L)

Check for
updates

High-performance Deterministic Concurrency Using
LiNGuA FRANCA

CHRISTIAN MENARD, TU Dresden, Germany

MARTEN LOHSTROH and SOROUSH BATENI, UC Berkeley, USA

MATTHEW CHORLIAN, ARTHUR DENG, and PETER DONOVAN, UC Berkeley, USA
CLEMENT FOURNIER, TU Dresden, Germany

SHAOKALI LIN, UC Berkeley, USA

FELIX SUCHERT and TASSILO TANNEBERGER, TU Dresden, Germany

HOKEUN KIM, Arizona State University, USA

JERONIMO CASTRILLON, TU Dresden, Germany

EDWARD A. LEE, UC Berkeley, USA

Actor frameworks and similar reactive programming techniques are widely used for building concurrent sys-
tems. They promise to be efficient and scale well to a large number of cores or nodes in a distributed system.
However, they also expose programmers to nondeterminism, which often makes implementations hard to
understand, debug, and test. The recently proposed reactor model is a promising alternative that enables
deterministic concurrency. In this article, we present an efficient, parallel implementation of reactors and
demonstrate that the determinacy of reactors does not imply a loss in performance. To show this, we eval-
uate LINGUA FraNca (LF), a reactor-oriented coordination language. LF equips mainstream programming
languages with a deterministic concurrency model that automatically takes advantage of opportunities to ex-
ploit parallelism. Our implementation of the Savina benchmark suite demonstrates that, in terms of execution
time, the runtime performance of LF programs even exceeds popular and highly optimized actor frameworks.
We compare against Akka and CAF, which LF outperforms by 1.86x and 1.42X, respectively.

CCS Concepts: « Computing methodologies — Concurrent programming languages; - Software and
its engineering — Runtime environments; Source code generation;

Additional Key Words and Phrases: Coordination, concurrency, determinism, performance

The work in this paper was supported in part by the German Federal Ministry of Education and Research (BMBF) as part of
the Software Campus (011S12051) and the program “Souverén. Digital. Vernetzt”, joint project 6G-life (16KISK001K). This
work was also supported in part by the National Science Foundation (NSF), award #CNS-1836601 (Reconciling Safety with
the Internet), the iCyPhy Research Center (Industrial Cyber-Physical Systems), supported by Denso, Ford, Siemens, and
Toyota, and the National Research Foundation (NRF) of Korea (No. NRF-2022R1F1A1065201).

Authors’ addresses: C. Menard, C. Fournier, F. Suchert, T. Tanneberger, and J. Castrillon, TU Dresden, Chair for Compiler
Construction, TU Dresden, 01062 Dresden, Germany; e-mails: {christian.menard, clement.fournier, felix.suchert, tassilo.
tanneberger, jeronimo.castrillon}@tu-dresden.de; M. Lohstroh, S. Bateni, M. Chorlian, A. Deng, P. Donovan, S. Lin, and
E. A. Lee, UC Berkeley, Cory Hall, Berkeley, CA 94720-1440, USA; e-mails: {marten, soroush, mattchorlian, langxing.deng,
peterdonovan, shaokai, eal}@berkeley.edu; H. Kim, Arizona State University, CTRPT 202-03A, 660 S. Mill Ave., Tempe, AZ
85281, USA; e-mail: hokeun@asu.edu.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2023 Copyright held by the owner/author(s).
1544-3566/2023/10-ART48
https://doi.org/10.1145/3617687

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://orcid.org/0000-0002-7134-8384
https://orcid.org/0000-0001-8833-4117
https://orcid.org/0000-0002-5448-3664
https://orcid.org/0000-0003-4102-7181
https://orcid.org/0009-0003-3293-3606
https://orcid.org/0000-0003-3374-0753
https://orcid.org/0000-0002-5661-3004
https://orcid.org/0000-0001-6885-5572
https://orcid.org/0000-0001-7011-9945
https://orcid.org/0000-0002-3196-7869
https://orcid.org/0000-0003-1450-5248
https://orcid.org/0000-0002-5007-445X
https://orcid.org/0000-0002-5663-0584
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3617687
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3617687&domain=pdf&date_stamp=2023-10-26

48:2 C. Menard et al.

ACM Reference format:

Christian Menard, Marten Lohstroh, Soroush Bateni, Matthew Chorlian, Arthur Deng, Peter Donovan, Clé-
ment Fournier, Shaokai Lin, Felix Suchert, Tassilo Tanneberger, Hokeun Kim, Jeronimo Castrillon, and Ed-
ward A. Lee. 2023. High-performance Deterministic Concurrency Using LINGUA FRANCA. ACM Trans. Arch.
Code Optim. 20, 4, Article 48 (October 2023), 29 pages.

https://doi.org/10.1145/3617687

1 INTRODUCTION

Theoreticians working on programming language semantics have long understood the value of
determinism as well as the expressive power of nondeterminism in programming languages. In
practice, however, today, nondeterminism creeps into programming languages and frameworks
not to benefit from its expressiveness, but rather because of a widespread perception that it is
needed to get good performance on parallel hardware. In this article, we show experimentally that
a wide range of reactive applications can be implemented deterministically without sacrificing per-
formance. We do this by focusing on actor frameworks, which have proved popular and successful
in many very demanding applications but admit nondeterminism that is often not actually needed
by their applications.

Exploiting parallel hardware such as multicore machines to improve performance is only
possible when programs expose concurrency. Common abstractions for concurrency include
threads [24], remote procedure calls [72], publish-subscribe [34], service-oriented architec-
tures [75], and actors [1, 40]. Each of these models has its own merits, but they all introduce
nondeterminism: situations where, for a given state and input, the behavior of a program is not
uniquely defined. While nondeterminism can be useful in some applications, most programming
tasks benefit from more repeatable behavior. Deterministic programs are easier to understand,
debug, and test (for each test vector, there is one known-good response). For nondeterministic
programs, problematic behaviors might be harder to discover because they may only occupy a
small fraction of the state space [44]. And reproducing failures can be extremely hard [47, 56, 70]
because they might occur only when the system is under a specific amount of load [82].

Determinism is a subtle concept [48]. Here, we focus on a particular form of determinism for
programs, where a program is deterministic if, given the same inputs, it always produces the same
outputs. This definition does not require that operations be performed in a particular order and
therefore is not at odds with concurrency and parallel execution. It is possible, but often not easy, to
achieve this form of determinism even when using nondeterministic abstractions such as threads,
actors, and asynchronous remote procedure calls. For simple enough programs, such as a chain of
actors, if communication is reliable, then execution will be deterministic. Some of the benchmarks
we compare against in this article are deterministic in this way. As we will show, however, even
slightly more complex communication structures result in nondeterminism that can be difficult to
correct.

In this article, we evaluate a language-based coordination that preserves determinism by default
and only admits nondeterminism when explicitly introduced by the programmer. The coordina-
tion language LINGua Franca (LF) [61], which is based on a concurrent model of computation
called reactors [58, 59], achieves this by analyzing program structure and ensuring that data depen-
dencies are observed correctly at runtime. An LF program defines reactive software components
called “reactors” and provides operators to compose them hierarchically (through containment)
and bilaterally (via connections). Because the language supports both deterministic and nonde-
terministic concurrency, it provides a fertile ground for exploring the impact of determinism on
performance.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1145/3617687

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:3

The semantics of the deterministic subset of LF can be thought of as a deterministic variant
of actors [1, 40, 60]. We show in this article that it delivers performance comparable to popular
nondeterministic realizations of actors on parallel hardware, like Akka [79] and CAF [21]. Similar
to Akka and CAF, LF orchestrates the execution of code written in conventional programming
languages. However, unlike those frameworks, LF is polyglot. It currently supports C, C++, Python,
TypeScript, and Rust. This article focuses on the runtime performance of the C++ target, which, as
a core contribution of this article, has been optimized to efficiently exploit concurrency on parallel
hardware. Earlier work [61] has only reported preliminary performance indications of LF based
on its C target, which is predominantly aimed at running on embedded systems.

At the core of LF’s concurrency model is a logical model of time that gives a clear notion of si-
multaneity and avoids deadlocks using dependency analysis based on causality interfaces [54]. It
is this timed semantics that enables efficient deterministic concurrency in LF. However, the bench-
marks we compare against were created to evaluate actor frameworks, which have no temporal
semantics. None of the benchmarks take advantage of the time-related features of LF; the temporal
semantics is only used to deliver determinism.

Since the execution of LF programs requires a dependency analysis, the precise structure of
the program needs to be known at startup. Modifying the program structure during execution is
currently not possible. Therefore, the performance comparison in this article is limited to actor
programs that can be expressed statically. We argue that this is true for most applications, espe-
cially those that benefit from LF’s semantics. For instance, out of the 32 programs in the Savina
benchmark suite [41], only 8 require dynamic actor creation. While the underlying reactor model
defines so-called mutations for runtime adaptations, LF does not implement them yet. A full discus-
sion of mutations in LF including a performance comparison with dynamic actor creation remains
for future work.

Contributions. We show that the reactor-oriented paradigm as implemented in LINGUA FRANCA
enables efficient exploitation of parallel hardware without relinquishing determinism. For this, we
explain the mechanisms through which LF programs expose concurrency; we present a language
extension that allows for the definition of scalable programs; and we introduce an optimized C++
runtime for LF that enables efficient parallel execution. We further present an extensive evaluation
based on the Savina benchmark suite [41], showing that our LF runtime outperforms Akka and
CAF by 1.86X and 1.42X, respectively.

Outline. We first motivate our work (Section 2) and then introduce LF (Section 3). We go into
detail about the concurrency in LF, discuss a syntax extension for scalable connection patterns, and
introduce our optimized C++ runtime (Section 4). Next, we report benchmark results (Section 5),
discuss related work (Section 6), and conclude (Section 7).

2 MOTIVATION

The actor model is widely accepted and deployed in production for its promise to allow program-
mers to easily express concurrency, provide high execution performance, and scale well to large
datasets and complex applications. Moreover, in contrast to thread-based programs, actor seman-
tics prevents low-level data races. However, like most message-passing paradigms, actors expose
the programmer to nondeterminism in the form of high-level data races [92], a problem that be-
comes considerably challenging to manage as the complexity of a program grows.

Consider the simple example in Figure 1(a). The Account actor manages the balance of a bank
account that two users interact with. User A sends a deposit message increasing the account’s
balance and User B sends a withdrawal message decreasing the account’s balance. If we assume
that the balance is initialized to 0 and the account only grants a withdrawal if the resulting

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:4 C. Menard et al.

Deposit

Withdrawal

Deposit
Deposit
Withdrawal Withdrawal
Withdrawal

(a) Deposit and Withdrawal sent by dif- (b) Deposit and Withdrawal sent by (c) Withdrawal sent via a proxy.
ferent users. same user.

Fig. 1. Example actor programs that may expose nondeterministic behavior.

balance is not negative, then there are two possible behaviors. If A’s message is processed first,
the withdrawal is granted to B. If B’s message is processed first, the withdrawal is denied. The
actor model assigns no meaning to the ordering of messages. Therefore, there is no well-defined
correct behavior for this example.

The reader may object that for an application like that of Figure 1(a), the order of transactions
is intrinsically nondeterministic, and any additional nondeterminism introduced by the software
framework is inconsequential. However, if we focus on testability, we see that even identical inputs
can yield different results, making testing more difficult. If we focus on consistency, the problem
that different observers of the same events may see different behaviors becomes problematic. In
databases, it is common to assign timestamps to external inputs and to then treat those timestamps
as a semantic property of the inputs and define the behavior of the database relative to those
timestamps. We adopt this perspective in this article and rely on the definition of determinism
given by Lee [48]: “determinism is a property of models, not of physical realizations,” and “A model
is deterministic if given all the inputs that are provided to the model, the model defines exactly
one possible behavior” If we define “inputs” in Figure 1(a) to be timestamped user queries and
“behavior” to be the sequence of actions taken by the Account, then it is reasonable to demand
determinism.

Consider Figure 1(b), which has only one user. Even if this one user first sends a deposit and then
a withdrawal message, the actor model does not guarantee that the receiving actor sees and pro-
cesses the incoming messages in this order. While some actor frameworks, e.g., Akka and Erlang,
guarantee in-order message delivery, others, e.g., AmbientTalk [93], expressly do not. Yet, even if
the framework guarantees point-to-point in-order message delivery, this property is not transitive.
If we add a Proxy, as shown in Figure 1(c), then we cannot make any assumptions about the order
in which Account receives messages. This example further illustrates that composing actors can
have unexpected side effects.

Consequently, implementing solutions to practical concurrency problems with actors can be
challenging. Even seemingly simple concurrency problems like the one discussed above require
high programming discipline, and solutions are typically difficult to maintain and tend to lack mod-
ularity. In addition, the inherent nondeterminism of actor frameworks makes it hard to verify such
solutions. Erroneous behavior might only occur in a fraction of executions, and thus integration
tests cannot reliably detect such “Heisenbugs” [70].

In a recent study, Bagherzadeh et al. [4] analyzed bugs in Akka programs that were discussed
on StackOverflow or GitHub and determined that 14.6% of the bugs are caused by races. This
makes high-level races the second most common cause of bugs in Akka programs after errors
in the program logic. In a similar study of 12 actor-based production systems, Hedden and Zhao
[39] determined that 3.2% of the reported bugs were caused by bad message ordering, 4.8% were
caused by incorrect coordination mechanisms, 4.8% were caused by erroneous coordination at
shutdown, and 2.4% were caused by erroneous coordination at startup. Note that these numbers

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:5

only cover known bugs in their studied projects and, as noted by the authors, the majority of the
reported message ordering bugs belonged to the Gatling project because it already incorporated
a debugging tool called Bita [88] that is designed to detect such bugs. We suspect that there are
more undetected bugs in projects that do not use specialized debugging tools.

