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Tiered distributed computing systems, where components run in Internet-of-things devices, in edge 
computers, and in the cloud, introduce unique difficulties in maintaining consistency of shared data while 
ensuring availability. A major source of difficulty is the highly variable network latencies that applications 
must deal with. It is well known in distributed computing that when network latencies rise sufficiently, one 
or both of consistency and availability must be sacrificed. This paper quantifies consistency and availability 
and gives an algebraic relationship between these quantities and network latencies. The algebraic relation 
is linear in a max-plus algebra and supports heterogeneous networks, where the communication latency 
between 2 components may differ from the latency between another 2 components. We show how to 
make use this algebraic relation to guide design, enabling software designers to specify consistency and 
availability requirements, and to derive from those the requirements on network latencies. We show how 
to design systems to fail in predictable ways when the network latency requirements are violated, by 
choosing to sacrifice either consistency or availability.

Introduction

Brewer’s well-known CAP theorem states that in the presence of 
network partitioning (P), a distributed system must sacrifice at 
least one of availability (A) or consistency (C) [1–3]. Consistency 
is where distributed components agree on the value of shared 
state, and availability is the ability to respond to user requests 
using and/or modifying that shared state. All networks have 
latency, and “network partitioning” is just an extreme case, where 
latency becomes unbounded.

We have recently discovered that consistency, availability, and 
network latency can all be quantified, and that there is a simple 
algebraic relationship between them [4]. We call this relationship 
the Consistency, Availability, apparent Latency (CAL) theorem, 
replacing “Partitioning” with “Latency”. The relation is a linear 
system of equations in a max-plus algebra, where the structure 
of the equations reflects the communication topology of an 
application. In particular, the matrix form of the equations ena-
bles compact modeling of heterogeneous networks, where the 
latencies between pairs of nodes can vary considerably.

It is becoming increasingly common to design systems to 
operate in tiered, heterogeneous networks. Internet-of-things 
and embedded devices, such as factory robots, medical devices, 
autonomous vehicle controllers, and security systems, may con-
nect to edge computers over wired or wireless links. Those edge 
computers, in turn, may connect to cloud-based services that 
enable wide area aggregation and scalability, for example, for 
machine learning. The various networks involved may have 
widely varying characteristics, yielding enormously different 
latencies and latency variability. A time-sensitive network (TSN) 

[5] on a factory floor, for example, may yield reliable latencies 
on the scale of microseconds between edge computers, whereas 
wide-area networks (WANs) may yield highly variable latencies 
that can extend up to tens of seconds [6]. Moreover, any of these 
networks can fail, yielding unbounded latencies, and systems 
need to be designed to handle such failures gracefully.

The CAL theorem will allow us to model a heterogeneous net-
work topology interconnecting a wide variety of nodes. We will 
use the Lingua Franca (LF) coordination language [7] to specify 
programs that explicitly define availability and consistency require-
ments for a distributed application. We can then use the CAL 
theorem to derive the network latency bounds that make meeting 
the requirements possible. This can be used to guide decisions 
about which services must be placed in the end devices, which can 
be placed on an edge computer, and which can be put in the cloud. 
Moreover, we will show how, once such a system is deployed, vio-
lations of the network latency requirements, which will make it 
impossible to meet the consistency and availability requirements, 
can be detected. System designers can build in to the application 
fault handlers that handle such failures gracefully.

The relationships between consistency, availability, and latency 
can be used to derive networking requirements from availability 
and/or consistency requirements, or to derive availability and/or 
consistency properties from assumptions about the network. In 
practice, any set of networking requirements or assumptions 
about network latencies may be violated in the field. We will show 
how systems can be designed to fail in predictable ways when 
this occurs.

The CAP theorem itself is rather obvious and very much 
part of the folklore in distributed computing. By quantifying 
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it and relating it to individual point-to-point latencies, the 
CAL theorem elevates the phenomenon from folklore to an 
engineering principle, enabling rigorous design with clearly 
stated assumptions. In this paper, we show how to carry out 
such rigorous design using the LF coordination language [7], 
which supports explicit representations of availability and 
consistency requirements. Moreover, we show how to detect 
situations where the networking requirements that are implied 
by the availability and consistency requirements cannot be 
met, for example when the network fails. We show how LF 
can provide exception handlers that enable the designer to 
explicitly choose how to handle such fault conditions, for 
example, by reducing accuracy [6] or by switching to fail-safe 
modes of operation.

Motivating application
Kuhn [8] gives a simple application that maintains bank bal-
ances in a distributed database and accepts deposits and with-
drawals at distributed locations like automatic teller machines 
(ATMs). Suppose that a customer shows up and wants to with-
draw w dollars. This needs to be compared against the current 
balance x in the account to prevent an overdraft. However, there 
may be near-simultaneous withdrawals occurring at other loca-
tions. A conservative approach would have each ATM access a 
centralized database before dispensing cash. However, the CAP 
theorem tells us that a consequence of this design choice is that 
the ATM will become unavailable in the event of a network 
failure. The CAL theorem enables us to calculate the loss of avail-
ability as a function of network latencies. In practice, network 
latencies over a WAN can get into tens of seconds [6], which may 
still be acceptable for the ATM application. But it it not hard to 
imagine applications with more stringent timing requirements, 
such as control of autonomous vehicles that share state through 
a centralized database. We will use Kuhn’s example because of 
its simplicity and understandability, but please understand that 
the principles apply over a wide range of timing requirements.

If the CAL theorem yields unacceptable availability for real-
istic network latencies, then a design alternative could use edge 
computers, e.g., at bank branch offices, with replicas of the data-
base that can respond with much lower network latencies. But 
then consistency becomes a major issue. If multiple deposits and 
withdrawals can occur on the same account at different locations 
around the world, then a strong form of consistency requires 
agreement on the order in which these deposits and withdrawals 
occur. If all locations agree on this order, the bank can assure 
that the balance never drops below zero by denying any with-
drawal that would make it so. The CAL theorem will reveal that, 
in such an architecture, availability will still depend on WAN 
latencies and may still yield unacceptable availability.

Here, system designers face a business choice. They can relax 
consistency, thereby improving availability at the cost of some 
business risk, or they can enforce strong consistency, risking 
irate customers when the network underperforms. We will show 
how to build programs that explicitly relax consistency by a 
measured amount, and we will use the CAL theorem to show 
how this improves availability for a given profile on network 
latencies.

Relaxing consistency by a measured amount means that 
inconsistencies are temporary. If such a relaxation of bank policy 
allows the balance to drop below zero, all branches will eventually 
agree on the number of times that this has occurred, so they will 
all agree on what overdraft charges to apply.

The programs we give can also explicitly specify availability 
requirements. For example, the program may give the ATM 
computer a deadline of 500 ms to respond to any user request. 
With the consistency requirements also specified in the pro-
gram, the CAL theorem can be used to derive the point-to-point 
network latency bounds beyond which maintaining the specified 
availability and consistency becomes impossible. When network 
latency gets larger than these bounds, the program requirements 
can no longer be met. We describe a distributed coordinator that 
detects such violations and enables the system designer to handle 
them as faults. How to handle such faults is again a business 
decision, so it is important to use a software framework that 
enables detection and handling of such faults. By enabling 
explicit design choices, the programmer can specify whether an 
ATM will deny dispensing cash because of a temporary network 
failure. How big is the risk to the bank if the ATM dispenses cash 
on the basis of possibly inconsistent data? The trade-off between 
risk and customer service is a business decision.

Kuhn’s application admits a whole range of design choices, 
ranging from strong consistency to highest availability. More
over, the technique generalizes to many kinds of applications. 
For example, the merge operations that combine updates to a 
shared variable are associative and commutative if overdrafts 
are allowed, and not otherwise. Our technique accommodates 
merge operations that are associative, commutative, both, or 
neither. Hence, this example enables exploration with a variety 
of patterns.

Related work
Gilbert and Lynch [9] proved 2 variants of the CAP theorem, 
one strong result for asynchronous networks [10, chapter 8] and 
one weaker result for partially synchronous networks. Abadi 
[11] argues that CAP is irrelevant when there are no network 
partitions, but Brewer [2] points out that network partitions are 
not a binary property; all networks have latency, and a complete 
communication failure is just the limiting case when the latency 
becomes unbounded.

The only prior attempt we are aware of to quantify the CAP 
theorem was done by Yu and Vahdat [12], who quantified avail-
ability and consistency and show a trade-off between them. Their 
quantifications, however, are in terms of fractions of satisfied 
accesses (availability) and fractions of out-of-order writes (incon-
sistency), and they show that finding the availability as a function 
of consistency is NP-hard. In contrast, the CAL theorem defines 
these quantities as time intervals and gives a strikingly simpler 
relationship, one that is linear in a max-plus algebra.

Organization of the paper
In the “Materials and Methods” section, to make this paper self 
contained, we review the role of time and the use of timestamps; 
formally define inconsistency, unavailability, and network latency; 
and give the CAL theorem, which relates these three quantities 
[4]. In the “Trading off consistency and availability in practice” 
section, we explain how a system designer can use the CAL 
theorem to guide system design, give complete programs illus-
trating the tradeoffs implied by the CAL theorem, and show 
how the LF coordination language supports being explicit about 
these tradeoffs. In the “Results and Discussion” section, we 
describe two implementations: one that bounds inconsistency 
and one that bounds unavailability in the face of network par-
titions. The table above provides a summary of notation and 
acronyms used in the paper.
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Materials and Methods

Logical and physical times
We use two distinct notions of time, logical and physical. A 
physical time T ∈ � is an imperfect measurement of time taken 
from some clock somewhere the system. The set �  contains all 
the possible times that a physical clock can report. We assume 
that �  is totally ordered and includes two special members: 
∞ , −∞ ∈ � , larger and smaller than any time any clock can 
report. We will occasionally make a distinction between the 
set � of time intervals (differences between two times) and time 
values T ∈ �. It is often convenient to have the set �  represent 
a common definition of physical time, such as Coordinated 
Universal Time (UTC) because, otherwise, comparisons between 
times will not correlate with physical reality. (In LF, �  and � are 
both the set of 64-bit integers. Following the Portable Operating 
System Interface (POSIX) standard, T ∈ �  is the number of 
nanoseconds that have elapsed since midnight, 1970 January 1, 
Greenwich mean time. The largest and smallest 64-bit integers 
represent ∞ and −∞, respectively. As a practical matter, these 
numbers will overflow in systems running near the year 2270.)

For logical time, we use an element that we call a tag g of a 
totally ordered set �. Each event in a distributed system is asso-
ciated with a tag g ∈ �. From the perspective of any component 
of a distributed system, the order in which events occur is defined 
by the order of their tags. If two distinct events have the same tag, 
we say that they are logically simultaneous. We assume that the 
tag set � also has largest and smallest elements. (In LF, � = � × �

, where � is the set of 32-bit unsigned integers representing the 
microstep of a superdense time system [13–15]. Following the 
tagged-signal model [16], we use the term tag rather than times-
tamp to allow for such a richer model of logical time. For the 
purposes of this paper, however, the microsteps will not matter, 
and hence, you can think of a tag as a timestamp and ignore the 
microstep.) We will consistently denote tags with a lower case 
g ∈ � and measurements of physical time T ∈ � with upper case.

