
1.  Introduction
It has been long recognized that dominant nontidal atmospheric wave activity originates from moist convection, 
transient weather phenomena, shear flow instabilities, jets, atmospheric fronts, and interaction of winds with the 
Earth's topography (Alexander et al., 2016; Fritts & Alexander, 2003; Geller et al., 2013; Gossard & Hooke, 1975; 
Medvedev et al., 2023; Plougonven & Zhang, 2014; Vadas et al., 2018; Vincent et al., 2013), with additional signif-
icant contributions in polar regions due to auroras (Hunsucker, 1982; Oyama & Watkins, 2012). Less advanced is 
the understanding and quantitative description of the waves that are generated at the lower boundary of the atmos-
phere due to seismic events (Astafyeva et al., 2013; Lognonné, 2010; Maruyama et al., 2012; Meng et al., 2019), 
volcano eruptions (Kulichkov et al., 2022; Lin et al., 2022; Matoza et al., 2022; Watada & Kanamori, 2010; 
Wright et  al.,  2022), and surface gravity waves in the ocean, including tsunamis (Artru et  al.,  2005; Garcia 
et al., 2014; Godin et al., 2015; Hickey et al., 2009; Occhipinti et al., 2006; Zabotin et al., 2016).

Investigation of vibrations of ice shelves and ice sheets as another ground-level source of the long atmospheric 
waves, which can reach the middle and upper atmosphere (Godin & Zabotin, 2016; Godin et al., 2020), were 
motivated by recent lidar observations of the unusual, persistent atmospheric wave activity in Antarctica (Chen 
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et al., 2016; Chu et al., 2018; Zhao et al., 2017). The observations were made at McMurdo, Antarctica at the edge 
of the Ross Ice Shelf (RIS) and found high-amplitude acoustic-gravity waves (AGWs) in a wide altitude range 
from the stratosphere to lower thermosphere. The hypothesis that the persistent atmospheric wave activity was 
generated by resonant vibrations of the RIS was shown to explain several key features of the observations, includ-
ing frequency band, vertical wavelength range, and weak variation of the vertical wavelength with height (Godin 
& Zabotin, 2016). A direct experimental confirmation of the relation between vertical displacement of the ice 
surface with atmospheric waves with periods of 2 hours and longer was recently obtained (Zabotin et al., 2023) by 
combining radar measurements of the wave characteristics at the ionospheric altitudes using a Dynasonde system 
installed at the Jang Bogo Station, Antarctica (Kim et al., 2022; Kwon et al., 2018) with the measurements of the 
RIS vibrations using a network of seismometers (Bromirski et al., 2015; Diez et al., 2016).

The amplitude and spatial structure of the atmospheric wave field generated by vibrations of an ice shelf is a result 
of a complex interplay of the temperature and wind velocity stratification in the atmosphere, which combine to 
control AGW refraction and dissipation, with the temporal and spatial spectra of the forcing at the lower bound-
ary of the atmosphere, which determine wave source directionality and affect wave diffraction. The goal of this 
paper is to develop an efficient quantitative model of the AGWs radiated by vibrations of ice shelves or ice sheets 
and, more generally, by generic coherent vibrations of the ground surface within a finite area.

Different approaches have been explored in the literature to model the atmospheric waves generated by various 
physical processes at and below the lower boundary of the atmosphere (Averbuch et al., 2020; Godin et al., 2020; 
Hickey et  al.,  2009; Kanamori et  al.,  1994; Occhipinti et  al.,  2006; Press & Harkrider,  1962; Snively,  2013; 
Watada, 2009; Wu et al., 2020), with the most attention directed toward transient and impulsive wave sources. 
Here we extend to acoustic-gravity waves (AGWs) in a horizontally stratified atmosphere the approach that has 
been developed for sound and elastic waves in layered fluid and elastic solid media and is based on calculating 
monochromatic wave fields in two and three dimensions as Fourier integrals of solutions of one-dimensional 
wave equations (DiNapoli & Deavenport, 1980; Fuchs & Müller, 1971; Schmidt & Glattetre, 1985; Schmidt & 
Tango, 1986). Because of its computational efficiency, versatility, and ability to simultaneously handle wave 
propagation in every direction from horizontal to vertical from the source, the approach has found numerous 
applications in underwater acoustics and seismo-acoustics, where it is known as either the fast field algorithm 
or the wavenumber integration technique, see (Aki & Richards, 2002, Chap. 9; Brekhovskikh & Godin, 1999, 
Chap. 1; Jensen et al., 2011, Chap. 4) and references therein. In the context of atmospheric waves, the wave-
number integration approach appears to be especially well suited for numerical simulations of waves due to 
harmonic sources. In this paper, the approach is applied to modeling atmospheric AGWs that are generated by 
free vibrations of large ice shelves, the energy of which is concentrated around a set of discrete natural frequen-
cies (Godin & Zabotin, 2016; Holdsworth & Glynn, 1978, 1981; Papathanasiou et al., 2019; Sergienko, 2013; 
Zabotin et al., 2023). As discussed below, an extension of the acoustic wave number integration method to AGWs 
requires its significant modifications, which are due to the AGWs having trace speeds that may be comparable to 
the wind speed, and a qualitative difference between the acoustic dispersion relation and the dispersion equation 
of long-period AGWs.

