the extraction process so
as soon the extraction service completes, the extracted information
is directly ingested to Elasticsearch. The PDF files, renamed using
their IDs, are copied to the repository.

4 DESIGN CONSIDERATIONS
4.1 Infrastructure: Physical vs. Cloud

CiteSeerX has been running in a private cloud since around 2013
[25]. The cloud offers several advantages such as elasticity and
maintainability. For example, cloning a new virtual machine takes
only a few minutes. Note that NGX will host at least 30 million
academic documents with a high throughput. Because of this, it
needs to be deployed in a distributed system. The first question
to ask is whether NGX should be hosted in a private cloud or a
physical cluster.

The decision was to host the system in a hybrid infrastructure.
Specifically, we host the web servers, three master nodes of the ES
cluster, and the static web server in the cloud. These servers carry
relatively low computational load and consumes a relatively less
I0 bandwidth. The performance of these servers is unlikely to be
affected by the shared disk channel. We host the EIS server, the web
crawling server, and the ES data nodes in a loosely coupled physical
cluster. Jobs running on these servers are usually computationally
expensive and IO extensive. For example, it was shown that it took
more than twice as long to finish a batch crawling job on a virtual
machine (VM) versus on a physical server [25].

One trade-off we needed to make was the availability vs. per-
formance because over a long time, disks may fail and one is now
at risk of loosing data. The problem is less concerning for VMs be-
cause the cloud hypervisor can dynamically allocate resources and
send warnings for replacing failed disks. For physical servers, disk
failure can be catastrophic and bring the system down. To make
the VMs in the cloud more sustainable, we expanded the current
cloud infrastructure with new physical servers. Existing hardware
in the cloud has been running for about 10 years, so we expect the
expanded cloud to last comparably long. To mitigate the potential
risks of data loss on the ES data nodes, we employ hot-plug solid
state disks (SSDs) instead of hard drives (HDDs) because SSDs have
exhibited improved performance and durability [17]. ES also shards
data across four data nodes to ensure horizontal scalability and
high availability.

4.2 'Web Application: Modify vs. Refactor

The CiteSeerX web application was developed on top of Java and
JavaScript to automatically generate user interfaces and has been
running stably on several VMs for about 10 years. The web appli-
cation is composed of servlets that correspond to user queries and

FIRE "22, December 9-13, 2022, Kolkata, India

interact with the index and database servers for keyword-based
search, metadata retrieval and browsing, and file download. One
consideration is whether to develop the web application by modi-
fying the existing one or refactoring to a entirely new framework.

We decided to refactor the web application. This decision was
made after consulting with a chief-technology officer of an insur-
ance website. The decision was also made by trading-off between
compatibility and complexity. Modifying the current version may be
less complicated as many features have already been implemented.
On the other hand, the current application contains several key
compatibility issues that must be fixed. The rationales behind this
decision include the following.

First, many components used to build the CiteSeerX web applica-
tion are out of date or not being maintained. For example, CiteSeerX
employed log4j (version 1.2.17), which has not been supported since
2015. Updating log4j will impact all Java programs that rely on this
package. Another key issue is the OS version compatible with the
web application. RHEL5/6 and CentOS 6, are no longer supported.
To continue running the application on these operating systems
would expose the application to multiple security vulnerabilities.
Although CiteSeerX can be deployed on RHEL7/CentOS 7, the cur-
rent application only supports 128-bit ciphers. TLS (Transport Layer
Security) handshakes using all known versions of 256-bit cipher
suites fail with the current version of the web application. Fixing
this issue requires us to reexamine all components.

Second, the architecture change calls for significant correspond-
ing changes at the frontend. One major change is the removal of the
relational database. The CiteSeerX implementation relied heavily
on the Data Access Object (DAO) pattern in Java. The DAO pattern
is a structural pattern that allows web developers to isolate the
application layer from the persistence layer (the relational database
in our case) using an abstract APL Since the database is removed,
this design pattern was unnecessary. In addition, the current search
index was by Apache Solr but the NGX frontend only interacts
with ES for both search and metadata retrieval. Cleaning the DAO
pattern and changing the search API from Solr to ES would take a
remarkably long time and errors may be accidentally introduced.

4.3 What to Index and Top k

Returning the most relevant documents to users is a key function of
a DLSE. CiteSeerX implemented the search function using Apache
Solr, which by default used a slightly modified version of BM25 [18].
The algorithm returned decent results within a sub-second time
scale. Elasticsearch adopts BM25 as the default search algorithm, but
as the collection increases, researchers face the challenge of finding
the exact research papers from a massive amount of documents
using limited text. One way to overcome this challenge is to use a
two-stage ranking mechanism [27]. The first stage is usually a naive
bulk retrieval using BM25, aiming at a high recall by retrieving the
top k results and the second stage uses a learning-to-rank model
to fine-tune the ranking of documents retrieved in the first stage,
[27, 29] thus increasing the precision. Therefore, determining a
proper value of k not only reduces the time spent in the first stage
but also on the second stage.