To combine tags with physical times, we assume a mono-
tonically nondecreasing function  :�→ � that gives a physical 
time interpretation to any tag. For any tag g, we call 

(
g
)
 its 

timestamp. (In LF, for any tag g = (t,m) ∈ �, 
(
g
)
= t. Hence, 

to get a timestamp from a tag, you just have to ignore the micro-
step.) The set � also includes largest and smallest elements such 
that 

(
∞�

)
=∞�  and 

(
−∞�

)
= −∞� , where the sub-

scripts disambiguate the infinities.
An external input, such as a user attempting a withdrawal 

at an ATM, will be assigned a tag g such that 
(
g
)
= T, where 

T is a measurement of physical time taken from the local clock 
where the input first enters the system. (In LF, this tag is normally 
given microstep 0, g = (T, 0).) For these tags to be meaningful 
globally, some effort must be put into clock synchronization. The 
extent to which clocks must be synchronized is also application 
dependent. We will show that clock synchronization error is 
indistinguishable from network latency, and hence the CAL 
theorem can also provide guidance on the extent to which clocks 
must be synchronized.

The CAL theorem
Following Schwartz and Mattern [17], assume we are given a 
trace of an execution of a distributed system consisting of N 
sequential processes, where each process is an unbounded 
sequence of (tagged) events. Although the theory is developed 
for traces, the CAL theorem can be used for programs, not just 
traces because a program is formally a family of traces. The k-th 
event of a process is associated with a tag gk and a physical time 
Tk. The physical time Tk is the reading on a local clock at the 
time where the event starts being processed. The events in a 
process are required to have nondecreasing tags and increasing 
physical times. That is, if gk is the tag and Tk is the physical time 
of the k-th event, then gk ≤ gk + 1 and Tk < Tk + 1.

For exposition, we focus on events that read and update a 
single shared variable x, such as the balance of a bank account. 

Table. Notation and acronyms used in this paper.

A
i

Unavailability at node i ATM Automatic teller machine

Cij Inconsistency from j to i CAL Consistency, Availability, apparent Latency

D Logical delay CAP Consistency, Availability, Partitioning tolerance

Eij Clock sync error from j to i HLA High-level architecture

g Tag LF Lingua Franca

� Set of tags NTP Network Time Protocol

Γ Topology matrix PTAG Provisional tag advance grant

� Set of time intervals PTP Precision Time Protocol

Lij Network latency from j to i RTI Run-time infrastructure

ij Apparent latency from j to i STA Safe to advance

Oi Processing offset at i STAA Safe to assume absent

t Logical time TAG Tag advance grant

T Physical time TAN Time advance notice

� Set of times TSN Time-sensitive network

 Map from tag to time WAN Wide-area network

Xij Execution time from j to i
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Within each process, a read event with tag g yields the value of 
a shared variable x. The shared variable x is stored as a local 
copy, which has previously acquired a value via a a write event 
or an accept event in the same process. An accept event receives 
an updated value of the variable from the network. A read event 
with tag g will yield the value assigned by the write or accept 
event with the largest tag g ′ where g ′ ≤ g. If g ′ = g, then we 
require that T ′ < T, where T′ is the physical time of the write 
or accept event and T is the physical time of the read event. 
This requirement ensures that a read event reads a value that 
was written at an earlier physical time.

A send event is where a process launches into the network 
an update to a shared variable x, for example the amount of a 
deposit or withdrawal. Like a read event, the send event has a 
tag greater than or equal to that of the write or accept event that 
it is reporting and a physical time greater than that of the write 
or accept event. An accept event that receives the update sent 
by the send event has a tag greater than or equal to that of the 
send event. The physical time of the accept event relative to the 
originating send event is unconstrained, however, because these 
times likely come from distinct physical clocks.

Definition 1. Inconsistency. For each write event on process 
j with tag gj, let gi be the tag of the corresponding accept event 
on process i or ∞ if there is no corresponding accept event. The 
inconsistency Cij ∈ � from j to i is defined to be

where the maximization is over all write events on process j. If 
there are no write events on j, then we define Cij = 0 .

It is clear that Cij ≥ 0. If Cij = 0 for all i and j, we have strong 
consistency. We will see that this strong consistency comes at 
a price in availability; in particular, network failures can result 
in unbounded unavailability. If Cij is bounded, then we have 
eventual consistency, and the bound quantifies “eventual”.

Unavailability, A, is a measure of the time it takes for a sys-
tem to respond to user requests [18]. A user request is any 
external event that originates from outside the distributed sys-
tem that requires reading the shared variable to provide a 
response. Assume that a user request triggers a read event in 
process i with tag gi such that its timestamp 

(
gi
)
 is the reading 

of a local clock when the external event occurs. Let Ti be the 
physical time of the read event, i.e., the physical time at which 
the read is processed. Hence, Ti ≥ 

(
gi
)
.

Definition 2. Unavailability. For each read event on process 
i, let gi be its tag and Ti be the physical time at which it is pro-
cessed. The unavailability Ai ∈ � at process i is defined to be

where the maximization is over all read events on process i that 
are triggered by user requests. If there are no such read events 
on process i, then Ai = 0.

Because we are considering only read events that are trig-
gered from outside the software system, 

(
gi
)
≤ Ti, so Ai ≥ 0. 

If Ai = 0, then we have maximum availability (minimum 

unavailability). This situation arises when external triggers cause 
immediate reactions.

We require that each process handle events in tag order. This 
gives the overall program a formal property known as causal 
consistency, which is analyzed in depth by Schwartz and Mattern. 
They define a causality relation, written e1 → e2, between events 
e1 and e2 to mean that e1 can causally affect e2. The phrase “caus-
ally affect” is rather difficult to pin down (see Lee [19, Chapter 11] 
for the subtleties around the notion of causation), but, intuitively, 
e1 → e2 means e2 cannot behave as if e1 had not occurred. Put 
another way, if the effect of an event is reflected in the state of a 
local replica of a variable x, then any cause of the event must also 
be reflected. Put yet another way, an observer must never observe 
an effect before its cause.

Formally, the causality relation of Schwartz and Mattern is 
the smallest transitive relation such that e1 → e2 if e1 precedes 
e2 in a process, or e1 is the sending of a value in one process 
(event type sx) and e2 is the acceptance of the value in another 
process (event type ax). If neither e1 → e2 nor e2 → e1 holds, then 
we write e1‖e2 or e2‖e1 and say that e1 and e2 are incomparable. 
The causality relation is identical to the “happened before” rela-
tion of Lamport et al. [20], but Schwartz and Mattern prefer the 
term “causality relation” because even if e1 occurs unambigu-
ously earlier than e2 in physical time, they may nevertheless be 
incomparable, e1‖e2.

The causality relation is a strict partial order. Schwartz and 
Mattern use their causality relation to define a “consistent 
global snapshot” of a distributed computation to be a subset S 
of all the events E in the execution that is a downset, meaning 
that if e′ ∈ S and e → e′, then e ∈ S (this was previously called 
a “consistent cut” by Mattern [21]).

To maintain causal consistency, it is sufficient that each pro-
cess handle events in order of nondecreasing tags. For this rea-
son, in a trace, a read or write event triggered by an external 
input may have a physical time T that is significantly larger than 
its tag’s timestamp 

(
g
)
. While 

(
g
)
 is determined by the phys-

ical clock at the time the external input appears, the physical 
time at which the event is actually processed may have to be later 
to ensure that all events with earlier tags have been processed. 
This motivates the following definition:

Definition 3. Processing Offset. For process i, the processing 
offset Oi ∈ � is

where Ti and gi are the physical time and tag, respectively, of a 
write event on process i that is triggered by a local external 
input (and hence assigned a timestamp drawn from the local 
clock). The maximization is over all such write events in process 
i. If there are no such write events, then Oi = 0.

The processing offset closely resembles the unavailability of 
Definition 2, but the former refers to write events and the latter 
refers to read events. The processing offset, by definition, is 
greater than or equal to zero.

When a write to a shared variable occurs in process j, some 
time will elapse before a corresponding accept event on process 
i triggers a write to its local copy of the shared variable. This 
motivates the following definition:

Definition 4. Apparent Latency. Let gj be the tag of a write 
event in process j that is triggered by an external input at j 

(1)Cij =max( (gi) −  (gj)),

(2)Ai =max
(
Ti − 

(
gi
))
,

(3)Oi =max
(
Ti − 

(
gi
))
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(so  (gj) is the physical time of that external input). Let Ti be 
the physical time of the corresponding accept event in process 
i (or ∞ if there is no such event). (If i = j, we assume Ti is the 
same as the physical time of the write event.) The apparent latency 
or just latency ij ∈ � for communication from j to i is

where maximization is over all such write events in process j. 
If there are no such write events, then ij = 0.

Note that Ti and  (gj) are physical times on two different 
clocks if i ≠ j, so this apparent latency is an actual latency only 
if those clocks are perfectly synchronized. Unless the two pro-
cesses are actually using the same physical clock, they will never 
be perfectly synchronized. Hence, the apparent latency may 
even be negative. Note that despite these numbers coming from 
different clocks, if tags are sent along with messages, this appar-
ent latency is measurable.

The apparent latency is a sum of four components,

where Xij is execution time overhead at node j for sending a 
message to node i, Lij is the network latency from j to i, and Eij 
is the clock synchronization error. The three latter quantities 
are indistinguishable and always appear summed together, so 
there is no point in breaking apparent latency down in this way. 
Moreover, these latter three quantities would have to be measured 
with some physical clock, and it is not clear what clock to use. 
The apparent latency requires no problematic measurement since 
it explicitly refers to local clocks and tags.

The clock synchronization error can be positive or nega-
tive, whereas Oj, Xij, and Lij are always nonnegative. If Eij is a 
sufficiently large negative number, the apparent latency will itself 
also be negative. Because of the use of local clocks, the accept 
event will appear to have occurred before the user input that 
triggered it. This possibility is unavoidable with imperfect clocks.

We have derived the overall unavailability for node i from 
the above definitions [4], yielding the following theorem:

Theorem 1. Given a trace, the unavailability at process i is, 
in the worst case,

where Oi is the processing offset, ij is apparent latency (which 
includes Oj), and Cij is the inconsistency.

The proof of this theorem follows immediately from the care-
fully constructed definitions.

This theorem can be put in an elegant form using max-plus 
algebra [22]. Let N be the number of processes, and define an 
N × N matrix Γ such that its elements are given by

That is, from Eq. 5, the i, j-th entry in the matrix is an assumed 
bound on Xij + Lij + Eij (execution time, network latency, and 
clock synchronization error), adjusted downwards by the spec-
ified tolerance for inconsistency Cij on the communication 
from node j to node i.