The actor community has addressed the inherent nondeterminism of actors and the result-
ing bugs by introducing better tools for analyzing and debugging actor programs. This includes
TransPDOR [87], Bita [88], Actoverse [84], iDeA [63], CauDEr [46], and Multiverse debugging [91].
While these are valuable solutions, we argue that a programming model for expressing con-
current programs should provide deterministic semantics by default and allow the programmer
to introduce nondeterminism only where it is desired and understood to do no harm. In such
cases, the aforementioned tools for nondeterministic behavior can still be utilized to debug the
implementation.

There are a number of ways to achieve deterministic concurrency, including Kahn process
networks [42, 43]; many flavors of dataflow models [27, 50, 71]; physically asynchronous, logi-
cally synchronous models [83]; synchronous-reactive languages [8, 31]; and discrete-event sys-
tems [18, 30, 53, 96]. Lohstroh et al. [61] compare the reactor model to each of these, showing
that it has many of their best features and fewer of their pitfalls. LINGuAa FRaNcCA builds on this
reactor model because it is more expressive than some of the alternatives (e.g., Kahn networks)
and is stylistically close to actors, which have proven effective in practice. In this article, we show
that the resulting determinism does not incur a performance penalty but, on the contrary, helps
to achieve improved performance in most cases.

3 INTRODUCTION TO LINGUA FRANCA

LF builds on the relatively new reactor-oriented programming paradigm. Intuitively, we can de-
scribe reactors as deterministic actors with a discrete-event execution semantics and explicitly
declared ports and connections. A logical timeline is used to order events and ensure a determinis-
tic execution. As a polyglot language, LF incorporates code in a target programming language to
implement the logic of each component. LF itself is only concerned with the coordination aspect of
a program. In this section, we introduce the core concepts of reactors and LF. For a more detailed
introduction to LF’s concepts and syntax, the interested reader may refer to Lohstroh et al. [61].

3.1 LF by Example

Figure 2 shows an LF implementation of the deposit/withdrawal example in Figure 1(a). The dia-
gram shown on the right uses a graphical syntax to visualize the LF program. It is automatically
synthesized from the source code by the LF IDEs [94]. The first line of the program is a target
declaration, which specifies the target language (C++ in this case). The program further specifies
three reactor classes: Account, User, and an anonymous main reactor. The main reactor serves as
an entry point for LF programs and is instantiated automatically at runtime. Reactor classes in LF
are in many ways analogous to classes in object-oriented languages. In particular, reactor classes
encapsulate state, methods, and other components; offer a form of inheritance; can be generic; and
are parameterized at instantiation.

The User reactor class (lines 2 to 6) is parameterized by an offset and a value of types time
and float. time is the only built-in type of LF and represents a time value. All other types are
given in the target language. The timer declared on line 3 will trigger once after the given offset.
Note that timers may additionally specify a period to trigger the timer repeatedly. The output
port req declared on line 4 is used to send events with an associated float value to other reactors,
indicating a deposit or withdrawal request.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users

48:6 C. Menard et al.

1 target Cpp

2 reactor User(offset: time(0), val: float(0)) { 20 main reactor {

3 timer t(offset) 21 account = new Account ()

4 output req: float 22 userA = new User(offset=1 sec, val=20)

5 reaction (t) -> req {= req.set(val); =} 23 userB = new User(offset=2 sec, val=-10)

6) 24 userA.req -> account.regA

7 reactor Account { 25 userB.req -> account.reqgB

8 state balance: float(0.0) 26 3}

9 input regA: float

10 input reqgB: float

11 reaction (regA) {= apply(xreqA.get()); =} userB : User userA : User

12 reaction (regB) {= apply(*reqgB.get()); =} o offset: time(2 sec) o offset: time(1 sec) account : Account
13 method apply(val: float) {= © value: float(-10.0) o value: float(20.0) @ balance: float(0.0)
14 if (balance + val > @) {

15 balance += val; std::cout << "Accepted\n"; @D @D’ ’ E
16 } else { std::cout << "Denied\n"; } (2'sec) (1 sec) E
17 =}

18)

Fig. 2. LF implementation of the actor program shown in Figure 1(a). The diagram on the right is automati-
cally generated by the LF IDE.

In LF, all computation is performed in reactive code segments called reactions that are imple-
mented in the target language. In the diagram, reactions are represented by dark gray chevrons.
All reactions must explicitly declare their triggers, other dependencies, and potential effects. In
line 5, the User reactor declares a reaction that is triggered by the timer t and that may produce
an event on the output port req. The reaction body is given in C++ code and sets the req output
based on the value that the class is parameterized with at instantiation.

The Account reactor is defined on line 7. It has a state variable balance of type float, two input
ports regA and regB, one reaction for each input, and a method named apply. State variables
and methods in LF are equivalent to protected member variables and methods in object-oriented
languages. Methods are useful for sharing code within a reactor, but they cannot be invoked by
other reactors. Triggering functionality in other reactors is only possible by emitting events via
ports on connections, which can subsequently trigger a reaction. In addition to methods, LF also
provides preambles that can be used to define shared functions and types and to insert target
language imports. Preambles live in a global scope and cannot access reactor members.

The reactions on lines 11 and 12 are triggered by the regA or regB ports and attempt to apply the
requested change to the balance. Reactions can access any methods, parameters, or state variables
declared by the local reactor. Both reactions retrieve the value associated with the triggering event
on the respective port and call the method apply. In the C++ target, the additional dereference op-
erator (*) is required as all values are wrapped by a smart pointer for fine-grained access control
and safe memory management. The apply method defined on lines 13 to 17 implements the ac-
count’s business logic. If the resulting balance is non-negative, it modifies the balance accordingly
and prints “Accepted” Otherwise, it prints “Denied.”!

Note that we implemented Account using two separate ports and reactions for the sake of sim-
plicity. The reader might notice that the separated reactions duplicate logic and are not a practical
solution, in particular if there are many users. We choose this representation to keep our exposi-
tion simple. In Section 4.2, we will introduce a syntax that enables a more compact implementation
of Account.

The main reactor assembles the program. It creates a single instance of Account (line 21) and
two instances of User (lines 22, 23) and connects the outputs of the user instances to the inputs of
the account instance (lines 24, 25) using the -> operator. The useraA is parameterized with an offset
of 1 second and a value of 20 and userB is parameterized with an offset of 2 seconds and a value of

IThis implementation of Account is oversimplified to keep our exposition concise. A more realistic implementation of
Account would interact with a database reactor and send feedback to the users to indicate if the transaction was successful.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:7

userA : User Proxy Account ! i.:arge: Epp N ¢ f " le 1f
2 impor ser, Accoun rom "Example.lf"
(1 sec) E 4 reactor ProxyDelay<T>(delay: time(0)) {
userB : User 5 input in: T
@DI 6 output out: T
7 logical action a: T
2sec) 8 reaction(a) -> out {= out.set(a.get()); =}
9 reaction(in) -> a {= a.schedule(in.get(), delay); =}
(a) Adding a proxy reactor. 0}
11 main reactor {
userh : User APy accourt :2 jzz::ni ;e:etsifzzizz:zﬂ sec, val=20)
= = R =
@DHEAEHE 14 userB = new User(offset=2 sec, val=-10)
(1 sec) E 15 delay = new ProxyDelay<float>(delay=2 sec)
userB : User 16 userA.req -> delay.in
@D 17 delay.out -> account.regA
18 userB.req -> account.reqgB
(2sec) 190}
(b) Adding a proxy introducing a logical delay. (c) LF code of the program shown in (b).

Fig. 3. Modifications of the example shown in Figure 3(a).

-10. When executed, the program will wait for 1 second before triggering the timer of the userA
reactor and invoking the reaction on line 5. The event produced by this reaction will trigger the
reaction on line 11, which is invoked immediately after the first reaction completes. Two seconds
after program startup, userB will react and subsequently trigger the reaction on line 12.

In this example, the deposit event (+20.0) occurs earlier than the withdrawal event (-10.0), and
hence our execution semantics ensures that the account processes the deposit event before the
withdrawal event, meaning the balance will not become negative. In a more realistic implementa-
tion, the two users would generate events sporadically and have their reactions triggered not by
a timer but by a physical action (see Section 3.3). However, using a timer greatly simplifies our
exposition as we only have to consider a single logical timeline along which events are ordered.
Moreover, such timers can be used to create regression tests that validate program execution with
specific input timings.

Note that even when the two events occur logically simultaneously, meaning that both reac-
tions in the Account reactor are triggered at the same logical time, the resulting program will
be deterministic. All reactions at the same logical time are executed according to a well-defined
precedence relation. In particular, any reactions within the same reactor are mutually exclusive
and executed following the lexical declaration order of the reactions in LF code. This order is also
reflected by the numbers displayed on the reactions in the diagram in Figure 2. More details on the
precedence relation of reactions are given in Section 4.1. Since reactions and connections are logi-
cally instantaneous, the execution order is also preserved if any proxies are inserted, as is shown
in Figure 3(a).

To deliberately change the order in which events occur, a logical delay can be introduced in the
program using a logical action, as shown in Figure 3(b) and the corresponding code in Figure 3(c).
In the diagram, actions are denoted by small white triangles. In contrast to ports, which allow
relaying events logically instantaneously from one reactor to another, logical actions provide a
mechanism for scheduling new events at a later (logical) time. Upon receiving an input, reaction 2
of the ProxyDelay reactor is triggered, which schedules its logical action with a configurable delay.
This creates a new event, which, when processed, triggers reaction 1 of the ProxyDelay reactor,
which retrieves the original value and forwards it to its output port.

The reactor class ProxyDelay (line 4) has a type parameter T that denotes the type of the values
of its input, output, and logical action. Using a runtime API function called schedule, the reaction

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:lf-example-2users
fig:lf-example-2users
fig:lf-example-2users
fig:3

48:8 C. Menard et al.

on line 9 schedules a future event (on logical action a) with the value of the triggering input event
and a given delay.? The reaction on line 8 is triggered by a and simply forwards the value of the
triggering event to the output port.

On line 15, the delay reactor is instantiated with a delay of 2 seconds and using the type float.
The other reactors are instantiated from the definitions given in Figure 2, which are imported
on line 2. Due to the additional delay of 2 seconds, the deposit message from userA will only
be processed after the withdrawal message from userB, causing B’s request to be denied. Since
delaying messages is a common problem, LF provides a dedicated syntax for it. Instead of manually
inserting a delay reactor, we can use an after delay. For this, we remove line 15 and replace lines 16
and 17 with userA.req -> account.regA after 2 sec.

It is important to note that all of the discussed examples are deterministic, regardless of the phys-
ical execution times of reactions, as all events are unambiguously ordered along a single logical
timeline. The physical timing of the events, on the other hand, will be approximate. The contribu-
tion of this article is to show that such determinism does not necessarily reduce performance and
is also useful for applications that have no need for explicit timing.

3.2 Logical and Physical Time

All events have an associated tag. Tags are ordered along a logical timeline and can be thought
of as a timestamp. Timers automatically schedule events at regular intervals relative to a start tag
that is determined at startup. Reactions may use logical actions to schedule future events with a
given delay relative to the current tag.

In time-sensitive applications, tags are not purely used for logical ordering but also relate to
physical time. By default, the runtime only processes the events associated with a certain tag once
the current physical time T is greater than the time value of the tag t (T > t). We say that logical
time “chases” physical time. The relationship between physical and logical time in the reactor
model gives logical delays a useful semantics and also permits the formulation of deadlines. This
timed semantics is particularly useful for software that operates in cyber-physical systems. For a
more in-depth discussion of LF’s timed semantics, the interested reader may refer to [61].

If an application has no need for any physical time properties, the concurrence of physical and
logical time can be turned off; in this case, the tags are used only to preserve determinism, not to
control timing. Moreover, LF programmers are not required to explicitly control the timing aspects
of their programs. Delays can simply be omitted, for instance, when scheduling an action, in which
case the runtime will use the next available tag. In consequence, also untimed general-purpose
programs can benefit from the deterministic concurrency enabled by LF’s timed semantics.

3.3 Asynchrony and Deliberate Nondeterminism

In the examples discussed in Section 3.1, we have hard-coded the order in which the users send
requests by using timers and, thus, assigned fixed tags to the request events. While using a pre-
defined order is useful for testing and for demonstration, reactor programs that are deployed in
practice need to be able to handle sporadic asynchronous inputs in order to be useful. Concretely,
in our account example we do need to handle asynchronous events that are created when users
initiate withdrawal or deposit requests.

The reactor model distinguishes logical actions and physical ones. While a logical action is al-
ways scheduled synchronously with a delay relative to the current tag, a physical action may be

2The smart pointer obtained with get on lines 8 and 9 is not dereferenced to obtain the actual value. Multiple overloads
exist for set and schedule and they accept both references to values and smart pointers. Thus, the smart pointer obtained
with get can be passed directly to set or schedule.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:3
fig:3
fig:3
fig:3
fig:3
fig:3
fig:3
fig:3
fig:3

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:9

R 1 target Cpp
PhysicalUser Proxy Account 2 import Account, Proxy from "Example.lf"
A e
4 reactor PhysicalUser {
PhysicalUser E 5 physical action a: float
6 output req: float
& 7 reaction (a) -> req {= req.set(a.get()); =}
8)
9

(a) Asynchronous input with physical actions. 1o main reactor (

11 account = new Account()

PhysicalUser Proxy Account 12 userA = new PhysicalUser ()
&wwm 13 userB = new PhysicalUser ()
14 proxy = new Proxy()
: N 15 userA.req -> proxy.in
PhysicalUser E 16 proxy.out -> account.regA
& 17 userB.req -> account.reqgB
18}
(b) Nondeterministic implementation using physical connections. (c) LF code of the program shown in (a).

