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1 INTRODUCTION

Brewer’s well-known CAP Theorem states that in the presence of network partitioning (P), a dis-
tributed system must sacrifice at least one of availability (A) or consistency (C) [6, 7]. Consistency
is where distributed components agree on the value of shared state, and availability is the ability
to respond to user requests using and/or modifying that shared state. Gilbert and Lynch [14] prove
two variants of this theorem, one strong result for asynchronous networks [33, chapter 8] and one
weaker result for partially synchronous networks. The CAP theorem has helped the research and
development of distributed database systems by clarifying a fundamental limit and suggesting
application-dependent tradeoffs. For some database applications, availability is more important
than consistency, while for others it is the other way around. The purpose of this paper is to apply
and adapt the CAP theorem to distributed cyber-physical systems (CPSs) to derive similar benefits.

In distributed CPSs, the state information shared between software components is often infor-
mation about the physical world in which the software is operating. In autonomous vehicles, for
example, the state of an intersection is shared among all the vehicles contending for access to that
intersection. Even within a single vehicle, where software components may be distributed across
an onboard network, many of these software components will share state information about the
vehicle and its environment derived from sensor input. We therefore generalize the notion of con-
sistency to include physical state rather than just variables in software.

In cyber-physical systems, the time it takes for software to respond through an actuator to
stimulus from a sensor is a critical property. We therefore generalize the notion of availability to
include this time, not just the system’s response time to human users. A software subsystem where
sensor-to-actuator response time is large is less available than one for which it is small.

Brewer’s CAP theorem, then, immediately applies in an obvious way. When the network be-
comes partitioned, one of availability or consistency must be sacrificed. However, network parti-
tioning is just the limiting case of network latency, as pointed out by Brewer [7] and Abadi [1].
Moreover, network latency is not the only latency that can force this compromise. Long execution
times can be just as damaging as long network latencies, and so can large clock synchronization
discrepancies, as we will show. In our formulation, network latencies, execution times, and clock
synchronization errors get lumped together into a single measurable quantity that we call, simply,
“latency” (or “apparent latency” to emphasize that the quantity we work with is measurable).

We have recently discovered that consistency, availability, and latency can all be quantified, and
that they have a simple algebraic relationship between them [24]. We call this relationship the
CAL theorem, replacing “Partitioning” with “Latency.” The relation is a linear system of equations
in a max-plus algebra, where the structure of the equations reflects the communication topology
of an application. To make this paper self contained, we re-derive the CAL theorem here (with a
slightly improved notation). Our main contribution here is to adapt and apply these concepts to
CPS, rather than to distributed databases as done in the previous work.

How to trade off consistency, availability, and latency against one another is application spe-
cific. Consider for example a four-way intersection, access to which is regulated by a distributed
algorithm running in software on autonomous vehicles that contend for the intersection. For this
application, and specifically for the state of the intersection, consistency is paramount. All vehicles
must agree on the state of the intersection (strong consistency) before any one vehicle can enter the
intersection. Hence, for this application, when latencies get large for any reason, we choose to sac-
rifice availability (vehicles do not enter the intersection) rather than consistency (vehicles crash).

Consider, however, a complementary application. Suppose a vehicle has a computer-vision-
based automatic braking system as part of an ADAS (advanced driver assistance system) as well as
an ordinary brake pedal. Suppose the vision-based system has significant latency (it may even be
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computed in the cloud). Should the system delay responses to pushes of the brake pedal until the
vision system has reported the state of the world at the time of the brake pedal push? The answer
is most certainly “no.” The system should respond immediately to brake pedal pushes, thereby
maintaining high availability, even at the cost of consistency.

The CAL theorem also easily accommodates tiered, heterogeneous networks, where end devices
may connect to edge computers over wired or wireless links, and edge computers may connect to
cloud-based services that enable wide area aggregation and scalability, for example for machine
learning. The various networks involved may have widely varying characteristics, yielding enor-
mously different latencies and latency variability. A time-sensitive network (TSN) [28] on a factory
floor, for example, may yield reliable latencies on the scale of microseconds between edge comput-
ers, whereas wide-area networks (WAN) may yield highly variable latencies that can extend up to
tens of seconds [49]. Moreover, any of these networks can fail, yielding unbounded latencies, and
systems need to be designed to handle such failures.

The CAL theorem will allow us to model a heterogeneous network topology interconnecting a
wide variety of nodes. In particular, the matrix form of the equations enables compact modeling
of heterogeneous networks, where the latencies between pairs of nodes can vary considerably.

We use the LINGua Franca (LF) coordination language [32] to specify programs that explicitly
define availability and consistency requirements for a distributed CPS application. We can then use
the CAL theorem to derive the network latency bounds that make meeting the requirements pos-
sible. This can be used to guide decisions about which services must be placed in the end devices,
which can be placed on an edge computer, and which can be put in the cloud. Moreover, we will
show how, once such a system is deployed, violations of the network latency requirements, which
will make it impossible to meet the consistency and availability requirements, can be detected.
System designers can build in to the application fault handlers that handle such failures.

System designers can use the CAL theorem in at least two complementary ways. They can
derive networking requirements from availability and/or consistency requirements, or they can
derive availability and/or consistency properties from assumptions about the network behavior.

The CAP theorem itself is rather obvious and very much part of the folklore in distributed com-
puting. By quantifying it and relating it to individual point-to-point latencies, the CAL theorem
elevates the phenomenon from folklore to an engineering principle, enabling rigorous design with
clearly stated assumptions. Moreover, by quantifying consistency and availability, the CAL theo-
rem makes the concept applicable to real-time systems. In this paper, we show how to carry out
such rigorous design using LF, which supports explicit representations of availability and consis-
tency requirements. Moreover, we demonstrate how to detect situations where the networking
requirements that are implied by the availability and consistency requirements cannot be met, for
example when the network fails or has excessive latency. We describe how LF can provide excep-
tion handlers that enable the designer to explicitly choose how to handle such fault conditions, for
example, by reducing accuracy [49] or by switching to failsafe modes of operation.

The contributions of this paper are as follows (LINGUA FRANCA is not a contribution):

e We reformulate the CAL theorem using the notation of Lohstroh et al. [31] and extend it to
integrate cyber-physical interactions.

o We show how availability, a real-time property of a system, and consistency, a logical prop-
erty, relate numerically to clock synchronization and latencies introduced by networks and
computation.

e We show how deadlines used to specify real-time requirements in cyber-physical systems are
availability requirements and therefore are subject to this relation. Specifically, as latencies
increase, it becomes impossible to meet deadlines without sacrificing consistency.
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e We propose a methodology that allows a system designer to explicitly define availability and
consistency requirements using the LINGUA FRANCA coordination language.

e We show how a system designer can choose how to handle runtime violations of these re-
quirements by explicitly choosing whether to further relax consistency or availability and
how to provide fault handlers to be invoked when violations are detected.

e We give practical real-time system examples that show that the choice of whether to sacrifice
availability or consistency when faults occur is application dependent.

The paper is organized as follows. Section 2 gives an overview of related work. Section 3 explains
the underlying model of time. Section 4 formally defines the terms and derives the CAL theorem.
Section 5 introduces the LINGUA FrRaNcA coordination language, shows how it can explicitly spec-
ify availability and consistency requirement, and shows how to use the CAL theorem to analyze a
program. Section 6 gives two practical distributed real-time system examples and shows how one
needs to prioritize availability while the other needs to prioritize consistency in the presence of
faults. Section 8 draws some conclusions.