Let A be a column vector with elements equal to the unavailabil-
ities Ai and O be a column vector with elements equal to the pro-
cessing offsets Oi. Then, the CAL theorem Eq. 6 can be written as

where the matrix multiplication is in the max-plus algebra and 
⊕ is addition in the max-plus algebra. This can be rewritten as

where I is the identity matrix in max-plus, which has zeros along 
the diagonal and −∞ everywhere else. Hence, unavailability 
is a simple linear function of the processing offsets, where the 
function is given by a matrix that depends on the network laten-
cies, clock synchronization error, execution times, and specified 
inconsistency in a simple way.

The matrix Γ encodes pairwise latencies between each pair of 
nodes in a system adjusted by a specified tolerance for inconsist-
ency. These latencies include not just network latencies but also 
execution times that affect availability and clock synchronization 
error, which is indistinguishable from network latency. Because it 
encodes these latencies pairwise, the max-plus formulation Eq. 9 
compactly accounts for tiered, heterogeneous networks. It can com-
bine lower latencies for communication with edge devices, higher 
latencies for communication over a WAN, and heterogeneous mix-
tures of clock synchronization technologies, such as NTP (Network 
Time Protocol) [23,24] on cloud services and PTP (Precision Time 
Protocol) [25,26] on edge devices. It can also accommodate heter-
ogeneous networking technologies, such as wireless links to mobile 
devices, TSNs (Time Sensitive Networks) [5] linking edge devices, 
and the open internet connecting cloud devices.

Terminology
Some caution is in order when relating our work to prior inter-
pretations of the CAP theorem. Kleppmann [18] critiques this 
prior work for loose definitions of consistency, availability, and 
partitioning. He points out that availability is loosely defined as 
the “proportion of time during which a service is able to success-
fully handle requests, or the proportion of requests that receive 
a successful response”. He then critiques this definition, pointing 
out that “it is nonsensical to say that some software package or 
algorithm is ‘available’ or ‘unavailable’” and suggests replacing 
availability with a measure of the time it takes to respond to user 
requests, which he calls “latency”. We have adopted that sugges-
tion here, but we reserve the word “latency” for our quantitative 
measure of delays due to networking and execution time. Hence, 
agreeing with Kleppmann’s critique, our “unavailability” is not 
a proportion of time the system is down but rather is the time it 
takes to produce a response to a user. When a user request fails 
altogether, we define the unavailability to be infinite. Similarly, 
when the network fails altogether (partitioning), the “latency” 
in CAL becomes infinite.

Trading off consistency and availability in practice
LF [7] is a polyglot coordination language that orchestrates con-
current and distributed programs written in any of several target 
languages (as of this writing, C, C++, Python, TypeScript, and 
Rust). LF supports a full range of explicit tradeoffs between 
availability and consistency for a wide variety of applications. In 
this section, we give a small collection of complete LF programs 
that illustrate these trade-offs using Kuhn’s ATM example [8].

(4)ij =max(Ti −  (gj)),

(5)ij = Oj + Xij + Lij + Eij,

(6)Ai =max

(

Oi, max
j∈N

(

ij − Cij

)

)

,

(7)Γij = ij − Cij −Oj = Xij + Lij + Eij − Cij.

(8)A = O⊕ ΓO,

(9)A = (I⊕ Γ)O,
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In LF, asynchronous external inputs to the software system 
manifest as events that are assigned tags based on a local clock 
that measures physical time. These events (and any further 
events triggered by them) will be processed in tag order by 
software components called reactors [27,28]. At every tag, the 
dependencies between the reactions of each reactor are known 
to the runtime system, and hence simultaneous events are han-
dled deterministically, and causal consistency is ensured.

For an LF program that is distributed across a network 
(called a federated program), the LF runtime system provides 
a default clock synchronization mechanism to ensure that tags 
assigned at different nodes are at least approximately based on 
a common physical time line. Once the tags are assigned, how-
ever, they lie on a logical time line that is common across the 
entire system.

If the business decision is that consistency has priority over 
availability, then the LF program is simple, as we will see (we 
develop variants of the program in this section). Each node, rep-
resenting an ATM, receives user input representing a deposit or 
withdrawal, assigns it a tag, and broadcasts it to all other nodes. 
It also accepts as inputs such broadcasts from all other nodes. 
The LF program is arranged so that before the node responds 
to a user input, it processes all updates from other nodes that 
have tags less than or equal to the tag assigned to its own user 
input. We can then use the CAL theorem to derive the resulting 
unavailability, which is a bound on the time it takes to respond 
to the user. The result is satisfyingly intuitive. For this particular 
communication pattern (all-to-all broadcast), the unavailability 
at any node is the maximum apparent latency from other nodes, 
or zero if all those apparent latencies are negative.

If the business decision is that availability is more important 
than consistency, then a small change to the LF program yields 
an alternative design. In LF, a programmer can manipulate the 
tags of events, adding a logical delay to a message sent from 
one node to another. If the programmer adds a logical delay D 
to each broadcast, then the CAL theorem tells us that the una-
vailability for this program structure becomes

at the i-th node. If D is larger than all apparent latencies, then 
the unavailability is minimized to zero.

An intermediate design choice may be preferred. For example, 
a system designer may start from a requirement that unavaila-
bility not exceed, say, 100 ms, and that inconsistency not exceed, 
say 1 s. From this, the CAL theorem gives the designer a bound 
on apparent latency. Setting D = 1 s and Ai = 100 ms in Eq. 10, 
we derive the requirement that

		            
ij ≤ 1.1 s.

From Eq. 5, we see that apparent latency includes four com-
ponents. The processing offsets for this application are all zero, 
Oi = 0, as we will see in the “Results and Dicussion” section, so 
the remaining terms, network latency, clock synchronization 
error, and execution time overhead remain. We now have a for-
mal requirement on these quantities that can guide the choice 
of a clock synchronization technology (the LF default will prob-
ably be sufficient in this case) and service-level agreements with 
network providers.

Once we have such a design, if our (now explicit) assump-
tions about network behavior are met in the field, then the 

behavior of the system will be exactly as defined. There is 
always the possibility, however, that these assumptions will be 
violated. In the “Results and Dicsussion” section, we describe 
two distinct coordination mechanisms that we have built on 
top of LF, one of which maintains consistency and the other of 
which maintains availability when the assumptions are violated. 
The CAL theorem tells that, in the presence of such violations, 
one of the two requirements must be sacrificed. Which one to 
sacrifice is again a business decision.

More complicated program structures are easily supported 
by our formalism. Kuhn’s banking example has a simple all-
to-all broadcast structure, but more interesting programs may 
have a much less uniform communication structure. That struc-
ture gets encoded in the Γ matrix, but, otherwise, the mathe-
matical formulation remains the same. A system designer can 
even apply nonuniform trade-offs, emphasizing availability for 
some particular service while emphasizing consistency for 
another.

In the next subsection, we give a brief overview of LF, fol-
lowed by complete programs realizing Kuhn’s ATM example 
[8]. (Download these programs from https://cal.lf-lang.org/.)

Brief introduction to LF
LF is a coordination language where applications are defined 
as concurrent compositions of components called reactors 
[27,28]. (The LF compiler and documentation can be found at 
https://lf-lang.org. The source code for the compiler is available 
at https://repo.lf-lang.org.) Figure 1 outlines the structure of 
an LF program. One or more reactor classes are defined with 
input ports (line 3), output ports (line 5), state variables (line 7), 
and timers and actions. We will not need timers here and will 
elaborate on actions later. If a reactor class is instantiated within 
a federation, as shown on line 18, then the instance is called a 
federate, and tagged inputs will arrive from the network at the 
input ports and be handled in tag order. Inputs are handled by 
reactions, as shown on line 11. Reactions declare their triggers, 
as on line 11, which can be input ports, timers, or actions. If a 
reaction lists an output port among its effects, then it can pro-
duce tagged output messages via that output port. The routing (10)Ai =max

(

0, max
j∈N

(

ij −D
)

)

,

Fig. 1. Structure of a federated LF program for target language L.
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of messages is specified by connections, as shown on line 20. 
The syntax and semantics will become clearer as we develop our 
specific applications.

Commutative and associative replica
We begin with a version that has an associative and commu-
tative merge operation. The first part of this version is shown 
in Fig. 2. This defines a reactor class. The first line defines the 
target language, which is the language of the program that 
the LF code generator will produce and the language in which 
the business logic of the software component is written. To min-
imize dependencies, we give our examples here with C as the 
target language.

The second line declares a new reactor class called CAReplica 
(“CA” for Commutative and Associative). This reactor has three 
inputs, defined on lines 3 through 5. The first input accepts a 
local update, an integer that is positive for a deposit and nega-
tive for a withdrawal. The second input accepts a remote update, 
which will come from some other machine somewhere on the 
network (we will generalize this later to accept an arbitrary num-
ber of remote updates). The third input accepts a query for the 
current balance.

Line 7 defines a local state variable, an integer that is the 
local copy of the balance. Line 9 defines an integer output, 
which will be a response to a query for the balance. In a strongly 
consistent design (which we will see how to construct), this 
balance will be agreed upon by all replicas at each tag.

Lines 11 through 18 give the business logic of how to han-
dle local or remote updates. The code between the delimiters 
{= … =} is ordinary C code making use of mechanisms provided 
by the LF code generator to access the inputs and state. This 
code simply checks to see which inputs are present and adjusts 
the balance accordingly. Because the operation is commutative 
and associative, it does not matter in which order these inputs 
are handled.

The figure to the right is automatically generated by the LF 
tools. (The diagram synthesis feature was created by Alexander 

Schulz-Rosengarten of Kiel University using the graphical lay-
out tools from the KIELER Lightweight Diagrams framework 
[29].) The chevrons in the figure represent reactions, and their 
dependencies on inputs and their ability to produce outputs 
are shown using dashed lines.

User
The code in Fig. 3 defines an LF reactor that stands in for an ATM 
through which a customer can make deposits or withdrawals. 
This component listens for the user to type a number on a termi-
nal and then produces that number on its output port. To keep 
things simple, there is no authentication and not much error 
checking. While obviously critical to a real ATM design, those 
aspects are irrelevant to our discussion here, so we leave them out.

Upon startup, on line 33, this reactor creates a thread that 
executes concurrently with the LF program. That thread, defined 
on lines 5 to 24, repeatedly blocks on line 10 waiting for the user 
to type something. If the user input is a valid number, then 
on line 18, the thread calls a built-in thread-safe function 
lf_schedule_int, passing it a pointer to the physical action named 
“r” and the amount entered by the user (the 0 argument is 
irrelevant to the current discussion).

The physical action r, declared on line 29, is an LF construct 
for providing external, asynchronous inputs to an LF program. 
The key is that when lf_schedule_int is called, a tag g based on 
a local measurement T of physical time, such that 

(
g
)
= T, 

is assigned to the event, which is then injected into the program 
to be handled in tag order.

The LF program reacts to the event created by the call to 
lf_schedule_int by executing the reaction given on lines 35 
through 37. This sets the output named deposit to the amount 
entered by the user.