Fig. 4. Implementation of the account example with asynchronous input via physical actions ((a) and (c))
and a fully nondeterministic variation that uses physical connections (b).

scheduled from asynchronous contexts. Its event is assigned a tag based on the current reading
of physical time. Physical actions are the key mechanism for handling sporadic inputs originating
from physical processes and for introducing deliberate nondeterminism.

The assignment of tags to physical actions is nondeterministic in the sense that it is not defined
by the program. However, once those tags are assigned, for example, to deposit or withdrawal
requests by a user, the processing of the events is deterministic and occurs in tag order. Hence,
the tags assigned to externally initiated events are considered as part of the input, and given this
input, the program remains deterministic. This approach draws a clear perimeter around the deter-
ministic and therefore testable program logic while allowing it to interact with sporadic external
inputs.

Figures 4(a) and 4(c) show an implementation of our account example that uses physical actions
to handle sporadic user requests. The physical action on line 5 may be scheduled from asynchro-
nous processes outside of the LF program. It has type float, which allows it to carry the value of
the deposit or withdrawal request initiated by the user. The reaction on line 5 is triggered by the
physical action and it forwards the value of the action to the output port. The Account and Proxy
reactors remain unchanged. Consequently, they implement the same testable behavior as in our
earlier examples. We only exchanged the event sources from predefined timers to physical actions
to allow sporadic input. Concretely, if userA sends a deposit message at tag g4 and userB sends a
withdrawal message at tag gg with gg > g4, then the semantics of LF guarantees that the response
of the account is identical to the response in a test case that uses the same tag ordering (i.e., the
behavior is identical to the program in Figure 3(a)).

Physical actions can also be used within the program itself, for example, to nondeterministically
assign a new tag to a message received from another reactor. In this usage, physical actions pro-
vide a means for deliberately introducing actor-like nondeterminism into a program. For example,
the program shown in Figure 4(b) reproduces the nondeterministic behavior of the actor program
shown in Figure 1(c). It is created by replacing the logical connection operator -> with the phys-
ical connection operator ~> on lines 15 to 17. Physical connections behave similar to after delays,
but instead of inserting a delay, they insert a physical action to create events with tags based on
the current physical time. Thus, in Figure 4(b), the deposit and withdrawal messages are tagged
nondeterministically in the order in which they arrive at the account. Consequently, the account
processes the messages in the order of arrival.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:lf-example-physical
fig:lf-example-physical
fig:lf-example-physical
fig:lf-example-physical

48:10 C. Menard et al.

3.4 The Scope of LINGUA FRANCA

LF was originally designed for modeling applications in the context of cyber-physical systems.
The deterministic concurrency delivered by LF in combination with its timed semantics makes it
particular attractive for time-sensitive and safety-critical applications [61, 65].

However, as we demonstrate in this article, reactors and LF are not limited to cyber-physical
systems. LINGUA FRANCA is very expressive and can model a wide range of concurrent applications.
Applications like the simple account example from Figure 4(a) do not require explicit modeling
of time, but they benefit from deterministic concurrency nonetheless. The interaction of multiple
components within the system becomes testable and reproducible, as the system delivers the same
response when provided with the same inputs, no matter if it is deployed in production or in a test
environment.

Similar to the actor model, LINGUA FRANCA is not limited to a particular domain but is a general-
purpose coordination language. We demonstrate this in our evaluation by porting a wide range
of actor programs to LF. In fact, LF can express any actor program that does not require dynamic
actor creation. In future work, we plan to introduce mutations in LF to also support the dynamic
creation of reactors so that LF becomes as expressive as the actor model. However, even with this
limitation, LF is strictly more general than other known solutions for deterministic concurrency.
Most prominently, Kahn process networks [42, 43] and various dataflow models [11, 27, 51] are
known to deliver high performance for streaming applications, but they have limited expressivity
as they cannot easily model reactions to sporadic events. In this article, we demonstrate that LF can
express the reactive behavior of actors while guaranteeing a deterministic execution and delivering
high performance that even exceeds actors in some benchmarks.

4 EFFICIENT DETERMINISTIC CONCURRENCY

LF programs are deterministic by default. This property is inherited from the reactor model that LF
implements. Lohstroh et al. [61] explain why reactors behave deterministically. Their argument
can be adapted to the concrete context of the Lingua FrRanca language, but this is beyond the
scope of this article. Reactors are also concurrent, and, as we show in this article, the exposed con-
currency is sufficient for the runtime system to effectively exploit multi-core hardware to where it
matches or exceeds the performance of fundamentally asynchronous and nondeterministic actor
frameworks. In this section, we show how LF exposes concurrency, introduce a syntax extension
for writing scalable LF programs, and describe in more depth how our C++ runtime is implemented
and how it efficiently utilizes parallel hardware.

4.1 Parallelism

The use of statically declared ports and connections as well as the declarations of reaction de-
pendencies distinguishes reactors from more dynamic models like actors or other asynchronous
message-passing frameworks where communication is purely based on addresses. While the fixed
topology of reactor programs is less flexible and limits runtime adaptation, it also provides two key
advantages. First, it achieves a separation of concerns between the functionality of components
and their composition. Second, it makes explicit at the interface level which dependencies exist
between components. As a consequence, a dependency graph can be derived for any composition
of reactors.

The dependency graph is an acyclic precedence graph (APG) that organizes all reactions into
a partial order that captures all scheduling constraints that must be observed to ensure that the
execution of a reactor program yields deterministic results. Because this graph is valid irrespective
of the contents of the code that executes when reactions are triggered, reactions can be treated as

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:11

1 1

N ProwyDelay\
2

Fig. 5. Reaction graph for the program in Figure 3(b).

a black box. It is this property that enables the polyglot nature of LF and exposes the concurrency
in the application.

Figure 5 shows the dependency graph for the program given in Figure 3(b). The solid arrows
represent dependencies that arise because one reaction (possibly) sends data to the other via ports
and connections. The dashed arrows represent dependencies that arise because the two reactions
belong to the same reactor. Analogous to the behaviors of actors, reactions of the same reactor are
mutually exclusive. The execution order is well defined and given by the lexical declaration order
of the reactions in LF code. This order is also indicated by the numbers in the reaction labels in
Figure 3(b). Note that actions do not create dependencies and are thus not represented in the APG.
This is because actions are always scheduled in the future with a tag greater than the current tag.
Since the runtime ensures that events are processed in tag order (cf. Section 4.3), the dependency
between scheduling an event and reacting to it is not represented in the APG.

The dependency graph precisely defines in which order reactions need to be executed. Indepen-
dent reactions may be executed in parallel without breaking determinism. For instance, the APG
in Figure 5 tells us that reaction 1 of ProxyDelay and the reactions of userA and userB can all
execute in parallel. Note that the dependency graph is required to be acyclic as any cycle would
violate causality. The LF compiler ensures that a valid program has an acyclic dependency graph.
Any dependency cycles in LF programs can be resolved by introducing a logical action, and thus a
logical delay, to break one of the dependencies and moving part of the computation to a later tag.

4.2 Scalable Connection Patterns

Explicitly listing all individual reactor instances, ports, and connections in LF code may become
tedious for larger programs. For example, consider again the program from Figure 2. To scale it
to four users, we would need to explicitly list two more ports in the account reactor and add two
more named user instances and connections to the main reactor. This explicit listing of all ports,
connections, and instances is not only cumbersome for the programmer but also means that the
LF code needs to be adjusted and recompiled whenever the problem size changes.

To address this problem, this section introduces a syntax extension that allows creating mul-
tiple ports or reactor instances at once. Further, we introduce an overloading of LF’s connection
operator to create multiple connections at once. This mechanism allows realizing various complex
connection patterns in a single line of code and in a parameterizable way, allowing LF programs
to transparently scale to a given problem size without recompilation. This is a key enabler for
implementing the programs of the Savina benchmark suite, which we use in our evaluation.

4.2.1 Syntax Extension. Concretely, we extend the input, output, and new keyword to accept
an optional width specification in brackets. This creates an array of ports or an array of reactor
instances. We call such an array of ports a multiport and an array of reactor instances a bank.
We further extend the connection operator, such that multiple ports may be listed on either side
of the operator in a comma-separated list. Finally, we introduce a broadcast modifier (. ..)+and
the interleaved modifier, which provide more control over how the listed ports are connected.
Figure 6 lists all the modified syntax rules. We explain the newly introduced concepts by example
in the following.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:12 C. Menard et al.

(input) u= ‘input’ (width)? ID (*:” (type))? (connection) = (port-refs) ‘=>" (port-refs)

(output) u= ‘output’ (width)? ID (“:* (type))? | “C (port-refs))+ =>" (port-refs)
(instance) == ID ‘=" ‘new’ (width)? ID ‘((arg-list)? *)’ (port-refs) == (port-ref) (,” (port-ref))*

(width) w= ‘U’ (INT|ID | (code)) ‘T’ (port-ref) == (ID .")?ID | interleaved(’ (ID *.")?ID)’

Fig. 6. LINGUA FRANCA syntax extension for expressing banks, multiports, and connections over multiple
port references.

1 target Cpp 22 reactor User(bank_index: size_t(0)) {
2 reactor Account(num_users: size_t(4)) { 23 output req : float

3 state balance: float (0.0) 2 reaction (startup) -> req {=

4 input[num_users] req: float 25 req.set(15.0 - bank_index * 10.0);
5 reaction (req) {= 2 =3}

6 for (size_t i{0}; i < num_users; i++) { 27}

7 if (reqlil.is_present()) { apply(i, *reqlil.get()); } 5 main reactor(num_users: size_t(4)) {
8 3 29 account = new Account (num_users=num_users)
k4 =3 30 users = new[num_users] User ()

10 method apply(idx: size_t, val: float) {= 31 users.req -> account.req

11 std::cout << "Process request " << val << "..."; 32}

12 if (balance + val >= 0) {

13 balance += val;

14 std::cout << " Accepted \n"; User Account

15 } else { std::cout << " Denied \n"; }
- Oy e
4

Fig. 7. Modified version of the LF program in Figure 2 using banks and multiports.

First, let us consider the program in Figure 7, which is a scalable modification of our initial
example in Figure 2. The account reactor defines a multiport input (line 4) with a width that is
given by the num_users parameter. The reaction on line 5 triggers if any of the individual ports in
the multiport carry an event. If multiple ports carry an event at the same tag, then the reaction is
only triggered and executed once at this tag. Since we do not know which port actually carries an
event, the reaction body iterates over all ports, checks if a value is present, and then calls apply
for each present request. This small modification allows the account reactor to interact with an
arbitrary number of users and truly separates the business logic as implemented in the account’s
reaction from its usage in the system.

Instead of creating individual users, the main reactor instantiates a bank of user reactors on
line 30. The width of the bank is again given by the parameter num_users. By default, this will
create four instances of User. The bank_index parameter (line 30) is set automatically to the index
of the instance within the bank. This allows for the state or the behavior of a reactor to depend on
its position within a bank. Here, each user sends a request at startup with a value that is calculated
from the bank_index.

The connection operator on line 31 connects the request outputs of all the users to the multiport
input of the account. Thereby, it connects the output of the nth user to the nth port in the input
multiport of the account. This pattern implements a many-to-one communication. Note that the
number of users can be adjusted arbitrarily. Since num_users is a parameter to the main reactor,
the LF code generator will also add it to the program’s command line parameters, which allows
overwriting the default parameter without recompilation.

In case the number of ports on the left-hand and right-hand side of the connection operator do
not match, some ports remain unconnected. Let n and m denote the number of ports on the left
and right side, respectively, and then only the first min(n, m) ports are connected on either side. In
this case, we also issue a warning message.

4.2.2 Connection Patterns. The syntax extension introduced in this section is relatively simple
but powerful enough to cover many communication patterns. In the following, we show how a

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:multiport-account
fig:multiport-account
fig:multiport-account
fig:multiport-account
fig:multiport-account

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:13

12 reactor Sink(w: int(3)) {

1 target Cpp . : :
13 input[w] in: int
2 reactor Src(w: int(3)) { 4 putlul
3 output[w] out: int 1} . R Fork-Join Fork-Join-Broadcast
15 main reactor(w: int(3)) {
43 16 src = new Src(w = w) DalUlem b Rl
5 reactor Worker { .
o input in: int 17 dst = new Sink(w = w) Sutio] o] o]
. N 18 wrk = new[w] Worker () sre ooy WK o dst sreh T Wrk[1]1» G —mmy” dst
7 output out: int . -
} 19 src.out -> wrk.in out[3] in[2] in[2]
8
20 wrk.out -> dst.in } ¥ Wrk[2] > > Wrk[2]poo
(a) LF code for implementing a fork-join pattern (b) Diagram of the programin (a) (c) Variant with broadcast

Fig. 8. A simple fork-join program in LF.

1 main reactor(n: int(2)) {
src = new Src(w = 1)

2

3 dst = new Sink(w = 1) Cascade

4 wrk = new[n] Worker () srcp —wrk[0]» > wrk[1]» —p dist
5 src.out, wrk.out -> wrk.in, dst.in out in out in out in
6}

(a) LF code for implementing a cascade (b) Diagram of the program in (a)

Fig. 9. A simple cascade in LF.

selection of common patterns can be conveniently expressed in LF. Note that we omit all reactions
and other implementation details for brevity and solely focus on the connection patterns. The
presented patterns are used extensively in our benchmark implementations in Section 5.