The paper is organized as follows. In Section 2, the two- and three-dimensional problems of modeling the AGW 
field in the atmosphere due to vibrations of its lower boundary is reduced to solving one-dimensional wave equa-
tions, and numerical aspects of implementation of such an approach are discussed. The resulting mathematical 
model is applied in Section 3 to investigate the atmospheric waves generated by a single mode of free vibrations 
of the RIS. The conditions leading to the unusual, near-vertical propagation of long-period atmospheric AGWs 
(often referred to as gravity waves in the literature) are identified in Section 4. Section 5 summarizes our findings.

2.  Mathematical Model of Radiation of Acoustic-Gravity Waves (AGWs)
Consider acoustic-gravity waves (AGWs) in an atmosphere with sound speed c, background flow velocity (wind) 
u, and density ρ in a uniform gravity field with acceleration g. Mathematical models of AGW excitation usually 
assume either a point source (Adam, 1977; Godin & Fuks, 2012; Kanamori et al., 1994; Pierce, 1963) or an 
infinite, spatially periodic source (Godin et al., 2015; Watada, 2009). These idealizations are appropriate, respec-
tively, when the source dimensions are either much smaller or much larger than the AGW wavelength. In the 
problem of AGW generation by low-order modes of vibrations of ice shelves, horizontal wavelength of the 
vibrations and the spatial extent of the ice shelf can be of the same order of magnitude. With the source aperture 
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comparable to the wavelength, AGW diffraction effects are expected to play a significant role. Here, we develop 
a mathematical description of linear atmospheric waves due to a finite source at the lower boundary of the 
atmosphere.

Below, a Cartesian coordinate system is used with horizontal coordinates x and y and a vertical coordinate (alti-
tude) z. The vertical coordinate z = 0 on the ice-atmosphere interface, or ground level, and increases upward. 
AGWs add time- and coordinate-dependent perturbations to the background atmospheric parameters c, ρ, and u. 
These parameters vary with altitude but are assumed to be independent of the horizontal coordinates and time t.  It 
is also assumed that the wind velocity u has no vertical component.

2.1.  Integral Representation of the Wave Field

Let AGW be generated by monochromatic oscillations of the lower boundary z = 0 of the atmosphere. Vertical 
displacement χ of the boundary is

𝜒𝜒(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) = 𝑤𝑤0(𝑥𝑥𝑥 𝑥𝑥)exp(−𝑖𝑖𝑖𝑖 𝑖𝑖),� (1)

where ω is the frequency of the oscillations, and w0(x, y) is an integrable function with the spatial spectrum

Φ(𝜉𝜉𝑥𝑥, 𝜉𝜉𝑦𝑦) = (2𝜋𝜋)
−2

∞

∫
−∞

∞

∫
−∞

𝑤𝑤0(𝑥𝑥𝑥𝑥𝑥 )exp(−𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 − 𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦.� (2)

Here and below complex notation for the wave field quantities is used. The time dependence exp(–iωt) is assumed 
throughout and will be suppressed.

The wave field at z > 0 can be viewed as the superposition of the AGWs that are generated by individual compo-
nents of the surface displacement with the harmonic dependence exp(ikxx + ikyy − iωt) on horizontal coordinates 
and time. AGW boundary conditions require that the vertical displacement of air at z = 0 equals that of the 
boundary (Godin, 1997; Gossard & Hooke, 1975). Hence, vertical displacements in air at z → 0 have the same 
spatial spectrum Φ as the oscillations of the lower boundary. These oscillations generate the AGW field in the 
atmosphere with the vertical displacement