The physical action declared on line 29 of Fig. 3 deserves more 
scrutiny. First, LF, by default, uses the system clock on the machine 
that runs each federate to assign the timestamp part 

(
g
)
 of the 

tag. As described by Bateni et al. [30], when a federated program 
is started, it performs a clock synchronization round using the 

Fig. 2. LF code defining a reactor class that is a replica in a replicated database storing a bank balance and accepting queries and updates. This version is commutative 
and associative.
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technique of Geng et al. [31]. This ensures that even if the system 
clock is set manually to some arbitrary value, when the distributed 
program starts up, all nodes will agree on the current physical 
time within a few milliseconds. LF also provides a facility for 
performing ongoing clock synchronization that can correct for 
clock drifts, but in many systems, it is not really necessary to 
enable this. We can rely instead on a built-in NTP realization, if 
that is sufficiently precise for the application.

Once a tag is assigned, the handling of the update throughout 
the distributed system is a deterministic function of that tag. 
This gives a clear semantics to the behavior of the system when 
the actual order of events originating throughout the system is 
unknown, unknowable, or ambiguous. Moreover, it enables rig-
orous regression testing, where the UserInput reactor of Fig. 3 
is replaced by event generators driven by logical clocks. Those 
logical clocks can generate events on distributed nodes that are 
deterministically ordered or even simultaneous.

Composition
We can now put together the components to get a complete, 
executable program. In Fig. 4, we define an ATM reactor that 
contains one instance each of UserInput from Fig. 3 and 
CAReplica from Fig. 2. We then define a federated reactor named 

ConsistencyFirst that creates two instances of ATM and connects 
them. Hopefully, the program, with the help of the diagram, is 
self-explanatory, with the possible exception of the new syntax 
on line 10. To the left of the arrow, the output port u.deposit is 
surrounded with ( ... )+, which, in LF syntax, indicates to use 
the port as many times as necessary to satisfy all the destinations 
given to the right of the arrow. In other words, it is a compact 
syntax for multicast. The reaction defined on lines 13 through 
17 simply prevents publishing zero-valued deposits. Hence, a 
deposit equal to zero can be used to query the current balance 
and will not generate network traffic.

Execution
When the top-level reactor in an LF program is federated, as 
it is in Fig. 4, then the code generator, instead of producing 
a single program, produces as many programs as there are 
instances of reactors within the top level reactor. In this case, 
there are two reactors within the top level, so two programs 
will be generated.

An execution of the program in Fig. 4 is shown in Fig. 5, 
where there is one terminal for each of the two ATM instances. 
The top line of each window shows the command that starts each 
instance. In the lower window, user b begins by querying the 

Fig. 3. LF component that gets user input to provide deposits and make withdrawals.
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current balance by entering “0”. The balance is zero. User b then 
deposits 100 dollars. User a then withdraws 20 dollars twice. User 
b then queries the balance again, discovering that it is now 60.

The deposits and withdrawals are handled by both ATM 
federates in the same order, defined by tags that are assigned 
when schedule is called on line 18 in Fig. 3. If two deposits 
occur with the same tag, then the reported balance by each user 
will reflect the aggregate of the two operations. That is, the two 
deposits are semantically simultaneous.

This simultaneity feature is hard to test with an interactive 
program like this, but in LF, it is easy to create a regression test 
that replaces the UserInput with timer-driven inputs, which 
gives precise control over the tags. The ability to construct such 
deterministic, distributed regression tests is one of the key 
advantages of LF.

Variants of the running example
Lest the reader conclude that we are only talking about one 
rather oversimplified example, we will now point out several 
variants of this design that are easy to build. First, the example 
in Fig. 4 has only two federates. LF has a convenient syntax, 
shown in Fig. 6, for scaling this program to any number of fed-
erates. The top-level ConsistencyFirstN reactor has a parameter 
N defined on line 5 (with default value 4) that specifies how 
many instances of the ATM reactor to create. Those instances 
are created on line 7, and each instance is assigned the value N 

to its own parameter, defined on line 11, which happens to also 
have the name “N”.

The CAReplicaN reactor is similar to CAReplica in Fig. 2, 
with the only difference being its multiport input, defined on 
line 29, which can accept N input connections. The reaction 
on lines 34 through 40 iterates over these inputs and adds to 
the balance any values it finds.

For the example in Fig. 6, it does not matter in what order 
simultaneous updates are applied because the updates are com-
mutative and associative and no replica reads the result until 
all updates have been applied. Many distributed applications 
with shared data, however, do not naturally have commutative 
and associative merge operations.

Figure 7 shows a variant where, on line 28, an update over-
writes the shared value. Such an operation is associative but not 
commutative. Here, each user update is broadcast to all nodes 
and, as before, applied before any query for the value is processed. 
If two updates are logically simultaneous, then both updates will 
appear in deterministic order at the multiport input (line 19) of 
the replica instance. Because the order in which these updates 
appear is deterministic, a priority scheme can be used to deter-
mine which update prevails. In this implementation, a bank of 
N nodes is created on line 5, where N is the parameter of the 
federated reactor, which defaults to 4. This parameter is passed 
down to instances of Node (line 5), each of which in turn passes 
it down to instances of ReplicaN (line 12). Assume that these 
nodes have indexes 0 to N − 1. Nodes with higher indices have 

Fig. 4. Federated LF program with two automatic teller machines (ATMs) that can provide deposits and make withdrawals.
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priority over nodes with lower ones simply because the iteration 
on line 25 reads inputs from other members of the bank in the 
same order as their index. Any write by a node with a higher 
index will overwrite a write by a node with a lower index that is 
simultaneous. Hence, simultaneous updates yield deterministic 
results prioritized by index.

Trading off consistency and availability in LF
Unavailability is a measure of the time it takes for a system to 
respond to user requests. If it takes a long time (or it never 
responds), then the system is unavailable, whereas if responses 
are instantaneous, then the system is highly available.

In the ATM application in Fig. 6, a user request at the i-th 
ATM is assigned a tag gi on line 18 of Fig. 3 based on the local 
physical clock. Hence, 

(
gi
)
 is a good measure of the physical 

time at which the user has initiated a request. The user’s request 
turns into a tagged deposit output from the UserInput reactor, 
which gets sent to the query input of the CAReplicaN reactor. 
That reactor sends back the value of the shared variable at the 
tag gi, which, in this design, reflects all updates throughout the 
system with tags gi or less.

Note that a read of the value is handled locally on each node. 
However, this read will have latency that depends on the time 
it takes for updates to traverse the network. In Fig. 6, notice 
that the reaction to query on line 41 is defined after the reaction 
to local and remote updates. In LF semantics, this ensures that 
the reaction to query is not invoked at tag gi until after all local 
and remote updates with tags gi or less have been processed. It 
is this property that gives this program strong consistency.

The key question becomes, when can the reaction to the 
query input on line 41 of Fig. 6 be executed? The physical time 

between 
(
gi
)
 and the time of that reaction invocation becomes 

our measure of unavailability.
This scenario matches exactly the scenario leading to the 

CAL theorem in the “The CAL theorem” section. Hence, the 
unavailability is given by Eq. 6. This result is intuitive. We will 
shortly show that the processing offsets can be zero in this case, 
so assume Oi = Oj = 0. If execution times are negligible, then 
ij is just the sum of the network latency and clock synchroni-
zation error, and the unavailability at node i due to possible 
updates at node j is

Recall that even though clock synchronization error can be 
negative, the above maximization ensures that the unavailabil-
ity is non-negative. If we further assume that clock synchroni-
zation errors are negligible compared to network latency, then 
Eq. 11 tells us that the unavailability at i due to possible 
updates at j is equal to the network latency from j to i, a sat-
isfyingly intuitive result.

We can easily modify the program to improve availability 
at the cost of consistency. Specifically, if we replace line 8 of 
Fig. 6 with this:
8 (bank.publish)+ -> bank.updates after 

100 ms;

then the inconsistency is specified to be C = 100 ms. The after 
keyword specifies a logical time offset between the sender’s tag 
and the receiver’s tag. In other words, it specifies a logical delay 
between the initiation of an update by a user and the recording 
of that update in a state variable of each replica. This is exactly 

(11)Aij =max
(
Lij + Eij,0

)
.

Fig. 5. An execution of the LF program in Fig. 4 (slightly elaborated to display (elapsed) logical time  (g) (in nanoseconds).
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the tag manipulation considered in the “The CAL theorem” 
section, so, from Theorem 1, the unavailability at node i becomes

where we have again assumed the processing offsets are zero. 
Again, if clock synchronization error and execution times are 
negligible compared to network latencies, then this states that 
the unavailability is the largest difference between network 
latency and logical delays. With the choice of C = 100 ms, if 
the network latency is less than 100 ms, then unavailability 
becomes zero. The system can respond instantaneously to user 
requests.

Even with the logical delay, this design assures eventual con-
sistency because all updates are applied in the same order at all 
nodes. Note that even local updates are logically delayed, and 
hence, the same design can be applied even if the merge oper-
ation is not associative and commutative, as in the example in 
Fig. 7.

The price for improving availability in this ATM example is 
that all queries for the value of the shared variable yield a result 
that is (logically) 100 ms old. This means that a query for x may 
not even reflect a recent local update. If the operations are com-
mutative and associative, however, then local updates need not be 
delayed. We can use the structure of Fig. 4 and apply the logical 
delay only on the connections that broadcast local updates. We 
leave it as an exercise for the reader to modify the programs in 

Ai =max

(

0, max
j∈N

(

ij − Cij

)

)

,

Fig. 7. Federated LF program with any number of nodes that can update a shared data value.
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Figs. 4 and 6 to accomplish this form of bounded inconsistency 
by inserting after delays. If we were to change the design to apply 
local updates immediately in situations where the merge opera-
tion is neither associative nor commutative, such as the program 
in Fig. 7, then we would have to do some additional work to ensure 
eventual consistency, using for example a sorted replace [4].

What happens if the apparent latency exceeds 100 ms? There 
are two possibilities. We can delay handling of events, thereby 
increasing unavailability, or we can proceed with processing 
events as if the inputs are absent, thereby increasing inconsist-
ency. In the “Results and Discussion” section, we describe two 
coordination mechanisms that we have implemented for LF, 

Fig. 6. Federated LF program with any number of ATMs that can provide deposits and make withdrawals.
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one of which emphasizes consistency and the other of which 
emphasizes availability.

Another alternative is to remove the bound on inconsistency 
altogether while still preserving the property that if the network 
is repaired, we get eventual consistency. A one-line change in 
the LF program of Fig. 6 can realize this strategy. If we change 
line 5 to this subtly different version:
8 (bank.publish)+ ∼> bank.updates;

then there is no upper bound on the inconsistency Cij. The 
subtle change is to replace the logical connection -> with a 
physical connection ∼> . In LF, this is a directive to assign a 
new tag gi at the receiving end i based on a local measurement 
of physical time Ti when the message is received such that 

(
gi
)
= Ti. The original tag is discarded. If all connections 

between federates are physical connections, then the federation 
no longer has any need for clock synchronization. However, 
the price we pay is that the order in which updates are applied 
is now dependent on apparent latencies. We preserve eventual 
consistency only if the merge operation is associative and com-
mutative. Using physical connections is a draconian measure 
because it also sacrifices determinacy. This makes it much 
harder to define regression tests because a correct execution of 
the program admits many behaviors. The use of logical delays, 
together with the coordination mechanisms given in the “Results 
and Discussion” section, offers more control.