A related design decision is whether we should index the meta-
data only or index the metadata and the full text . The metadata

FIRE "22, December 9-13, 2022, Kolkata, India

Table 2: Elasticsearch API response time on retrieving top-k
documents from a bulky index (metadata + full text) and a
leaner index (metadata only). The scenario with the shortest
response time is in bold.

Index k Time (sec)
metadata + full text 500 1.2
metadata + full text 1000 2.1

metadata 500 04
metadata 1000 0.6

includes titles, authors, years, venues, and abstracts. This decision
is unimportant when the document collection is relatively small,
but as the number of documents grows to over 30 million - our goal,
it is important to consider how to make a trade-off between the
users’ experience (response time) and information capacity of the
search engine, with limited resources.

We decided to index the metadata only and set k = 500 in the first
retrieval stage, given our infrastructure (see Table 1). We demonstrate
this using a proof-of-concept experiment on a simplified setting
consisting of a single node server and a client hosted on a separate
computer. We compared the API response time of querying against
all documents (corresponding to the “match_all" filter) indexed by
two ES instances, each built for the same 1 million documents. One
instance indexed only the metadata and the other indexed both
metadata and full-text. We submitted single keyword queries and
requested the API to return the top k (k = 500 or 1000) documents
with their content. The results shown in Table 2 indicate that in-
dexing metadata only with k = 500 took only 1/3 time for indexing
metadata and full text. The retrieval time when k = 500 is about
57 — —66% of the time when k = 1000. In particular, the retrieval
time when indexing both metadata and full text exceeded 1 second
(k = 500) and 2 seconds (k = 1000). Therefore, we decided to index
the metadata only with k = 500. Note that the exact query time
depends on the number of terms, the logical operator, and the filters
used. The difference of experimental results in Table 2 demonstrates
the advantage of our choice under the same setting.

4.4 Which Academic Filter to Use?

Similar to CiteSeerX, NGX also implemented a focused web crawler
that actively harvests PDF documents from the Web. However, only
a fraction of PDF documents are academic papers and that propor-
tion depends on seed URLs ranging from 30% to 50% [24]. Therefore,
an efficient academic filter is crucial to build a relatively clean collec-
tion. Previously, CiteSeerX used a rule-based academic filter, which
simply checked if the PDF documents contain the word “reference”,
“bibliography” and their variants. Due to the simplicity of this rule,
the F1 measure of this method was only 0.77 and the extraction
pipeline introduced many non-academic PDF documents, such as
curriculum vitae or resumes [6]. To improve this, we developed a
machine-learning-based method, incorporating four types of struc-
tural features, such as FileSize, PageCount, DocumentLength, etc.
This method achieved a much higher performance with F1=0.90
tested on a corpus of randomly selected crawled PDFs [5]. Recently,

Wau et al.
1
0.9
0.8
0.7
0.6
o 0.5
0.4
0.3
0.2
0.1
0
0.8 0.85 0.9 0.95 0.99
Threshold
mm Sample A (Trio) mmm Sample B (Trio) Sample A (AF) Sample B (AF)

Figure 2: Comparison between the Academic Filter (AF) [5]
and Trio on two independent samples drawn from the Cite-
SeerX crawl repository. The x-axis is the confidence threshold
used for Trio to separate two classes. Trio results were ob-
tained by a 5-fold cross validation (CV). AF results are directly
quoted from [5]. The AF results for Sample A was obtained
by 5-fold CV. The AF results for Sample B was obtained by
testing the best model trained on Sample A on Sample B.

Internet Archive developed an academic filter Trro [1, 3]. Differ-
ent from [5], TR0 was an ensemble model that incorporates three
different classifiers, a BERT-based classifier [8], an image-based
classifier, and a linear classifier. Each classifier computes a classifi-
cation confidence between 0 and 1. The design question is whether
we should adopt the academic filter by [5] or Tr1o.