Fork-join. Figure 8(a) gives an example program implementing a fork-join pattern, which com-
bines one-to-many and many-to-one communication. The program defines a Src, a Worker, and a
Sink reactor. src and Sink both define a multiport output or input of width w. Worker only uses a
single input and output port each but is instantiated in a bank of width w on line 18. The two con-
nection statements in the main reactor (lines 19, 20) establish w connections each, one for each pair
of multiport and bank instance. The resulting connection pattern is illustrated in Figure 8(b) for
w=3.

In this example, the source reactor produces three separate values to be sent to the worker. We
provide a modifier (...)+ that allows to instead broadcast a single value to all workers. Configuring
the source reactor to use a single output (by setting w=1 in line 16) and changing line 19 to (src.out)+
-> wrk.1in creates the pattern shown in Figure 8(c).

In either variant, the reactions of each worker may execute in parallel to the reactions of all
other workers.

Cascade Composition. Our proposed syntax can also conveniently express cascade composition,
as illustrated by the program in Figure 9(a). The connection operator sequences all ports listed on
the left- and right-hand side and connects the nth port on the left-hand side to the nth port on
the right-hand side. By offsetting the left-hand side of the connection statement in line 5 with a
single-source port and appending the sink port to the right-hand side, we can effectively arrange
the connections to form the cascade shown in Figure 9(b).

Fully Connected. The connection operator also connects multiports within banks. In this case,
the operator will implicitly unfold all port instances on both sides of the connection to form a
flat list of ports. The unfolding happens such that we first list all ports of the first bank instance,
then all ports of the second instance, and so on. Consider the program in Figure 10(a). This will
create the pattern shown in Figure 10(b), which is not very useful. Using the interleaved modifier
on either side of the connection, we can modify the unfolding strategy to first list all first port
instances within all bank instances, then the second port instances within all bank instances, and
so on. The program in Figure 10(c) creates the fully connected pattern shown in Figure 10(d). This

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

fig:fork-join
fig:fork-join
fig:fork-join
fig:fork-join
fig:fork-join
fig:cascade

48:14 C. Menard et al.

reactor Node(w: int(3)) { Non-Interleaved

1
2 input[w] in: int
3 output[w] out: int
e ‘ o] oUIO] o] O] o] oUI[O]
5 main reactor(w: int(3)) { “Wﬁﬁ’”Odeml’BmﬁT‘* AATﬂﬁbnodeU]bgmﬁTA— “]ﬁﬁ’nOdeE]PEEHT‘*
6 node = new[w] Node(w=w) O > o] e > o O > oz
7 node.out -> node.in
8}

(a) Connecting multiports within a bank (b) Diagram for the program in (a)

Interleaved

Ui ; [Zl'out[OJ m

———=>n > —
main reactor(w: int(3)) { > "oCe out1] in[0] out[0] > 0delO1> gy
2] outf2] > nodef(1] e > ozl

1
2 node = new[w] Node (w=w) i out[1]

3 node.out -> interleaved(node.in) in[2] out[2]

4}

(c) Using interleaved for fully connected nodes (d) Diagram for the program in (c)

Fig. 10. Connecting multiports within banks to create fully connected networks.

schedule()

Initial
Events

set()
[Reseron Qe J+—2t0
Ready Queue

Fig. 11. Scheduling mechanism in the LF runtime.

Workers

allows each node to send and receive messages to or from all other nodes. Thereby, the nth output
or input port corresponds to the nth instance of the node.

4.3 Runtime Implementation

In the previous subsections, we have discussed how LiNgua FRANCA exposes parallelism and how
we can express various connection patterns in a scalable way. In this subsection we discuss how
this parallelism can be exploited efficiently during execution. The execution of each LF program
is governed by a runtime. Most importantly, the runtime includes a scheduler that keeps track of
all scheduled future events, controls the advancement of logical time, and invokes any triggered
reactions in the order specified by the dependency graph while aiming to exploit as much paral-
lelism as possible. Lohstroh et al. have already sketched a simple scheduling algorithm for reactor
programs [59]. In this section, we present a C++ implementation of this scheduling algorithm that
aims at exploiting parallelism while keeping synchronization overhead to a minimum and avoiding
contention on shared resources.

Figure 11 gives a high-level overview of the scheduling mechanism as defined in [59] and as
used in our runtime. The scheduler keeps track of future events in the event queue and processes
them strictly in tag order. When processing an event, the scheduler first determines all reactions
that are triggered by the event and stores them in the reaction queue. Any reactions in the reaction
queue for which all dependencies are met (as indicated by the APG) are forwarded to the ready
queue and then picked up for execution by the worker threads. If the executed reactions trigger any
further reactions by setting ports, those reactions are inserted in the reaction queue. If a reaction
schedules future events via an action, these new events are inserted into the event queue. Note that
the scheduler always waits until all reactions at the current tag are processed before advancing to
the next tag and triggering new reactions.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:15

The most important task of the scheduler is to decide when any given reaction should be moved
from the reaction queue to the ready queue. As the APG precisely defines the ordering constraints
of reactions, reaction scheduling is closely related to DAG-based scheduling strategies [2, 45]. How-
ever, the APG is not equivalent to a task graph as it may contain reactions that do not need to be
executed. Most often only a fraction of the reactions is triggered at a particular tag. Moreover,
we do not know in advance precisely which reactions will be triggered for a given tag, as reac-
tions may or may not send messages via their declared ports. In consequence, an optimal schedule
cannot be computed in advance.

To decide whether a given triggered reaction is ready for execution, we need to check if it has a
dependency on any other reaction that is triggered or currently executing. To avoid traversing the
APG at runtime, we utilize a simple heuristic. Concretely, we assign a level (top level as defined
in [45]) to each reaction. Any reactions with the same level do not depend on each other and hence
can be executed in parallel. Our scheduler then processes reactions going from one level to the next.
Once all reactions within a level are processed, all triggered reactions in the next level are moved
to the ready queue. This approach avoids the need for analyzing the APG during execution, but
also falls short on exploiting all opportunities for parallel execution. For instance, this approach
does not execute reaction 2 of ProxyDelay in parallel with reaction 2 of Account. Nonetheless,
our evaluation shows that this strategy is sufficient to efficiently exploit parallelism in most cases.
Given the extensive research on DAG scheduling, we are confident that future work can apply
more complex strategies to account for the missed opportunities for exploiting parallelism.

Another limitation of our scheduling approach is that the scheduler only considers reactions
that are triggered at the same tag. In particular, this may hinder exploiting pipeline parallelism in
programs that do not use logical delays to create pipeline stages. However, this limitation can be
overcome by using a federated execution strategy [7, 61].

The scheduling mechanism described above is fundamentally different from typical actor imple-
mentations. Since actor programs are nondeterministic and thus the workload cannot be predicted,
the runtime needs to make ad hoc decisions to distribute the workload. The predominant solution
is work stealing [16, 95], which is also the default scheduling mechanism of Akka and CAF. The
main advantage of work stealing is that it avoids a centralized scheduler and minimizes the syn-
chronization points between workers. As long as they have sufficient work, workers can operate
independently. The work stealing approach, however, does not work for a reactor runtime, as de-
ciding which reactions are ready to process requires more knowledge about the system’s state.
While we require a central scheduler, we can leverage knowledge about the program to optimize
the execution.

Since the reactor model is based on discrete events, our scheduling algorithm is closely related
to the mechanisms used in discrete event simulators such as SystemC [13, 73] or gem5 [12, 62].
However, parallelizing the execution in such simulators is commonly hard as the dependencies
and the precise interactions of components are not known in advance. While multiple works exist
that allow a multithreaded execution of discrete-event simulations [22, 80, 81], they often require
manual partitioning, and it remains challenging to deliver high performance for general applica-
tions. Therefore, both SystemC and gem5 simulations are single threaded by default. By leveraging
the properties of the reactor model, we created a novel discrete event scheduler that precisely un-
derstands which reactions can be executed in parallel and delivers an efficient execution.

4.4 Optimizations

While the scheduling algorithm sketched in [59] and discussed in the previous subsection is rel-
atively straightforward to implement, further optimizations were needed to achieve competitive

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:16 C. Menard et al.

performance. In the following, we detail the most important optimizations that we use in our C++
runtime.

Coordinating Worker Threads. In Figure 11 we conceptually distinguished the scheduler from
the workers. In an actual implementation, however, using a central scheduler and separate worker
threads introduces several synchronization points. The scheduler needs to send work to the work-
ers, and the workers need to notify the scheduler when they finish. Instead, in our implementation,
a thread that runs out of work tries to become the scheduler and moves ready reactions to the ready
queue or advances logical time to the next tag if all reactions have been processed. Only one worker
thread can become the scheduler, and all other workers that run out of work will go to sleep until
they are woken up again by the scheduler. This is guarded by an atomic flag.

At any time we know the precise number of reactions that may execute in parallel. Thus, we can
use a counting semaphore to wake up precisely as many workers as needed. By limiting the number
of active workers, we avoid unnecessary contention on the ready queue in situations where there
are more workers than ready reactions.

Lock-free Data Structures. The three queues and other data structures that are required for book-
keeping (e.g., a list of all set ports) are shared across workers. Using mutexes for synchronization
proved to be inefficient due to high contention on the shared resources, especially when many
parallel reactions set ports or schedule actions. Instead, we utilize lock-free data structures where
possible. For instance, the ready queue is implemented as a fixed-size buffer paired with an atomic
counter. Since we know precisely how many reactions can at most run in parallel (i.e., the maxi-
mum number of reactions in the APG that have the same level), we can fix the size of the queue.
Every time new reactions are moved to the reaction queue, the atomic counter is set to the number
of reactions in the queue. Each time a worker tries to execute a reaction, it atomically decrements
the counter. If the result is negative, then the queue is empty. Otherwise, the result provides the
index within the buffer to read from. We further exploit knowledge about the execution of reactor
programs. For instance, the scheduler advances logical time only once all reactions have been pro-
cessed. This operation is safe without additional synchronization, as all of the workers are waiting
for new reactions.

Sparse Multiports. Reactors that use a multiport input to interact with multiple other reactors
that may send messages individually (such as in the example from Figure 7) need to identify which
ports actually have a present value. Let n denote the width of the multiport and p the number of
present ports. If the multiport width is large and communication is sparse (p < n), then iterating
over all ports and checking for presence individually is inefficient (O (n)). Therefore, our C++ run-
time internally uses a lock-free buffer to keep track of the ports that are actually set and exposes an
API function called present_indices_unsorted that obtains the indices of only set ports. Using
this function, iterating over all present ports has complexity O(p). Note, however, that the port
indices can have an arbitrary order if the ports are written by parallel reactions. If a fixed order is
required, present_indices_sorted can be used to obtain a sorted list of indices. The sorting has

complexity O(p - log(p)).

5 PERFORMANCE EVALUATION

The actor model is widely accepted for programming large concurrent applications, and implemen-
tations such as the C++ Actor Framework (CAF) [21] and Akka [79] are known to be fast and
efficient in utilizing a larger number of threads. Compared to actors, LF imposes various restric-
tions that amount to a model of computation in which fewer behaviors are allowed. In this section,

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:17

we show that these restrictions do not necessarily introduce overhead or higher execution times.
In fact, LF is considerably faster for many benchmarks.

5.1 Methodology

Our evaluation is based on the Savina benchmark suite [41] for actor languages and frameworks.
While this suite has several issues, as Blessing et al. discuss in [15], Savina covers a wide range
of patterns and, to the best of our knowledge, is the most comprehensive benchmark suite for
actor frameworks that has been published. The Savina suite includes Akka implementations of all
benchmarks. CAF implementations of most Savina benchmarks are also available.?

We ported 22 of the 30 Savina benchmarks to the C++ target of LF. Due to the fundamental
differences between the actor and reactor model, the process of porting benchmarks is not always
straightforward. We aimed at closely resembling the original workloads and considered the inten-
tion behind the individual benchmarks. We will present more details about our implementations
of selected benchmarks in the next section.

We did not implement the benchmarks Fork Join (actor creation), Fibonacci, Quicksort, Bitonic
Sort, Sieve of Eratosthenes, Unbalanced Cobwebbed Tree, Online Facility Location, and Successive
Over-Relaxation as they require the capability to dynamically create actors. In the reactor model,
this can be achieved with mutations that may modify the reactor topology [58, 59]. However,
mutations are not yet fully implemented in LF, and a discussion of language-level constructs for
supporting mutations is beyond the scope of this article. Although the precise cost of performing
mutations is currently unknown to us, this cost will mostly depend on how efficiently the APG can
be modified. Since the APG remains static in between mutations, we expect no difference in per-
formance for the execution of reactions, and hence the results discussed here yield measurements
that will be useful even when mutations are eventually supported.

We further omit the A*-Search and Logistic Map Series benchmarks from our presentation. The
A*-Search implementation in the Savina suite suffers from a severe race condition that results in
wildly varying execution times [15]. Logistic Map Series is omitted as the Akka implementation
violates actor semantics and requires explicit synchronization [15]. For this reason, the CAF im-
plementation needs to use a blocking call, which makes it slower than the other implementations
by at least two orders of magnitude. Since this is not a problem of CAF, but rather a problem in
the benchmark design, we omit Logistic Map Series to avoid skewing the analysis.