Pessimistic evaluation of processing offsets
The processing offsets Oi and Oj are physical time delays incurred 
on nodes i and j before they can begin handling events. Specifically, 
node i can begin handling a user input (specifically a write event) 
with tag gi at physical time Ti = 

(
gi
)
+Oi. In the absence of 

any further information about a program, we can use our Γ 
matrix to calculate these offsets. However, the result is pessimistic 
because it does not use dependency information that is present 
in an LF program. The conservative analysis we give here will 
result in infinite processing offsets for the strongly consistent 
ATM example. We will show in Results and Discussion that, by 
using information present in the structure of the LF program, 
we can derive less conservative processing offsets that turn out 
to be zero for the ATM application, assuming that the execution 
times of reactions are negligible.

First, consider nodes that have the possibility of new events 
appearing asynchronously with timestamps given by the local 
physical clock, like those in our ATM application. In such a 
node i, it is generally not safe to process an event with tag gi 
until the physical clock Ti exceeds 

(
gi
)
, i.e., Ti > 

(
gi
)
. 

Otherwise, there is a possibility of processing events out of 
order. Define a column vector Z such that

With this, we require at least that O ≥ Z. In addition, to ensure 
that node i processes events in tag order, it is sufficient to ensure 
that node i has received all network input events with tags less 
than or equal to gi before processing any event with tag gi. With 
this (conservative) policy, Oi ≥maxj

(
ij − Cij

)
. The smallest 

processing offsets that satisfy these two constraints satisfy

This is a system of equations in the max-plus algebra. From 
Baccelli et al. [22] (Theorem 3.17), if every cycle of the matrix 
Γ has weight less than zero, then the unique solution of this 
equation is

where the Kleene star is (Theorem 3.20 [22]) Γ∗ = I ⊕ Γ ⊕ Γ2 ⊕ ⋯. 
Baccelli et al. show that this reduces to Γ∗ = I ⊕ Γ ⊕ ⋯ ⊕ ΓN − 1, 
where N is the number of processes.

The requirement that the cycle weights be less than zero is 
intuitive but overly restrictive. It means that along any commu-
nication path from a node i back to itself, the sum of the logical 
delays Djk must exceed the sum of the execution times, network 
latencies, and clock synchronization errors along the path. This 
implies that we have to tolerate a nonzero inconsistency some-
where on each cycle. For the strongly consistent ATM example, 
every node sends messages to every other node, so every pair 
of nodes requires a nonzero inconsistency in order to satisfy this 
cycle-mean constraint. For the strongly consistent case, where 
there are no logical delays, there is no finite solution to Eq. 13.

In practice, programs may have zero or positive cycle means. 
Theorem 3.17 of Baccelli et al. [22] shows that if all cycle weights 
are nonpositive, then there is a solution, but the solution may 
not be unique. If there are cycles with positive cycle weights, 
then there is no finite solution for O. For the strongly consistent 
ATM example, there are no logical delays at all, and all cycle 
weights become positive. In this case, the only solution to 

(12)

(13)O = Z⊕ ΓO.

(14)O = Γ
∗
Z,

Fig. 8. Structure of an LF program for a simple pipeline.
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Eq. 13 sets all the processing offsets to ∞. Every node must wait 
forever before handling any user input. This is, of course, the 
ultimate price in availability.

Equation 15 is pessimistic because, in the absence of more 
information about the application logic, we must assume that 
any network input at node i with tag gi can causally affect any 
network output with tag gi or larger and that network inputs 
may come from anywhere. In Results and Discussion, we use 
the fact that LF exposes more information about causal rela-
tionships to derive much less pessimistic processing offsets while 
still preserving causal and eventual consistency.

An example
Figure 8 shows a simple example where the pessimistic evalu-
ation of the processing offsets works and permits us to derive 
the unavailability in a simple way. This program could realize 
a simple Internet-of-things application where a local sensor 
sends data to a cloud service for analysis, and the results of the 
analysis are used to drive an actuator. This example is a rather 
trivial application of the CAL theorem, which yields exactly the 
results we would expect.

There are three federates and hence three communicating 
nodes. The Γ matrix is given by

where
• Γ21 = X21 + L21 + E21,
• Γ32 = X32 + L32 + E32 ,

and
• X21 is the execution time for the reaction in Sensor,
• L21 is the network latency from Sense to Analytics,
• E21 is the clock synchronization error from i1 to i2,
• X32 is the execution time for the reaction in Analytics,
• L32 is the network latency from Analytics to Actuator, and
• E32 is the clock synchronization error from i2 to i3.

The −∞ entries in the matrix are a consequence of a lack of 
communication.

First, we can use the analysis of the “Pessimistic evaluation 
of processing offsets” section to evaluate the processing offsets. 
For this example, N = 3, so Γ∗ in Eq. 14 reduces to

It is straightforward to evaluate this to get

Intuitively, this matrix captures the fact that the Actuator reac-
tor indirectly depends on the Sensor reactor, something not 
directly represented in the Γ matrix.

The Z vector of (12) is Z = [0, −∞, −∞]T because the Sensor 
reactor has a timer, and hence, logical time cannot get ahead 
of physical time; the other two reactors have no local physically 

time-stamped inputs and hence can advance logical time ahead 
of physical time as long as dependencies are respected. We can 
now evaluate Eq. 14 to get

Next, we evaluate Eq. 9 to get the unavailability at each node,

In this simple case, the unavailability is equal to the processing 
offsets, which means that the processing offsets capture all the 
waiting that needs to be done to realize the semantics of the 
program.

These unavailability numbers are exactly what we would 
expect without help from the CAL theorem. First, note that the 
Sensor can react to external stimulus (specifically timer input) 
immediately. It has no network inputs to worry about, so A0 = 0. 
The Analytics reactor, however, can react to an input stimulus 
with timestamp t only at physical time T = t + X21 + L21 + E21. 
Note that since the Analytics reactor uses its local physical clock 
to determine this time, and it is possible for E21 to be negative, 
it can even be that T < t, something we might not have expected. 
Similarly, the Actuator reactor can respond when physical time 
T exceeds Γ21 + Γ32. Again, the consequences of clock synchro-
nization error might be unexpected, but otherwise, these results 
are rather obvious.

These results can be used to determine whether the Analytics 
reactor can safely be put in the cloud because these results give 
us the resulting end-to-end delay from sensing to actuation. 
If the Sensor and Actuator are put on the same node and hence 
share the same physical clock, then the clock synchronization 
errors in Γ21 + Γ32 will cancel out. This sum becomes the end-
to-end latency, the sum of execution times and network laten-
cies, exactly what we would have derived without the CAL 
theorem.

You can elaborate this example in various ways, and the CAL 
theorem will reveal subtleties that may have been harder to see. 
For example, if the Analytics or Actuator reactor have their 
own asynchronous inputs via physical actions, then the Z vector 
will change, and the effect of clock synchronization errors will 
become more complex. More interestingly, the availability of 
reactions to those asynchronous inputs may be degraded by 
the network latencies. Even more interestingly, these degrada-
tions can be mitigated by putting after delays on the connec-
tions between reactors. We leave these calculations to the reader 
as an exercise.

Determinism, idempotence, and causal consistency
An LF program that has only logical connections and no physical 
connections has deterministic semantics, in the sense that once 
tags are assigned, there is exactly one correct execution of the 
program. The runtime infrastructure is responsible for ensuring 

(15)Γ =

⎡
⎢⎢⎢⎢⎣

0 −∞ −∞

Γ21 0 −∞

−∞ Γ32 0

⎤⎥⎥⎥⎥⎦

Γ∗ = I⊕ Γ⊕ Γ2.

Γ∗ =

⎡
⎢⎢⎢⎢⎣

0 −∞ −∞

Γ21 0 −∞

Γ21+Γ32 Γ32 0

⎤
⎥⎥⎥⎥⎦
.

(16)O = Γ∗Z =

⎡
⎢⎢⎢⎢⎣

0

Γ21

Γ21+Γ32

⎤
⎥⎥⎥⎥⎦

(17)A = (I ⊕ Γ)O =

⎡
⎢⎢⎢⎢⎣

0

Γ21

Γ21+Γ32

⎤⎥⎥⎥⎥⎦
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that every reactor is presented with inputs in tag order, that mes-
sages are delivered to reactors exactly once, and that reactions to 
messages with identical tags are invoked according to the order 
specified by the code. Moreover, because reactors have explicit 
input and output ports, LF has a notion of a communication 
channel, a connection between two ports. Each port is guaran-
teed to have at most one message at any tag. These properties, 
taken together, make it much easier to design consistent distrib-
uted programs and to trade off consistency against availability. 
These properties automatically deliver what is sometimes called 
CALM, meaning consistency as logical monotonicity [32,33].

The ACID 2.0 database principle of Helland and Campbell 
[34] includes an assumption, called idempotence, that opera-
tions that are applied more than once have the same effect as 
operations that are applied exactly once. Given the use of tags 
in LF, this assumption is automatically met by the infrastructure, 
so it need not be a concern of the application developer. That 
is, if any communication fabric is used that retransmits mes-
sages, it is up to the infrastructure to ensure that those messages 
are delivered to a reactor exactly once.

LF also ensures causal consistency. The runtime infrastruc-
ture, described next in Results and Discussion, uses the topology 
of interconnection between reactors together with tags to ensure 
that no reaction that reads an input or a state variable is invoked 
until all precedent reactions have been invoked. Note that this 
does not require that messages be globally ordered! It only 
requires that each component (each reactor in LF) see messages 
in tag order and that simultaneous messages (those with the 
same tag) are handled in precedence order. We discuss in the 
“Results and Discussion” section how this is achieved in LF.

Results and Discussion
We now describe the two available distributed coordination 
mechanisms, which we have implemented as an extension of 
LF, that support arbitrary trade-offs between consistency and 
availability as network latency varies [30]. With centralized coor-
dination, inconsistency remains bounded by a chosen numerical 
value at the cost that unavailability becomes unbounded under 
network partitioning. With decentralized coordination, unavail-
ability remains bounded by a chosen numerical quantity at the 
cost that inconsistency becomes unbounded under network 
partitioning. Our centralized coordination mechanism is an 
extension of techniques that have historically been used for 
distributed simulation, an application where consistency is 
paramount. Our decentralized coordination mechanism is an 
extension of techniques that have been used in distributed data-
bases when availability is paramount.

Centralized coordination
Centralized coordination is based on high-level architecture 
(HLA) [35] and other distributed simulation frameworks [36,37], 
with significant extensions that we describe here. Distributed 
simulation is a relevant problem because, usually, consistency 
trumps availability. A distributed implementation of a simulation 
is expected to yield the same results as a nondistributed version, 
only faster. The HLA is designed for distributed simulation of 
discrete-event systems, where events have timestamps, and hence 
addresses a similar problem.

We face two complications, however, that are not present in 
distributed simulation applications. The first is that, in our con-
text, unlike simulation, events may materialize out of nowhere 

with tags derived from the local physical clock. Our context, in 
other words, has users interacting with the system, and hence 
availability becomes a concern. Simulation has no such users. In 
LF, we use physical actions to realize asynchronous stimulus from 
users. A second problem is that the programs in Figs. 6 and 7 
have cycles without logical delays, which are not allowed in HLA.