To answer this question, we compared the performance of these
two classifiers on two benchmark datasets [5], both consisting man-
ually labeled PDFs crawled between 2008 and 2013. The difference
is that one contains 1009 PDFs and the other contains 1000 PDFs.
In the experiment, we test the academic filter by [5] and Tr10 on
a task to classify PDF documents into academic vs. non-academic
documents. Here, academic documents include conference papers,
journal articles, technical reports, books, theses, dissertations, slides,
and abstracts. The performance is shown in Figure 2. The result
indicates that the Academic Filter by [5] outperforms Tr1o by at
least 3% (for Sample B) and at least 15% (for Sample A). Therefore,
we decide to continue using the Academic Filter [5].

5 CONCLUSION

We showcased four design considerations and justified their use.
These include a hybrid infrastructure, a refactor of the web ap-
plication, indexing the metadata only as opposed to the full text,
retrieving the top k = 500 documents as candidates in a two-stage
retrieval system, and employing a machine learning based academic
filter based on structural features. These design considerations are
not exhaustive but represent key aspects to consider for design of
production systems of a similar scale.

ACKNOWLEDGMENTS
We gratefully acknowledge NSF partial support (Award #1823288).

Design Considerations for a Sustainable Scholarly Big Data Service

REFERENCES

[1] Internet Archive. 2021. PDF Trio. Retrieved August, 2022 from https://github.

[2

(3

[10

[11

[12

[13

[14

[15

[16

[17

(18

[19

—

=

]

]

]

]

]

com/internetarchive/pdf_trio

Jeffrey R. Bach, Charles Fuller, Amarnath Gupta, Arun Hampapur, Bradley
Horowitz, Rich Humphrey, Ramesh C. Jain, and Chiao-Fe Shu. 1996. Virage
image search engine: an open framework for image management. In Storage and
Retrieval for Still Image and Video Databases IV, Ishwar K. Sethi and Ramesh C.
Jain (Eds.), Vol. 2670. International Society for Optics and Photonics, SPIE, 76 —
87. https://doi.org/10.1117/12.234785

Paul Baclace. 2020. Making A Production Classifier Ensemble. Retrieved Au-
gust, 2022 from https://towardsdatascience.com/making-a-production-classifier-
ensemble-2d87fbf0f486

Ricardo Baeza-Yates, Aristides Gionis, Flavio P. Junqueira, Vanessa Murdock,
Vassilis Plachouras, and Fabrizio Silvestri. 2008. Design Trade-Offs for Search
Engine Caching. ACM Trans. Web 2, 4, Article 20 (oct 2008), 28 pages. https:
//doi.org/10.1145/1409220.1409223

Cornelia Caragea, Jian Wu, Sujatha Das Gollapalli, and C. Lee Giles. 2016. Docu-
ment Type Classification in Online Digital Libraries. In Proceedings of the Thirtieth
AAAI Conference on Artificial Intelligence, February 12-17, 2016, Phoenix, Arizona,
USA. 3997-4002. http://www.aaai.org/ocs/index.php/IAAI/IAAI16/paper/view/
12343

Cornelia Caragea, Jian Wu, Kyle Williams, Sujatha Das Gollapalli, Madian Khabsa,
and C. Lee Giles. 2014. Automatic Identification of Research Articles from Crawled
Documents (WSDM 2014 Workshop on Web-scale Classification: Classifying Big
Data from the Web).

Christopher Clark and Santosh Kumar Divvala. 2016. PDFFigures 2.0: Mining
Figures from Research Papers. In Proceedings of the 16th ACM/IEEE-CS on Joint
Conference on Digital Libraries, JCDL 2016, Newark, NJ, USA, June 19 - 23, 2016.
143-152. https://doi.org/10.1145/2910896.2910904

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long and Short Papers). 4171-4186.
https://aclweb.org/anthology/papers/N/N19/N19-1423/

Suzanne Fricke. 2018. Semantic Scholar. Journal of the Medical Library Association
: JMLA 106, 1 (01 2018), 145-147. https://doi.org/10.5195/jmla.2018.280

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. 1998. CiteSeer: An Automatic
Citation Indexing System. In Proceedings of the 3rd ACM International Conference
on Digital Libraries, June 23-26, 1998, Pittsburgh, PA, USA. 89-98. https://doi.org/
10.1145/276675.276685

Shujun Huang, Yuyan Wang, and Xiang Yu. 2020. Design and Implementation
of Oil and Gas Information on Intelligent Search Engine Based on Knowledge
Graph. Journal of Physics: Conference Series 1621, 1 (aug 2020), 012010. https:
//doi.org/10.1088/1742-6596/1621/1/012010

Péter Jacso. 2005. Google Scholar: the pros and the cons. Online Information Re-
view 29, 2(2022/09/05 2005), 208-214. https://doi.org/10.1108/14684520510598066
Huajing Li, Isaac Councill, Wang-Chien Lee, and C. Lee Giles. 2006. CiteSeerx:
An Architecture and Web Service Design for an Academic Document Search
Engine. In Proceedings of the 15th International Conference on World Wide Web
(Edinburgh, Scotland) (WWW ’06). Association for Computing Machinery, New
York, NY, USA, 883-884. https://doi.org/10.1145/1135777.1135926