2 RELATED WORK

We are aware of two prior attempts to quantify the CAP theorem. The first quantifies availabil-
ity and consistency and shows a tradeoff between them [47]. The quantifications, however, are in
terms of fractions of satisfied accesses (availability) and fractions of out-of-order writes (inconsis-
tency), and Yu and Vahdat show that finding the availability as a function of consistency is NP-hard.
In contrast, the CAL theorem defines these quantities as time intervals and gives a strikingly sim-
pler relationship, one that is linear in a max-plus algebra. In the second, Rahman et al. [40] derive
a result similar to our CAL theorem for the special case of two nodes communicating and having
perfectly synchronized clocks (their theorem 2.6). Our work generalizes this result with arbitrary
heterogeneous network topologies with imperfect clocks, a formulation as a linear equation in a
max-plus algebra, and its application to CPSs.

Our formulation requires separating the notion of logical time from that of physical time. Sep-
aration of these two has appeared many times before in software technologies focused on em-
bedded systems, including the synchronous languages [5], the notion of a logical execution time
(LET) [16, 17], and various programing languages and frameworks [13, 32, 39]. Even with this his-
tory, the separation remains a difficult concept. Natural language does not easily accommodate
sentences that refer to two distinct timelines. The intuitive notion of Newtonian time, which is
baked in to natural language, proves to be an inaccurate model of physical time [38, 42]. When
dealing with relatively slow Lipschitz continuous phenomena, the Newtonian model often proves
adequate. But when dealing with discrete events, where the order in which events occur can have
enormous effects on the outcome, the Newtonian model breaks down and proves inadequate.

There is a great deal of related work on distributed real-time systems and real-time programming
languages—too much to cite here. To our knowledge, however, none of these give a clear and
quantified tradeoff between availability and consistency as a function of network latency using
separated notions of logical and physical time.

3 LOGICAL AND PHYSICAL TIME

Central to our ability to quantify both consistency and availability is the distinction between log-
ical time and physical time. Our notation here follows Lohstroh et al. [31].

Let T be the set of physical time values that any clock in the system of interest may return. For
example, elements of T may represent Coordinated Universal Time (UTC). We assume all clocks
are imperfect, and that, because we are interested in distributed systems, there is typically more
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than one clock. We assume that T is a totally ordered set and that T is an abelian group, and hence
we can add or subtract its elements from one another to obtain another element in T.

In Lingua Franca (LF), which we will use to specify our CPSs, T is a set of 64-bit integers
that follow the POSIX standard, so that T € T is the number of nanoseconds that have elapsed
since midnight, January 1, 1970, Greenwich mean time. As a practical matter, these numbers will
overflow in systems running near the year 2270.

Let G be another totally ordered set of tags [26] that label events in the system. From the
perspective of any component of a distributed system, the order in which events occur is defined
by the order of their tags. Two distinct events with the same tag are logically simultaneous.

In physical time, there is no well-founded notion of simultaneity [38], and ambiguity about the
order of two spatially-separated events can lead to significant disagreements. Consider, for exam-
ple, a bank account where a deposit occurs in London nearly simultaneously with a withdrawal
in Singapore. Did the account go into overdraft? One way to resolve this question that eliminates
ambiguity is to timestamp the events using a local clock at each location, and to define the order
of the transactions to be the numerical order of their timestamps. This takes an imperfect measure
of physical time, itself an ambiguous concept, and elevates it to a logical property on which there
can be no disagreement. Once the events have timestamps, all observers who can see both events
will agree on the order of the timestamps (now a logical time), even if they cannot agree on the
order in which the transactions actually occurred.

Our tags provide a general way to resolve such ambiguities. The order of tagged events will be
defined to be the numerical order of their tags. Agreement about the value of a shared quantity
(such as a bank account balance) becomes agreement about the value at a tag, not at a time. The
latter is impossible to achieve, while the former, though not easy, is possible. Consistency, therefore,
becomes easy to define, resolving the considerable confusion and disagreement about meaning of
this term [15]. Consistency is agreement about the value of shared quantity at a tag.

To quantify consistency and availability, we need to establish a relationship between the tags of
events and time values. We assume a monotonically nondecreasing function 7 : G — T that gives
a physical time interpretation to any tag. For any tag g, we call 7 (g) its timestamp. A timestamp
is a logical time value drawn from the same set T as the physical time values reported by clocks.
Since the set T is totally ordered, we can compare logical and physical times.

In LF, G = T x U, where U is the set of 32-bit unsigned integers representing the microstep
of a superdense time system [8, 11, 34]. The order relation in G is the dictionary order, where
(t1,my) < (tp,mp) ift; < tyorty = t; and m; < my. And 7 is defined such that for any tag
g = (t,m) € G, 7 (g) = t. Hence, to get a timestamp from a tag, you just ignore the microstep.

An external input, such as a user input or sensor reading, will be assigned a tag g such that
7 (9) =T, where T is a measurement of physical time taken from the local clock where the input
first enters the software system. In LF, this tag is normally given microstep 0, g = (T,0). Once
the tagged event enters the system, its relationship to physical time becomes incidental. The only
semantic requirement is that software components process events in tag order, irrespective of
physical time, although we will see that the relationship between a timestamp (a logical time) of
an event and the physical time at which that event is processed represents availability.

We assume sets G and T each have largest element that we will designate cog and cor and a
smallest element —ocog and —oco. We require that 7 (cog) = oo.

In summary, the tag of an event determines when it will be seen by software components relative
to other events, the timestamp represents the logical time of that event, and physical times are time
values read from a clock. We will consistently denote tags with a lower case g € G or a lower-case
tuple (¢, m) € G and measurements of physical time T € T (clock values) with upper case.
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We will use the tags g to specify consistency requirements. Relaxing consistency requirements
to improve availability is accomplished with after delays in LINGUA FRANCA, which add a constant
d to the tag of an event. The source of the event and the destination disagree on values carried by
the event during a logical interval specified by d. Availability requirements will be specified using
the LiNGua Franca deadline construct. Deadlines in LF are a bit subtle because they span two
timelines. A deadline D € T is a declaration that the event with tag g must be processed before
physical time T exceeds 7 (g) + D. We will use these deadlines to specify availability requirements.

4 THE CAL THEOREM

Following Schwartz and Mattern [44], assume we are given a trace of an execution of a distributed
system consisting of N sequential processes, where each process is an unbounded sequence of
(tagged) events. Although the theory is developed for traces, the CAL theorem can be used for
programs, not just traces; a program is formally a family of traces.

In Schwartz and Mattern’s model, the k-th event of process i is associated with a tag g; x (which
has a logical time t; p = 7 (g;,x)) and a physical time T; r. The physical time T; ; is the reading
on a local clock at the time when the event starts being processed. We require that events in a
process have nondecreasing tags and increasing physical times. That is, if g; x is the tag and T; & is
the physical time of the k-th event on process i, then g; < g; k+1 and T; x < T; k+1. For notational
simplicity, when we don’t care about the index k of a tag on process i, we will denote the tag by a
generic g;, using only a single subscript. i.e., g; is the tag of some (unspecified) event on process i. If
we also don’t care about which process the tag is associated with, we omit the subscript altogether,
writing just g.