The HLA, like other distributed simulation frameworks, 
uses a centralized controller called the run-time infrastructure 
(RTI). Each node that wishes to process a tagged event consults 
with the RTI, which grants permission to advance its current 
tag to that tag only when the RTI can assure the node that no 
event with a lesser tag will later appear. The existence of physical 
actions and zero-delay cycles in LF complicates this assurance 
and requires extending the protocols used in HLA.

Our RTI, like those in distributed simulation frameworks, 
realizes a mechanism similar to vector clocks [38]. Schwartz 
and Mattern [17] show that any mechanism that preserves 
causal consistency fundamentally has a complexity of at least 
that of vector clocks. However, because LF exposes information 
about which federates communicate with which, we have real-
ized significant optimizations. Our RTI keeps track of the tag 
to which each federate has advanced, and uses that information, 
together with network topology information, to regulate the 
advancement of the current tag at downstream federates based 
on the activity of their upstream federates. A federate that has 
no network inputs, for example, can advance its current tag 
without consulting the RTI because there is no risk of later 
seeing an incoming message that has a tag less than the tag to 
which it has advanced. A federate with network inputs, how-
ever, must receive an assurance from the RTI, a tag advance 
grant (TAG) or provisional tag advance grant (PTAG), before 
it can advance its current tag.

Our first extension over HLA supports zero-delay cycles by 
introducing a PTAG, where the RTI assures a federate that there 
will be no future message with tags less than some g but makes 
no promises about messages with tags equal to g. This permits a 
federate to advance its current tag to g and execute any reactions 
with no dependence, direct or indirect, on network inputs. 
When it has executed such reactions and the next reaction in 
the reaction sequence depends on network inputs, then the 
federate is required to block until it either accepts messages on 
those network inputs or receives an assurance that no message 
is forthcoming with tag g on those inputs. Such an assurance is 
similar to the null messages of Chandy and Misra [39].

In some cases, providing such an assurance is easy. If the 
upstream federates have all advanced their own current tag 
beyond g and have informed the RTI of this fact, then the RTI 
can provide the required assurance to the downstream federate. 
As long as that assurance message is sent along the same order-
preserving message channel as tagged messages, then when a 
federate receives the assurance, it knows it has received all rel-
evant tagged messages and hence can proceed. However, if 
there are cycles between federates that lack logical delays, a 
federate may need to send a null message, an indicator that no 
message with tag g is forthcoming, even before it has completed 
processing of all events with tag g. It can send such a null message 
as soon as it has executed or chosen not to execute all reactions 
that are capable of producing the relevant network output. Such 
null messages are similar to those of Chandy and Misra [39] but 
are only needed in particular circumstances.

When there are physical actions, however, things are still a 
bit more complicated. Consider the program in Fig. 7, focusing 
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particularly on the graphical rendition at the bottom. This exam-
ple instantiates four federates, each an instance of the Node reac-
tor class. Each federate has four input channels on its updates 
input port. Under centralized coordination, a federate cannot 
advance its current tag to g until it receives either a TAG or a PTAG 
from the RTI with value g. It also cannot advance to g until its 
physical clock exceeds 

(
g
)
 because it has a physical action. 

When can the RTI provide a TAG or PTAG message? This 
depends on how each federate produces network outputs. Each 
federate has a physical action in its UserInput reactor that trig-
gers a network output on the publish port. The tag g of that 
output will have 

(
g
)
 taken from the local physical clock. 

Hence, as soon as the physical clock of a federate exceeds 
(
g
)
, 

downstream federates can be assured that there will be no 
forthcoming message with timestamp g or less.

Unlike decentralized coordination (see the “Decentralized 
coordination” section below), centralized coordination does not 
rely on clock synchronization except to give a meaning to tags 
originated by distributed physical actions. Instead of relying 
on clock synchronization, in centralized coordination, each 
federate that has a physical action that can result in network 
outputs must notify downstream federates as its physical clock 
advances. This is done by periodically sending to the RTI a time 
advance notice (TAN) message with a time t; this message is 
a promise to not produce future messages with tags g where 

(
g
)
≤ t and hence is also similar to the null messages of Chandy 

and Misra [39].
Unlike Chandy and Misra’s technique, in LF, null messages 

are only required when communication between federates forms 
a cycle without logical delays and when physical actions trigger 
network outputs. Unfortunately, all of the applications consid-
ered in the “Trading off consistency and availability in practice” 
section have such cycles and physical actions and therefore 
require null messages. LF provides a mechanism to control the 
frequency of the TAN messages, thus controlling the overhead, 
but as the frequency of messages decreases, the cost in unavail-
ability increases. This overhead is avoided in decentralized coor-
dination, explained next, but at the cost that consistency is 
sacrificed under network partitioning.

Decentralized coordination
Decentralized coordination extends a mechanism first described 
by Lamport [40], first applied to explicitly time-stamped distrib-
uted systems in Programming Temporally Integrated Distributed 
Embedded Systems (PTIDES) [41], and reinvented at Google 
to form the core of Google Spanner [42]. All three of these use 
timestamps to define the logical ordering of events and phys-
ical clocks to determine when it is safe to process time-stamped 
events. The physical clocks are assumed to be synchronized 
with a bound on the clock synchronization error. All three also 
assume a bound on network latency. If these assumptions are 
met at run time, then all messages will be processed in times-
tamp order without any centralized coordination.

Relying on physical clocks has an advantage with respect to 
availability because we can assume that, even in the presence 
of complete network partitioning, physical clocks continue to 
advance. If progress is governed by the physical clocks, then 
unavailability can be bounded even with no network connec-
tivity. This contrasts with centralized coordination, where incon-
sistency can be bounded, but loss of network connectivity leads 
to loss of availability.

Safe to advance offset
In our implementation of decentralized coordination in LF, 
each federate can have an optional safe-to-advance (STA) offset 
given by the programmer. The meaning of the STA offset is that 
if a federate has an earliest pending event with tag g, then it can 
advance its current tag to g when current physical time T satis-
fies T ≥ 

(
g
)
+ STA. Hence, to handle a user request that gets 

assigned tag g, the federate needs to wait at least until physical 
time exceeds 

(
g
)
 by the STA offset. Put another way, the STA 

offset is a time interval beyond 
(
g
)
 that a federate needs to 

wait before it can assume that it will not later receive any input 
messages with tags less than g. By default, STA = 0. The STA 
offset is closely related to the safe-to-process offset of Zhao et al. 
[41] but is more provisional. It gives a time threshold for com-
mitting to a tag advance but not necessarily fully processing that 
tag advance. Put another way, it gives a time threshold at which 
the federate can assume it has seen all messages with tags less 
than g, but it cannot necessarily assume it has seen all messages 
with tags equal to g. This distinction turns out to be important 
for the replicated data store examples we have seen.

Obviously, the STA offset affects availability and is clearly 
closely related to the processing offset of Definition 3. There is, 
however, a subtle but important distinction. The processing 
offset of Definition 3 is a property of a trace, an actual execu-
tion, whereas the STA is a specification. The LF code generator 
generates code where, when executed, every trace will have the 
property that

for each federate i. If the STA offset is not sufficiently large for 
a particular program, then the consistency requirements of the 
program will not be met. Our task, therefore, is to determine 
sufficiently large STA offsets such that, if the observed apparent 
latencies are within our assumed constraints, the program will 
process all events in tag order, thereby achieving the desired con-
sistency. Only when the apparent latencies exceed our assumed 
constraints will the program sacrifice consistency in order to 
maintain availability.

The STA offsets depend on assumed bounds on apparent 
latency, and vice versa, the assumed bounds on apparent latency 
depend on the STA offsets, which brings us to a second subtlety. 
In Definition 4, apparent latency is also a property of a trace, 
whereas, to use it to derive the STA offsets, we need to use it as 
a bound on all reasonable traces. Any assumed bound may be 
exceeded in practice (e.g., the network becomes partitioned), 
and the strategy of decentralized coordination is to sacrifice 
consistency rather than availability when this occurs. This con-
dition will be detectable, and LF supports specification of fault 
handlers for such conditions (see the “Adaptation” section).

A third subtlety is that, in Definition 4, the apparent latency 
is a property of a pair of processes, sequential procedures where 
one sends updates to another. LF, however, is a more richly 
structured language. Federates themselves may be concurrent, 
running in parallel on multicore machines, for example, and 
communication between federates is mediated by input and 
output ports that, pairwise, give specific communication channels 
over which messages with monotonically increasing tags flow. 
As a consequence, apparent latency between one federate and 
another may vary depending on which communication channel 
between the two is used. Moreover, each pair of send-receive 
ports may have a different logical delay.

(18)Oi ≥ STAi
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Causality
To analyze an LF program, we need to redo that analysis of 
the “The CAL theorem” section using the structure of the pro-
gram. Specifically, it is possible to tell by looking at the program 
whether an event at one port can result in an event at another 
port, and we can find bounds on the relationship between the 
tags of these two events. This analysis must be done carefully, 
however, because we have to distinguish whether an event at one 
port can cause an event at another from whether it can influence 
an event at another port.

To determine whether a message with a certain tag can exist, 
we need to analyze the counterfactual causality properties of the 
LF program. Counterfactual causality [43] is a relation between 
events e1 and e2 where e2 would not occur were it not for the 
occurrence of e1. We distinguish this from causal influence, where 
event e1 can causally affect e2 [20]. In an LF program, any input 
to a reactor with tag g can causally affect any output with tag 
larger than g and some outputs with tag equal to g because a 
reaction to that input can change the state of the reactor. However, 
only some inputs counterfactually cause particular outputs, which 
then in turn counterfactually cause other inputs. Specifically, 
consider a reactor like this:
1 reactor DirectFlowThrough {
2 input in:int;
3 output out:int;
4 reaction(in) -> out {=
5 ...
6 =}
7 }

Because of the reaction signature, we assume that an event at 
input named in can counterfactually cause an event at the out-
put named out. We do not need to analyze the body of the 
reaction (which is written in the target language) to determine 
this fact. In contrast, consider:
1 reactor CausalInfluence {
2 input in1:int;
3 input in2:int;
4 output out:int;
5 state s:int(0);
6 reaction(in1) {=
7 ...
8 =}
9 reaction(in2) -> out {=
10 ...
11 =}
12 }

Here, input in1 causally influences output out (because the 
first reaction can change the state, and the second reaction 
can use that updated state), but it does not counterfactually 
cause the output. For the output to occur, a message must 
arrive on in2.

In the above example, an input with tag g on in1 can causally 
influence any output with tag g or larger. If the reactions were 
given in the opposite order, then it would only be able to caus-
ally influence an output with tag larger than g. This is because, 
given simultaneous inputs, reactions of a reactor are invoked 
in the order that they are declared. This distinction proves impor-
tant when analyzing the distributed replicated databases con-
sidered earlier.