All measurements were performed on a workstation with an Intel Core i9-10900K processor (10
cores, 20 hardware threads) with 32 GiB DDR4-2933 RAM running Ubuntu 22.04 and using CAF
version 17.6 and Akka version 2.6.17. Following the methodology of Savina, measurements exclude
initialization and cleanup. Each measurement comprises 32 iterations. The first two iterations are
excluded from our analysis and are used to warm up.

5.2 Benchmark Implementation in LF

Table 1 provides an overview of all the Savina benchmarks that we have ported and included
in our discussion. The table also lists various key characteristics of our implementations. The
middle section displays characteristics about the size of each program such as the total number
of reactors, reactions, actions, ports, and connections. The right section shows details about the
benchmark execution such as the number of tags (or events) that were processed, the number of
executed reactions, and how often ports were set and actions scheduled. Finally, the average time
per executed reaction gives an estimate of the size of the workload implemented in each reaction.

Shttps://github.com/woelke/savina

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://github.com/woelke/savina

48:18 C. Menard et al.

Table 1. Characteristics of the Savina Benchmarks Implemented in LF

ID cat. Benchmark Reactors Reactions ~ Actions Ports Connections | Processed Processed SetPorts Scheduled Time per

Tags Reactions Actions Reaction (ns)
1 Ping Pong 4 8 3 8 4 | 1,000,004 3,000,005 2,000,002 1,000,010 74
2 o Thread Ring 103 109 3 406 203 1,004 101,008 100,004 1,208 71
3 £ Counting Actor 4 11 3 12 6 | 1,000,005 2,000,010 1,000,005 1,000,011 77
4 ‘E Fork Join (throughput) 63 67 3 65 62 10,004 610,006 10,002 10,128 26
7 Chameneos 103 208 3 20,404 10,202 4,005 408,209 800,402 4,209 169
3 Big 123 487 122 57,964 29,042 20,004 6,472,034 4,800,122 2,400,248 221
9 o Concurrent Dictionary 24 30 3 146 83 10,004 220,028 400,023 10,050 217
10 2 Concurrent Sorted Linked List 24 31 4 145 83 8,005 176,029 320,022 8,051 43,323
12 é Dining Philosophers 23 71 3 224 122 20,004 460,019 1,000,002 20,048 123
13 3 Sleeping Barber 2,005 8,017 5 24,014 12,008 4,004 18,008 14,002 8,012 1,265
14 g Cigarette Smokers 203 208 4 404 202 1,005 2,007 1,002 1,409 2,692
16 Bank Transaction 1,003 3,007 3 2,004,004 1,002,002 79 78,905 101,002 2,083 464
11 Producer Consumer (bounded) 83 209 42 484 282 1,005 122,128 160,082 40,208 12,325
17 All-Pairs Shortest Path 45 115 38 873 798 304 21,643 10,839 10,892 45,270
19 E N Queens First K Solutions 23 30 4 124 62 256 5,472 9,130 300 46,150
20 i Recursive Matrix Multiplication 23 50 4 105 62 37 651 661 81 1,268,569
22 '_é Radix Sort 64 248 63 186 123 899,962 7,000,100 6,100,002 900,104 86
23 2 Filter Bank 54 141 3 254 150 34,821 1,073,278 809,063 34,927 2,075
28 Trapezoidal Approximation 103 108 3 404 202 5 108 202 209 6,050,557
29 Precise Pi Computation 23 30 4 84 42 213 4,584 8,322 257 22,172

The middle part denotes static information about the size of the program and the right part denotes runtime
information about the execution of the program.

As indicated in Table 1, the Savina benchmarks are divided into three categories: micro, con-
currency, and parallelism.* The micro benchmarks focus on stressing various mechanisms in the
runtime scheduler to expose overheads in the runtime. The concurrency benchmarks have a sim-
ilar goal, but they put more focus on the concurrent operation of (re)actors and also require syn-
chronization mechanisms to solve the particular problem. Since the micro and concurrency bench-
marks are designed to mostly stress the runtime, the workload implemented in each (re)actor is
relatively small (with the exception of Concurrent Sorted Linked List). The benchmarks in the par-
allelism category are mostly designed to test the capability to exploit parallel hardware efficiently
and hence the workload implemented by each (re)actor is more significant (with the exception of
Radix Sort).

The interested reader may find the full LF implementation of all our benchmarks on GitHub.?
In the remainder of this section, we discuss implementation details for selected benchmarks that
we consider representative.

The execution of all benchmarks in the original Savina suite is governed by an actor called
BenchmarkRunner. The benchmark runner is responsible for initiating a benchmark run and for
measuring the time until each benchmark run completes. This enables performing measurements
in repeated iterations while keeping caches (and the JVM in case of Akka) warm. We adopt
this mechanism in our LF implementations and created the BenchmarkRunner reactor shown in
Figure 12(a). The runner has two ports, which are used to initiate a benchmark run (start) and
for receiving feedback from the actual benchmark when it completed its computation (finished).

In our LF benchmarks, we created a reactor for each actor in the original implementation and a
connection for each message that can be sent between actors. For instance, Figure 12(b) shows our
implementation of the Ping Pong benchmark. The benchmark consists of two (re)actors Ping and
Pong that send each other messages back and forth. When the Ping reactor in our implementation
receives a message on the inStart port, it schedules a new event using its internal action. The
reaction triggered by this action then sends the first ping message. Pong reacts to this message
by sending a pong message back to Ping, which in turn reacts by scheduling a new event on the
internal action to repeat the process. Once all 1,000,000 ping and pong messages have been sent,

“The original Savina suite lists Producer Consumer as a concurrency benchmark, but we find it fits better to the group of
parallelism benchmarks.
Shttps://github.com/If-lang/benchmarks-lingua-franca

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://github.com/lf-lang/benchmarks-lingua-franca

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:19

PingPong
Pong
BenchmarkRunner inPing D outPong
init startleration
start " finished start
OE?AE} Ping —®BenchmarkRunner
i inStart,
O e R o oo
finished inPong | Finished
L — E}AE Ly 3 e poutFinishe
(a) Benchmark Runner (b) Ping Pong
ConcurrentDictionary
finished start
—®BenchmarkRunner DictionaryImpl
t_state
reset_ :
Manager l Worker
start, doWork doWork.
%E 1 >

dictRequest request, response
sty Ty TEDEE

finished

dictResponse _ | Ll
> »-

workerFinished E finished [=

T

(c) Concurrent Dictionary

DiningPhilosophers
Arbitrator

Philosopher @VE

finished start start
%BenchmarkRunnerb——»—E——_ hungry __hungry, EAEPE“—

|, denied
t 4 d I
= 7@‘;”" = ;}done —E :

finished

denied
- - finished, allFinished
X E i”E ,,,,,,,,,,,,,,,,,,,,,,,,, %_‘

20

(d) Dining Philosophers

Fig. 12. Lingua Franca implementations of the benchmark runner and selected benchmarks.

the Ping reactor does not schedule a new event but instead notifies the benchmark runner to
indicate that the benchmark execution is completed.

Note the use of the logical action to break the dependency cycle between Ping and Pong. If
we would merge reactions 2 and 3 of Ping to send another ping message right when receiving a
pong message, there would be a causality loop. We break the loop by scheduling a new event and
sending the ping message at the next tag. All of the Savina benchmarks have a direct feedback
loop and, thus, we carefully inserted logical actions where needed to break dependency cycles.

The concurrency benchmarks are particularly interesting as we can utilize LF’s semantics to
implement them efficiently. The Concurrent Dictionary benchmark, for instance, consists of a
Dictionary (re)actor that receives read or write requests from 20 Worker (re)actors. The dictio-
nary processes each request and sends a reply back to the workers. Figure 12(c) shows our LF
implementation. It instantiates a bank of workers that communicate with the dictionary via mul-
tiports. The workers operate concurrently, and each invocation of the worker reaction is logically
simultaneous to the other workers. In consequence, the dictionary will receive multiple logically
simultaneous requests from the workers. This notion of logical simultaneity allows us to effec-
tively batch-process all the requests received at a single tag in a single reaction. The dictionary
reaction iterates over all present requests and processes the requests sequentially.

In an actor implementation of the Concurrent Dictionary benchmark, however, the dictionary
could only process individual requests as there is no notion of simultaneity. Thus, the runtime
needs to invoke the actor behavior repeatedly, which adds additional overhead. Moreover, the
particular order in which requests are processed in an actor implementation is nondeterministic.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:20 C. Menard et al.

Since the workers send interleaving read and write requests, they may observe different responses
depending on the order in which requests are processed. LF’s notion of logical time establishes a
deterministic ordering between messages and allows to observe all the present inputs at a given
tag at once.

We can make a similar observation for the Dining Philosophers benchmark. Our implementation
in Figure 12(d) uses an arbitrator reactor and a bank of 20 philosopher reactors. The philosophers
think and eat concurrently. In order to start eating, philosophers send a hungry message to the ar-
bitrator, which replies with eat or denied. When a philosopher finishes eating, they indicate this
with a done message. When the request to eat is denied, the philosopher will send a new hungry
message. While the philosophers operate concurrently, the arbitrator can process all logical simul-
taneous hungry requests in one batch. In this concrete benchmark, this has the additional advan-
tage that the arbitrator always knows which philosophers are hungry at a particular tag and can
therefore find a fair strategy to grant the resources to the philosophers. In an actor implementation,
the arbitrator can only decide on the basis of individual messages, which makes it much harder
to find a fair solution. The original Savina implementation “solves” this simply by having each
philosopher send another hungry message immediately after receiving denied. This increases the
chance of each philosopher to eat eventually, but it also adds a significant amount of unnecessary
messages. In our measurements, the philosophers sent about 10 million hungry messages in the
Akka implementation, whereas our LF implementation used about 200,000 hungry messages. Of
course it would be possible to implement other, more elaborate, arbitration strategies with actors,
but compared to the LINGuA FRANCA solution, this would always come with additional cost in
terms of code size and overhead for additional messages.

The LF implementation of Dining Philosophers could even be further simplified. Since there
is no delay between sending an eat message in reaction 2 of the arbitrator, eating in reaction
2 of the philosopher, and processing the done message in reaction 3 of the arbitrator, all three
steps are logical simultaneous. Since our scheduler first completes processing all reactions at the
current tag before moving to the next tag (cf. Section 4.3), the done message is redundant. When
the arbitrator is invoked to make a decision at a particular tag, we know that all philosophers must
have completed eating at the previous tag. However, we decided to keep the done message to avoid
deviating too much from the original benchmark implementation. This also allows for alternative
implementations of the philosopher reactor, which might use a delay internally and send done
messages at a later tag.

The advantage of LF’s synchronous semantics also becomes evident in the Filter Bank bench-
mark shown in Figure 13. It applies a cascade of filters to eight parallel channels in a data stream.
The output of each filter bank is then combined into a single stream. The combine operation is
applied on the nth output message of each bank. This is trivial in LF, as the output messages
are logically synchronous. The actor implementation, however, requires an additional protocol to
explicitly synchronize the outputs of the asynchronously operating banks. The original Savina im-
plementation utilizes an additional Tagger actor that annotates the output messages of each bank
with a tag indicating the ID of the bank. A so-called Integrator actor buffers the tagged messages
from all banks. Once it receives a complete set of messages from all banks, it forwards them as one
message to the Combine actor. As this synchronization mechanism is fully redundant in LF, we
have removed it from our implementation of the benchmark.

5.3 Measurement Results and Discussion

Figure 14 reports measured results for all supported benchmarks obtained with Akka, CAF,
and the C++ target of LF. The plots show the mean execution times (including 99% confidence

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:21

Delay — FirFilter — Sample — Delay — FirFilter —> Tagger \
Source Integrator —»Combine

\ Delay — FirFilter —> Sample —» Delay — FirFilter —> Tagger /

(a) Actor implementation

FilterBank
Bank
Source Delay FirFilter Sample Delay FirFilter Combine

O e e e e e e e

(b) Reactor implementation in LF

Fig. 13. Comparison between the reactor and the actor implementation of the Filter Bank benchmark.

Akka [CAF Ml LF C++ Target

Ping Pong #1 Thread Ring #2 Counting Actor #3 200 Fork Join (throughput) #4 | Chameneos#7 |
1500 | a3 iEd 2004
600 -| _ 150 4 300 -|
150 -
1000 -|
400 -| 100 - Iz 200 -|
. 100 - o I E
500 200, 50 50 -{m I I 100 | | i
LN NLY | aalaalaaa ol ol
i Concurrent Dictionary #9 JConcurrent Sorted Linked-List #1] | Dining Philosophers #12 | Sleeplng | Sleeping Barber #13 |
, 500 -
200 -| 1 L z
1500 | 15000 -1 2 400 | z T2
1 I 100 -
150 | 4
1000 -| 10000 - ! 11 500
£ 100 |
E W 200 50 =
£ 500 50 5000 100 I I
o - - 4
£ o o o o L ANNnnn
<
=3
£ Cigarette Smokers #14. | BankTransaction #16 | Producer Consumer (bounded) #11 | Al-Pairs Shortest Path #17 | 500 N Queens First K Solutions #19 |
2 B - 4 -
] 80 2000 -|
] 1 900 | 400 -|
c 90| 60 |
I = 1500 -|
3 = = 300 |
= 60 40 | - 600 -|
. 1000 -| 200 4
30 - 20 - i 500 -| l' 3007 100 - L
ofm e e 0 '-.-'-'- 0 0 .LLL
Rscursws Matrix Multiplication #20| Radix Sort #22 Filter Bank #23 Trapezmdel Approximation #28 Precise Pi Computation #29
1000 - 800 | 800 | -
2000 i
750 | 600 -| 600 -| 300
1500 -
B --M - 400 -| 200 =
500 400 1. 1000 -
1) ° =
4 4 4 100 -
l ML I"" III ISR,
0 . 0d o 0 ...h 0 NN ..
— T — T T T T
408 12 16 20 12 4 8 12 16 20 4 8 12 16 20 408 12 16 20 1.2 4 8 12 16 20

Number of Threads

Fig. 14. Mean execution times and 99% confidence intervals for various Savina benchmarks implemented
in LF, CAF, and Akka, measured for a varying number of worker threads. The numbers prefixed with # are
benchmark IDs as listed in [41].

intervals) for a varying number of worker threads for each of the benchmarks. Not all benchmarks
are implemented in CAF and hence it is missing in some plots.