Schwartz and Mattern focus on distributed database systems, not CPSs. Their model has four
types of events, read, write, accept, and send. We assume each event has a tag, and we use a
superscript to identify the type of event, g", g%, g%, or ¢g° respectively. In their model, within each
process, a read event with tag ¢g” yields the value of a shared variable x. The shared variable x
is stored as a local copy, which has previously acquired a value via a write event in the same
process with tag g" < ¢” or an accept event in the same process with tag g* < ¢”. An accept
event receives an updated value of the variable from the network. A read event with tag ¢g" will
yield the value assigned by the write or accept event with the largest tag g’ where g’ < ¢g". If
g’ = ¢", we require that T” < T", where T’ is the physical time of the write or accept event and T"
is the physical time of the read event.

A send event is where a process launches into the network an update to a shared variable x.
(Here, the “network” is whatever medium is being used for communication between processes.) If
asend event with tag g7 on process j results in a corresponding accept event with tag g on process
i, we require that g > gjs.. This ensures that timestamps cannot decrease during network transport.
An accept event that receives the update sent by the send event has a tag greater than or equal to
that of the send event. The physical time of the accept event relative to the originating send event
is unconstrained, however, because these times likely come from distinct physical clocks.

We require that write and accept events in a process i with the same tag as a read or send
event in i precede the read or send event in the process. That is, if gl?j’k = 9 ng = 9
9% = 9> OF i = 9> then k < k. This ensures that a read (or send) event uses a value
that was written at an earlier physical time, and that if a read (or send) and write (or accept)
are logically simultaneous, the write (or accept) occurs before the read (or send). In addition, to
ensure consistency, if two write (or accept) events in a process are logically simultaneous, then
they must have a well-defined order in physical time. This property is enforced at the language
level in LINGUA FRANCA, but some other framework could simply disallow logically simultaneous
writes and accepts for the same shared variable.
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In a cyber-physical system, suppose that process j reads a sensor value at physical time T; (ac-
cording to its local clock). It writes the sensor value to variable x via a write event with tag 97"
such that T(g}‘f’k) = T;. The tag of the event now has a timestamp equal to the clock reading at the
time the sensor is read. Suppose process j then generates a send event with tag gjs.’ o 2 g;”k for some
k' > k. The timestamp that is sent to process i along with the sensor reading is no less than the
physical time of the sensor reading. At process i, there will be a corresponding accept event with
tag gZh > g]s.’k, for some h. Ingh = gj?"’k, then we say that x is strongly consistent across processes i
and j. The sensor data have the same timestamp (and tag) on both processes, and that timestamp
represents the physical time (at process j) at which the sensor was read. If g*, > 97" then we have
a measured inconsistency. We will see that allowing such inconsistency can improve availability.

4.1 Consistency

Definition 1. For each write event to a shared variable x on process j with tag g*, if there is a send
event on j that sends this updated value to process i, let g{' be the tag of a corresponding accept
event on process i. If there is no corresponding accept event, let g¢ = cog. The inconsistency
Cij € T from j to i w.r.t. x is defined to be

Cij = max (T (97)-T (gjw)) , (1)

where the maximization is over all write events to x on process j. If there are no such write events
on j, then we define C;; = 0.

Because of the constraints on tags of events transported over the network, it is clear that C;; > 0.
If C;; = 0, we have strong consistency between processes i and j for variable x. We will see
that this strong consistency comes at a price in availability, and that network failures can result
in unbounded unavailability. If C;; is finite, we have a quantified eventual consistency. C;; is
infinite if updates to x at i are not sent to (or received by) j.

Notice that inconsistency measures the difference between two timestamps (logical times). We
will show how LiNcua FRANcCA enables manipulation of the tags of events to relax consistency
requirements in order to gain availability. It does so without sacrificing determinacy.

Discussion. The notion of consistency has many confusingly interrelated conceptualizations and
ambiguous definitions in the literature [15]. By defining (in)consistency in terms of logical time
rather than physical time, we offer an unambiguous definition that we believe captures the intent.
A naive way to use physical time to define consistency might go something like this: “All parts
of a distributed system agree on the value of a shared variable at all instants ¢ in (physical) time.”
There are many problems with this definition. First, there is no shared t [38, 42]. Theoretically,
relativity tells us that the order in which events occur in a distributed system depends on the
frame of reference. For relatively slowly varying continuous quantities, small discrepancies in the
order of events may not matter, but for systems with discrete behaviors, even tiny discrepancies in
order may matter a lot. Consider for example the door of a commercial aircraft. It matters a great
deal whether the door is disarmed first or opened first. Even a tiny disagreement about the order
of these events could result in the emergency escape slides being inadvertently deployed.

Relativity aside, from a practical perspective, clocks cannot be perfectly synchronized, so any
distributed system that uses more than one clock to measure physical time cannot know any true
order of events. It can only compare clock readings. Our formulation recognizes that these clock
readings become logical properties, not some physical ground truth. Consistency becomes a se-
mantic property of programs rather than a vague and approximate notion of agreement.
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4.2 Availability

In database systems, unavailability, A, is a measure of the time it takes for a system to respond to
user requests [19]. We generalize this notion to any reading of a shared variable x and particularly
focus on situations where a read of a shared variable is required to drive an actuator at the interface
between the cyber and the physical in a CPS. In this situation, unavailability translates into a delay
in actuation, which can be particularly problematic in feedback control systems. A read event for
shared variable x with tag g" may be delayed because of network latencies and/or to ensure that
all write and accept events with earlier or equal tags have been processed. We call this delay
“unavailability”

To measure unavailability, we compare the physical time on process i at which an update (write
or accept) event is processed against the timestamp of the event. This measure is particularly
useful for CPS because that timestamp typically represents the physical time at which a sensor
measurement is taken, and the physical time at which the update occurs gives the earliest time at
which that measurement can be read. This motivates the following definition:

Definition 2. For each update (write or accept) event of variable x on process i, let gi be its tag
and T/ be the physical time at which it is processed. The unavailability A; € T of x at process i
w.r.t. x is defined to be

A =max (T} = T (¢)) . @)

where the maximization is over all update events of x on process i. If there are no such update
events on process i, then we define A; = —oco.

Note that there is no fundamental constraint that A; > 0. Even in a CPS, it may be possible
to process an update event with timestamp 7 (g;') at an earlier physical time T;* according to the
local clock, i.e., T} < 7 (g;'). This could occur, for example, if a sensor reading occurs on a remote
node j whose physical clock is poorly synchronized with the local node i.

From this definition, we see that unavailability of x at process i may be dominated either by
local write events on i or by accept events that are receiving updates over a network.

4.3 Processing Offsets

We require that each process handle events in tag order. This gives the overall program a formal
property known as causal consistency, which is analyzed in depth by Schwartz and Mattern.
They define a causality relation, written e; — e;, between events e; and e, to mean that e; can
causally affect e,. The phrase “causally affect” is rather difficult to pin down (see Lee [22, Chapter
11] for the subtleties around the notion of causation), but, intuitively, e; — e, means e, cannot
behave as if e; had not occurred. Put another way, if the effect of an event is reflected in the state
of a local replica of a variable x, then any cause of the event must also be reflected. Put yet another
way, an observer must never observe an effect before its cause.

