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We propose NonStGM, a general nonparametric graphical modeling
framework, for studying dynamic associations among the components of a
nonstationary multivariate time series. It builds on the framework of Gaus-
sian graphical models (GGM) and stationary time series graphical models
(StGM) and complements existing works on parametric graphical models
based on change point vector autoregressions (VAR). Analogous to StGM,
the proposed framework captures conditional noncorrelations (both intertem-
poral and contemporaneous) in the form of an undirected graph. In addition,
to describe the more nuanced nonstationary relationships among the compo-
nents of the time series, we introduce the new notion of conditional nonsta-
tionarity/stationarity and incorporate it within the graph. This can be used to
search for small subnetworks that serve as the “source” of nonstationarity in
a large system.

We explicitly connect conditional noncorrelation and stationarity between
and within components of the multivariate time series to zero and Toeplitz
embeddings of an infinite-dimensional inverse covariance operator. In the
Fourier domain, conditional stationarity and noncorrelation relationships in
the inverse covariance operator are encoded with a specific sparsity structure
of its integral kernel operator. We show that these sparsity patterns can be
recovered from finite-length time series by nodewise regression of discrete
Fourier transforms (DFT) across different Fourier frequencies. We demon-
strate the feasibility of learning NonStGM structure from data using simula-
tion studies.

1. Introduction. Graphical modeling of multivariate time series has received consider-
able attention in the past decade as a tool to study dynamic relationships among the compo-
nents of a large system observed over time. Key applications include, among others, analysis
of brain networks in neuroscience [44] and understanding linkages among firms for measur-
ing systemic risk buildup in financial markets [25].

The vast majority of graphical models for time series focuses on the stationary setting (see
[3,6,7,11, 14,17, 18, 23, 28, 31, 38, 57, 61, 68], to name but a few). While the assumption
of stationarity may be realistic in many situations, it is well known that nonstationarity arises
in many applications. In neuroscience, for example, task based fMRI data sets are known to
exhibit considerable nonstationarity in the network connections, a phenomenon known as dy-
namic functional connectivity; see [53]. A naive application of graphical modeling methods,
designed for stationary processes, can lead to spurious network edges if the actual time series
is nonstationary.

The limited body of work on graphical models for nonstationary time series has so far fo-
cused on a restricted class of nonstationary models, where the data generating process can be
well approximated by a finite order change point vector autoregressive (VAR) model. Within
this framework [65] and [58] have proposed methods for constructing a “dynamically chang-
ing” network at each of the estimated change points. However, these methods are designed
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for time series which are piecewise stationary and follow a finite order stationary VAR over
each segment. For many data sets, these conditions can be too restrictive, for example, they
do not allow for smoothly changing parameters.

A naive approximation of smoothly changing dynamics by a change point VAR could re-
sult in many short piecewise stationary segments. As a result, the estimated graph structure
may be harder to interpret. Also, the model parameters within each short segment may be
harder to estimate due to small sample size. Analogous to stationary time series where spec-
tral methods allow for a nonparametric approach, it would be useful to define meaningful
networks for nonstationary time series.

The objective of this paper is to move away from semiparametric models and propose a
general framework for the graphical modeling of multivariate (say, p-dimensional) nonsta-
tionary time series. Our motivation comes from Gaussian graphical models (GGM), where
the edges of a conditional dependence graph can distinguish between the direct and indirect
nature of dependence in multivariate Gaussian random vectors. We argue that a general graph-
ical model framework for nonstationary time series should have the capability to distinguish
between two types of nonstationarity, the source of nonstationarity and one that inherits their
nonstationarity by way of its connection with the source. This way of dimension reduction
will be useful for modeling large systems where the nonstationarity arises only from a small
subset of the process and then permeates through the entire system. Moreover, the identifica-
tion of sources and propagation channels of nonstationarity may also be of scientific interest.

Analogous to GGM, in our framework the presence/absence of edges in the network
encodes conditional correlation/noncorrelation relationships amongst the p components
(nodes) of the time series. An additional attribute distinguishes between the types of non-
stationarity. A graphical model is built using conditional relations. In this spirit we introduce
the concept of conditional stationarity and nonstationarity. To the best of our knowledge,
this is a new notion. A solid edge between two nodes in the network implies that their lin-
ear relationship, conditional on all the other nodes, does not change over time. In contrast, a
dashed edge implies that their conditional relationship changes over time. We formalize these
notions in Section 2. Nodes in our network also have self-loops to indicate whether the time
series is nonstationary on its own or if it inherits nonstationarity from some other component
in the system. The self-loops are denoted by a circle (solid or dashed) round the node.

The time-varying autoregressive model is often used to model nonstationarity. To illustrate
the above ideas, in the following example we connect the parameters of a time-varying au-
toregressive model (tvVAR), which is a mixture of constant and time dependent parameters,
to the concepts introduced above:

Toy EXAMPLE. Consider the trajectories of a four-dimensional time series given in Fig-
ure 1. The time series plots of all the components exhibit negative autocorrelation at the start
of the time series that slowly changes to positive autocorrelation toward the end. Thus, the
nonstationarity of each individual time series, at least from a visual inspection, is apparent.
The data is generated from a time-varying vector autoregressive (tvVAR(1)) model (see Sec-
tion 2 for details), where components 1 and 3 are the sources of nonstationarity, that is, they
are affected by their own past through a (smoothly) time-varying parameter. In addition, com-
ponent 3 affects component 1. Component 2 and 4 affect each other in a time-invariant way.
Component 2 is also affected by 1, and components 1 and 4 are affected through 2. As a re-
sult, components 2 and 4 inherit the nonstationarity from the sources 1 and 3. As far as we are
aware, there currently does not exist tools that adequately describe the nuanced differences in
their dependencies and nonstationarity. Our aim in this paper is to capture these relationships
in the form of the schematic diagram in Figure 1b. We note that the tvVAR model is a special
case of our general framework, which does not make any explicit assumptions on the data
generating process.
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MWWWWWWWMWWNMWW (b) The joint governing architecture is

described in the graph. Dashed edges
and self-loops represent conditional non-
stationarity, while solid edges and self-
loops represent conditional invariance
and stationarity, notions of which we for-
malize in our new graphical modeling
framework.

(a) Trajectories of a four-dimensional time series gen-
erated by a tvVAR(1) model. The multivariate process
is jointly nonstationary. However, components 1 and 3
are the source of nonstationarity, while the other two
components inherit the nonstationarity by means of their
conditional dependence structure.

FI1G. 1. Time series and conditional dependence graph of a time-varying VAR model.

It is interesting to contrast the networks constructed using the “dynamically changing” ap-
proach, developed in [65] and [58] for change point VAR models, with our approach. Both
networks convey different information about the nonstationary time series. The “dynamically
changing” network can be considered as local, in the sense that it identifies regions of sta-
tionarity and constructs a directed graph over each of the stationary periods. While the graph
in our approach is undirected and yields global information about relationships between the
nodes.

In order to connect the proposed framework to the current literature, we conclude this
section by briefly reviewing the existing graphical modeling frameworks for Gaussian ran-
dom vectors (GGM) and multivariate stationary time series (StGM). In Section 2 we lay the
foundations for our nonstationary graphical models (NonStGM) approach. In particular, we
formally define the notions of conditional noncorrelation and stationarity of nodes, edges,
and subgraphs in terms of zero and Toeplitz embeddings of an infinite dimensional inverse
covariance operator. We show that this framework offers a natural generalizations to exist-
ing notions of conditional noncorrelation in GGM and StGM. It should be emphasized that
we do not assume that the underlying time series is Gaussian. All the relationships that we
describe are in terms of the partial covariance and, therefore, apply to any multivariate time
series whose covariance exists. In Section 3 we switch to the Fourier domain and show that
the conditional noncorrelation and nonstationarity relationships are explicitly encoded in the
sparsity pattern of the integral kernel of the inverse covariance operator. This connection
opens the door to learning the graph structure from finite length time series data with the
discrete Fourier transforms (DFT). In Section 4 we focus on locally stationary time series.
We show that, by conducting nodewise regression of discrete Fourier transforms (DFT) of
the multivariate time series across different Fourier frequencies, it is possible to learn the
network. Section 5 describes how the proposed general framework looks in the special case
of tvVAR models, where the notions of conditional noncorrelation and nonstationarity are
transparent in the transition matrix. Some numerical results are presented in Section 6 to
illustrate the methodology. All the proofs for the results in this paper can be found in the
Supplementary Material [4].

Background. 'We outline some relevant works in graphical models and tests for stationarity
that underpin the technical development of NonStGM:
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Graphical Models. A graphical model describes the relationships among the components
of a p-dimensional system in the form of a graph with a set of vertices V ={1,2,..., p}
and an edge set £ C V x V containing pairs of system components which exhibit strong
association, even after conditioning on the other components.

The focus of GGM is on the conditional independence relationships in a p-dimensional
(centered) Gaussian random vector X = (X W x@ . xP)T The nonzero partial corre-
lations p@?), defined as Corr(X @, X»)| X ~1@.b}) and also encoded in the sparsity structure
of the precision matrix ® = [Var(X )]~ L, are used to define the edge set E. The task of graph-
ical model selection, that is, learning the edge set E from finite sample, is accomplished by
estimating ® with a penalized likelihood estimator as in graphical Lasso ([32]) or by node-
wise regression ([47]) where each component of the random vector is regressed on the other
(p — 1) components.

Switching to the time series setting, consider {X, = (Xt(l), e Xt(a), e X,(I’))T},ez, ap-
dimensional time series with autocovariance function Cov(X,, X,) = C(z, t). Note that, in
future, we usually use {X,} to denote the sequence {X,};cz. A direct adaptation of the GGM
framework that estimates the contemporaneous precision matrix C~1(0,0) (see [57, 68])
does not provide conditional relationships between the entire time series. [7] and [14] laid the
foundation of graphical models in stationary time series, where the conditional relationships

between the entire time series {X ,(a) } and {X t(b)} is captured. They show that the inverse of the
multivariate spectral density function T(w) := (1/27) 372 _ . C() exp[—ilw] w € [0, ]
explicitly encodes the conditional uncorrelated relationships. To be precise, [z-! (@)]ap =0

for all w € [0, ] if and only if {X ,(a)} and {X t(b)} are conditionally uncorrelated, given all the
other time series. The graphical model selection problem reduces to finding all pairs (a, b),
where [El_l(a))]a,l7 # 0 for some w € [0, w]. For Gaussian time series, the graph is a con-
ditional independence graph, while for non-Gaussian time series the graph encodes partial
correlation information. For brevity, we refer to this approach as StGM (stationary time se-
ries graphical models). Estimation of %~ !(w) is typically done using the discrete Fourier
transform of the time series (see [29]). More recently, for relatively “large” p, penalized
methods such as GLASSO [38] and CLIME [31] have been used to estimate X! (w). This
framework crucially relies on stationarity, in particular, the Toeplitz property of the autoco-
variance function C; ; = C(¢ — 7) and is not immediately generalizable to the nonstationary
case.