Patrice Lopez. 2009. GROBID: Combining Automatic Bibliographic Data Recog-
nition and Term Extraction for Scholarship Publications. In Proceedings of the
13th European Conference on Research and Advanced Technology for Digital Li-
braries (Corfu, Greece) (ECDL’09). Springer-Verlag, Berlin, Heidelberg, 473-474.
http://dl.acm.org/citation.cfm?id=1812799.1812875

Gang Luo. 2009. Design and Evaluation of the iMed Intelligent Medical Search
Engine. In Proceedings of the 25th International Conference on Data Engineering,
ICDE 2009, March 29 2009 - April 2 2009, Shanghai, China, Yannis E. Ioannidis,
Dik Lun Lee, and Raymond T. Ng (Eds.). IEEE Computer Society, 1379-1390.
https://doi.org/10.1109/ICDE.2009.10

Alexander Markowetz, Yen-Yu Chen, Torsten Suel, Xiaohui Long, and Bernhard
Seeger. 2005. Design and Implementation of a Geographic Search Engine. In
Proceedings of the Eight International Workshop on the Web & Databases (WebDB
2005), Baltimore, Maryland, USA, Collocated mith ACM SIGMOD/PODS 2005, June
16-17, 2005, AnHai Doan, Frank Neven, Robert McCann, and Geert Jan Bex (Eds.).
19-24.

Alan R Olson, Denis J Langlois, et al. 2008. Solid state drives data reliability and
lifetime. Imation White Paper (2008), 1-27.

Stephen Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance Frame-
work: BM25 and Beyond. Foundations and Trends® in Information Retrieval 3, 4
(2009), 333-389. https://doi.org/10.1561/1500000019

Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Arnet-
Miner: extraction and mining of academic social networks. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Las Vegas, Nevada, USA, August 24-27, 2008, Ying Li, Bing Liu, and Sunita

[20

[21

[23

[24

[25

[26

[28

[29

FIRE "22, December 9-13, 2022, Kolkata, India

Sarawagi (Eds.). ACM, 990-998. https://doi.org/10.1145/1401890.1402008
Pradeep B. Teregowda, Isaac G. Councill, R. Juan Pablo Fernandez, Madian Khabsa,
Shuyi Zheng, and C. Lee Giles. 2010. SeerSuite: Developing a Scalable and Reliable
Application Framework for Building Digital Libraries by Crawling the Web. In
Proceedings of the 2010 USENIX Conference on Web Application Development
(Boston, MA) (WebApps’10). USENIX Association, Berkeley, CA, USA, 14-14.
http://dl.acm.org/citation.cfm?id=1863166.1863180

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao
Dong, and Anshul Kanakia. 2020. Microsoft Academic Graph: When ex-
perts are not enough. Quantitative Science Studies 1, 1 (02 2020), 396—
413. https://doi.org/10.1162/qss_a_00021 arXiv:https://direct.mit.edu/qss/article-
pdf/1/1/396/1760880/qss_a_00021.pdf

Jian Wu, Jason Killian, Huaiyu Yang, Kyle Williams, Sagnik Ray Choudhury,
Suppawong Tuarob, Cornelia Caragea, and C. Lee Giles. 2015. PDFMEF: A Multi-
Entity Knowledge Extraction Framework for Scholarly Documents and Semantic
Search. In Proceedings of the 8th International Conference on Knowledge Capture
(Palisades, NY, USA) (K-CAP 2015). ACM, New York, NY, USA, Article 13, 8 pages.
https://doi.org/10.1145/2815833.2815834

Jian Wu, Shaurya Rohatgi, Sai Raghav Reddy Keesara, Jason Chhay, Kevin Kuo,
Arjun Manoj Menon, Sean Parsons, Bhuvan Urgaonkar, and C. Lee Giles. 2021.
Building an Accessible, Usable, Scalable, and Sustainable Service for Scholarly
Big Data. In 2021 IEEE International Conference on Big Data (Big Data). 141-152.
https://doi.org/10.1109/BigData52589.2021.9671612