Formally, the causality relation of Schwartz and Mattern is the smallest transitive relation such
that e; — ey if e; precedes e, in a process, or e; is the sending of a value in one process and e;
is the acceptance of the value in another process. If neither e; — e; nor e, — e; holds, then we
write e;||e; or e;||e; and say that e; and e, are incomparable. The causality relation is identical to
the “happened before” relation of Lamport [21], but Schwartz and Mattern prefer the term “causal-
ity relation” because even if e; occurs unambiguously earlier than e, in physical time, they may
nevertheless be incomparable, e;||e;.

The causality relation is a strict partial order. Schwartz and Mattern use their causality relation
to define a “consistent global snapshot” of a distributed computation to be a subset S of all the
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events E in the execution that is a downset, meaning that if e’ € S and e — ¢’, then e € S (this was
previously called a “consistent cut” by Mattern [35]).

To maintain causal consistency, the requirement that a process have nondecreasing tags means
that, in a trace, a write event to a shared variable x may have to be processed at a physical time
T" that is significantly larger than its tag’s timestamp 7 (g"). In a CPS system, the timestamp
7 (g") for such an event typically represents the physical time at which the sensor is read, i.e., the
reading of a physical clock at the time the external input appears. But an event that writes that
sensor value to x may have to be processed at a physical time later than this timestamp to ensure
that all events with earlier tags have been processed. This motivates the following definition:

Definition 3. For process i, the processing offset O; € T for a shared variable x is
0; = max (T;" = 7 (9;")) (3)

where T}" and g;" are the physical time and tag, respectively, of a write event to x on process i.
The maximization is over all such write events in process i. If there are no such write events, then
O,' = —OooT.

When the variable x stores a sensor reading, and the timestamp 7 (g;") of the write event that
updates x is drawn from the same local clock that provides T, (the physical time of the write to
x), then T > 7 (g;") and hence the processing offset is greater than or equal to zero, in this case.
But, in general, it can be negative.

4.4 Apparent Latency

When a write to a shared variable x occurs in process j and this update is sent to process i, some
physical time will elapse before a corresponding accept event on process i is processed. This mo-
tivates the following definition:

Definition 4. Let g}’ be the tag of a write event to x in process j that is (eventually) sent to
and accepted by process i # j. Let T be the physical time of the corresponding accept event in
process i # j (or oo if there is no such event). The apparent latency or just latency £;; € T for
communication from j to i is

L;j = max (Tia -7 (gjw)) , (4)
where maximization is over all such write events in process j. If there are no such write events,
then £;; = —cor. When i = j, we define £;; = O}, the processing offset at j.

Note that T and 7 (g;") are times that may be derived from two different clocks, so this appar-
ent latency is an actual latency only if those clocks are perfectly synchronized. Unless the two
processes are actually using the same physical clock, they will never be perfectly synchronized.
Hence, the apparent latency may even be negative. Note that despite these numbers coming from
different clocks, if tags are sent along with messages, this apparent latency is measurable.

The apparent latency is a sum of four components,

-Eij ZOj +Xij+Lij+Eijs (5)
where X;; is execution time overhead at node j for sending a message to node i, L;; is the net-
work latency from j to i, and E;; is the clock synchronization error. The three latter quantities
always appear summed together in our formalism, so there is need to individually measure them. In
practice, they can quite difficult to measure individually. Together, however, the apparent latency
is easy to measure.

The clock synchronization error E;; can be positive or negative, whereas the processing offset
Oj is typically non-negative and X;; and L;; are always nonnegative. If E;; is a sufficiently large
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negative number, the apparent latency will itself also be negative. Because of the use of local clocks,
the accept event will appear to have occurred before the user input that triggered it. This possibility
is unavoidable with imperfect clocks.

4.5 The CAL Theorem

The above definitions lead immediately to the following theorem:

THEOREM 1. Given a trace, the unavailability at process i is, in the worst case,
Ai = max Oi,max(Ll-j - C,’j) N (6)
jeN

where O; is the processing offset, L;; is apparent latency (which includes O;), and C;; is the
inconsistency.

Proor. The definition of unavailability will be dominated by either a write event, in which
case we get the first term of the maximization, or by an accept event, in which case we get the
second. ]

This can be put in an elegant form using max-plus algebra [3]. Let N be the number of processes,
and define an N X N matrix I such that its elements are given by

rijZLij_Cij_Oj:Xij+Lij+Eij_éij- (7)
That is, from (5), the , j-th entry in the matrix is a bound on X;; + L;; +E;; (execution time, network
latency, and clock synchronization error), adjusted downwards by the inconsistency Cj;.

Let A be a column vector with elements equal to the unavailabilities A;, and O be a column
vector with elements equal to the processing offsets O;. Then the CAL theorem (6) can be written

A=08T0, ®)
where the matrix multiplication is in the max-plus algebra. This can be rewritten as
A=(IeTl)O0, 9)

where I is the identity matrix in max-plus, which has zeros along the diagonal and —coy every-
where else. Hence, unavailability is a simple linear function of the processing offsets, where the
function is given by a matrix that depends on the network latencies, clock synchronization error,
execution times, and specified inconsistency in a simple way.

4.6 Evaluating Processing Offsets

The processing offsets O; and O; are physical time delays incurred on nodes i and j before they
can begin handling events. These time delays are a consequence of the requirement that events be
processed in tag order. Specifically, node i can begin handling a user input (a write event) with tag
g;” at physical time T} = 7 (g;") + O;, which is the earliest time at which the runtime system is
sure that all reads and writes of the same variable with earlier tags have already been processed.
In the absence of any further information about a program, we can use I' to calculate these offsets.
However, the result is conservative because it does not use dependency information that may be
present in a program (and is present in the LINGUA FRANCA programs we give in the next section).
A less conservative technique is explained below in Section 6.2.

First, in the current implementation of LF, by default, logical time “chases” physical time, mean-
ing that logical time never gets ahead of physical time. To model this, define a zero column vector
Z where every element is zero. With this, we require at least that O > Z. In addition, to ensure that
node i processes events in tag order, it is sufficient to ensure that node i has received all network
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input events with tags less than or equal to g; before processing any event with tag g;. With this
(conservative) policy, O; > max;(L;; — Ci;). The smallest processing offsets that satisfy these two
constraints satisfy

0=2Zs&TO0. (10)

This is a system of equations in the max-plus algebra. From Baccelli et al. [3] (Theorem 3.17), if
every cycle of the matrix I has weight less than zero, then the unique solution of this equation is

0=T"Z, (11)

where the Kleene starisT* = I®@T @ T? @ - -- . Baccelli et al. (Theorem 3.20 [3]) show that this
reduces to

I*=1el®---&TN 1, (12)

where N is the number of processes.

The requirement that the cycle weights be less than zero is intuitive, but overly restrictive. We
will show that it means that along any communication path from a node i back to itself, we have
to tolerate a non-zero inconsistency somewhere on the cycle.

In practice, programs may have zero or positive cycle means. Theorem 3.17 of Baccelli et al. [3]
shows that if all cycle weights are non-positive, then there is a solution, but the solution may not
be unique. If there are cycles with positive cycle weights, there is no finite solution for O in (10).
In this case, the only solution to (10) sets all the processing offsets to cop. Every node must wait
forever before handling any user input. This is, of course, the ultimate price in availability.

Equation (11) is conservative because, absent more information about the application logic, we
must assume that any network input at node i with tag g; can causally affect any network output
with tag g; or larger. For particular applications, it is possible to use the detailed structure of the
Lincua FrRaNcA program to derive processing offsets that are not conservative, as we do below in
Section 6.2.