Testing for stationarity. There is a rich literature on testing for nonstationarity of a time
series. Most methods are based on testing for invariance of the spectral density function
or autocovariance function over time (see [48, 52, 56], to name but a few). An alternative
approach is based on the fact that the discrete Fourier transform at certain frequencies is close
to uncorrelated for stationary time series. [2, 27, 30, 37] use this property to test for nonzero
correlation between DFTs at different frequencies to detect for departures from stationarity.
The above mentioned tests focus on the “marginal” notion of nonstationarity, instead of the
conditional notion defined in this paper. Tests for marginal nonstationarity are not equipped
to delineate between direct and indirect nature of conditionally nonstationary relationships
among the components of a multivariate time series. However, in this paper we show that,
analogous to marginal tests, it is possible to utilize the Fourier domain to detect for different
types of conditional (non)stationarity.

2. Graphical models and conditional stationarity. For a p-dimensional nonstationary
time series {X,}, all the pairwise covariance information are contained in the infinite set of
p x p autocovariance matrices C; = Cov[X,, X ] for ¢, T € Z. We aggregate this informa-
tion into an operator C and show that its inverse operator D captures meaningful conditional
(partial) covariance relationships (Section 2.2). Leveraging this connection, we first define a
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graphical model and conditional stationarity of its nodes, edges, and subgraphs in terms of the
operator D (Section 2.3). Then we show that these notions can be viewed as natural general-
izations of the GGM and StGM frameworks (Sections 2.4 and 2.5). We start by introducing
some notation that will be used to formally define these structures (this can be skipped on
first reading). Let A = (A, p: 1 <a <d;, 1 <b <d,) denote a d| x d>-dimensional matrix;
then we define A[3 = Y, 5 [4as/% 1Al = Yup [Aap] and [|Alloo = sup, , [Aq,p]-

2.1. Definitions and notation. We use £, and £, , to denote the sequence space {u =
(oo u_q,u0,u1,...); uj € Cand ZJ- |uj|2 < 0o} and the (column) sequence space {w =
vec[uD, ..., uP;u® ety forall1 <s < p}, respectively (vec denotes the vectorisation of
a matrix). On the spaces ¢ and ¢ ,, we define the two inner products (u, v) = ZjeZ u; v;’f
(where * denotes the complex conjugate) for u, v € £; and (x, y) = Zle W™, v®) for x =
@D, . uPy, y= WD, Py e 3, such that £ and ¢; , are two Hilbert spaces. For
x € £y p let ||x|l2 = (x, x). For 51,57 € Z, we use Ay, 5, to denote the (sq, s2) entry in the
matrix A, which can be infinite dimensional and involve negative indices.

We consider the p-dimensional real-valued time series {X,};ez, X, = (X t(l), Lo X t(p ))’ ,
where the univariate random variables X ,(a), a=1,...,p, are defined on the probability
space (€2, F, P). We assume for all ¢ that E[X,] = 0; this condition is not necessary in
Sections 2 and 3, but it simplifies the exposition. Let LZ(Q, F, P) denote all univariate
random variables X, where Var[X] < oco; and for any X, Y € L*(Q, F, P), we define the
inner product (X, Y) = Cov[X, Y]. For every t,t € Z, we define the p x p covariance
C;: =Cov[X;, X, ] and assume sup, .y |C; (|lco < 00. Under this assumption, for all t € Z
and 1 <c<p X9 eL2Q,F,P),let H=5pX )it €Z,1 <c < p)C LR, T, P) be
the closure of the space spanned by (Xt(c); teZ,1 <c<p).Since LZ(Q, F, P) defines a
Hilbert space, H is also a Hilbert space. Therefore, by the projection theorem and for any
closed subspace M of H, there is a unique projection of ¥ € H onto M, which minimises
E(Y — X)? over all X € M (see Theorem 2.3.1, [9]). We will use Paq(Y) to denote this
projection. In this paper we will primarily use the following subspaces:

H— Xt(”) =p[X55€Z,1<c<p,(s,0) # 1 a)]
H— (X, xP)=5p[X ;5 €Z, 1 <c<p,(5,0) ¢ {t,a), (1.b)]],
H — (X(C); ces) =@[X§C); s€Z,ceS',

where S’ denotes the complement of S.

Using the covariance C; ., we define the infinite dimensional matrix operator C as
C=(Cqp;a,befl,...,p}), where C, denotes an infinite dimensional submatrix with
entries [Cyplir = [Crclap for all ¢t,7 € Z. For any u € £, we define the (column)
sequence Cqpu = {[Cqpuli;t € Z}, where [Cypul; = Y ;cz[Caplicur. For any v =

vec[uV, ..., uP]e {3, p, we define the (column) sequence Cv as
p
ch,su(s)
=1
C1,1 C1’2 CLP M(l) SP
Co1 Crp ... Cyp u® ZCZ,su(S)
2.1 Cv= . . . . =] s=t
Cp1 Cpo ... Cpp u? » :
Z vasu(é‘)
s=1
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An infinite dimensional matrix operator, B, is said to be zero, if all its entries are zero. An
infinite dimensional matrix operator A is said to be Toeplitz if its entries satisfy A, ; = a;—¢
for all ¢, T € Z and for some sequence {a,; r € Z}.

2.2. Covariance and inverse covariance operators. Within the nonstationary framework,
we require the following assumptions on C to show that C is a mapping from ¢ , to £; )
(and later that C~! is a mapping from £; , to {3 ;). For stationary time series, analogous
assumptions are often made on the spectral density function (see Remark 2.1).

ASSUMPTION 2.1.  Define Agyp = SUPyer, . [v]lp=1 (v, CV), Ainf = iﬂfueez,,,,nv\\z:l (v, Cv).
Then

(2.2) 0 < Ainf < Asup < 00.

Assumption 2.1 implies that sup, sup, > ;<7 Zé’: | [Ct,,]i’ » < 00 and also the coefficients
of the inverse are square summable. It can be shown that if sup,.7 > .7 [1Cs ¢ llo < 00, then
SUPyet, . uf,=1 (v, Cv) < oo. This is analogous to a short memory condition for stationary
time series. It is worth keeping in mind that cointegrated time series do not satisfy this con-
dition. The theory developed in Sections 2 and 3 only require Assumption 2.1. However, to
estimate the network stronger conditions on D; ; are required, and these are stated in Sec-
tion 4.

Under the above assumption C : £ , — {3 ,, and since C; ; = C/m, (v, Cu) = (Cv, u),
thus C is a self-adjoint, bounded operator with ||C|| = Asup, where || - || denotes the operator
norm: |A] = SUPyet, . flulla=1 | Aul|2.

REMARK 2.1. In the case of stationary time series, sufficient conditions for Assump-
tion 2.1 to hold is that the eigenvalues of the spectral density matrix X (w) are uniformly
bounded away from zero and away from oo overall w € [0, 7] (see, e.g., [9], Proposi-
tion 4.5.3).

The core theme of GGM is to learn conditional (partial) covariances between two variables
after conditioning on a set of other variables. These conditional relationships can be derived
from the inverse covariance matrix. Now, we will define a suitable inverse covariance operator
D = C~! and show how its entries capture the conditional relationships. We will define these
conditional relations in terms of projections with respect to the £>-norm; this is equivalent to
the least squares regression coefficients at the population level.

We consider the projection of X'* onto # — X', given by

p
(23) Py xo(Xi”) =23 Bewraa XY,
' TeZb=1
with B(;,a)+(,a) = 0 (note the coefficients {B(r »)>(1,a)} are unique since C is nonsingular). Let
aaZt = E[X,(a) — PH @ (Xt(“))]z; it can be shown that aazt > Amin (see Appendix A.1 of the
. X! .
Supplementary Material [4]). Analogous to finite dimensional covariance matrices, to obtain

the entries of the inverse we use the coefficients of the projections of X t(a) onto H — X,(a) .
For all ¢, t € Z, we define the p x p-dimensional matrices D, ; as follows:

1
2
g,
(2-4) [Dt,t]a,b = a,tl

——Bebyr(t.a) Otherwise.
Ua t

a=bandt=r,
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Using Dy ;, we define the infinite dimensional matrix
(2.5) Da,b = {[Da,b]t,r = [Dt,r]a,b§ r,te Z}

Analogous to the definition of C, we define D = (D, p;a,b e {l,..., p}).

Our next lemma shows that the operator D is indeed the inverse of the covariance opera-
tor C. We also state some upper bounds on its entries, which will be useful in our technical
analysis.

LEMMA 2.1. Suppose Assumption 2.1 holds. Let D be defined as in (2.4). Then C~! =
D and ||D|| = Aiyf. Further, for all a,b € {1, ..., p}, |Dapll < At I1DZ LI < Agup and

inf *

sup; Y rez IDr.c I3 < phigg-
Proofs of results appear in the Supplementary Material [4].

2.3. Nonstationary graphical models (NonStGM). The operators C and D provide us
with the objects needed to formally define the edges in our network and to connect them to
the notions of conditional uncorrelatedness and conditional stationarity.

At this point we note an important distinction between edge construction in GGM and
StGM, an issue that is crucial for generalizing graphical models to the nonstationarity case.
In GGM conditional uncorrelatedness between two random variables is defined after con-
ditioning on all the other random variables in the system. On the other hand, in StGM the
conditional uncorrelatedness between two time series is defined after conditioning on all the
other time series. This leads to two, potentially, different generalizations in the nonstation-
ary setup. A direct generalization of the GGM framework would use the partial covariances
Cov(X®, i”)|5{), where S| = (X (s,0) ¢ {(t,a), (z, b)}}, while a generalization of the
StGM framework, would suggest using time series partial covariances Cov(X t(”), 3’) |S5),
where S = (X\” : 5 € Z, ¢ ¢ {a, b}}.

To address this issue, we start by using the inverse covariance operator D to define edges
that encode conditional uncorrelatedness and (non)stationarity. We show that, as expected,
these notions are a direct generalization of the GGM framework. Then we present a surpris-
ing result (Theorem 2.2) that the encoding of the partial covariances in terms of the operator
D remains unchanged, even if we adopt the StGM notion of partial covariance, that is, the
conditionally uncorrelated and conditionally (non)stationary nodes, edges, subgraphs are pre-
served under the two frameworks.