Using actions, a reactor can declare a logical delay:

1 reactor IndirectFlowThrough {
2 input in:int;
3 output out:int;
4 logical action a:int(10 ms); // minimum 

delay of 10 ms.
5 reaction(a) -> out {=
6 ...
7 =}
8 reaction(in) -> a {=
9 ...
10 =}
11 }

In this example, the logical action has a minimum delay prop-
erty (set to 10 ms). The pair of reactions, taken together, reveal 
that the input with tag g can counterfactually cause an output 
with tag g′, where 

(
g ′
)
 is larger than 

(
g
)
 by at least 10 ms. 

This introduces a logical delay on the path from in to out.
Consider:
1 reactor Composition {
2 a = new IndirectFlowThrough();
3 b = new DirectFlowThrough();
4 a.out -> b.in;
5 }

Because of the connection, we can infer that output a.out can 
counterfactually cause input b.in with no logical delay. Moreover, 
because of the minimum delay property, we can infer that input 
a.in can counterfactually cause input b.in with logical delay of 
at least 10 ms.

The connection may also have a logical delay (written with 
the after keyword), as in:
4 a.out -> b.in after 20 ms;

Now, the program reveals that input a.in can counterfactually 
cause input b.in with logical delay of at least 30 ms.

Safe-to-assume absent
Similar to the STA offset (which is, essentially, found in the stud-
ies by Lamport, PTIDES, and Spanner), we extended LF to allow 
specification of a safe-to-assume-absent (STAA) offset associ-
ated with a network input port. The STAA offset is used to con-
strain when a reaction that depends on an input port can be 
invoked. Specifically, it asserts that the invocation of any reaction 
at tag g that depends, directly or indirectly, on a network input 
port pi is delayed until either an input is received on port pi with 
tag g or the physical clock Ti at i satisfies

At this physical time, federate i assumes it has seen all inputs at 
port pi with tags less than or equal to g (vs. the STA offset alone, 
when it can assume it has seen all inputs with tags less than g). 
If no message has arrived with tag g, the federate assumes that 
there is no message with tag g. It would be an error, to be han-
dled as a fault condition, to later receive a message with tag g.

A positive STAA offset causes the federate to block execution 
of reactions in the relevant reactor until either physical time 
advances sufficiently or a message arrives. In this circumstance, 
a null message could be used to reduce the amount of blocking, 
but, unlike with centralized coordination, no null message is 
required to make progress. It is sufficient for physical time to 

(19)Ti ≥ 
(
g
)
+ STAi + STAApi

.
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advance. Using a null message would just be an optimization 
that may allow progress sooner.

As we will see below, the STA and STAA offsets together 
ensure that any event that causally influences another is pro-
cessed first. To determine the STA, we need to consider causal 
influence, but to determine STAA, we only need to consider 
counterfactual causality.

Decentralized coordination for the replicated data store
Consider now the replicated data store in Fig. 7. The pessimistic 
analysis of the “Pessimistic evaluation of processing offsets” sec-
tion, for this program, yields an infinite processing offset for all 
federates. We will now show that, by leveraging the semantics of 
LF and our extensions to its runtime, the program can be executed 
correctly with finite STA and STAA offsets. We show how to deter-
mine these offsets for each of the federates and their input ports.

First, it will shortly become obvious that we need to separate 
ReplicaN and UserInput into distinct federates, even if they 
run on the same host, so that they can independently advance 
their current tags.

In the current implementation of LF, an entire federate, with 
all its component reactors, advances the current tag together. 
In principle, some future implementation of LF could allow 
component reactors to independently advance their current 
tags. This could be accomplished using mechanisms similar to 
LF’s federated execution. However, for now, the only available 
mechanism to permit independent advancement of tags is to 
separate the reactors into distinct federates. Sometimes, how-
ever, it is not possible to create such a separation. The LF code 
generator assumes that any two reactions of the same reactor 
share state. It does not analyze the target code to check whether 
this is the case. As a consequence, if the reactions of UserInput 
and ReplicaN in Fig. 7 were instead reactions of the same reactor, 

then it would not be possible to separate them into distinct 
federates nor to independently advance their tags.

The refactored program is shown in Fig. 9. Given such a sep-
aration, note that each of the four instances of ReplicaN receive 
inputs from each of the four instances of UserInput, including 
the one running on the same host.

To further simplify the explanation, we have reduced the 
program to that shown in Fig. 10, which is a minimal version 
that avoids the compact bank and multiport syntax of LF and 
renames all the input ports so that they have unique names. 
There are a total of four federates and six input ports now, so 
we need to determine four STA offsets and six STAA offsets.

A key property of our execution policy for LF programs is 
that a federate advances its current tag to g only after it has 
completed handling all events with lesser tags, and then it com-
pletes handling of all events with tag g before advancing to 
another larger tag. That is, even if the federate is executing reac-
tions concurrently (e.g., on a multicore machine), it performs a 
barrier synchronization with each tag advance. There is no such 
barrier synchronization across federates, but we need the barrier 
synchronization within a federate, as will become obvious.

Consider first federate f1, the UserInput at the upper left of 
Fig. 10. Suppose that the physical action (depicted as a triangle 
with a “P”) triggers and is assigned tag g1 using the local physical 
clock. The question now is, when can the federate advance its tag 
to g1? It has to ensure that it has seen all inputs with lesser tags, 
including events that may have been sent to port p5. For the first 
triggering of the physical action, it is evident from the program 
structure that there is no event at p5 with a lesser tag because all 
events at p5 are ultimately counterfactually caused by this same 
physical action. Therefore, the federate can safely advance to tag 
g1 and invoke its reaction 2 with no delay. Thus, it seems that 
STA1 = 0 could work for federate f1, at least for this first event.

Fig. 9. Version of the replicated data store of Fig. 7 suitable for decentralized coordination, where UserInput and ReplicaN have been split into separate federates so that they 
can independently advance their current tags.
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Once federate f1 has advanced to g1, it will block any further 
advances until physical time advances past 

(

g1
)

+ STA1 + STAAp5
. 

Assuming that it does this correctly, then for the next triggering 
of the physical action with tag g2 > g1, the federate will not even 
face this question of whether to advance its tag to g2 until it has 
completed processing events with tag g1. More generally, each 
time the physical action triggers with tag gn, n > 1, by the time 
the federate is considering advancing its tag to gn, it will have 
completed processing all events with tag gn − 1. Therefore, it does 
not need to wait for physical time to further advance. Hence, 
by induction, STA1 = 0 for all tag advances. The same argument 
applies for federate f2, yielding

To determine STAAp5, we can follow all physical time lags that 
might occur on the path from the original source. We now make 
a critical assumption that is required to ensure finite offsets:

Assumption 1 Reaction 2 of f1 is invoked exactly at 
(
g1
)
+ STA1 

or negligibly thereafter.
We will see in the “Unavailability in the replicated data 

store” section how this assumption can be enforced by the LF 
program, but first, we determine the consequences of this 
assumption. With it, any STAAp5 that satisfies the following 
will suffice:

where Xij is an execution time bound on reaction j of federate 
fi, Lij is a communication latency bound on messages from fj to 
fi, and Eij is a bound on the clock synchronization error from 
fj to fi. The maximization and the presence of X31 is a consequence 

of the LF semantics that requires that if reactions 1 and 2 of the 
same reactor are both enabled at any tag g, then reaction 1 must 
run to completion before reaction 2 is invoked.

Let us make a simplifying assumption to manage the com-
plexity of this (this assumption, unlike Assumption 1, is not 
necessary but drastically simplifies our example). Specifically, let 
us assume that execution time bounds are negligible compared 
to communication latencies. With this assumption, we get

We can write a similar inequality for STAAp6
,

So far, we have STA1 = STA2 = 0 and these two inequalities. Let 
us now look at STA3.

The question is, given an event with tag g3 that federate f3 
wishes to process, how much physical time should it wait 
before advancing to tag g3? First, this federate has no local 
sources of events (actions or timers), so the event must be an 
input on either port p7 or p9. In either case, in order to advance 
to g3, the federate needs to be assured that it has seen all inputs 
earlier than g3 on the other port in order to ensure causality. 
(LF assumes that messages on each channel are delivered in 
tag order.)

If the input has arrived on p7, then it requires

which is obtained by following the counterfactual causality chain 
upstream from p9. Using STA2 = 0 and the negligible execu-
tion time assumption,

(20)STA1 = 0

(21)STA2 = 0.

(22)

STAAp5
≥ STA3 +max

(
STAAp7

,STAAp9

)
+ L13 + E13.

(23)
STAAp6

≥ STA4 +max
(
STAAp8

,STAAp10

)
+ L24 + E24.

STA3 ≥ STA2 + X22 + L32 + E32,

ReplicatedDataStoreDecentralizedFlattened

f4 : Replica2

2

1
p10

p 8

response

f3 : Replica1

2

1
p 9

p7

responsef2 : UserInput2

3

21 P

p 6

update

f1 : UserInput1

3

21 P

p 5

update

Fig. 10. Minimal version of the replicated data store of Fig. 9 with input ports renamed to all be unique.
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If the input with tag g3 has arrived instead on p9, then we require

Combining these and ignoring execution times, we get

There are no further constraints on STA3, so we can simply set

Similarly,

Similar reasoning leads to

There is no point in having a negative STAA offset, so

Finally, from Eqs. 22 and 23, we can set

As a sanity check, let us simplify further by assuming that f1 and 
f3 are mapped to the same host, so that E31 = E13 = E42 = E24 = 0, 
and L31, L13, L42 and L24 are all negligible. Under these assump-
tions, we get the following total results:

Further, let us assume that clock synchronization error is neg-
ligible compared to network latencies. Then, we get:

These results are intuitive. They show that, at the UserInput 
federates, when a physical action triggers with tag g, the federate 
can immediately advance its current tag to g, so reaction 2 can 
be immediately invoked, resulting in a network output. Whether 
to invoke reaction 4, the UserInput federates cannot be deter-
mined until physical time exceeds 

(
g
)
 by a bound on the 

network latency from the other host, a satisfyingly intuitive 
result because that is where a remote update may occur.

At the Replica federates, when they receive an input with 
tag g, they can advance to tag g only when physical time exceeds 

(
g
)
 by the bound on the network latency from the other host. 

This too is intuitive because only at that physical time can they 
be sure there is no forthcoming message from the other host 
with a lesser tag.

For this particular example, at the UserInput federates, as 
long as the assumptions on network latency and clock synchro-
nization are satisfied, there will be a network input with tag g, 
and reaction 4 will be invoked. However, the LF infrastructure 
cannot be sure that this is the case without imposing further 
constraints on the target code in reaction 2 of UserInput and 
reaction 2 of Replica. Those reactions are free to choose to not 
produce an output.

As of this writing, in LF, the STA and STAA offsets must be 
derived by hand and provided as part of the specification of the 
program. We leave it to future work to derive these thresholds 
automatically given assumptions about apparent latency. This will 
require performing analysis of the structure of the program and 
rejecting programs that result in infinite values for these offsets. 
The analysis is simple for this program, but it could be quite chal-
lenging in general. For example, if UserInput had a second phys-
ical action and there were a logical delay D somewhere along the 
path from its update output back to its current_value input, then 
STAi = 0 is not necessarily any longer valid.