5 AVAILABILITY AND CONSISTENCY IN LF

In this section, we briefly introduce LinGua FRANCA and show how it expresses consistency and
availability requirements. We then discuss how processing offsets can be determined without the
conservative approximation of Section 4.6.

5.1 Brief Introduction to Lingua Franca

Lincua Franca (or LF, for short) [32] is a polyglot coordination language that orchestrates con-
current and distributed programs written in any of several target languages (as of this writing, C,
C++, Python, TypeScript, and Rust). In LF, applications are defined as concurrent compositions of
components called reactors [29, 30]. LF borrows the best semantic features of established models
of computation, such as actors [2], logical execution time (LET) [18], synchronous reactive lan-
guages [5], and discrete event systems [25] including DEVS [48] and SystemC [27]. LF programs
are concurrent and deterministic [23] (except when fault handlers are invoked). Given any set of
tagged input events, there is exactly one correct behavior.

Figure 1 gives a simple example that we use to explain the structure of an LF program and
how it specifies availability and consistency requirements. This program defines a simple pipeline
consisting of a data source, a data processor, and a data sink. The data source could, for example,
poll a sensor and filter its readings. The data processor could use the sensor data to calculate a
command to send to an actuator. The data sink could drive the actuator.
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The diagram in Figure 2 is automatically generated by the LF tools given the source code.
In later examples, we will show the diagram only and not the source code because the diagram
contains sufficient information. The chevrons in the diagram represent reactions, which process
events, and their dependencies on inputs and their ability to produce outputs is shown using
dashed lines.

Line 1 in the source code defines the target language, which is the language in which reactions
are written, and the language into which the entire LF program is translated. This example uses
the C target, which means that the bodies of reactions are written in C.

Line 2 declares a reactor class named Sense, which has an output port (line 3), a timer (line 4),
a state variable (line 5), and a reaction (line 6). The output port has name out and type int. The
timer has name t, offset 0 (it should start when the program starts), and period 10ms. The state
variable has a name, type, and initial value. Each of these properties of the reactor is represented
in the diagram in Figure 2.

reactor Actuate {
input in:int;
reaction(in) {=
// code in C: read in
=} deadline(10ms) {=
// code in C: handle violations
=}
}
reactor Compute {
input in:int;
output out:int;
reaction(in) -> out {=

// code in C: read in, write out

A reaction, like that on line 6, is defined

1 target C; .
with a syntax of the form
2 reactor Sense {
3 output out:int; reaction(L{) L, -> L; {=
4 timer t(0, 10ms); codebody
5 state my_state:int (0); :}
6 reaction(t) -> out {=
. // code in C: produce out where L; is a list of triggers, which are in-
s =} puts, timers, and actions (we will discuss ac-
9 3} tions later); L, is an optional list of observ-

ables, which are inputs and actions that do
not trigger the reaction but may be read by
the reaction; and Lj is an optional list of ef-
fects, which are outputs, actions, and modes
(which are not used in this paper). A reaction
is logically instantaneous in that effects have
the same tag as the triggers and observables
that produce them.

The particular reaction on line 6 is triggered
by the timer every 10ms. When it is triggered
for the n-th time, its logical time will be t = s+
n X 10 ms, where s is the logical start time, typ-

B =} ically set using the local physical clock when
“ 3 the program starts. The runtime system at-
% main reactor i tempts to align logical time with physical time,
26 i1 = new Sense(); . . . .

. so this reaction will be invoked roughly every
27 i2 = new Compute(); 1 but thi be d fectly. By d
28 i3 = new Actuate(); Oms, uFtlSFan%?t € ?nepe?eCty' Y ©
»  il.out -> i2.in after 10ms: fault, logical time “chases” physical time in a
% i2.out -> i3.in after 10ms: program execution, so that reactions with a
51} logical time ¢ are invoked close to (but never

Fig. 1. Structure of an LF program for a simple
pipeline.

before) physical time T = ¢.

A reaction may optionally have a dead-
line, as shown in the Actuate reactor class on
line 14. This gives a time value and a code body

IThe diagram synthesis feature was created by Alexander Schulz-Rosengarten of Kiel University using the graphical layout
tools from the KIELER Lightweight Diagrams framework [43] (see https://rtsys.informatik.uni-kiel.de/kieler).
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Example
i1 : Sense
© my_state:int(0) i2 : Compute i3 : Actuate
out in out in
(O et T o= D
(0, 10 msec)

Fig. 2. Diagram for the LF program in Figure 1.

to execute instead of the reaction if the deadline is violated. The time value may be a parameter of
the reactor class but here is shown as the constant 10ms. A deadline with time value d = 10ms is
violated for an event with tag g if the reaction is invoked at a physical time T where T > 7 (g) +d.
Such a deadline explicitly specifies an availability requirement. The deadline violation handler
(line 15) is a fault handler. The LF runtime system uses an EDF scheduler to attempt to avoid
violating this deadline, as usual in real-time systems.

The top-level (main) reactor is defined on line 25. Within it, reactor instances are created as on
line 26 using the new keyword. If the main keyword is replaced with federated, then a separate
C program is generated for each reactor instantiated within the federated reactor. Otherwise, a
single multi-threaded C program is generated for the entire program. For the federated case, each
instance is called a federate, and tagged inputs will arrive from the network at the input ports
and be handled in tag order.

The routing of messages is specified by connections, as shown on line 29, which connects
the output of i1 to the input of i2. Such a connection may optionally alter the timestamp of the
message using the after keyword. The connection on line 29 specifies that the timestamp of the
input event at i2 should be 10ms greater than the timestamp at the output of i1. Such a logical
delay explicitly relaxes the consistency requirements because it explicitly states that 12 can use
information that is 10ms out of date relative to i1.

We can see immediately that use of logical delays improves availability for this example, as ex-
pected from the CAL theorem. Suppose that this program is federated and that the three instances
are mapped to distinct processors on a network. Were it not for the logical delays, intuitively,
the Actuate reactor i3 would be unable to react until the message from the Sense reactor i1 had
flowed through the network to 12, 12 had completed its reaction, and the result from i2 had flowed
over the network to i3. If these physical delays add up to more than 10ms, the i3’s deadline will
be missed. With the logical delays, however, as long as the physical delays add up to less than
30 ms, the deadline will not be missed. If the physical delays add up to less than 20 ms, then i3 can
react to its input with timestamp ¢ as soon as physical time T matches or exceeds t. The specified
tolerance for inconsistency improves availability. This intuition can be made rigorous using the
CAL theorem.

5.2 Evaluating Unavailability

For the program in Figure 1, the I’ matrix is given by

0 —00  —0
= F21 0 —00 (13)
—oo Iy 0

where

e I}; = Xp1 + Loy + Ez; — 10ms,
e I3 = X35 + L3z + E3p — 10ms,
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e X, is the execution time for the reaction in Sense,

e L, is the network latency from Sense to Compute,

e Ej; is the clock synchronization error from i1 to i2,

e X3, is the execution time for the reaction in Compute,

e L3, is the network latency from Compute to Actuate, and
e Es, is the clock synchronization error from i2 to i3.

The —co entries (short for —cor) in the matrix are a consequence of a lack of communication.