We now define the network corresponding to the multivariate time series. Each edge in
our network (V, E) will have an indicator to denote conditional invariance and conditional
time-varying, a new notion we now introduce. The edge set £ will contain all pairs (a, b),
where {X t(“)} and {X ,(b)} are conditionally correlated. The edge set E will also contain self-
loops that convey important information about the network. We start by formally defining
the notions of conditional noncorrelation and (non)stationarity. This is stated in terms of the
submatrices {D, p} of D.

DEFINITION 2.1 (Nonstationary network). Conditional covariance and (non)stationarity
of the components of a p-dimensional nonstationary time series are represented using a graph
G=(V,E),where V={1,2,..., p}isthe setof nodes, and E C V x V is a set of undirected
edges ((a, b) = (b, a)) and includes self-loops of the form (a, a):

o Conditional noncorrelation: The two time series {X ,(a)} and {X ,(b)} are conditionally un-
correlated if D, = 0. As in GGM and StGM, this is represented by the absence of an
edge between nodes a and b in the network, that is, (a,b) ¢ E.
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e Conditionally stationary node: The time series {X ,(a)} is conditionally stationary if D, , is
Toeplitz operator. We denote this using a solid self-loop (a, a) around the node a.

e Conditionally time-invariant edge: If a # b and D, p is a Toeplitz operator, then (a, b) is a
conditionally time-invariant edge. We represent a conditionally time-invariant edge (a, b)
in our network with a solid edge.

e Conditionally stationary subgraph: A subnetwork of nodes S C {1, ..., p} is called a con-
ditionally stationary subgraph if for all @, b € S, D, are Toeplitz operators, that is, Ds s
is a block Toeplitz operator.

As a special case of the above, we call a conditionally stationary subgraph of order two
(consisting of the nodes {a, b}) a conditionally stationary pair if D, 4, D4 p, and Dy, are
Toeplitz.

e Conditionally nonstationary node/time-varying edge: (i) If D, , is not Toeplitz, then {X ,(a)}

is conditionally nonstationary. (ii) For a # b, if D, is not Toeplitz, then (a, b) has a

conditionally time-varying edge.

We represent conditional nonstationary nodes using a dashed self-loop and a condition-
ally time-varying edge with a dashed edge.

In Section 5 we show how the parameters of a general tvVAR model are related to the
operator D and can be used to identify the network structure in NonStGM. As a concrete
example, below we describe the network corresponding to the tvVAR(1) considered in the
Introduction.

EXAMPLE 2.1. Consider the following tvVAR(1) model for a four-dimensional time
series:

1 ey

XEZ; a@®) 0 a3 0 Xté)l

X7l _| Bt B 0 B XD _

x50 0y of|x® |TaTAOL e
4 1

Xz( ) 0 vy 0 V4 XZ(J]

where {g,} are independent random variables (i.i.d) with ¢, ~ N (0, I4), and a(t), y(¢) are
smoothly varying functions of ¢. The four time series are marginally nonstationary; in the
sense that for each 1 < a < 4, the time series {X ,(a)} is second order nonstationary.

The inverse operator and network corresponding to {X,} is given below and is deduced
from the transition matrix A(¢) (the explicit connection between D and {A(f)} is given in
Section 5). Note that red and blue denote Toeplitz and non-Toeplitz matrix operators, respec-

tively.
D11 Dip D13 Dig '\ \,' o
\1’

D1 Dy 0 Doy :
D3y 0 D3z O R

Dsy Dspz 0 Dgy '.’3,‘- G

Connecting the transition matrix to the network. The connections between the nodes is be-
cause node 1 is connected to node 3 (if aza(¢) # 0 for some ¢), node 4 (if 8184 # 0), and
node 2 (if B18> # 0). By a similar argument, nodes 2 and 4 are connected (if 8284 # 0 or
vaug # 0).

The nonstationarity of the multivariate time series is due to the time-varying parameters
a(t) and y (¢). Specifically, the parameter e (¢) is the reason that node 1 is nonstationary, and
by a similar argument the time-varying parameter y (¢) is the reason node 3 is nonstation-
ary. Since the coefficients on the second and fourth columns are not time-varying, nodes 2
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and 4 have “inherited” their nonstationarity from nodes 1 and 3. Thus, nodes 1 and 3 are
conditionally stationary whereas nodes 2 and 4 are conditionally stationary. The connections
between nodes 1 to 2 and 1 to 4 are time invariant because 818, and 884 are time invariant
respectively.

REMARK 2.2 (Connection to GGM). Let X = (X ,(a) ; t € Z). Itis clear that the density
of the infinite dimensional vector (X @.1<qg< p) is not well defined. However, we can
informally view the joint density (at least in the Gaussian case) as “being proportional to”

1 & 1
exp(—i Z(){“’),Da,a}((“))—5 > (X<“>,Da,bx<b>)).

a=1 (a,b)eE ,a##b

This is analogous to the representation of multivariate Gaussian vector in terms of its inverse
covariance. Using the above representation, we conjecture that the above notions of condi-
tional correlation/stationarity/nonstationarity can be generalized to time series which is not
necessarily continuous valued, for example, binary valued time series.

2.4. NonStGM as a generalization of GGM. We start by defining partial covariances in
the spirit of the definition used in GGM but for infinite dimensional random variables. This
is defined by removing two random variables from the spanning set of H

(a.b) (@) @) (b b
(2.6) p%”) = Cov[ X, —PH%X[(@,X@)(XI“ ),Xi)—PHf(X@’ng))(Xg ).

Note that for the case t = t and a = b, the above reduces to

, 2
2.7) Pl =VarlX(” = P, w(X[”)] =05,
In the discussion below, we refer to the infinite dimensional conditional covariance matrices
@b = (,ot(flf’b); t,1€Z)and p*? = (p,(fzr’a); t,t € Z). In GGM the partial covariances are

encoded in the precision matrix. In a similar spirit, we show that pt(f’,’b) is encoded in the

inverse covariance operator D.

LEMMA 2.2. Suppose Assumption 2.1 holds. Let D, p be defined as in (2.5). Then the
entries of D, p satisfy the identities

(2.8)
[Da b]l‘l’
Corr[X\” — P @ o (X9), XD —p @ v (XO)] = — blt,
DX P ) (70 X7 = By ey (X)) VDaali Dl
and
X(a)—P @) +(b) (X(a)) [D ] [D ] -1
(2.9) Var ! H—(X," X H\ :< a,alt,t a,b t,r> ‘
X" =P g o, (X)) [Dy.ales [Dppler
t AT

Proofs of results appear in the Supplementary Material [4].

An immediate consequence of Lemma 2.2 is that the notions of conditional noncorrelation
and conditional stationarity can be equivalently defined in terms of the properties of the partial
covariances p(“?) . In particular, conditional noncorrelation between the two series a and b
translates to zero p@?), while conditional stationarity of the pair (a, b) translates to Toeplitz
structures on p @@, p®b) and p@b Tt is worth noting that the Toeplitz structure of p®®
(the partial covariance of a) captured in our framework is an important property, namely, the
conditional (non)stationarity of a node. A similar role on the diagonal entries of the precision
or spectral precision matrices (®, , or [z-! (w)]a,q) is absent in both the classical GGM and
StGM frameworks.
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PROPOSITION 2.1 (NonStGM in terms of p,(f’gb)). Suppose Assumption 2.1 holds. Let

p,(,a,’b) be defined as in (2.6). Then:

(1) Conditional noncorrelation: ,ot(flr’b) =0forallt and (i.e., ,o(“’b) =0)iff Dgp =0.

(i1) Conditionally stationary node: D, , is Toeplitz iff for all t and T

i =g,

that is, p‘“® is Toeplitz.
(iii) Conditionally stationary pair: D, 4, Dy, and D, are Toeplitz iff for all t and T

@ _ (@) (@.a)|-{(@.0).(b.7=1)) (a.b)
o - x ) XN (o™ Poii-t
Xx® _ p o) | = (a.b) (b.b)I-{(d.1=7).(b.0))
T

)
H—(X§“>,X§b>)(xr ) Po,t—7 0,0

(where p;(i’a)‘i{(a’t)’(b’r)} = Var[Xt(a) — Pﬂf(x,("),xim)(xt(a))])’ that is, p‘ @@, p®&- gnd
@D are Toeplitz.

Proofs of results appear in the Supplementary Material [4].

2.5. NonStGM as a generalization of StGM. Now, we define the time series partial co-
variance analogous to that used in StGM. We recall that the classical time series definition of
partial covariance in a multivariate time series evaluates the covariance between two random
variables X t(a) and X §”) after conditioning on all random variables in the (p —2) component
series V\{a, b}. In other words, we exclude the entire time series a and b from the condition-
ing set.

Formally, for any S C V, we define the residual of X ,(“) after projecting on sp(X s(c); s €
Z,c¢S)=H— (X9 ce8)as

-S
Xt(a)l = Xt(a) - PH—(X((’);CES) (Xt(a)) fort e Z.

In the definitions below, we focus on the two sets S = {a, b} and S = {a}. We mention that
the set S = {a} is not considered in StGMM but plays an important role in NonStGM. Using
the above, we define the edge partial covariance

.10 <pl(at,a)|—{u,b} pl(ar,b)l—{a,b}) c [(Xt(a)l—{a,b}> (Xga){a,b}>:|
: b,a)|-{a,b b,b)|-{a,b} | = OV b)|-{a,b} | » b)|-{a,b

pt(’ra)\ {a.b} Pt(,r )|-{a.b} Xt( )|-{a.b} X§ )|-{a.b}
and node partial covariance

2.11) pt(flr,a)\-{u} _ COV[lea)I-{a}’ XE“)"{“}].

We will show that the partial covariance in (2.10) and (2.11) are closely related to the par-
tial covariance in (2.6). In Lemma 2.2 we have shown that the partial correlations p,(ar b) define
the entries of the operator D. We now connect the time series definition of a partial covariance
to the operator D = (D, p;a,b € {1, ..., p}). Before we present the equivalent definitions of

. . . . . . a,b)|-S
our nonstationary networks in terms of the time series partial covariances pt(,f )| , we show

b)|- . . .
that ,ot(“I IS can be expressed in terms of the inverse covariance operator D.