The first six plots in Figure 14 belong to the group of micro benchmarks in the Savina suite.
Overall, our C++ runtime shows comparable performance to Akka and CAF. In Ping Pong and
Thread Ring, our implementation is considerably faster than Akka but is still outperformed by CAF.
For Counting Actor and Big, Akka performs better and the LF performance is slightly behind CAF.
In Fork Join and Chameneos, the LF implementation outperforms both Akka and CAF, especially
when using a larger number of worker threads.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:22 C. Menard et al.

The next six plots (Concurrent Dictionary to Bank Transaction) belong to the group of concur-
rency benchmarks. LF significantly outperforms CAF and Akka in all the concurrency benchmarks
(especially for a high number of worker threads). This highlights how concurrent behavior is ex-
pressed naturally in LF and can be executed efficiently. As discussed in the previous subsection, we
can exploit the well-defined notion of logical simultaneity in LF to execute independent reactions
in parallel and batch-process simultaneous messages from multiple reactors in a single reaction.
Moreover, no explicit synchronization is needed. In the actor benchmarks, explicit synchronization
via acknowledge messages or blocking calls adds additional overhead.

The remaining plots belong to the group of parallelism benchmarks in the Savina suite. Radix
Sort and Filter Bank are affected by inefficiency in our scheduler, as discussed in Section 4.3. In
these particular benchmarks, our simple algorithm leads to a non-optimal execution as some re-
actions are executed later than they could be. We will revise this algorithm in future work. How-
ever, the remaining parallelism benchmarks highlight that LF can efficiently implement parallel
algorithms. Our LF implementations are on par with Akka and CAF and scale well with more
threads.

On average, LF outperforms both Akka and CAF. For 20 threads, the C++ runtime achieves
a speedup of 1.85x over Akka and a 1.42Xx speedup over CAF. These speedups were calculated
using the geometric mean over the speedups of individual benchmarks. We conclude that LF can
compete with and even outperform modern and highly optimized actor frameworks such as Akka
and CAF. Particularly with workloads that require synchronization, LF significantly outperforms
actor implementations. LF is as efficient as the actor frameworks in exploiting parallelism and
scales well to a larger thread count. In summary, the deterministic concurrency provided by LF
does not hinder performance but enables more efficient implementations. This is possible in part
because the scheduler has insights into the program structure, and explicit synchronization can
be avoided in LF, as opposed to many of Savina actor benchmarks.

The performance comparison between C++ and Scala (Akka) needs to be taken with care, as
other factors such as different library implementations and the behavior of the JVM may influence
performance. For instance, the large discrepancy between Akka and our implementation in the Pi
Precision benchmark is explained by a less efficient representation of large numbers in Scala/Java.
However, the other benchmarks of the Savina suite do not depend on external libraries and are
designed to be more portable between languages. Also note that over all benchmarks CAF only
achieves an average speedup of 1.09x over Akka for 20 threads and is outperformed in 9 out
of 16 benchmarks. For single-threaded execution, Akka outperforms CAF in 10 benchmarks and
achieves an average speedup of 1.33x. This indicates that the implemented Scala workloads are
comparable to the C++ implementations. Even considering a potential skew due to the JVM, our
results clearly show that LF can compete with state-of-the-art actor frameworks.

To better understand the impact of the optimizations discussed in Section 4.3, Figure 15 also
shows the speedup of our runtime for 20 worker threads compared to a less optimized runtime.
This baseline is an older version of our runtime that is optimized in the sense that we used code
profiling to identify obvious bottlenecks and eliminated them using common code optimization
techniques, but that does not include the optimizations discussed in this article. The average over-
all speedup (geometric mean) achieved by our optimizations is 2.18%. In particular, Big and Bank
Transaction significantly benefit from our optimization for sparse communication patterns. The
concurrency benchmarks (e.g., Concurrent Dictionary and Dining Philosophers) are mostly im-
proved by reducing the contention on shared resources. However, not all benchmarks benefit from
our optimizations. The reduced performance in Ping Pong and Counting Actor shows that opti-
mizing for efficient parallel execution also comes at a cost for simple sequential programs.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:23

20

a
3
3
o 10
Q.
()
5
1.0
0 — —
L R o X &
Qo@ Q-& v‘}o ‘Q\Q (@oﬂ" ¥ & & 6&&"’ 0-@“ &6\ Qq}‘\ & S & O
i & & O <5§0 LTS S &
TS &S O Pt € ST S &
[©RN] & @ N NAPESPS R, RPN
\4}0 o"\)‘ 5.)6\\ '@QQ © C‘J\Q’b & (\e" Q"b\«% < & .\bQ} .e,@q
S & &9 F & &£ N &
« ¢ N S & <
N
& & S «
9 ¢

Fig. 15. Speedup achieved by our optimized C++ runtime for 20 worker threads compared to an unoptimized
version.

6 RELATED WORK

LF is closely related to the languages and frameworks evolved around Hewitt’s actor model [1, 40],
including Akka [79], CAF [21], Ray [69], Erlang [3], Rebeca [85], P [28], and Pony [23]. Also, reac-
tive programming techniques [5], as used in frameworks like ReactiveX [64] and Reactors.IO [77]
but also in language-level constructs like event loops [90], are closely related to LF. While actors
and reactive programming provide good resiliency and scalability, this comes at the cost of nonde-
terminism, which makes programs notoriously hard to test and debug [6, 91]. Even more problems
arise if languages, frameworks, and libraries do not enforce the underlying model and invite the
programmer to break its semantics [86]. Pony addresses the later problem by leveraging a strong
type system similar to Rust to prevent data races at compile time. Rebeca provides a formalism and
model checking techniques for analyzing and verifying actor networks. While this can improve
confidence in a correct implementation, the programmer is still responsible for finding this correct
implementation. P goes a step further in that it also has an efficient runtime system and a compiler
that generates correct-by-construction code with reasonable performance.

Blessing et al. propose a strategy that maps actor communication to a tree topology in order
to guarantee a causal ordering of messages [14]. In a similar approach, Sang et al. [97] utilize
a DAG topology to achieve serializability in the processing of events. Orleans [17] is also based
on an actor-like model and provides guarantees on atomicity on transactions. Finally, Reactors
as defined by Field et al. [35] is a model that is closely related to actors but that supports both
synchronous and asynchronous communication and also provides atomicity guarantees. All these
strategies are most useful in distributed scenarios, in particular in the presence of network failures.
In this article, however, we focus on the execution of a single host. Moreover, the determinism
guarantees that LF makes are stronger. Nonetheless, such techniques are highly relevant to LF and
could be deployed for ensuring fault-tolerant execution in distributed LF programs. We believe
that LF can provide a more general solution, as the programmer can explicitly trade consistency
for availability in distributed contexts [49], and hence the solution can be adjusted to the concrete
application requirements.

Dataflow models [11, 27, 51] and process networks [42, 52] provide deterministic concurrency
by creating statically connected networks of actors with deterministic semantics. Many tools and
languages for modeling, analyzing, and compiling dataflow models have evolved over time [19]
including Streamlt [89], Sesame [76], OmpSs [29], PREESM [74], and MAPS [20, 55]. Similarly to
LF, dataflow models enable improved static analysis and optimization [37], but in contrast to LF,
they also limit the application’s flexibility and capability to react to sporadic events. For this reason

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

48:24 C. Menard et al.

dataflow is typically used for long running streaming applications, but not in scenarios where an
application needs to react to sporadic input from the environment.

Since dataflow-based languages and tools also rely on statically declared connections, solutions
comparable to the LF syntax extension that we propose in this article have been created. StreamlIt
is particularly close to LF in spirit, due to its philosophy of using hierarchy for assembling larger
programs out of smaller components. However, connections cannot be drawn freely and program-
mers need to rely on pre-defined library nodes to implement certain patterns. The concept of
multiports is also found in Ptolemy II [78], but it only defines a graphical syntax. Some tools
use a more implicit approach. For instance, PREESM analyzes the production and consumption
rates of nodes and automatically decides to use multiple data-parallel instances of the same node.
Ohua [33] has taken this to the extreme by generating a complete optimized dataflow graph im-
plicitly from a sequential description of the program. Such implicit solutions, however, are chal-
lenging for LF as it pairs the dependency information defined in the graph with a clear timed
semantics.

Deterministic concurrency is also found in synchronous languages such as Esterel [10], Lus-
tre [38], and SIGNAL [9] as well as in Functional Reactive Programming (FRP) languages,
like Fran [32], FrTime [25], and Elm [26]. However, these languages are challenging to use for
general-purpose programming as they require pure functions and there is a lack of widely applica-
ble libraries. Only recently have side effects been considered in a formal semantics for Esterel [36]
and distributed dataflow [68]. In LINGUA FRANCA, arbitrary code can be embedded in reactions and
we can benefit from the available libraries for popular general-purpose languages.

Another interesting approach is taken by deterministic multithreading libraries such as
DThreads [57] or Consequence [66], which enforce a total order for concurrent store operations.
Recent work has made considerable progress in avoiding the bottlenecks of conventional DTM
techniques [67]. However, we argue that threads are not a convenient concurrency model for the
reasons outlined in [47]. Moreover, threads do not allow for transparent distributed execution as
is possible with (re)actors.

The work presented in this article is also closely related to research on efficient execution of
programs on parallel hardware in general. However, due to the unique semantics of reactors, ex-
isting techniques cannot be easily applied to LF. In future work, we will aim at relaxing some
of the constraints currently imposed in the runtime to allow sections of the program to execute
more independently, which will likely give room to apply well-known techniques such as work
stealing [16] to efficiently balance the workload.

7 CONCLUSION

Unlike actors and related models for asynchronous concurrency, LF enforces determinism by
default and features asynchronous behavior only when introduced deliberately. Our evaluation,
based on LF’s C++ target, shows that this deterministic model does not impede performance. On
the contrary, we achieve an average speedup of 1.85x over Akka and 1.42x over CAF. With LF,
we manage to combine reproducible (and testable) behavior with good performance. Yet, our rel-
atively simple scheduling strategy likely still leaves room for significant improvement. We leave
it as future work to explore more advanced scheduling algorithms capable of exploiting more par-
allelism at runtime. We also aim to furnish full runtime support for mutations and implement the
remaining Savina benchmarks that require them to evaluate the performance impact of mutations.
Finally, we note that our implementation of the Savina benchmark suite is not only useful for com-
paring LF to actor-oriented frameworks but also demonstrates that LF, which is still in its infancy,
is already suitable for solving practical problems.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:25

ACKNOWLEDGMENTS

We thank the anonymous reviewers of ACM TACO, PLDI, CGO and CC for the valuable feedback
and suggestions they provided on earlier versions of the manuscript.

REFERENCES

[1] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L. Talcott. 1997. A foundation for actor computation. Journal
of Functional Programming 7, 1 (1997), 1-72.

[2] Mahfooz Alam, As If, and Ankur Varshney. 2018. A Review of Dynamic Scheduling Algorithms for Homogeneous and
Heterogeneous Systems. 73-83. https://doi.org/10.1007/978-981-10-8533-8

[3] Joe Armstrong, Robert Virding, Claes Wikstrom, and Mike Williams. 1996. Concurrent Programming in Erlang (2nd
ed.). Prentice Hall.

[4] Mehdi Bagherzadeh, Nicholas Fireman, Anas Shawesh, and Raffi Khatchadourian. 2020. Actor concurrency bugs: A
comprehensive study on symptoms, root causes, API usages, and differences. In Proceedings of ACM Programming
Languages. https://doi.org/10.1145/3428282

[5] Engineer Bainomugisha, Andoni Lombide Carreton, Tom van Cutsem, Stijn Mostinckx, and Wolfgang Meuter. 2013.

A survey on reactive programming. ACM Computing Surveys 45, 4, Article 52 (Aug. 2013), 34 pages. https://doi.org/

10.1145/2501654.2501666

Herman Banken, Erik Meijer, and Georgios Gousios. 2018. Debugging data flows in reactive programs. In 2018

IEEE/ACM 40th International Conference on Software Engineering (ICSE’18). IEEE, 752-763.

Soroush Bateni, Marten Lohstroh, Hou Seng Wong, Rohan Tabish, Hokeun Kim, Shaokai Lin, Christian Menard, Cong

Liu, and Edward A. Lee. 2022. Xronos: Predictable Coordination for Safety-critical Distributed Embedded Systems.

(2022). https://doi.org/10.48550/ ARXIV.2207.09555

[8] Albert Benveniste and Gérard Berry. 1991. The synchronous approach to reactive and real-time systems. Proceedings
of the IEEE 79, 9 (1991), 1270-1282.

[9] Albert Benveniste and Paul Le Guernic. 1990. Hybrid dynamical systems theory and the SIGNAL language. IEEE
Transactions on Automatic Control 35, 5 (1990), 525—-546.