The communication path from i1 to i2 has a logical delay of 10ms, which is an explicit decla-
ration of an inconsistency Cy; = 10 ms. The Compute reactor’s view of the data from the Sense
reactor is 10ms behind. We can now determine that this allowance of 10ms of inconsistency im-
proves availability compared to what we would get without it. First, we can use the analysis of
Section 4.6 to evaluate the processing offsets. There, N = 3, so (12) reduces to

I"=leT eI
It is straightforward to evaluate this to get

0 —00 —00
I = T21 0 —0of .
Li+15 Inp 0

Intuitively, this matrix captures the fact that the Actuate reactor indirectly depends on the Sense
reactor, something not directly represented in the I' matrix.
We can now evaluate (11) to get

0
0=I"Z = max(I3, 0) . (14)
max(Ty; + I32, T3, 0)

Next, we evaluate (9) to get the unavailability at each node,

0
A=(IeoTl)0 = max (I, 0) . (15)
max(Iy; + I3z, T3, 0)

In this simple case, the unavailability is equal to the processing offsets; i.e., the processing offsets
capture all the waiting that needs to be done to realize the semantics of the program.

These unavailability numbers are intuitive. First, note that the Sense can react to external stim-
ulus immediately. It has no network inputs to worry about, so Ay = 0. The Compute reactor, how-
ever, can react to an input stimulus with timestamp ¢t immediately when physical time T = t only
if X1+ Lo1 + E»; < 10ms. Otherwise, in order to ensure that it processes events in timestamp order,
it may need to wait until T = t 4+ X51 + Ly; + E; — 10ms. Similarly, the Actuate reactor can respond
immediately if T3, < 0 and I + I3, < 0. These conditions occur if the 10ms logical delay is larger
than the apparent latencies in communication.

If we change line 29 to this subtly different version:

29 il.out ~> i2.in;

then there is no upper bound on the inconsistency between these two instances. The subtle change
is to replace the logical connection -> with a physical connection ~>. In LINGUA FrRANCA, this
is a directive to assign a new tag g at the accepting end i based on a local measurement of physical
time T, when the message is received such that 7 (g¢) = T{. The original tag is discarded. Such
connections, therefore, have no effect on availability, but they completely abandon consistency.
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5.3 Processing Offsets in LINGUA FRANCA

Lincua Franca offers two coordination strategies for federated execution, centralized and decen-
tralized [4]. The centralized coordinator is an extension of the High-Level Architecture (HLA) [12],
a distributed discrete-event simulation standard. The decentralized coordinator is an extension of
PTIDES [51], a real-time technique also implemented in Google Spanner [10], a globally distributed
database. This coordinator is also influenced by Lamport [20] and Chandy and Misra [9, 37].

For the purposes of this paper, we only need to know how these coordination mechanisms relate
to processing offsets and availability. The centralized coordinator is the easiest to understand. It
does whatever is necessary to ensure that events are processed in tag order. In particular, execution
in a federate will be delayed when such a delay is needed to ensure tag order semantics. As a
consequence, the processing offsets and unavailability bounds emerge from an execution of the
program. As network latencies vary, the offsets and unavailability vary. The CAL theorem tells
what to expect these numbers to be, given network latencies. The programmer, therefore, can use
the CAL theorem to determine whether deadlines will be met, given specific latencies.

The processing offsets and unavailability bounds play a bigger role when using the decentralized
coordinator. In particular, with this coordinator, the programmer is required to specify a safe-to-
advance (STA) offset for each federate. The choice of STA at federate i can be guided by processing
offset O; for federate i, with the caveat that O; is a property of a trace, whereas STA is a property
of a program (a family of traces). The STA specified for a federate i enforces O; during execution
for all the traces produced by federate i. For particular reactions, the programmer can also give
an additional safe-to-assume-absent (STAA) offset. STAA gives an additional time beyond the
STA to wait before assuming that the absence of a message on a particular input means that there
will be no message on that port with the current tag or less. The availability bound given by
the CAL theorem can similarly guide the choice of STAA. Such guidance is much better than
guesswork.

Both coordinators will deterministically execute the LF program identically, yielding the same
behavior as an unfederated execution, under certain assumptions. For the centralized coordinator,
the assumptions are that the network latencies are sufficiently low that no deadlines are missed.
For the decentralized coordinator, the assumptions are that the network latencies are sufficiently
low that events are seen by each reactor in tag order. In both cases, violations of the assumptions
are detectable and can be handled by fault-handling code provided by the programmer.

The key difference between the two coordinators, therefore, is in their fault handling. When
network latencies get large (or the network gets partitioned), the centralized coordinator sacrifices
availability, whereas the decentralized coordinator sacrifices consistency. Which of these is the
right choice is application dependent.

Note also that for both coordinators, the CAL theorem can be used to derive the requirements on
network latencies, and therefore provides a principled guide for choosing networking technology
and can guide designers to move computations between embedded, edge, and cloud computing.

5.4 Fault Handling

Any assumptions about network latency may be violated in the field. In centralized coordination,
such violations will manifest as deadline violations, whereas in decentralized coordination, they
will manifest as consistency violations. In both cases, LF allows the programmer to specify excep-
tion handlers to be invoked when such violations occur. Hence, for safety-critical CPS applications,
the proposed framework promises some attractive properties. First, a programmer can explicitly
decide when and how much to give up consistency and when and how much to give up availability
to accommodate execution times, network latency, and clock synchronization error. Second, the
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Fig. 3. ADAS system schematic and photo from 2018 demo by Denso, reported in The Daily Times.

programmer’s specification will imply explicit constraints on the technology (networking, pro-
cessing, and clock synchronization) that can be used to guide selection of parts to use and mapping
of software components onto resources (embedded, edge, or cloud). Third, to allow for (inevitable)
possible failures in the field, where specifications are not met due to unforeseen circumstances
such as hardware failures, the programmer can explicitly give code to execute when the fault
occurs. We show now how these principles can be applied through two complementary practical
examples.

6 TRADEOFFS IN PRACTICAL SYSTEMS

In this section, we consider two safety-critical real-time systems with complementary properties.
The first demands availability, where timely responses take priority over consistency in the pres-
ence of faults. This example also requires a measured relaxation of consistency to meet tight dead-
lines. The second example demands that consistency be prioritized over availability in the presence
of faults and also illustrates how cycles are handled by the CAL theorem.

6.1 ADAS

Consider an Advanced Driver Assist Systems (ADAS), as shown in Figure 3. It has a camera with
a computer vision system that analyzes images for pedestrians and applies braking when a pedes-
trian is detected, as shown in the photo. The figure shows the diagram synthesized from an LF
program that shows the structure of this system. In this structure, there are two federated reac-
tors, a Vision subsystem and a Braking subsystem. The structure is a pipeline similar to that of
Figure 1, except with a twist. Inside the Braking subsystem is a second sensor, which senses when
a driver presses on the brake pedal. Both the camera and the pedal can affect the same actuator,
which is driven by the Brake reactor.

The Vision federate has a time-triggered periodically invoked reaction that captures and ana-
lyzes an image. It then sends the results over the network to the Braking federate. The Braking
federate has a local interface to a sensor on the brake pedal, represented in the diagram by the
triangle with a “P” (which represents a physical action in LF). When the brake pedal is pushed,
an event is generated that is assigned a time stamp from the local clock and triggers invocation of
the reaction labeled “2” within the BrakePedal reactor.
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Let the Vision federate be process 1 and the Braking federate be process 2. Then the I' matrix
is similar to (13):

0 —00
e w0
where

° 1"21 = Xgl + L21 + E21 — 10ms,

® Xy is the execution time in Vision to prepare the data to send to Braking,
o [, is the network latency from Vision to Braking, and

o Ey; is the clock synchronization error.