Why did we have to separate UserInput and Replica into 
distinct federates? Were they in the same federate, then STA3 = 
STA1. From Eq. 24, we have the constraint that STA3 > STA2. 
Correspondingly, STA4 > STA1 and STA4 = STA2. Combining 
these, we get STA1 > STA2 > STA1, a constraint that is not 
satisfiable.

STA3 ≥ L32 + E32.

(24)STA3 ≥ STA1 + X12 + L31 + E31.

STA3 ≥max
(
L32 + E32,L31 + E31

)
.

(25)STA3 =max
(
L32 + E32,L31 + E31

)
.

(26)STA4 =max
(
L41 + E41,L42 + E42

)
.

STAAp7
=L32+E32−STA3=min

(

0, L32+E32−L31−E31
)

STAAp9
=L31+E31−STA3=min

(

0, L31+E31−L32−E32
)

STAAp8
=L41+E41−STA4=min

(

0, L41+E41−L42−E42
)

STAAp10
=L42+E42−STA4=min

(

0, L42+E42−L41−E41
)

.

(27)STAAp7
= STAAp9

= STAAp8
= STAAp10

= 0.

(28)
STAAp5

=STA3+max

(

STAAp7
, STAAp9

)

+L13+E13

=max
(

L32+E32, L31+E31
)

+L13+E13

(29)
STAAp6

=STA4+max
(
STAAp8

,STAAp10

)
+L24+E24

=max
(
L41+E41,L42+E42

)
+L24+E24.

STA1=0

STA2=0

STA3=max
(
L32+E32,0

)

STA4=max
(
L41+E41,0

)

STAAp5
=max

(
L32+E32,0

)

STAAp6
=max

(
L41+E41,0

)

STAAp7
=0

STAAp9
=0

STAAp8
=0

STAAp10
=0.

(30)

STA1=0

STA2=0

STA3=L32

STA4=L41

STAAp5
=L32

STAAp6
=L41

STAAp7
=0

STAAp9
=0

STAAp8
=0

STAAp10
=0.
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Unavailability in the replicated data store
Using the most simplified result, given by Eq. 30, we can see 
the consequences of the CAL theorem for the replicated data 
store example. This program is strongly consistent. There are 
no logical delays, so each replica will agree on the value of the 
shared variable at every tag. A user who issues a query gets a 
reply when reaction 4 of UserInput is invoked. From Eq. 30, we 
see that STAAp5 = L32 and STAAp6 = L41, which means that the 
time it takes to respond to a user query is at most the network 
latency between nodes.

This is intuitive and not surprising. However, there is more 
subtle consequence. Recall Assumption 1, that reaction 2 of f1 is 
invoked exactly at 

(
g1
)
+ STA1 or negligibly thereafter. Because 

of the barrier synchronization for advancement of the current 
tag in a federate, this assumption may not be met if the physical 
action triggers too closely after its previous trigger, specifically 
within L32. If the physical action triggers while UserInput1 is 
waiting on port p5, then there will be a delay in the invocation 
of reaction 2 and the derived STA and STAA offsets are no longer 
assured to be valid. A fault condition may occur.

Fortunately, LF provides mechanisms to prevent such even-
tualities. First, a physical action can have a minimum spacing 
parameter, a minimum logical time interval between tags 
assigned to events. When the environment tries to violate this 
constraint by issuing requests too quickly, the programmer can 
specify one of three policies: drop, replace, or defer. The drop 
policy simply ignores the event. The replace policy replaces any 
previously unhandled event or, if the event has already been 
handled, defers. The defer policy assigns at tag g to the event 
with timestamp 

(
g
)
 that is larger than the previous event by 

the specified minimum spacing. This feature of the language 
can be used to help protect a system against denial of service 
attacks that might otherwise trigger fault conditions.

While the minimum spacing parameter ensures that tags are 
sufficiently spaced, it does not, by itself, ensure that the scheduler 
will prioritize execution of reaction 2 so as to satisfy Assumption 
1. LF provides a mechanism to ensure this, a deadline that can 
be associated with a reaction. The syntax for this is as follows:

38 physical action r;
39 reaction(r) {=
40 ... normal case
41 =} deadline(1 ms) {=
42 ... exception case
43 =}

The semantics of an LF deadline is that if the reaction to an 
event with tag g is invoked at a physical time T > 

(
g
)
+ d, 

where d ∈ �  is a time interval specified by the deadline, then 
instead of invoking the “normal case” reaction, the “exception 
case” reaction will be invoked. This provides a mechanism to 
handle overload conditions, but, more importantly, the deadline 
provides a hint to the scheduler to prioritize invocation of this 
reaction. Indeed, LF uses an earliest-deadline-first scheduling 
policy, thereby ensuring, for sufficiently simple programs, that 
Assumption 1 will be met.

Adaptation
Whether we use centralized or decentralized coordination, our 
assumptions about network latency may be violated in the field. 
For example, the network could fail altogether. We treat such 

violations of assumptions as faults. For most applications, it is 
imperative to provide hooks for the system to adapt when these 
occur. How to adapt is very much application dependent, but 
the CAL theorem tells us that any adaptation will require giving 
up some measure of either consistency or availability or both. 
In a tiered, heterogeneous network, it is possible for some links 
in a system to fail while others continue working. For example, 
a factory system may lose connectivity to the cloud while still 
preserving the local area network. Fortunately, LF provides 
hooks with fine enough granularity to be able to accommodate 
such heterogeneous networks.

Centralized coordination bounds inconsistency at the expense 
of availability. When a network connection fails, components 
in the system may be unable to advance logical time and therefore 
become unable to respond to user requests (losing availability). In 
LF, dependencies between federates are used to regulate advance-
ment of time, so, in some cases, a careful design may be sufficient 
to keep safety-critical subsystems responsive. For other cases, 
the system may need to adapt to the new conditions.

The primary mechanism provided in LF to detect availability 
violations is the deadline construct. Suppose we replace lines 
38 to 40 in the UserInput reactor (Fig. 3) with this:
38 reaction(balance) {=
39 printf("Balance: %d\n", balance->value);
40 =} deadline(100 ms) {=
41 printf("Apologies for the delay! Your 

balance is %d\n", balance->value);
42 =}

The use of deadline here means that if the reaction to an event 
with tag g is invoked at a physical time T that exceeds the logical 
time 

(
g
)
 by more than 100 ms, then the second body of code 

will be invoked instead of the first. The deadline handler can 
respond in an application-specific way, for example by switch-
ing to a different mode of operation or by safely shutting down 
a system.

The deadline of 100 ms can be interpreted as a specified 
bound on unavailability and used for driving system design 
decisions. For example, let us assume that the UserInput reactor 
has an upstream reactor (denoted below by subscript 1) whose 
output port connects to the input port of UserInput (denoted 
by subscript 2) with a logical delay of 10 ms. Assuming further 
that the processing offsets are zero, which can be derived from 
Eq. 14 using Theorem 3.17 of Baccelli et al. [22], the CAL 
theorem tells us that the unavailability at UserInput is

The deadline of 100 ms can then be interpreted as an explicit 
requirement on the latencies.

If X22 is negligible, after simplifying the inequality, we have

Thus, for the deadline to be met, the execution time of the 
upstream reactor, the time it takes to communicate the outputs 
to UserInput, and the clock synchronization error between the 
two reactors must be less than 110 ms. Given these requirements, 
deploying the upstream reactor on the Cloud might be risky 
because of potentially high latency, whereas deploying the 

A2 =max
(
0,max

(
X21 + L21 + E21 − 10ms,X22

))

max
(

X21+L21+E21−10ms, X22

)

<100ms

X21 + L21 + E21 < 110ms.
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reactor onto an edge device could help reduce the likelihood 
of deadline violations.

One drawback of the current implementation of the LF 
deadline is that a violation is only detected when the balance 
input finally appears. In the presence of a network partition, 
that will not occur until the network is repaired. We leave it as 
further work to find an extension to the language that can detect 
earlier a loss of availability exceeding a specified threshold.

When we want to bound unavailability instead of inconsist-
ency, we should use decentralized coordination. Decentralized 
coordination may also be more efficient, because it does not 
require null messages to handle physical actions, but it requires 
clock synchronization, which also increases network traffic.

In LF, we can replace lines 11 through 18 in Fig. 2 with this:

11 reaction(local_update, remote_update) {=
12 if (local_update->is_present) {
13 self->balance += local_update->value;
14 }
15 if (remote_update->is_present) {
16 self->balance += remote_update->value;
17 }
18 =} staa(100 ms) {=
19 ... handle fault condition ...
20 =}

The addition of the staa clause has two effects. First, it spec-
ifies that it is safe to assume that the triggering inputs are absent 
at a logical time 

(
g
)
 if they have not arrived by physical time 


(
g
)
+ 100 ms. That is, this specifies the STAA offset for those 

input ports. This ensures availability because the reaction can 
be executed as long as the local physical clock keeps running. 
Second, the staa clause gives a body of code to execute if and 
when an input with timestamp 

(
g
)
 (or less) arrives later than 


(
g
)
+ 100ms. Again, how to handle this fault condition is 

application specific. A database application, such as Google 
Spanner, may, for example, overlay a transaction schema on 
top of the mechanisms provided by decentralized coordination 
and reject a transaction when such a fault occurs.

Conclusion
Our generalization of Brewer’s CAP theorem, the CAL theorem, 
quantifies the relationship between inconsistency, unavailability, 
and apparent latency in distributed systems. Apparent latency 
includes network latency, execution time overhead, and clock 
synchronization error. The relationship is a given as a linear 
system of equations in a max-plus algebra. We show how this 
relationship enables deliberate choices about availability and 
consistency and how fault handlers can adapt the system when 
these choices cannot be respected because of system failures. 
Moreover, because the CAL theorem gives the numerical rela-
tionships between consistency, availability, and network latency, 
it can serve to guide placement of software components in end 
devices, in edge computers, or in the cloud. The consequences of 
such choices can be derived rather than measured or intuited.

We have shown how the LF coordination language enables 
arbitrary trade-offs between consistency and availability as 
apparent latency varies. We have extended the implementation 
of LF with two forms of coordination for distributed programs. 
With centralized coordination, inconsistency remains bounded 
by a chosen numerical value at the cost that unavailability 

becomes unbounded under network partitioning. With decen-
tralized coordination, unavailability remains bounded by a 
chosen numerical quantity at the cost that inconsistency 
becomes unbounded under network partitioning. In both 
cases, LF semantics provides predictable and repeatable 
behaviors in the absence of faults. In the case of decentralized 
coordination, a simple fault handling mechanism enables an 
application to react in controlled ways to loss of consistency 
while preserving availability. For centralized coordination, a 
deadline violation handler serves as a fault handler for loss of 
availability while preserving consistency.

Both coordination mechanisms given here are significant 
extensions over prior art. Our centralized coordination extends 
previous methods that have been used for distributed simula-
tion to support asynchronous injection of user-input events 
and cycles in the communication topology. Our decentralized 
coordination extends previous methods used for distributed 
databases to enable better support for cyclic communication 
structures and asynchronously injected user events.
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