[10] Gérard Berry and Georges Gonthier. 1992. The Esterel synchronous programming language: Design, semantics, im-

plementation. Science of Computer Programming 19, 2 (1992), 87-152. http://citeseerx.ist.psu.edu/viewdoc/summary?

doi=10.1.1.17.5606

G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete. 1994. Static scheduling of multi-rate and cyclo-static DSP

applications. In Workshop on VLSI Signal Processing. IEEE Press. 137-146.

Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish,

Mark D. Hill, and David A. Wood. 2011. The Gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (2011),

1-7.

David C. Black, Jack Donovan, Bill Bunton, and Anna Keist. 2010. SystemC: From the Ground Up (2nd ed.). Springer.

https://doi.org/10.1007/978-0-387-69958-5

Sebastian Blessing, Sylvan Clebsch, and Sophia Drossopoulou. 2017. Tree topologies for causal message delivery. In

Proceedings of the 7th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentral-

ized Control (AGERE’17). Association for Computing Machinery, New York, NY, 1-10. https://doi.org/10.1145/3141834.
3141835
Sebastian Blessing, Kiko Fernandez-Reyes, Albert Mingkun Yang, Sophia Drossopoulou, and Tobias Wrigstad. 2019.
Run, actor, run: Towards cross-actor language benchmarking. In Proceedings of the 9th ACM SIGPLAN International
Workshop on Programming Based on Actors, Agents, and Decentralized Control (AGERE’19). Association for Computing
Machinery, New York, NY, 41-50. https://doi.org/10.1145/3358499.3361224
[16] R.D. Blumofe and C. E. Leiserson. 1994. Scheduling multithreaded computations by work stealing. In 35th Annual
Symposium on Foundations of Computer Science. https://doi.org/10.1109/SFCS.1994.365680

[17] Sergey Bykov, Alan Geller, Gabriel Kliot, James R. Larus, Ravi Pandya, and Jorgen Thelin. 2011. Orleans: Cloud com-
puting for everyone. In Proceedings of the 2nd ACM Symposium on Cloud Computing (SOCC’11). Association for Com-
puting Machinery, New York, NY, Article 16, 14 pages. https://doi.org/10.1145/2038916.2038932
[18] C. G. Cassandras. 1993. Discrete Event Systems, Modeling and Performance Analysis. Irwin.
[19] Jeronimo Castrillon, Karol Desnos, Andrés Goens, and Christian Menard. 2022. Dataflow Models of Computation for
Programming Heterogeneous Multicores. Springer Nature Singapore, 1-40. https://doi.org/10.1007/978-981-15-6401-
7 45-2

[20] Jeronimo Castrillon and Rainer Leupers. 2014. Programming Heterogeneous MPSoCs: Tool Flows to Close the Software
Productivity Gap. Springer. 258 pages.

G

—

[7

—

[11

—

(12

—

(13

=

(14

[l

(15

—

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1007/978-981-10-8533-8
https://doi.org/10.1145/3428282
https://doi.org/10.1145/2501654.2501666
https://doi.org/10.48550/ARXIV.2207.09555
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.17.5606
https://doi.org/10.1007/978-0-387-69958-5
https://doi.org/10.1145/3141834.3141835
https://doi.org/10.1145/3358499.3361224
https://doi.org/10.1109/SFCS.1994.365680
https://doi.org/10.1145/2038916.2038932
https://doi.org/10.1007/978-981-15-6401-7_45-2

48:26 C. Menard et al.

[21] Dominik Charousset, Raphael Hiesgen, and Thomas C. Schmidt. 2016. Revisiting actor programming in C++. Computer
Languages, Systems & Structures 45 (April 2016), 105-131.

[22] Moo-Kyoung Chung, Jun-Kyoung Kim, and Soojung Ryu. 2014. SimParallel: A high performance parallel SystemC
simulator using hierarchical multi-threading. In 2014 IEEE International Symposium on Circuits and Systems (ISCAS’14).
1472-1475. https://doi.org/10.1109/ISCAS.2014.6865424

[23] Sylvan Clebsch, Juliana Franco, Sophia Drossopoulou, Albert Mingkun Yang, Tobias Wrigstad, and Jan Vitek. 2017.
Orca: GC and type system co-design for actor languages. Proceedings of ACM Programming Languages 1, OOPSLA,
Article 72 (Oct. 2017), 28 pages. https://doi.org/10.1145/3133896

[24] Eric C. Cooper and Richard P. Draves. 1988. C Threads. Technical Report CMU-CS-88-154.

[25] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding dynamic dataflow in a call-by-value language. In
European Symposium on Programming. Springer.

[26] Evan Czaplicki and Stephen N. Chong. 2013. Asynchronous functional reactive programming for GUIs. In Proceedings
of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’13). ACM Press.

[27] Jack B. Dennis. 1974. First Version Data Flow Procedure Language. Report MAC TM61. MIT Laboratory for Computer
Science.

[28] Ankush Desai, Vivek Gupta, Ethan Jackson, Shaz Qadeer, Sriram Rajamani, and Damien Zufferey. 2012. P: Safe Asyn-
chronous Event-driven Programming. Report. Microsoft Research.

[29] Alejandro Duran, Eduard Ayguadé, Rosa M. Badia, Jestis Labarta, Luis Martinell, Xavier Martorell, and Judit Planas.
2011. OmpSs: A proposal for programming heterogeneous multi-core architectures. Parallel Processing Letters 21,
02 (2011), 173-193.

[30] Stephen Edwards and John Hui. 2020. The sparse synchronous model. In Forum for Specification and Design Languages
(FDL’20). IEEE, 1-8.

[31] Stephen A.Edwards and Edward A. Lee. 2003. The semantics and execution of a synchronous block-diagram language.
Science of Computer Programming 48, 1 (2003), 21-42. https://doi.org/10.1016/S0167-6423(02)00096-5

[32] Conal Elliott and Paul Hudak. 1997. Functional reactive animation. In ACM SIGPLAN Notices, Vol. 32. ACM, 263-273.

[33] Sebastian Ertel, Justus Adam, and Jeronimo Castrillon. 2018. Supporting fine-grained dataflow parallelism in big data
systems. In Proceedings of the 9th International Workshop on Programming Models and Applications for Multicores and
Manycores. 41-50.

[34] Patrick Th. Eugster, Pascal A. Felber, Rachid Gerraoui, and Anne-Marie Kermarrec. 2003. The many faces of publish/-
subscribe. Computing Surveys 35, 2 (2003), 114-131. https://doi.org/10.1145/857076.857078

[35] John Field, Maria-Cristina Marinescu, and Christian Stefansen. 2009. Reactors: A data-oriented synchronous/asyn-
chronous programming model for distributed applications. Theoretical Computer Science 410, 2 (2009), 168-201.
https://doi.org/10.1016/j.tcs.2008.09.052

[36] Spencer P. Florence, Shu-Hung You, Jesse A. Tov, and Robert Bruce Findler. 2019. A calculus for Esterel: If can, can. If
no can, no can. Proceedings of the ACM on Programming Languages 3, POPL (2019), 1-29.

[37] Marc Geilen, Twan Basten, and Sander Stuijk. 2005. Minimising buffer requirements of synchronous dataflow graphs
with model checking. In Design Automation Conference (DAC’05). ACM, 819-824. https://doi.org/10.1145/1065579.
1065796

[38] Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pilaud. 1991. The synchronous data flow programming
language LUSTRE. Proceedings of the IEEE 79, 9 (1991), 1305-1320.

[39] Brandon Hedden and Xinghui Zhao. 2018. A comprehensive study on bugs in actor systems. In Proceedings of the
47th International Conference on Parallel Processing (ICPP’18). Association for Computing Machinery, New York, NY,
Article 56, 9 pages. https://doi.org/10.1145/3225058.3225139

[40] Carl Hewitt. 2010. Actor model of computation: Scalable robust information systems. arXiv preprint arXiv:1008.1459
(2010).

[41] Shams M. Imam and Vivek Sarkar. 2014. Savina - An actor benchmark suite: Enabling empirical evaluation of actor
libraries. In Proceedings of the 4th International Workshop on Programming Based on Actors Agents & Decentralized
Control (AGERE!’14). Association for Computing Machinery, New York, NY, 67-80. https://doi.org/10.1145/2687357.
2687368

[42] Gilles Kahn. 1974. The semantics of a simple language for parallel programming. In Proceedings of the IFIP Congress
74. North-Holland Publishing Co., 471-475.

[43] Gilles Kahn and D. B. MacQueen. 1977. Coroutines and networks of parallel processes. In Information Processing,
B. Gilchrist (Ed.). North-Holland Publishing Co., 993-998.

[44] Dieter Kranzlmiller and Martin Schulz. 2002. Notes on nondeterminism in message passing programs. In Recent
Advances in Parallel Virtual Machine and Message Passing Interface, Dieter Kranzlmiiller, Jens Volkert, Peter Kacsuk,
and Jack Dongarra (Eds.). Springer, Berlin, 357-367.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1109/ISCAS.2014.6865424
https://doi.org/10.1145/3133896
https://doi.org/10.1016/S0167-6423(02)00096-5
https://doi.org/10.1145/857076.857078
https://doi.org/10.1016/j.tcs.2008.09.052
https://doi.org/10.1145/1065579.1065796
https://doi.org/10.1145/3225058.3225139
https://doi.org/10.1145/2687357.2687368

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:27

[45] Yu-Kwong Kwok and Ishfaq Ahmad. 1999. Static scheduling algorithms for allocating directed task graphs to multi-

(46

[57

(58

(59

(60

(61

(62

(63

]

-

=

—

[]

— =

]

-

processors. ACM Computing Surveys 31, 4 (Dec. 1999), 406—471. https://doi.org/10.1145/344588.344618

Ivan Lanese, Naoki Nishida, Adrian Palacios, and German Vidal. 2018. CauDEr: A causal-consistent reversible de-
bugger for Erlang. In Functional and Logic Programming, John P. Gallagher and Martin Sulzmann (Eds.). Springer
International Publishing, Cham, 247-263.

Edward A. Lee. 2006. The problem with threads. Computer 39, 5 (2006), 33-42. https://doi.org/10.1109/MC.2006.180
Edward A. Lee. 2021. Determinism. ACM Transactions on Embedded Computing Systems (TECS) 20, 5 (July 2021), 1-34.
https://doi.org/10.1145/3453652

Edward A. Lee, Soroush Bateni, Shaokai Lin, Marten Lohstroh, and Christian Menard. 2021. Quantifying and gener-
alizing the CAP theorem. CoRR abs/2109.07771 (2021). arXiv:2109.07771 https://arxiv.org/abs/2109.07771

Edward A. Lee and Eleftherios Matsikoudis. 2009. The Semantics of Dataflow with Firing. Cambridge University Press.
http://ptolemy.eecs.berkeley.edu/publications/papers/08/DataflowWithFiring/

E. A. Lee and D. G. Messerschmitt. 1987. Synchronous data flow. Proceedings of the IEEE 75, 9 (1987), 1235-1245.
https://doi.org/10.1109/PROC.1987.13876

E. A. Lee and T. M. Parks. 1995. Dataflow process networks. Proceedings of the IEEE 83, 5 (1995), 773-801. https:
//doi.org/10.1109/5.381846

Edward A. Lee and Haiyang Zheng. 2007. Leveraging synchronous language principles for heterogeneous modeling
and design of embedded systems. In Proceedings of the 7th ACM & IEEE International Conference on Embedded Software
(EMSOFT’07). https://doi.org/10.1145/1289927.1289949

Edward A. Lee, Haiyang Zheng, and Ye Zhou. 2005. Causality interfaces and compositional causality analysis. In
Foundations of Interface Technologies (FIT'05), Satellite to CONCUR.

Rainer Leupers and Jeronimo Castrillon. 2010. MPSoC programming using the MAPS compiler. In Proceedings of the
2010 Asia and South Pacific Design Automation Conference (ASPDAC’10). IEEE Press, 897-902. https://doi.org/10.1109/
ASPDAC.2010.5419677

Bozhen Liu, Peiming Liu, Yanze Li, Chia-Che Tsai, Dilma Da Silva, and Jeff Huang. 2021. When threads meet events:
Efficient and precise static race detection with origins. In Proceedings of the 42nd ACM SIGPLAN International Con-
ference on Programming Language Design and Implementation. Association for Computing Machinery, New York, NY.
https://doi.org/10.1145/3453483.3454073

Tongping Liu, Charlie Curtsinger, and Emery D. Berger. 2011. Dthreads: Efficient deterministic multithreading. In Pro-
ceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP’11). Association for Computing Machinery,
New York, NY, 327-336. https://doi.org/10.1145/2043556.2043587

Marten Lohstroh. 2020. Reactors: A Deterministic Model of Concurrent Computation for Reactive Systems. Ph.D. Disser-
tation. EECS Department, UC Berkeley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
Marten Lohstroh, Ifiigo Incer Romeo, Andrés Goens, Patricia Derler, Jeronimo Castrillon, Edward A. Lee, and Alberto
Sangiovanni-Vincentelli. 2019. Reactors: A deterministic model for composable reactive systems. In 8th International
Workshop on Model-based Design of Cyber Physical Systems (CyPhy’19), Vol. LNCS 11971. Springer-Verlag, 27.
Marten Lohstroh and Edward A. Lee. 2019. Deterministic actors. In Forum on Specification and Design Languages
(FDL’19).