The logical delay of 10ms on the communication path from 1 to 2 is an explicit declaration of an
inconsistency Cy; = 10ms. The Braking system’s view of the sensor data from the Vision system
is 10ms behind. Using the same methods, the processing offsets and unavailability are similar to
(14) and (15):

o] 4ot
" |max(I3y,0) " |max(I3y,0)
The allowance of 10ms of inconsistency improves availability compared to what we would get
without it. In particular, if X5; + Ly; + E2; < 10ms, then the processing offsets and unavailability
are all zero.
In Figure 3, notice that the first reaction of Brake has a deadline of 3 ms. This deadline is as an
explicit requirement for availability, stating, effectively, that we require

Xo1 + Loy + Eg; — 10ms + X5 < 3ms,
where X, is the execution time of reaction 2 in BrakePedal.? The requirement becomes
Xo1 + Loy + E91 < 13ms — Xy, (17)

This requirement almost certainly means that the vision processing cannot be done in the cloud.
If it is, then the deadline is likely to be violated. In principle, this analysis can be automated, so
that a system designer simply enters the requirements (by specifying deadlines, communication
paths, and consistency requirements), and the system provides feedback on the realizability of the
requirements.

If the system designer really wants to do the vision processing in the cloud, then these results
can be used to negotiate a service-level agreement, for example, with the 5G network vendor and
the cloud service provider. Alternatively, the 10ms tolerance for inconsistency could be increased,
although this would require an evaluation of whether the ADAS system continues to be able to
do its job safely. Once the requirements and assumptions are specified, then the next key decision
is what to do when those assumptions are violated. For this application, missing the deadline
could be disastrous, so we should emphasize availability over consistency. To accomplish that in
LinGgua FrRANCA, we just have to specify to use decentralized coordination. With this coordination
mechanism, if messages fail to arrive on time from the network, each local runtime system assumes
there are no messages and continues accordingly. This will ensure that the brake pedal event gets
handled as long as the Braking federate’s host computer is still working.

6.2 Four-Way Intersection

Consider (semi)autonomous vehicles that leverage communication with a roadside unit (RSU) to
mediate access to a four way intersection. There are many projects working on such automation

2Note that LF implements an EDF scheduling policy, and that deadlines are inherited upstream, so reaction 2 of BrakePedal
will have high priority.
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Fig. 4. Four-way intersection example.

to improve traffic flow [41, 45]. A prototype is depicted in Figure 4. This prototype uses a popular
open-source vehicle simulator called Carla, which generates the animated image in the figure that
gets updated as the program runs. The prototype is implemented using the Python target in LF,
which enables easy integration of large legacy subsystems, such as Carla, that have Python APIs.

The LF program depicted in Figure 4 consists of nine top-level components: four vehicle simu-
lators, four vehicle controllers, and one roadside unit. The program uses a compact LF notation
for banks of reactors and a multiplicity of communication channels. In this program, as a vehicle
approaches the intersection, it communicates with the RSU, sending its kinematic state (position
and velocity). The RSU handles competing requests for access to the shared resource, the intersec-
tion, by granting time windows to particular vehicles during which they may use the intersection.
This application represents a common pattern that occurs whenever distinct agents contend for
access to a shared resource.

A key property of this application is that, very much un-

like the ADAS example in Section 6.1, consistency is far more Cycles

important. All vehicles and the RSU must have a consistent " sim o

view of the state of the intersection before any vehicle can @E»-‘—»

enter the intersection. In other words, we prefer that vehi- ©. 16 mseo nip

cles stop (making the intersection unavailable) over having 32 )

them enter the intersection without a consistent view on the

state of the system, which could lead to a collision. @sb*—‘ O
In LF, if we choose centralized coordination for the feder- o [ inzy, |

ated execution, the system will emphasize consistency over - YD

availability in the event of faults (violations of the assump- |_>

tions and requirements). If messages from the network do

not arrive on time, each federate stops progressing, which ~Fig. 5. Simplified program with cycles.
will prevent a vehicle from entering the intersection.

The contrast between the requirements of the intersection and ADAS examples demonstrates
that tradeoffs between availability and consistency are application dependent. System designers
should be able to make such tradeoffs, and software needs to be designed so it responds to faults in
coherence with the stated requirements. For the ADAS example, we need to sacrifice consistency,
whereas for the intersection example, we need to sacrifice availability.

A second difference in the intersection vs. ADAS example is that the program has communica-
tion cycles without logical delays. This changes how we do the analysis because we will no longer
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be able to use (11) to determine the processing offsets. Instead, we have to derive the processing
offsets using more detailed information about the program structure. We now show how to do
that.

The simpler LF program depicted in Figure 5 has the essential structure of the intersection
example reduced to the minimum that illustrates the issues. The I' matrix is

0 —o0 Ij3 —o0
—00 0 —oo Iy
i Tia 0 -0
T41 F42 —00 0

The finite non-zero entries are defined as before,

Tij = Xij + Lij + Eij — Cij7
where, in this case, C;; = 0 because none of the connections has a logical delay. To find the process-
ing offsets, we use information that is evident in the LF program but not in the matrix. Specifically,
note that any inputs that arrive at the inputs of the Simreactors will have the same tag as an output
produced by one of the two Sim reactors. Moreover, the two Sim reactors’ outputs are driven by
timers with the same offset and period (zero and 16 ms), so these outputs are logically simultaneous.
We now make a key assumption:

AssUMPTION 1. The period of the timers is greater than any unavailability.

With this assumption, each Sim reactor will have completed processing all events with timestamp
t before it needs to advance to logical time ¢ + p, where p is the timer period. Recall that we are
assuming that logical time chases physical time, so physical time has to advance to t + p before the
federate will even attempt to advance its logical time. At this point, it can safely advance its logical
time immediately. Hence, the processing offset for both Sim reactors is zero if our Assumption 1
is true.

The processing offset for the two Vehicle instances is easier to derive. It simply depends on the
communication latencies, clock synchronization errors, and execution time bounds. The resulting
processing offset vector is

0
0
0= max (I3, I3;) (18)
max(Ly;, Ty)

We can now use (9) to calculate the unavailability:
I3 + max(I31, I32)
24 + max(Iy, Iz)

max(T3q, I3;)
max(Ty, Tyz)

A=(I®T)0 = (19)

We can now see that if the clock period is less than that top two entries in this vector, then As-
sumption 1 will be violated, so this becomes a requirement.

These results are intuitive and correspond with observation when we run the federated LF pro-
gram. Assumption 1 asserts that the period of the clocks is large enough that each period begins
fresh without an accumulated backlog of unprocessed events. The execution will begin each pe-
riod by advancing the logical time of each Sim federate to the next period as soon as physical time
matches that logical time. The zeros in the first two entries of (18) tell us this is done without delay.
The logical time of the two Vehicle federates, however, cannot be advanced until enough physical
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time has elapsed to allow for propagation of events from both Sim federates. This delay appears as
the last two entries in (18).