(a.a)|-{a,b} t(flr,b)l-{mb} and

THEOREM 2.1. Suppose Assumption 2.1 holds. Let p; , P
,ot(ya,’a)lf{a} be defined as in (2.10) and (2.11), respectively. Then:

@ p " =D 1, ..
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(i1) Ifa # b, then

(2.12) Var[ X P e 7. c e {a, b)] = (gzz gzﬁ_l
with
Pt < [~(Dasa = Dap Dy yDba) ™ DapDyp), -
(Y < [(Daa = Das Dy Dia) '], o0
pi Y = [(Dyp — Dp.aDg hDap) '], .-

Proofs of results appear in the Supplementary Material [4].

A careful examination of the expressions for the GGM covariance p,(fz,’b), given in
Lemma 2.2, with the StGM covariance, given in ,o,(fl,’b)l_{a’b}, shows they are very differ-

ent quantities. Therefore, it is suprising that despite these stark differences they preserve the
same structures. More precisely, in Proposition 2.1 we showed that Definition 2.1 had a clear
interpretation in terms of p,(fl,’ 5 We show below that the network definition, given in Defini-
tion 2.1, can be interpreted in terms of the conditional dependence (or residuals) of the time
series. The fact that two very different conditional covariance definitions lead to the same
conditional graph is due to the property that infinite dimensional Toeplitz operators remain
Toeplitz, even after inversion and multiplication with other Toeplitz operators.

THEOREM 2.2. [NonStGM in terms of p'»P1-@PY Suppose Assumption 2.1 holds. Let

p,(f',’a)lf{a’h}, p,(fz,’b)lf{a’b} and p,(’a,’a)lf{a} be defined as in (2.10) and (2.11), respectively. Then:
(i) Conditional noncorrelation: D, p = 0 iff pt(,af’a)‘*{a} =0foralltand .

(ii) Conditionally stationary node: D, , is a Toeplitz operator iff for all t and <, pt(’“f’a)‘_{“} =

(a,a)|-{a}
0,t—71 .
(iii) Conditionally stationary pair: D, 4, Dpp and D, are Toeplitz iff for all t and T,
p(a,a)lf{a,b} _p(a,a)lf{a,b} p(b,b)lf{a,b} _p(b,b)\*{a,b} and pt(’af,b)\*{a,b} p(a,b)lf{a,b}.

1T — FP0,t—t > Mt T — FP0,t—t ’ =Po,1—1

Proofs of results appear in the Supplementary Material [4].

We show in the following result that the time series partial covariances can be used to
define conditional stationarity of a subgraph containing three or more nodes.

COROLLARY 2.1 (Conditionally stationary subgraph). LetS = {«1,...,a,} be a subset
of {1, ..., p} and S’ denote the complement of S. Suppose for all a,b € S, D, , are Toeplitz
(including the case a = b). Then {X t(a); t € Z,a € S} is a conditionally stationary subgraph,
where

Var[Xt(a) — PH—(XC;CGS/) (Xt(a)); teZ,ac S] =P

with
DOH,OH DOlhOlz T Dahar
Daz,al Daz,az T Daz,ar
pl=
Dar,al Dar,az e Dar,ar

Proofs of results appear in the Supplementary Material [4].
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3. Sparse characterisations within the Fourier domain. For general nonstationary
processes, it is infeasible to estimate the operator D and learn its network within the time
domain. The problem is akin to StGM, where it is difficult to learn the graph structure in
the time domain by studying all the autocovariance matrices. Estimation is typically carried
out in the Fourier domain by detecting conditional independence from the zeros of £~ ().
Following the same route, we will switch to the Fourier domain and construct a quantity that
can be used to “detect zeros and nonzeros.” In addition, within the Fourier domain we will
define meaningful notions of weights/strengths of conditionally stationary nodes and pairs
that are analogous to well-known partial spectral coherence measures used in StGM.

Notation. We first summarize some of the notation we will use in this section. We define
the function space of square integrable functions L;[0, 27) as all complex functions, where
g € L]0, 2m) if fozﬂ | g(a))l2 dw < 0o. We define the function space of all square summable
vector complex functions L,[0, 27)”, where g(w)/ = (g1(w), ..., gp(w)) € L2[0,2m)P if
forall 1 < j <p g;€L2[0,2m). For all g, h € L»[0,27)”, we define the inner-product

(g.h) = X" (gj. hj), where (gj,hj) = [§7 gj()h;(w)*dw. Note that L,[0,27)” is a
Hilbert space. We use &, ) to denote the Dirac delta function and set i = +/—1.

3.1. Transformation to the Fourier domain. In this section we summarize results which
are pivotal to the development in the subsequent sections. This section can be skipped on first
reading.

To connect the time and Fourier domain, we define a transformation between the sequence
and function space. We define the functions F : L,[0,27) — £ and F* : £, — L;[0,2x),
where

2w

1
(3.1 [F(g)]j =57 )k g()exp(ijA)dr and  F*(v)(w) = Zvj exp(—ijw).
JjEZ

It is well known that F and F* are isomorphisms between ¢, and L,[0,27w) (see,
e.g., [9], Section 2.9). For d > 1, the transformations F(g) = (F(g1),..., F(gq)) and
Frv=(F*oO®, ... F*v@D) where v= (v, ..., v@D) are isomorphisms between ¢; 4 and
L>[0, 27)¢. Often, we use that d = p. These two isomorphims will provide a link between the
infinite dimensional matrix operators D defined in the time domain to an equivalent operator
in the Fourier domain.

Let A= (Agp;a,befl,...,d});if A:€r4— {24 is a bounded operator, then standard
results show that F*AF : L,[0, 27)? — L,[0, 27)4 is a bounded operator (see [12], Chapter
II). F*AF is an integral operator, such that, for all g € L,[0, 2n)d,

27
(3.2) FrAF@ol= — [ A, 2)g0)dx,
27 Jo =

and A is the d x d-dimensional matrix integral kernel, where

A(w, 1) = <Z Y [Awplicexplito —ith);a,befl, ..., d}).

teZ 1€l

To understand how A and A(w, A) are related, we focus on the case d = 1 and note that the
(t, ) entry of the infinite dimensional matrix A is

1

Apr=——
T (2m)2

2n 2w
/ A(w, M) exp(—itw+itr )dwdr forallt, Tt eZ.
0 0
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REMARK 3.1 (Connection with covariances and stationary time series). We note if C
were a covariance operator of a univariate time series {X,} with integral kernel G, then

1
(2m)?
where G (w, 1) is the Loeve dual frequency spectrum. The Loeve dual frequency spectrum is
used to describe nonstationary features in a time series and has been extensively studied in
[1,33-36, 41, 43, 49, 50].

If {X;} were a second order stationary time series, then (3.3) reduces to Bochner’s Theorem

2n 2w
3.3) Cov[X;, X:]=C; = / G(w,A)exp(—itw+itA)dwdA,
0 0

1 2
2m) Jo

The relationship between the spectral density function f(w) and the Loeve dual frequency
spectrum G(w, A) is made apparent in Lemma 3.1 below.

Cov[X;, X:1=Co -1 = fw)exp(—i(t — 1)w)dw.

A(w, A) is a formal representation, and typically, it will not be a well-defined function
over [0, 277)?, as it is likely to have singularities. Despite this, it has a very specific sparsity
structure when the operator A is Toeplitz. For the identification of nodes and edges in the
nonstationary networks, it is the location of zeros in A(w, 1) that we will exploit. This will
become apparent in the following lemma due to [64] (we state the result for the case d = 1).

LEMMA 3.1. Suppose A is an infinite dimensional bounded matrix operator A : £y —
£5. The matrix operator A is Toeplitz iff the integral kernel associated with F*AF has the
form

A(w, A) = 6p 1 A(®),

where A(w) € L2[0,2m) and §,, 5 is the Dirac delta function.

Proofs of results appear in the Supplementary Material [4].

The crucial observation in the above lemma is that A(w, A) = 0 for A # w iff A is a Toeplitz
matrix. Below we generalize the above to the case that A (and its inverse) is a block Toeplitz
matrix operator.

LEMMA 3.2. Suppose that A is an infinite dimensional, symmetric, block matrix
operator A : £y g — {34, where 0 < infjy,=1(v, Av) < sup”szzl(v,Av) < 00 with
A= (Agp;a,bef{l,....d}) and A,y is Toeplitz. Then the integral kernel associated
with F*AF is A(w,X) = A(w)dp.x, Where A(w) is a d x d matrix with entries
[A()a.p =2 rezlAaplo.rexp(irw). Further, the integral kernel associated with F*A~'F
is A(@) "85

Proofs of results appear in the Supplementary Material [4].

From now on we say that the kernel A(w, ) is diagonal if it can be represented as
S A(w).

We use the operators F : L[0,2m)? — £> , and F* : £y , — L;[0,2m)? to recast the
covariance and inverse covariance operators of a multivariate time series within the Fourier
domain. We recall that C is the covariance operator of the time series {X,}, and by using (3.2),
F*CF is an integral operator with matrix kernel C(w, ) = (Cy p(w, X);a,b € {1,..., p}),
where Cy p(0,2) =Y 17> rezlCaplir explito —iTA).

In the case that {X,} is second order stationary, then C, p(w, A) = [X(®)]4,500,) Where
2 (-) is the spectral density matrix of {X,}. However, if {X,} is second order nonstationary,
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then by Lemma 3.1 at least one of the kernels C, ;(w, A) will be nondiagonal. The dichotomy
that the mass of C(w, 1) lies on the diagonal w = X if and only if the underlying process
is multivariate second order stationary and is used in [27, 30, 37] to test for second order
stationarity.

3.2. The nonstationary inverse covariance in the Fourier domain. The covariance op-
erator C and corresponding integral kernel C(w, A) does not distinguish between direct
and indirect nonstationary relationships. We have shown in Section 2 that conditional re-
lationships are encoded in the inverse covariance D. Therefore, in this section we study the
properties of the integral kernel corresponding to F*DF. Under Assumption 2.1, D = C~!
is a bounded operator; thus, F*DF is a bounded operator defined by the matrix kernel
K(w, ) = (K4 p(w,V);a,be{l,..., p}), where

B4 Kap@,) =Y [Daplirexplito—iti) =Y T (W) expit(@— 1))
teZ t€l teZ

and

(3.5) L () = S [Daplresr expliri).
rez

Note that, under Assumption 2.1 ||D]|| < oo, this implies for all a,b € {1,..., p} that the
sequence {[Dg pls i+r}r € €2, thus F,(a’b)(‘) € L»[0,2m]. As far as we are aware, neither
Ky p(w, ) nor Ft(a’b) (1) have been studied previously. But Ft(a’b) (1) can be viewed as the
inverse covariance version of the time-varying spectrum that is commonly used to analyze
nonstationary covariances (see [5, 13, 46, 54]). We observe that D, j is Toeplitz if and only
if Ft(a’b) (1) does not depend on ¢.