Jian Wu, Pradeep Teregowda, Juan Pablo Fernandez Ramirez, Prasenjit Mitra,
Shuyi Zheng, and C. Lee Giles. 2012. The Evolution of a Crawling Strategy for
an Academic Document Search Engine: Whitelists and Blacklists. In Proceedings
of the 4th Annual ACM Web Science Conference (Evanston, Illinois) (WebSci ’12).
ACM, New York, NY, USA, 340-343. https://doi.org/10.1145/2380718.2380762
Jian Wu, Pradeep B. Teregowda, Kyle Williams, Madian Khabsa, Douglas Jordan,
Eric Treece, Zhaohui Wu, and C. Lee Giles. 2014. Migrating a Digital Library to a
Private Cloud. In 2014 IEEE International Conference on Cloud Engineering, Boston,
MA, USA, March 11-14, 2014. 97-106. https://doi.org/10.1109/IC2E.2014.77
Zhaohui Wu, Jian Wu, Madian Khabsa, Kyle Williams, Hung-Hsuan Chen, Wenyi
Huang, Suppawong Tuarob, Sagnik Ray Choudhury, Alexander Ororbia, Prasenjit
Mitra, and C. Lee Giles. 2014. Towards building a scholarly big data platform:
Challenges, lessons and opportunities. In IEEE/ACM Joint Conference on Digital
Libraries, JCDL 2014, London, United Kingdom, September 8-12, 2014. 117-126.
https://doi.org/10.1109/JCDL.2014.6970157

Chenyan Xiong, Russell Power, and Jamie Callan. 2017. Explicit Semantic Ranking
for Academic Search via Knowledge Graph Embedding. In Proceedings of the 26th
International Conference on World Wide Web, WWW 2017, Perth, Australia, April
3-7,2017.1271-1279. https://doi.org/10.1145/3038912.3052558

Songhua Xu, Jamie P. McCusker, and Michael Krauthammer. 2008. Yale Image
Finder (YIF): a new search engine for retrieving biomedical images. Bioinform.
24, 17 (2008), 1968-1970. https://doi.org/10.1093/bioinformatics/btn340

Edwin Zhang, Nikhil Gupta, Rodrigo Frassetto Nogueira, Kyunghyun Cho, and
Jimmy Lin. 2020. Rapidly Deploying a Neural Search Engine for the COVID-
19 Open Research Dataset: Preliminary Thoughts and Lessons Learned. CoRR
abs/2004.05125 (2020). arXiv:2004.05125 https://arxiv.org/abs/2004.05125

https://github.com/internetarchive/pdf_trio
https://github.com/internetarchive/pdf_trio
https://doi.org/10.1117/12.234785
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://towardsdatascience.com/making-a-production-classifier-ensemble-2d87fbf0f486
https://doi.org/10.1145/1409220.1409223
https://doi.org/10.1145/1409220.1409223
http://www.aaai.org/ocs/index.php/IAAI/IAAI16/paper/view/12343
http://www.aaai.org/ocs/index.php/IAAI/IAAI16/paper/view/12343
https://doi.org/10.1145/2910896.2910904
https://aclweb.org/anthology/papers/N/N19/N19-1423/
https://doi.org/10.5195/jmla.2018.280
https://doi.org/10.1145/276675.276685
https://doi.org/10.1145/276675.276685
https://doi.org/10.1088/1742-6596/1621/1/012010
https://doi.org/10.1088/1742-6596/1621/1/012010
https://doi.org/10.1108/14684520510598066
https://doi.org/10.1145/1135777.1135926
http://dl.acm.org/citation.cfm?id=1812799.1812875
https://doi.org/10.1109/ICDE.2009.10
https://doi.org/10.1561/1500000019
https://doi.org/10.1145/1401890.1402008
http://dl.acm.org/citation.cfm?id=1863166.1863180
https://doi.org/10.1162/qss_a_00021
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/1/1/396/1760880/qss_a_00021.pdf
https://arxiv.org/abs/https://direct.mit.edu/qss/article-pdf/1/1/396/1760880/qss_a_00021.pdf
https://doi.org/10.1145/2815833.2815834
https://doi.org/10.1109/BigData52589.2021.9671612
https://doi.org/10.1145/2380718.2380762
https://doi.org/10.1109/IC2E.2014.77
https://doi.org/10.1109/JCDL.2014.6970157
https://doi.org/10.1145/3038912.3052558
https://doi.org/10.1093/bioinformatics/btn340
https://arxiv.org/abs/2004.05125
https://arxiv.org/abs/2004.05125

	Abstract
	1 Introduction
	2 Related Work
	3 NGX Design Overview
	4 Design Considerations
	4.1 Infrastructure: Physical vs. Cloud
	4.2 Web Application: Modify vs. Refactor
	4.3 What to Index and Top k
	4.4 Which Academic Filter to Use?

	5 Conclusion
	Acknowledgments
	References