As shown in (19), the unavailability of the two Vehicle federates matches their processing off-
set. This is not surprising because they each have only one reaction and that reaction reacts to both
network inputs. However, the unavailability at the Sim reactors is larger than their processing off-
set. This reflects the fact that reaction 2 in each of the Sim reactors has to wait for the upstream
Vehicle reactors to execute and for their results to propagate over the network. In other words,
strong consistency—which lets actuation be logically simultaneous with the acquisition of sensor
inputs—comes at a cost in availability. The actuation is delayed in physical time, and, more funda-
mentally, the period with which sensing and actuation can be done has a lower bound that depends
on the network delays.

Under centralized coordination, the actual values of all the Ij; latencies are determined auto-
matically at runtime as apparent latencies. If the program fails to keep up for any reason (e.g.,
network failures), then the centralized coordinator will preserve consistency; unavailability will
rise and deadlines (if any are specified) will be missed. Fault handlers provided by the programmer
can adapt the system accordingly. Moreover, in this case, Assumption 1 becomes invalid, so the
derived unavailability bound becomes invalid. Unavailability will exceed our calculated bound for
such a trace and, in the event of total network failure, will grow without bound.

Under decentralized coordination, the programmer chooses numbers to the I}; latencies based
on assumptions about network behavior and derives processing offsets (18) and unavailability (19).
These then guide the choices of STA and STAA numbers specified in the program. At runtime,
each federate proceeds on the assumption that the network latencies will be respected. If these
assumptions are violated, then a reactor may see events out of timestamp order, in which case a
fault handler will be invoked. If the network fails altogether, however, no reactor will see events
out of timestamp order, and no fault handler will be invoked. Instead, each vehicle will act based on
inconsistent information. Hence, with decentralized coordination, availability is prioritized over
consistency when a fault occurs, which is the wrong choice for this application.

7 DISCUSSION
7.1 Scientific Principle

The relationship between consistency, availability, and latency is relatively straightforward and the
the tradeoffs are already part of the folklore for designers of distributed systems. The CAL theorem,
with its rigorous definitions and quantification of the tradeoffs, elevates folklore to a scientific
principle that can be used systematically in system design. To our knowledge, this is the first time
the notions of “availability” and “consistency” from distributed computing have been applied to
CPS, where availability translates into actuation delays and consistency to alignment, and hence
the first time that that the fundamental tradeoff between such actuation delays and consistency
has been quantified. In other words, we show that meeting tight deadlines in a distributed CPS
may require relaxing the required agreement about the state of the physical world. Components
may have to be allowed to disagree (by a measured amount) in order to meet deadlines, and the
deadlines and measure of disagreement can be numerically related to observed latencies due to
communication, computation, and clock synchronization errors.

7.2 Usage Patterns

In CPS design, the CAL theorem can form part of the fundamental toolkit available to engineers.
One pattern of usage is to specify the availability and consistency requirements of an application,
and then use the CAL theorem to derive the networking requirements. This can guide the selection
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of networking technology (wireless? fieldbus? 5G? CAN Bus? Ethernet? TSN?) and can help de-
signers determine which components can be put in the cloud and which must reside more locally at
the edge. For example, can the image analysis of our ADAS example be done in the cloud? Another
pattern of usage is to take the networking technology as a given, specify the availability require-
ments, and then derive the extent to which consistency must be relaxed given these constraints.
A third pattern is to take all three, consistency, availability, and latency, as requirements and use
them to assess the likelihood of faults. Faults will appear as either deadline violations (violations
of the availability requirements) or as consistency violations (out-of-order events). Fault handlers
can then be added to systems so that they fail gracefully.

7.3 Scalability

Although LinGgua FRANCA is not a contribution of this paper, the reader may be concerned about
overhead introduced through its use. Menard et al. [36] perform a detailed analysis of the perfor-
mance of LF and conclude that it is competitive with the state-of-the-art actor frameworks Akka
and CAF. Their evaluation, however, is limited to multicore execution; they did not consider dis-
tributed systems. Whether LiINgUA FRANCA remains competitive for distributed systems remains
to be seen. There is no doubt, however, that its ability to directly work with the tradeoffs between
availability and consistency is a unique feature.

Using the CAL theorem in practice will involve performing calculations involving primarily
maximization and addition. In this paper, we performed the calculations by hand, but such an
approach will probably not scale to larger systems. It is not hard to imagine semi-automated tools
that would function as part of an integrated development environment (IDE) for LINGuA FRANCA.
For example, given a deadline specification in LF, the IDE could highlight the computations and
communications that affect the ability to meet the availability requirement implied by the deadline.
Even in a very large system with thousands of components, in practice, the subsystem involved
for each particular deadline is likely to be much smaller (otherwise, meeting the deadline reliably
is probably unrealistic anyway). So even without leveraging sparse matrix techniques, naive direct
manipulation of the max-plus formulas seems tractable. For example, directly calculating I'* using
(12), with no optimization for sparsity, involves performing N — 1 matrix multiplications in max-
plus (i.e., using only addition and maximization). A brute-force algorithm for matrix multiplication
has complexity O(N?), making the overall complexity of the calculation O(N*). For N = 100
components (an unrealistically large number, in our opinion), this means on the order of 100* =
100,000,000 max-plus operations. Any modern laptop can deliver such a result in modest time.
Recognizing that the N components are unlikely to be fully connected, the vast majority of these
operations could be optimized away.

Some usage patterns for the CAL theorem in practice will require estimation of network la-
tencies and computation times for particular system implementations. Rigorous determination of
these times can be extremely challenging [46, 50]. Fortunately, the “latency” in the CAL theorem
is “apparent latency,” a quantity that is trivially easy to measure (it is the difference between a
physical time as reported by a local clock and a logical timestamp carried by a message). Hence, a
measurement-based approach to obtaining these numbers is easy to deploy.

8 CONCLUSIONS

The CAL theorem, which generalizes Brewer’s CAP theorem, quantifies the relationship between
inconsistency, unavailability, and apparent latency in distributed systems, where apparent
latency includes network latency, execution time overhead, and clock synchronization error. The
relationship is a linear system of equations in a max-plus algebra. We have applied this theorem
to distributed cyber-physical systems, showing how consistency affects the ability to bound the
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time it takes to react to an external stimulus, such as a sensor input, and produce a response,
an actuator output. These bounds (which we call unavailability) depend on apparent latency
and can be reduced by explicitly relaxing consistency requirements. Moreover, because the CAL
theorem defines the effect of network latency on the responsiveness of a system, it can serve to
guide placement of software components in end devices, in edge computers, or in the cloud. The
consequences of such choices can be derived rather than measured or intuited.

We have shown how the LINGUA FrRANCA coordination language enables arbitrary tradeoffs
between consistency and availability as apparent latency varies. We have also shown how LF pro-
grams can define fault handlers, sections of code that are executed when specified consistency
and availability requirements cannot be met because apparent latency has exceeded the assumed
bounds. Because of its deterministic semantics, LF provides predictable and repeatable behaviors
in the absence of faults. And when faults occur, LF provides mechanisms for the system to adapt.

An intriguing extension, suggested by Rahman et al. [40] (their theorem 2.7), is to develop a
probabilistic model where a fraction of the events meet consistency and availability requirements
and the rest fail. The CAL theorem, as given here, looks only at worst case behaviors. We con-
jecture, however, a similar probabilistic model could benefit from the CAL theorem formulation
to generalize to arbitrary networks and imperfectly synchronized clocks. This is left for further
work.
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