In the following theorem, we show that K(w, A) defines a very clear sparsity pattern de-
pending on the conditional properties of {X,}. This will allow us to discriminate between
different types of edges in a network. In particular, zero matrices D, , map to zero kernels
and Toeplitz matrices D, , map to diagonal kernels.

THEOREM 3.1. Suppose Assumption 2.1 holds. Then:

(i) Conditionally noncorrelated: {Xt(a), X ,(b) }+ are conditionally noncorrelated iff K, p(w,
A) =0 forall w, A €10, 2m].
(i) Conditionally stationary node: {X t(a)}t is conditionally stationary iff the integral kernel
Ka.o(w, A) is diagonal.
(iii) Conditionally time-invariant edge: The edge (a, b) is conditionally time invariant iff the
integral kernel K, p(w, 1) is diagonal.

Proofs of results appear in the Supplementary Material [4].

These equivalences show that conditional noncorrelatedness and stationarity relationships
in the graphical model, as defined by the D operator, are encoded in the object K (-, -). This
provides the foundation for an alternate route to learning the graph structure in the frequency
domain.

EXAMPLE 3.1. We return to tvAR(1) model described in Example 2.1. In Figure 2 we
give a schematic illustration of the matrix D in the frequency domain.
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D\,\ O(,/,_ b\,3 D\.‘f - . N - E
5. O F*DF

Day Dyy O Dy > [N N O N

Dy, O DBq O Hm o " O

0Lf:| DL"/‘L O le“f N N O N

FIG. 2. Illustration of the mapping of matrix D to the integral kernel corresponding to F* DF . The diagonal red
box indicates the mass of F* D, , F lies only on the diagonal (it corresponds to a Toeplitz matrix). The blue filled
box indicates that the mass of F* Dy, F lies both on the diagonal and elsewhere (it corresponds to a non-Toeplitz
matrix).

3.3. Partial spectrum for conditionally stationary time series. So far we have considered
the construction of an undirected, unweighted network which encodes the conditional uncor-
relation and nonstationarity properties of time series components. In practice, we would be
interested in assigning weights to network edges that represent the strength or magnitude of
these conditional relationships. This will also be useful for learning the graph structure from
finite samples. In GGM partial correlation values are used to define edge weights. In StGM
the partial spectral coherence (the frequency domain analogue of partial correlation) is used
to define suitable edge weights.

We now define the notion of partial spectral coherence for conditionally stationary time
series. We start by interpreting F,(”’a)(a)) and F,(“’b) (w), defined in (3.5), in the case that
the node or edge is conditionally stationary. In the following proposition, we relate these
quantities to the partial covariance ,ot( . b . Analogous to the definition of ,o(t o)
partial correlation

, we define the

(3.6) @h — Cor[ X\ — P

H—(Xf“),Xi’”)(Xf(a))’ XP — P X X<b>)(X(b))].

H—

Using the above, we obtain an expression for Ft(a’a) (w) and F,(a’h) (w) in the case that an edge
or a node is conditionally stationary.

THEOREM 3.2. Suppose Assumption 2.1 holds. Let p(a Y and ¢,(a D) pe defined as in
(2.6) and (3.6):

(1) If the node a is conditionally stationary, then F,(a’a)(a)) =@ () for all t, where

o
I (@)= 3" [Daal.r explirw) = p [1 - 3 en? exp(irw)]
r=—00 reZ\{0}
(i) If (a, b) is a conditionally stationary pair, then expressions for IT'“® (w) and T'??) (w)
are given in (i) and F(a b)( ) =@ () forall t, where

1

(a,b) .
( (a a) (b b))1/2 Z¢ eXp(erl)).

@b @) = Z [Da.p)0.r) eXplirw) =

r=—00

Proofs of results appear in the Supplementary Material [4].

For StGM the partial spectral coherence is typically defined in terms of the Fourier trans-
form of the partial time series covariances (see [55], Section 9.3, and [14]). We now show
that an analogous result holds in the case of conditional stationarity.

THEOREM 3.3. Suppose Assumption 2.1 holds:
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(1) If the node a is conditionally stationary, then
> p W explirw) =10 @) 7.
res
(i1) If (a, b) is a conditionally stationary pair, then
- - -1
Z p(()?}a)l {a,b} péf’;b)' {a,b} exp(ire) — F@® (@) T@b ()
= p(()l’a’:a)l—{a,b} p(()l’a;b)l—{a,b} F(a,b) (a))* F(b’b) (w) .

Proofs of results appear in the Supplementary Material [4].

The above allows us to define the notion of spectral partial coherence in the case that un-
derlying time series is nonstationary. We recall that the spectral partial coherence between
{X ,(a)}, and {X ,(b)}, for stationary time series is the standardized spectral conditional covari-
ance (see [14]). Analogously, by using Theorem 3.3(ii) the spectral partial coherence between
the conditionally stationary pair (a, b) is

@b (w)

(3.7) Rap(@) = — .
JT@O (@) D) (@)

In Appendix F of the Supplementary Material [4], we show how this expression is related to
the spectral partial coherence for stationary time series.

3.4. Connection to nodewise regression. In Lemma 2.1 we connected the coefficients of

D to the coefficients in a linear regression. The regressors are in the spanning set of H — X ,(“) .
In contrast, in nodewise regression each node is regressed on all of the other nodes (the
coefficients in this regression can also be connected to the precision matrix). We now derive
an analogous result for multivariate time series. In particular, we regress the time series at
node a ({X t(a)},) onto all the other time series (excluding node a, i.e., the spanning set of
H — (X@)) and connect these to the matrix D. These results can be used to encode conditions
for a conditionally stationary edge in terms of the regression coefficients. Furthermore, they
allow us to deduce the time series at node a, conditioned on all the other nodes (if the time
series is Gaussian).
The best linear predictor of X ,(“), given the “other” time series {X s(b); se€Z,b#a},is

(3.8) PH_(X@)(X,(“)) =3 N e X,
b#ateZ

We group the coefficients according to time series and define the infinite dimensional matrix
By, with entries

3.9 [Bb—m]t,r = Q(1,b)>(t,a) forallz, t € Z.
In the lemma below, we connect the coefficients in the infinite dimensional matrix Bps, to
Da,h

PROPOSITION 3.1. Suppose Assumption 2.1 holds. Let (Dy p; 1 <a,b < p) be defined
as in (2.5). Then, for all b # a, we have
(3.10) Da,b = _Da,aBb-m-

Proofs of results appear in the Supplementary Material [4].

In the following theorem, we rewrite the conditions for conditional noncorrelation and
conditional time-invariant edge in terms of node-regression coefficients.
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THEOREM 3.4. Suppose Assumption 2.1 holds. Let By, be defined as in (3.9). Then:

(1) Bb—>a =0 iﬁCDa,b =0.
(1) If D44 and Byps, are Toeplitz, then D, , = — D, 4 Bp+q is Toeplitz.

Proofs of results appear in the Supplementary Material [4].

Below we show that the integral kernel associated with By, has a clear sparsity structure.

COROLLARY 3.1. Suppose Assumption 2.1 holds. Let Bps, be defined as in (3.10). Let
Kpsqa(w, )) denote the integral kernel associated with Bp,. Then:

(1) Bpsq is a bounded operator.
(i) Conditionally noncorrelated: {Xt(“), X ,(b) }¢ are conditionally noncorrelated iff K ;-p(w,
A =0.
(i) Conditionally stationary pair: {X\*, X'}, are conditionally jointly stationary iff the
kernels K4 q(w, A), Kp p(w, L) and Kpsq (@, ) are diagonal.

Proofs of results appear in the Supplementary Material [4].

We use the results above to deduce the conditional distribution of X® under the assump-
tion that the time series {X,} is jointly Gaussian. The conditional distribution of X®, given
H — (X)), is Gaussian, where

p
X<“>|H—(X<“>)~N< > Bmx@,l);al)
b=1,b+a

with E[X@[H — (X)) = 2)_, o, BraX® and Var[X@|H — (X@)] = D). Some
interesting simplications can be made if the nodes and corresponding edges are condition-
ally stationary and time invariant. If X@ has a conditionally stationary node, then by The-
orem 2.2(ii) the conditional variance will be stationary (Toeplitz). If, in addition, the condi-
tionally stationary node a is connected to the set of nodes S, and all the edge connections are
conditionally time invariant, then by Theorem 3.4 the coefficients in the conditional expecta-
tion are shift invariant, where

E[X{1H — (X@)]= Y Y a"x"..
beS, jeZ

Therefore, if the node a is conditionally stationary and all its connecting edges are condition-
ally time invariant, then the conditional distribution X @ |(H — (X)) is stationary.

4. Learning the network from finite length time series. The network structure of {X,},
is succinctly described in terms of K(w, 1). However, for the purpose of estimation, there are
three problems. The first is that K(w, A) is a singular kernel making direct estimation impossi-
ble. The second is that, for conditional nonstationary time series, the structure of [K(w, A)]4 »
is not well defined. Finally, in practice, we only observe a finite length sample {X,}}_,. Thus,
our object of interest changes from K(w, ) to its finite dimensional counterpart (which we
define below). For the purpose of network identification, we show that the finite dimensional
version of K(w, A) inherits the sparse properties of K(w, A). Moreover, in a useful twist,
whereas K(w, A) is a singular kernel, its finite dimensional counterpart is a well-defined ma-
trix, making estimation possible.
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4.1. Finite dimensional approximation. To obtain the finite dimensional version of
K(w, 1), we recall that the discrete Fourier transform (DFT) can be viewed as the analo-
gous version of the Fourier operator F' (defined in (3.1)) in finite dimensions. Let F}, denote
the (np x np)-dimension DFT transformation matrix. It comprises of p? identical (n x n)-
dimension DFT matrices, which we denote as F;,. Define the concatenated np-dimension
vector X, = (XY, ..., (XPY), where X@ = (X', ..., XY fora € {1,..., p}. Then
FX, isa np—dimensmn vector, where (F,X,) = ((.7-",’1“&(1))/, o (FrX Py with

2wk
(a) % v (a) (@)

4.1 F, X = X t k=1,. d = —.

4.1) =] 1k \/_ E exp(itwy) ,n and wy ,

t=1

Let Var[X,] = C,, then Var[F;X,] = F,; C,F,. Our focus will be on the (np x np)-
dimensional inverse matrix

K, = [Var[FX, )] =[FrC,F ] =(F17'C [F¥) ™ = F*D, F,,

where 5;1 = Cn_ and the above follows from the identity F,~ 1 = F;. Let K, = ([K;lu.5;
a,bef{l,...,p}), where [K,],, denotes the (n x n)-dimensional sub-matrix of K, and
[K, (wk,, wi,)]a,p denotes the (ki, kp)th entry in the submatrix matrix [Kj], 5. For future
reference we define the (p x p)-dimensional matrix K, (wy,, wk,) = ([Ky (0k;, 0ry)1a,p; 1 <
a,b < p). We show below that [K, (w,, wk,)]s,» can be viewed as the finite dimensional
version of K, p(w, A).