Marten Lohstroh, Christian Menard, Soroush Bateni, and Edward A. Lee. 2021. Toward a Lingua Franca for deter-
ministic concurrent systems. ACM Transactions on Embedded Computing Systems (TECS), Special Issue on FDL’19 20, 4
(May 2021), Article 36. https://doi.org/10.1145/3448128

Jason Lowe-Power, Abdul Mutaal Ahmad, Ayaz Akram, Mohammad Alian, Rico Amslinger, Matteo Andreozzi, Adria
Armejach, Nils Asmussen, Srikant Bharadwaj, Gabe Black, Gedare Bloom, Bobby R. Bruce, Daniel Rodrigues Car-
valho, Jerénimo Castrillén, Lizhong Chen, Nicolas Derumigny, Stephan Diestelhorst, Wendy Elsasser, Marjan Fari-
borz, Amin Farmahini Farahani, Pouya Fotouhi, Ryan Gambord, Jayneel Gandhi, Dibakar Gope, Thomas Grass, Bagus
Hanindhito, Andreas Hansson, Swapnil Haria, Austin Harris, Timothy Hayes, Adrian Herrera, Matthew Horsnell,
Syed Ali Raza Jafri, Radhika Jagtap, Hanhwi Jang, Reiley Jeyapaul, Timothy M. Jones, Matthias Jung, Subash Kan-
noth, Hamidreza Khaleghzadeh, Yuetsu Kodama, Tushar Krishna, Tommaso Marinelli, Christian Menard, Andrea
Mondelli, Tiago Miick, Omar Naji, Krishnendra Nathella, Hoa Nguyen, Nikos Nikoleris, Lena E. Olson, Marc S. Orr,
Binh Pham, Pablo Prieto, Trivikram Reddy, Alec Roelke, Mahyar Samani, Andreas Sandberg, Javier Setoain, Boris
Shingarov, Matthew D. Sinclair, Tuan Ta, Rahul Thakur, Giacomo Travaglini, Michael Upton, Nilay Vaish, Ilias Vou-
gioukas, Zhengrong Wang, Norbert Wehn, Christian Weis, David A. Wood, Hongil Yoon, and Eder F. Zulian. 2020.
The Gemb5 simulator: Version 20.0+. CoRR abs/2007.03152 (2020). arXiv:2007.03152 https://arxiv.org/abs/2007.03152
Aman Shankar Mathur, Burcu Kulahcioglu Ozkan, and Rupak Majumdar. 2018. IDeA: An immersive debugger for ac-
tors. In Proceedings of the 17th ACM SIGPLAN International Workshop on Erlang (Erlang’18). Association for Computing
Machinery, New York, NY, 1-12. https://doi.org/10.1145/3239332.3242762

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1145/344588.344618
https://doi.org/10.1109/MC.2006.180
https://doi.org/10.1145/3453652
http://arxiv.org/abs/2109.07771
https://arxiv.org/abs/2109.07771
http://ptolemy.eecs.berkeley.edu/publications/papers/08/DataflowWithFiring/
https://doi.org/10.1109/PROC.1987.13876
https://doi.org/10.1109/5.381846
https://doi.org/10.1145/1289927.1289949
https://doi.org/10.1109/ASPDAC.2010.5419677
https://doi.org/10.1145/3453483.3454073
https://doi.org/10.1145/2043556.2043587
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2020/EECS-2020-235.html
https://doi.org/10.1145/3448128
http://arxiv.org/abs/2007.03152
https://arxiv.org/abs/2007.03152
https://doi.org/10.1145/3239332.3242762

48:28 C. Menard et al.

[64] Erik Meijer. 2010. Reactive extensions (Rx): Curing your asynchronous programming blues. In ACM SIGPLAN Com-
mercial Users of Functional Programming (CUFP’10). ACM, New York, NY, Article 11, 1 pages.

[65] Christian Menard, Andrés Goens, Marten Lohstroh, and Jeronimo Castrillon. 2020. Achieving determinism in adaptive
AUTOSAR. In Proceedings of the Design, Automation and Test in Europe Conference (DATE’20).

[66] Timothy Merrifield, Joseph Devietti, and Jakob Eriksson. 2015. High-performance determinism with total store or-
der consistency. In Proceedings of the 10th European Conference on Computer Systems (EuroSys’15). Association for
Computing Machinery, New York, NY, Article 31, 13 pages. https://doi.org/10.1145/2741948.2741960

[67] Timothy Merrifield, Sepideh Roghanchi, Joseph Devietti, and Jakob Eriksson. 2019. Lazy determinism for faster de-
terministic multithreading. In Proceedings of the 24th International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS’19). Association for Computing Machinery, New York, NY, 879-891.
https://doi.org/10.1145/3297858.3304047

[68] Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini. 2019. A fault-tolerant programming model for
distributed interactive applications. Proceedings of the ACM on Programming Languages OOPSLA (2019), 1-29.

[69] Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard Liaw, Eric Liang, William Paul, Michael I.
Jordan, and Ion Stoica. 2017. Ray: A distributed framework for emerging Al applications. CoRR abs/1712.05889 (2017).
arXiv:1712.05889 http://arxiv.org/abs/1712.05889

[70] Madanlal Musuvathi, Shaz Qadeer, Thomas Ball, Gerard Basler, Piramanayagam Arumuga Nainar, and Tulian Neamtiu.
2008. Finding and reproducing Heisenbugs in concurrent programs. In OSDI, Vol. 8.

[71] Walid A. Najjar, Edward A. Lee, and Guang R. Gao. 1999. Advances in the dataflow computational model. Parallel
Computing 25, 13-14 (Dec. 1999), 1907-1929.

[72] Bruce Jay Nelson. 1981. Remote Procedure Call. Ph.D. Dissertation.

[73] Preeti Ranjan Panda. 2001. SystemC: A modeling platform supporting multiple design abstractions. In Proceedings of
the 14th International Symposium on Systems Synthesis (ISSS°01). Association for Computing Machinery, New York,
NY, 75-80. https://doi.org/10.1145/500001.500018

[74] Maxime Pelcat, Karol Desnos, Julien Heulot, ClAlment Guy, Jean-FranAgois Nezan, and Slaheddine Aridhi. 2014.
Preesm: A dataflow-based rapid prototyping framework for simplifying multicore DSP programming. In 2014 6th
European Embedded Design in Education and Research Conference (EDERC’14). 36-40. https://doi.org/10.1109/EDERC.
2014.6924354

[75] R.Perrey and M. Lycett. 2003. Service-oriented architecture. In 2003 Symposium on Applications and the Internet Work-
shops. IEEE, 116-119. https://doi.org/10.1109/SAINTW.2003.1210138

[76] Andy Pimentel, Cagkan Erbas, and Simon Polstra. 2006. A systematic approach to exploring embedded system archi-
tectures at multiple abstraction levels. IEEE Transactions on Computers 55, 2 (2006), 99-112. https://doi.org/10.1109/
TC.2006.16

[77] Aleksandar Prokopec. 2018. Pluggable scheduling for the reactor programming model. In Programming with Actors:
State-of-the-art and Research Perspectives, Alessandro Ricci and Philipp Haller (Eds.). Springer International Publishing,
125-154.

[78] Claudius Ptolemaeus. 2012. System Design, Modeling, and Simulation Using Ptolemy II Ptolemy.org, Berkeley, CA.
http://ptolemy.org/books

[79] Raymond Roestenburg, Rob Bakker, and Rob Williams. 2016. Akka in Action. Manning Publications Co.

[80] Tim Schmidt, Guantao Liu, and Rainer Démer. 2017. Exploiting thread and data level parallelism for ultimate parallel
systemc simulation. In Proceedings of the 54th Annual Design Automation Conference 2017 (DAC’17). Association for
Computing Machinery, New York, NY, Article 79, 6 pages. https://doi.org/10.1145/3061639.3062243

[81] Christoph Schumacher, Rainer Leupers, Dietmar Petras, and Andreas Hoffmann. 2010. ParSC: Synchronous parallel
SystemC simulation on multi-core host architectures. In Proceedings of the 8th International Conference on Hardware/-
Software Codesign and System Synthesis (CODES/ISSS’10). ACM, 241-246. https://doi.org/10.1145/1878961.1879005

[82] Koushik Sen. 2008. Race directed random testing of concurrent programs. SIGPLAN Notices 43, 6 (June 2008), 11-21.
https://doi.org/10.1145/1379022.1375584

[83] Lui Sha, Abdullah Al-Nayeem, Mu Sun, José Meseguer, and Pete C. Olveczky. 2009. PALS: Physically Asynchronous
Logically Synchronous Systems. Technical Report. University of Illinois. http://hdl.handle.net/2142/11897

[84] Kazuhiro Shibanai and Takuo Watanabe. 2017. Actoverse: A reversible debugger for actors. In Proceedings of the 7th
ACM SIGPLAN International Workshop on Programming Based on Actors, Agents, and Decentralized Control (AGERE’17).
Association for Computing Machinery, New York, NY, 50-57. https://doi.org/10.1145/3141834.3141840

[85] Marjan Sirjani, Ali Movaghar, Amin Shali, and Frank S. de Boer. 2004. Modeling and verification of reactive systems
using Rebeca. Fundamenta Informaticae 63, 4 (2004), 385-410.

[86] Samira Tasharofi, Peter Dinges, and Ralph E. Johnson. 2013. Why do Scala developers mix the actor model with other
concurrency models? In European Conference on Object-oriented Programming.

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1145/2741948.2741960
https://doi.org/10.1145/3297858.3304047
http://arxiv.org/abs/1712.05889
http://arxiv.org/abs/1712.05889
https://doi.org/10.1145/500001.500018
https://doi.org/10.1109/EDERC.2014.6924354
https://doi.org/10.1109/SAINTW.2003.1210138
https://doi.org/10.1109/TC.2006.16
http://ptolemy.org/books
https://doi.org/10.1145/3061639.3062243
https://doi.org/10.1145/1878961.1879005
https://doi.org/10.1145/1379022.1375584
http://hdl.handle.net/2142/11897
https://doi.org/10.1145/3141834.3141840

High-performance Deterministic Concurrency Using LINGUA FRANCA 48:29

[87] Samira Tasharofi, Rajesh K. Karmani, Steven Lauterburg, Axel Legay, Darko Marinov, and Gul Agha. 2012. TransDPOR:
A novel dynamic partial-order reduction technique for testing actor programs. In Formal Techniques for Distributed
Systems, Holger Giese and Grigore Rosu (Eds.). Springer, Berlin, 219-234.

[88] Samira Tasharofi, Michael Pradel, Yu Lin, and Ralph Johnson. 2013. Bita: Coverage-guided, automatic testing of actor
programs. In 28th International Conference on Automated Software Engineering (ASE’13). 114-124. https://doi.org/10.
1109/ASE.2013.6693072

[89] William Thies, Michal Karczmarek, and Saman Amarasinghe. 2002. Streamlt: A language for streaming applications.

In Lecture Notes in Computer Science 2304. https://doi.org/10.1007/3-540-45937-5_14

Stefan Tilkov and Steve Vinoski. 2010. Node.js: Using javascript to build high-performance network programs. IEEE

Internet Computing 14, 6 (2010), 80-83.

[91] Carmen Torres Lopez, Robbert Gurdeep Singh, Stefan Marr, Elisa Gonzalez Boix, and Christophe Scholliers. 2019.
Multiverse debugging: Non-deterministic debugging for non-deterministic programs (brave new idea paper). In 33rd
European Conference on Object-oriented Programming (ECOOP’19). 27:1-27:30. https://doi.org/10.4230/LIPIcs. ECOOP.
2019.27

[92] Carmen Torres Lopez, Stefan Marr, Elisa Gonzalez Boix, and Hanspeter Mossenbock. 2018. A study of concurrency
bugs and advanced development support for actor-based programs. InProgramming with Actors: State-of-the-art and
Research Perspectives. Springer International Publishing, Cham, 155-185. https://doi.org/10.1007/978-3-030-00302-9_6

[93] Tom Van Cutsem, Elisa Gonzalez Boix, Christophe Scholliers, Andoni Lombide Carreton, Dries Harnie, Kevin Pinte,
and Wolfgang De Meuter. 2014. AmbientTalk: Programming responsive mobile peer-to-peer applications with actors.
Computer Languages, Systems & Structures 40 (2014), 112-136.

[94] Reinhard von Hanxleden, Edward A. Lee, Hauke Fuhrmann, Alexander Schulz-Rosengarten, Séren Domrés, Marten
Lohstroh, Soroush Bateni, and Christian Menard. 2022. Pragmatics twelve years later: A report on Lingua Franca. In
11th International Symposium on Leveraging Applications of Formal Methods. 60-89.

[95] Jixiang Yang and Qingbi He. 2018. Scheduling parallel computations by work stealing: A survey. International Journal
of Parallel Programming 46, 2 (April 2018), 173-197. https://doi.org/10.1007/s10766-016-0484-8

[96] Bernard Zeigler. 1976. Theory of Modeling and Simulation. Wiley Interscience, New York.

[97] Bo Sang, Patrick Eugster, Gustavo Petri, Srivatsan Ravi, and Pierre-Louis Roman. 2020. Scalable and serializable
networked multi-actor programming. Proc. ACM Program. Lang. 4, OOPSLA, (November 2020), 30 pages. https:
//doi.org/10.1145/3428266

[90

-

Received 9 February 2023; revised 30 June 2023; accepted 18 August 2023

ACM Transactions on Architecture and Code Optimization, Vol. 20, No. 4, Article 48. Publication date: October 2023.

https://doi.org/10.1109/ASE.2013.6693072
https://doi.org/10.1007/3-540-45937-5_14
https://doi.org/10.4230/LIPIcs.ECOOP.2019.27
https://doi.org/10.1007/978-3-030-00302-9_6
https://doi.org/10.1007/s10766-016-0484-8
https://doi.org/10.1145/3428266