The covariance matrlx C, = Var[X ] is a submatrix of the infinite dimensional C. Un-
fortunately, its inverse D, = = C, " is not a submatrix of D. As our aim is to show that the
properties of the inverse covariance map to those in finite dimensions, we will show that,
under suitable conditions, D, can be approximated by a finite dimensional submatrix of D.
To do this, we represent Dy, as p X p submatrices each of dimension n x n

(4.2) Dy = (Dapm:a,befl, ..., p}).
Analogously, we define p x p submatrices of D each of dimension n x n
4.3) Dy, =(Dgpnsa.befl, ..., p}),

where D, b n ={[Daplt,c;t,T €{1,...,n}}. Below we show that, under suitable conditions,
D, = = C, " can be approximated well by D,,. This result requires the following conditions
on the rate of decay of the inverse covariances D; ;, which is stronger than the conditions in
Assumption 2.1.

ASSUMPTION 4.1. The inverse covariances Dy r, defined in (2.4), satisfy the condition
sup, D, r+jlloc < E(j)_l, where {K(ljl)_l}j is some monotonically decreasing sequence
with sup, >~ ; 1715¢(j)~" < oo (for some K > 3/2).

The conditions in Assumption 4.1 are analogous to those used in the analysis of stationary
time series, where certain conditions on the rate of decay of the autocovariances coefficients
are often used. [40] obtain an equivalence between the rate of decay on D; ; and C; ;. In
particular, [40] Theorem 2.1 show that if Assumption 2.1 holds and for all |r| # 0 we have
sup; [|Cy sl < K|r|~X for some K > 7/2 (where || - || denotes the spectral norm), then
sup, |Dy.r4r ]l < K((1 +1log|r[)/|r]) . Thus, Assumption 4.1 holds.

In the lemma below, we obtain a bound between the rows of D, and D,,.
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THEOREM 4.1.  Suppose Assumptions 2.1 and 4.1 hold. Let D, and D,, be defined as in
(4.2) and (4.3). Then for all 1 <t <n, we have

sup | [Dn] —[D,] I, = 0( (np)'" )
A P N [DLPA

where A—1)n41,. denotes the ((a — 1)n + t)th row of the matrix A or, equivalently, the tth
row along the ath block of A.

Proofs of results appear in the Supplementary Material [4].

The theorem above shows that the further ¢ lies from the two end boundaries of the se-
quence {1,2,...,n} the better the approximation between [5,,](”_1)”“?. and [Dyla—1yn+1,--
For example, when t = n/2 (recall that p is fixed), ||[13n](a_1)n+,,. — [Dul@a=tyn+e,-1h =
O (1/nX=1/2)_ Using Theorem 4.1, we replace Fy D, F, with F;y D, F, to obtain the follow-
ing approximation.

PROPOSITION 4.1. Suppose Assumptions 2.1 and 4.1 hold. Let F,(a’b) (w) be defined as
in (3.5). Then

| L , 1
[ k1010 ], = - 3 T o exp(it g, — ) + 0 )

=1 n

4.4)
1 & * 1
— [Z > :F;(b’a) (wx,) exp(—it (wx, — wkl))} " O<;>'

t=1

Further, if {X ,(a)}t and {X t(b)}; are conditionally stationary, then

L0 (@) +0n™") ki =ky(=k)
4.5) K (wk,, wry) |, = _ ’
[ 1 2 ] b {O(n 1) kl #k27
where T'@0) (4) = 2 oolDaplo.r) explirw).

Proofs of results appear in the Supplementary Material [4].

4.2. Locally stationary time series. We showed in Proposition 4.1 that in the case the
node or edge (a, b) is conditional stationary or conditionally time-variant [K (wk,, @k,)]a,p
has a well-defined structure; the diagonal dominates the off-diagonal terms (which are of
order O(n~")). However, in the case of conditional nonstationary node/time-varying edge
the precise structure of [K,, (e, , wk,)]q,» 1s not apparent; this makes detection of conditional
nonstationarity difficult. In this section we impose some structure on the form of the nonsta-
tionarity. We will work under the canopy of local stationarity. It formalizes the notion that
the “nonstationarity” in a time series evolves “slowly” through time. It is arguably one of the
most popular methods for describing nonstationary behaviour and describes a wide class of
nonstationarity; various applications are discussed in [10, 19, 21, 26, 39, 51, 54, 62, 70], to
name but a few. We show below that for locally stationary time series [K, (wy, , wk,)]s,» has
a distinct structure that can be detected.

Locally stationary processes were formally proposed in [13]. In the locally stationary
framework, the asymptotics hinge on the rescaling device n, which is linked to the sample
size. It measures how close the nonstationary time series is to an auxillary (latent) process
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{X,(u)};, which for a fixed u is stationary over . More precisely, a time series {X, ,}; is said
to be locally stationary if there exists a stationary time series {X,(u)};, where

1 t
(4.6) 1X, , — X, ()], = 0p<_ . ‘_ . )
n n
Thus, for every 7, X, , = (X t(},z, X t(,[:z))/ can be closely approximated by an auxillary vari-

able X, (u) (where u =1t /n); see [16, 21, 22, 59]. However, as the difference between 7 /n and
u grows, the similarity between X, , and the auxillary stationary process X,(u) decreases.
This asymptotic device allows one to obtain well-defined limits for nonstationary time series,
which otherwise would not be possible within classical real time asymptotics. Though the for-
mulation in (4.6) is a useful start for analysing nonstationary time series, analogous to [20],
we require additional local stationarity conditions on the moment structure. [15] and [20]
state the conditions in terms of bounds between Cov[X, ,, X ,] and Cov[X((u), X, . (u)].
Below we state similar conditions in terms of the inverse covariances D, ; and its stationary
approximation counterpart.

ASSUMPTION 4.2. There exists a sequence {£(j)}; such that Zjez jﬂ(j)*1 < oo and
matrix function D;_; : R — R”*P, where

47 D,,=D <I+T>+0< ! > tte’
) = - T )
LET T Cop nt(t — 1)

Further, the matrix function D;(-) is such that: (i) sup, ZjeZ /D)y < oo,
(ii) sup,, |22 e | < p(j)=1 (iii) for all u, v € R |D;(u) —D; )| < |u — v]€(j)~!, and

(v sup, |12k — )1
Standard w1th1n the locally stationary paradigm D; ; should be indexed by n (but to sim-
plify notation we have dropped the n).

Theorem 3.3 in [40] shows that Assumption 4.2 is fulfilled by a large class of locally
stationary time series under certain smoothness conditions on their covariance.

The above assumptions allow for two important types of behaviour: (i) conditionally sta-
tionary nodes and time-invariant edges, where [D;(u)],» = [D;](4,»), and (ii) conditional
nonstationarity where the partial covariance between X, @ and X,/ ® (for fixed lag j) evolves
“nearly” smoothly over ¢. The technical condition that the entryw1se derivative of the matrix
functions D, (-) exist can be relaxed to include matrix functions D () of bounded variation
(which would allow for change point models as a special case) similar to [20].

4.3. Properties of K, (wy,, wk,) under local stationarity. Typically, the second order
analysis of locally stationary time series is conducted through its time-varying spectral den-
sity matrix. This is the spectral density matrix corresponding to the locally stationary approx-
imation {X,(u)};, which we denote as X (u; w). The time-varying spectral density matrix
corresponding to {X; ,}; is {X(7/n; w)};. In contrast, in this section our focus will be on
the inverse I'(4; w) = X (u; w)~ !, where by Lemma 3.2, I' (u; w) is the Fourier transform of
D (u) over the lags j, that is,

(4.8) T(u;w)=>Y D;u)exp(ijow).
JEZ

We note that I'(u; w) = (F(“’b)(u;a)); 1 <a,b < p). We use Assumption 4.2 to relate
@b (y: @) to F,(a’b) (w) (defined in (3.5)). In particular, I'®?) (¢ /n; w) is an approximation
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1
)
n

Thus, the time-varying spectral precision matrix corresponding to {X, ,}; is {T'(t/n; w)};.

Our aim is to relate I'(u; w) to K, (wx,, wi,). First, we notice that I' (u; w) is “local,” in
the sense that it is a time local approximation to the precision spectral density at time point
t = |un] (where | y] denotes the largest integer less than y). On the other hand, K, (wy, , wk,)
is “global,” in the sense that it is based on the entire observed time series. However, we show
below that K, (wy,, wk,) is connected to I'(u; w), as it measures how I' (u; ) evolves over
time. These insights allow us to deduce the network structure from K, (g, , @i, ).

In the following lemma, we show that the entries of the matrix K, (wx,, w,) can be ap-
proximated by the Fourier coefficients of I'“-?) (-; w), where

of I''“? () and

t
4.9) @) - 1w o) < (| —u
n

1
(4.10) K9P () :/ exp(—2miru)' P (u; w) du.
0

The Fourier coefficients K r(”’b) (w) fully determine the function @b y; ). In particular: (i)
if all the Fourier coefficients are zero, then I'®?) (u; w) = 0; (ii) if all the Fourier coefficients
are zero, except r = 0, then [@.b) (u; w) does not depend on u. Using this, it is clear the

coefficients K r(a’b) (w) hold information on the network. We summarize these properties in
the following proposition.

PROPOSITION 4.2.  Suppose Assumptions 2.1, 4.1, and 4.2 hold. Let Kr(a’b)(-) be defined
as in (4.10). Then:

1 {X t(“n) i_; and {X ,(bn) "_1 is a (asymptotically) conditionally noncorrelated edge iff
Kr(a’b) (w)=0forallr € Z and w € |0, 27].
(ii) {Xt(ftn) _ is a (asymptotically) conditionally stationary node iff K r(“’a)(a)) =0 for all
r#0and w € [0,2m].
(iii) The edge (a, b) is (asymptotically) conditionally time invariant iff K r(a’b) (w) =0 forall
r #0and w € [0, 21].

Proofs of results appear in the Supplementary Material [4].

Note that the above result is asymptotic in rescaled time (n — 00). We make this precise

in the following proposition, where we show that [K, (wk, , wk,)]q,» closely approximates the

Fourier coefficients K ,Ef_blzz (wk,)-

PROPOSITION 4.3.  Suppose Assumptions 2.1,4.1, and 4.2 hold. Let K,(a’b)(-) be defined
as in (4.10). Then

1 12 (k) — k)N o[t 1
@1 Kok 00)],, = Zexp(—#y"( ”’>(;; a)k2> + 0(2).

t=1 n
Further,

1
K@ +0(1) ik~ kel <n/2

412)  [Ky(ok. o)), , = K,Ej‘f’,iz_n<wk2>+0( ifn/2 < (ki —ky) <n,

—_ | =
N——

b
K& n(on) + 0

kot ;) if —n < (k1 — kp) < —n/2,

where the O (n~") bound is uniform over all 1 <r <n (and n is in rescaled time).
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Since  [Ky (@, 0iy)lap = [Kn(wkz,a)kl)];a, then (4.12) can be replaced with

(b,a) (b,a) (b,a)

K"k, ()", Kk n (wk,)* and Ky k—n (wk,)*, respectively.

Proofs of results appear in the Supplementary Material [4].

In the proposition above, we have split [K, (wk,, @k, )]s » into three separate cases due
to the circular wrapping of the DFT, which is most pronounced when wy, is close to the
boundaries of the interval [0, 277].

In [27] and [37], we showed that the Fourier transform of the time-varying spectral density
matrix G,(w) = fol e~ FUY (u; w) du decayed to zero as |r| — oo and was smooth over w.
In the following lemma, we show that a similar result holds for the Fourier transform of the
inverse spectral density matrix.

PROPOSITION 4.4 (Properties of K r(”’b) (w)). Suppose Assumption 4.2 holds. Then, for
alll1 <a,b < p,we have

(4.13) sup|K P ()| - 0 asr — oo
w

and sup,, |Kr(a’b) ()| ~ |r|~L. Furthermore, for all w1, w; € [0, 7] and r € Z,

Clwr — ws] r=0,

4.14 K@D (1) — KD ()] < .
(4.14) K7 (@) — K7 ()] < Clrl w1 —wa| r#0,

where C is a finite constant that does not depend on r or w.

Proofs of results appear in the Supplementary Material [4].

The above results describe two important features in K, :

1. For a given subdiagonal r, [K]gi changes smoothly along the subdiagonal, where KC%

denotes the rth subdiagonal (—(n — 1) <r < (n—1)). Analogous to locally smoothirig
the periodogram, to estimate the entries of [K], , from the DFTs we use the smoothness
property and frequencies in a local neighbourhood to obtain multiple “near replicates.”

2. For a given row k, [K(wk, @k+r)]a p 1 large when r mod(n) is close to zero and decays
the further it is from zero.

These observations motivate the regression method that we describe below for learning the
nonstationary network structure from data.

4.4. Nodewise regression of the DFTs. In this section we propose a method for estimat-
ing the entries of F,’ D, F,,. The problem of learning the network structure from finite sample
time series is akin to the graphical model selection problem in GGM, addressed by [24] for
the low-dimensional and [47] for the high-dimensional setting. In particular, the neighbor-
hood selection approach of [47] regresses one component of a multivariate random vector
on the other components with Lasso [63] and uses nonzero regression coefficients to select
its neighborhood, that is, the nodes which are conditionally noncorrelated with the given
component.

Assuming the multivariate time series is locally stationary and satisfies Assumption 4.2,
we show that the nonstationary network learning problem can be formulated in terms of a

regression of DFTs at a specific Fourier frequency on neighboring DFTs. Let J k(a) denote the

DFT of the time series {X ,(a)}, at Fourier frequency wy, as defined in (4.1). We denote the
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p-dimensional vector of DFTs at wy by J; and use J ,:(”) to denote the (p — 1)-dimensional
vector consisting of all the coordinates of J, except Jk(a) .

We define the space G,, = @(Jk(b); 1 <k <n,1<b < p) (note that the coefficients in this
space can be complex). Then

(4.15) Py (") —ZZB(bs)>(a YA
b=1s=1

where we set B, k)+(a,k) = 0. Let
(4.16) A =Var(J® - P, iy (J)).

The above allows us to rewrite the entries of [K; (wk, , @k, )]4.» in terms of regression coeffi-
cients. In particular,

1
AW ki =k and a = b,
“4.17) [Kn (a)/q ) a)kz)]a,b = 1]
WB(b,kz)»(a,kl) otherwise.
ki

Comparing the above with Proposition 4.3 for (a, k1) # (b, k2), we have
b — _
Bib sy =B ) (i) +0(n~") and A =[KS (@] +0(m™),

where
— K (o) T KD () i || <n/2,r £0,
(4.18) B (wp) = { =K (@) T KPP (@)t ifn/2<r <n,
—Kéa’a)(a)k)f Kr(liz)(a)k) if -n <r <—n/2.

Thus, by using Proposition 4.4 we have

(4.19) |Bbky+r)>@k1) — Bbtotrys@ioy| < Alwg, — | + 0 (n™ 1),

where A is a finite constant. The benefit of these results is in the estimation of the coefficients
B k+r)+(a.k)- We recall (4.15) can be expressed as

(a)
Pgn—J(”) Z Z B, k+ry(a, k)‘]k+r’
b=1r=—k+1

where the above is due to the periodic nature of J, k(“), which allows us to extend the definition
to frequencies outside [0, 27]. By using the near Lipschitz condition in (4.19) if k1 and k>

are “close,” then the coefficients of the projections P, (a)(Jk(a) ) and P (a)(]k(a)) will
g”_‘lkl 1 gn_sz 2

be similar. This observation will allow us to estimate B(p kx+r)>(a k), using the DFTs whose
frequencies all lie in the M -neighbourhood of k£ (analogous to smoothing the periodogram of
stationary time series). We note that, with these quasi replicates, the estimation would involve
(2M + 1) (where M < n) response variables and pn — 1 regressors. Even with the aid of
sparse estimation methods, this is a large number of regressors. However, Proposition 4.4
allows us to reduce the number of regressors in the regression. Since |Bp, k4r)+(a.k)| ™~ Ir|=1,
we can truncate the projection to a small number (2v + 1) of regressors about J, to obtain
the approximation

)4 v
b
P ()% 30 37 Bkerrai S
b=1r=—v
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Thus, smoothness together with near sparsity of the coefficients make estimation of the en-
tries in the high-dimensional precision matrix F,* D, F,, feasible.

For a given choice of M and v and every value of a, k, we define the (2M + 1)-dimensional
complex response vector yk‘“) = (Jk(‘i)M, Jk(‘i)MH, e Jk(a), k(i)l, e Jk(j_)M)’, and the QM +
1) x ((2v 4+ 1) p — 1) dimensional complex design matrix

~ @ _
Leem—v  Liemor Gew) Lm0 Lot
w : : : o : : :
XT= Ly o e (Y)Y D o e
—.(a) /

Then the estimator
B ysa,k) = (B k—v)y>(@,k)s - - +» B(pk—v)>(@,k)s - - +» B+ @,k)s - - - » Bl—1,k)>(ak)»

B(k+1,6)3(@k)> Bpios@h)s - - -» Blkrvy>@h)s - - - » Bipkrvyra i)
of {Bp k+r)+@a,k); 1 <b < p,—v <r <v}isobtained by solving the complex lasso optimiza-
tion problem
. [ 1
min
BeC@+1p-1 2M +1

R —X,famuéwmul},

where [|8]|1 :=_; [B;], the sum of moduli of all the (complex) coordinates, and A is a (real
positive) tuning parameter controlling the degree of regularization. It is well known [45] that
the above optimization problem can be equivalently expressed as a group lasso optimization
over real variables and can be solved using existing software. We use this property to compute
the estimators in our numerical experiments.

From Proposition 4.2 we observe that the problem of graphical model selection reduces
to learning the locations of large entries of K, (wy, , wx,) at different Fourier frequencies wy,,
wy, . Furthermore, from equations (4.17) and (4.18) it is possible to learn the sparsity struc-
ture of K, (wy, , wi,) from the regression coefficients B i)+ (a,ky) (up to order O(nfl)). In
particular, there is an edge (a, b) C E; that is, the components a and b are conditionally cor-
related, if B(p k,)+(a,k,) 18 NONZzero for some kp, k> (within the locally stationary framework).
Similarly, an edge between a and b is conditionally time varying if B k,)+(a,k,) 1S DONzZero
for some ki # k». In the above we have ignored the O (n_l) terms.

In view of these connections, we define two quantities involving the estimated regression
coefficients whose sparsity patterns encode information on the graph structure. In particular,
we aggregate the estimated regression coefficients across different Fourier frequencies into
two p x p weight matrices

(4.20) Welr = ((Z Ié(b,k)»(a,k)IZ)) ;
X 1<a,b<p

4.21) Wother = (( Z |é(b,k1)9(a,k2)|2>>

k1 ks 1<a,b<p

for graphical model selection in NonStGM. Two components a and b are deemed condition-
ally noncorrelated if both the (a, b)th and the (b, a)th off-diagonal elements of Wself + Wother
are small. In contrast, a node a is deemed conditionally stationary if the (a, a)th element
of Wother is small. Similarly, an edge between a and b is deemed conditionally time invari-
ant if both the (a, b)th and the (b, a)th elements of Wmher is small. Note that our nodewise
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regression approach does not ensure that the estimated weight matrices W are symmetric.
However, following [47], one can formulate suitable “and” (or “or”’) rule to construct an
undirected graph, where an edge (a, b) is present if the (a, b)th and (b, a)th entries are both
large (or at least one of them is large).

5. Time-varying vector autoregressive models. In this section we link the structure of
the coefficients of the time-varying vector autoregressive (tvVAR) process with the notion of
conditional noncorrelation and conditional stationarity. This gives a rigourous understanding
of certain features in a tvVAR model.

The time-varying VAR (tvVAR) model is often used to model nonstationarity (see [15, 20,
58, 60, 69]). A time series is said to have a time-varying VAR (co) representation if it can be
expressed as

o
(5.1 X, =) AjOX, j+¢& 1€,
j=1

where {g,}; are i.i.d random vectors with Var[g,] = ¥ and E[g,] = 0. For simplicity, we
have centered the time series as the focus is on the second order structure of the time series.
We assume that (5.1) has a well-defined time-varying moving average representation as its
solution (we show below that this allows the inverse covariance to be expressed in terms of
{A(2)}). We show below that the inverse covariance matrix operator, corresponding to (5.1),
has a simple form that can easily be deduced from the VAR parameters.

5.1. The tvWAR model and the nonstationary network. In this section we obtain an ex-
pression for D in terms of the tvVAR parameters.

Let C; = Cov[X,, X,] and C denote the corresponding covariance operator, as defined
in (2.1). Let H denote the Cholesky decomposition of £ ! such that ¥~! = H’'H (where H'
denotes the transpose of H). To obtain D, we use the Gram—Schmidt orthogonalisation. We
define the following matrices:

I, =0,
Act) =1 —Au(t) €>0,
0 L < 0.

Using {Kg (t)}, we define the infinite dimensional, lglock, lower triangular matrix L, where
the (¢, v)th block of L is defined as L;; = HA;_.(¢) for all t,7 € Z. Define X =
(... X 1, X9, X4,...), then LX is defined as

o0 o0
LX) =H)Y Aun)X, ,=H (1, -y Aw)z,_g) =Hg, 1€
£=0 =1

By definition of (5.1), it can be seen that {(LX);}; are uncorrelated random vectors with
Var[(LX);] = I,. From this it is clear that L'L is the inverse of a permuted version of C. We
use this to deduce the inverse D = C~!. We define D, ; as

o0
(5.2) Dic= Y At+0'S"Ap_pe(t+0).

l=—00

The inverse of C is D = (D, p; 1 < a, b < p), where D, is defined by substituting (5.2)
into (2.5).
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We now focus on the case X = I, and derive conditions for conditional noncorrelation and
stationarity. In this case the suboperators D, ; have the entries

(5.3)
DA+ 0] [Acr ¢+ 0] )= (Upla [Ar¢+0],)  r=0,

[Da,b]t,tJrr: Zo:ol
Y AAt+ 0] 4 [Arr+ 0] )= (Up) b, [A G+ 0)].,) <0,

{=1

where A. , denotes the a™ column of the matrix A and (-, -) the standard dot product on R?.
Using the above expression for D, ,, the parameters of the tvVAR model can be connected
to conditional noncorrelation and conditional stationarity:

(1) Conditional noncorrelation: If for all £ € R the nonzero entries in the columns [Kg ®)]..q
and [Ag (#)].,» do not coincide, then {X (a)} and {X; ¢ )} are conditionally noncorrelated.
(ii) Conditionally stationary node: If for all £ € Z the columns [A,(¢)]., do not depend on
t, then the node a is conditionally stationary and the submatrix D, , simplifies to
o
[Da,a]t,t—l—r = Z([AZ(O)],Q [Aﬁ-l-lrl(o)].,a) - <[Ip]-,a, [Alrl(o)].ﬂ) forall r,t € Z.
=1
(iii) Conditionally time-invariant edge: If for all £ and r the dot products ([A¢(?)]. p,
[A¢—r(?)]. 4) do not depend on ¢ and [A,(¢)],.» and [A,(¢)]p . does not depend on ¢,
then D, j is Toeplitz, where

Z([AZ(O)] [Aé—l—r(o)].’b)_([lp]-,a,[Ar(o)].,b> r=0,

[Dapleir = 'S
Z AcO®] ,, [Ae—r 0)]. ) = (L)) 5, [A—(0)]. ,) 7 <O,

forall t € Z. .

There can arise situations where some [Kg (#)]..4 and [X( ()]..» depend on ¢, but the corre-
sponding node or edge is conditionally stationary or time invariant. This happens when there
is a cancellation in the entries of A¢(¢). However, these cases are quite exceptional.

In Appendix D of the Supplementary Material [4], we state conditions on the tvVAR pro-
cess such that Assumptions 2.1, 4.1, and 4.2 are satisfied.

REMARK 5.1 (The time-varying AR approximation of locally stationary time series). In
[40] Theorem 3.3, it is shown that if a multivariate nonstationary time series satisfies certain
second order locally stationary conditions, then the time series has a tvAR(co) representation
with nearly smooth VAR parameters, that is,

o0
=) ®j/m)X,—j = H(t/n)ey,
j=1
where H (-) is a lower triangular matrix, H(-) and ®(-) are Lipschitz continuous, and {&,},
are uncorrelated random variables with Var[e;] = I,. Using {®;(-)}; and H (-), it would be
possible to determine the approximate network of a nonstationary time series based on the
conditions (i), (ii), (iii) stated above.

6. Numerical experiments. We demonstrate the applicability of nodewise regression in
selecting NonStGM on two systems of multivariate time series, a small (p = 4) dimensional
tvVAR(1) process described in Example 2.1, and a large (p = 10) dimensional tvVAR(1)
process.
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FI1G. 3.  NonStGM selection with nodewise regression for a p = 4 dimensional system. [Left]: True graph struc-
ture. [Middle]: Heat map of Wse]f showing conditional noncorrelation between components (1,2), (1,3), (1,4),
and (2, 4). [Right]: Heat map of Wother showing conditional nonstationarity of nodes 1 and 3 and the conditionally
time-varying edge (1, 3). Results are aggregated over 20 replicates.

6.1. Small system. We simulate the p = 4 dimensional tvVAR(1) system, described in
Example 2.1, where all the time-invariant parameters set to 0.4 and with n = 5000 obser-
vations. The two time-varying parameters «(¢) and y(¢) change from —0.8 to 0.8, as ¢
varies from 1 to n according to the function f(r) = —0.8 + 1.6 x ¢ >H10¢=D/=1) /(1
e H10¢=D/(=1)) "Using the results from Section 5.1, nodes 1, 3 are conditionally nonsta-
tionary, and the edge (1, 3) is conditionally time varying. On the other hand, the nodes 2,
4 are conditionally stationary, and the edges (2,4), (1,2), and (1, 4) are conditionally time
invariant. As Figure 1a shows, these nuanced relationships are not prominent from the four
time series trajectories.

We perform nodewise regression of DFTs with M = [/n] and v = 1. The tuning pa-
rameters in the individual group lasso regressions were selected using cross-validation. The
estimated regression coefficients B were used to construct the weight matrices Weeir and
Wother- The heat maps of these weight matrices, aggregated over 20 replicates, are displayed
in Figure 3.

The true graph structure (left) has two conditionally nonstationary nodes 1, 3 and two
stationary nodes 2, 4. A heat map of Wself (middle) clearly shows the edges (1, 3), (1, 2),
(2,4), and (1, 4) capturing conditional noncorrelation in the true graph structure. The heat
map of Wother (right) shows the conditionally nonstationary nodes 1 and 3 on the diagonal.
The conditionally time-varying edge (1, 3) is also clearly visible on this heat map.

6.2. Large system. We now consider a larger system of p = 10. The data generating pro-

cessis tvVAR(1) X; = A(t)X;_1 + &;. Here & Hid- N (0, I1p), nonzero time-invariant entries
of the transition matrix A(f) are constant functions as follows: A; ;(r) = 0.5 for all j # 35,
Ag 1(t) = A10,1(t) = A3 5(t) = Ay 5(t) = Ag 5(1) = A7,5(t) = 0.3. The only time-varying en-
try is As s(t) = a(t), where a(¢) decays exponentially from 0.7 to —0.7 as ¢ varies from 1 to
n, according to the function f(f) = 0.7 — 1.4 x ¢~ >+100=D/(=D /(1 4 o=5+10G=D/(n=1)y
As we can see from the structure of A(¢) (and the true graph structure in the left panel of Fig-
ure 4), this network has two connected components and two isolated nodes (2 and 8). These
two nodes are independent of the other nodes and are treated as the “control.” The compo-
nent consisting of (1, 9, 10) is stationary (due to time invariant AR parameters). On the other
hand, the component (3, 4, 5, 6, 7) is nonstationary. However, the source of nonstationarity is
node 5, which permeates through to nodes 3, 4, 6 and 7. Thus, the four nodes 3, 4, 6, and 7
are conditionally stationary (due to time-invariant parameters).

We simulate n = 15,000 observations from this system and perform nodewise regression
of DFTs with M = [/n] and v = 1. The tuning parameters in the individual group lasso re-

gressions were selected using cross-validation. The estimated regression coefficients B were
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FIG. 4. NonStGM selection with nodewise regression for a p = 10 dimensional system. [Left]: True graph
structure. [Middle]: Heat map of Wgelr showing conditional noncorrelation captured by the edges. [Right]: Heat
map of Wother Showing conditional nonstationarity of node 5. Results are aggregated over 20 replicates.

used to construct the weight matrices Wse1f and Wother. The heat maps of these weight matri-
ces, aggregated over 20 replicates, are displayed in Figure 4.

We observe thAat the edges for both components (1,9, 10) and (3,4, 5, 6,7) are visible in
the heat map of W (middle). As expected, the isolated nodes do not show up. The heat map
of Wother (right) correctly identifies node 5 as conditionally nonstationary.

Conclusion. We introduced a general graphical modeling framework for describing con-
ditional relationships among the components of a multivariate nonstationary time series using
an undirected network. In this network absence of an edge corresponds to conditional noncor-
relation relationships, as is common in GGM and StGM. An additional node or edge attribute
(dashed or solid) further describes a newly introduced notion of conditional nonstationarity,
which can be used to provide a parsimonious description of nonstationarity inherent in the
overall system. We showed that this framework is a natural generalization of the existing
GGM and StGM network. Under the locally stationary framework, we proposed methods
to learn the nonstationary graph structure from finite-length time series in the Fourier do-
main. Numerical experiments on simulated data demonstrate the feasibility of our proposed
method.

For stationary time series, there is well-established asymptotic theory for spectral density
matrix estimators (see, e.g., [8, 42, 66, 67]). To estimate the inverse of moderate to high-
dimensional spectral density matrices, penalized estimation methods for detecting nonzero
off-diagonal entries [31] have shown promise. These methods are based on learning the con-
ditional correlation structure of the DFTs at different nodes at the same frequency. Using
the results in Section 4.4, we conjecture that the nonstationary network can be estimated by
learning the nonzero coefficients of nodewise DFT regression across different frequencies. In
future work we hope to develop a complete statistical theory for graphical model estimation
and inference.
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SUPPLEMENTARY MATERIAL

Proofs of technical results (DOI: 10.1214/22-A0S2205SUPP; .pdf). Proofs of all techni-
cal lemmas, propositions and theorems.
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