𝑤𝑤(𝑥𝑥𝑥 𝑥𝑥𝑥 𝑥𝑥) =

∞

∫
−∞

∞

∫
−∞

𝑊𝑊 (𝐤𝐤,𝑧𝑧 )Φ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦)exp(𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥 + 𝑖𝑖𝑖𝑖𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑥𝑥𝑑𝑑𝑑𝑑𝑦𝑦,� (3)

where k = (kx, ky, 0) and W(k, z) have the meaning of the horizontal wave vector and the vertical dependence of 
the particle displacement in the “quasi-plane” AGW with the plane-wave dependence exp(ikxx + ikyy) on hori-
zontal coordinates; exp(ikxx+ikyy)W(k,z) is the wave field in the atmosphere that is generated by a plane wave 
with vertical displacement exp(ikxx + ikyy) propagating along the ground level. The function W(k, z) satisfies the 
boundary condition W(k, 0) = 1 at z = 0 and the one-dimensional AGW wave equation (Godin, 2015)

𝑑𝑑

𝑑𝑑𝑑𝑑
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−

𝑔𝑔2𝑘𝑘2

𝜔𝜔2
𝑑𝑑
− 𝑘𝑘2𝑐𝑐2

−
𝑔𝑔

𝜌𝜌

𝑑𝑑
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)]

𝜌𝜌𝜌𝜌 = 0.� (4)

The quasi-plane wave either carries wave energy upward or vanishes at z→∞. Here 𝐴𝐴 𝐴𝐴2 = 𝑘𝑘2
𝑥𝑥 + 𝑘𝑘2

𝑦𝑦, and ωd = ω − k·u 
is the intrinsic frequency. It has the meaning of the wave frequency in the reference frame moving with the local 
wind.

In the simplified, two-dimensional (2-D) problem in the xz plane, where the boundary displacement χ is a func-
tion of only one horizontal coordinate, x,

𝑤𝑤0 =

∞

∫
−∞

Φ1(𝑘𝑘𝑥𝑥)exp(𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥,� (5)

and the AGW field in the atmosphere is independent of the coordinate y. Then, instead of two-fold integral in 
Equation 3, the vertical displacement in AGWs at z > 0 is given by the equation
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𝑤𝑤(𝑥𝑥𝑥 𝑥𝑥) =

∞

∫
−∞

𝑊𝑊 (𝐤𝐤,𝑧𝑧 )Φ1(𝑘𝑘𝑥𝑥)exp(𝑖𝑖𝑖𝑖𝑥𝑥𝑥𝑥)𝑑𝑑𝑑𝑑𝑥𝑥,� (6)

where k = (kx, 0, 0) and W satisfies the same wave equation Equation 4 and boundary conditions as in the 3-D 
problem.

The integral representations of the AGW field in 2-D and 3-D problems, Equations 3 and 6, are analogous to 
the representations in acoustics and optics of the field either generated by a finite source or diffracted through 
a finite aperture (Godin, 1984; Pierce, 2019). The computational advantage of these integral representations 
over alternative representations involving integration of the Green's function over the aperture, stems from 
the fact that quasi-plane waves are much easier to calculate in layered media than the Green's functions. 
An additional advantage of the integral representations Equations  3 and  6 in application to AGWs is that 
quasi-plane waves do not have the singularities that the AGW Green's functions have away from the wave 
source (Adam, 1977).

As a function of kx, W(k, z) in the integrand of Equations 3 and 6 may have poles, including the poles associated 
with the acoustic and buoyancy resonances of the atmosphere (Godin et al., 2020; Watada & Kanamori, 2010) 
and Lamb waves (Godin, 2012; Gossard & Hooke, 1975; Kubota et al., 2022). Numerical aspects of modeling 
sound fields in layered media using acoustic counterparts of Equations 3 and 6 have been perfected in underwa-
ter acoustics under the names of wavenumber integration and fast field algorithms (Jensen et al., 2011). These 
numerical approaches, including techniques for dealing with the poles of the integrand that correspond to guided 
waves (also known as ducted waves), readily translate to the AGW problem.

2.2.  Group Velocity and Ray Geometry

When the temperature, wind speed, and composition of the atmosphere vary gradually with altitude, AGWs can 
be mathematically described in the WKB approximation (Budden & Smith, 1976; Godin, 2015). The approx-
imation represents a systematic asymptotic solution of equations of hydrodynamics for linear waves. It should 
be distinguished from ad hoc approximations (Einaudi & Hines, 1970; Fritts & Alexander, 2003; Gossard & 
Hooke, 1975; Jones & Georges, 1976; Pitteway & Hines, 1965) using the same name. The WKB approximation 
leads to the following AGW dispersion equation:

𝑚𝑚2 =
𝜔𝜔2

𝑑𝑑

𝑐𝑐2
−

1

4ℎ2
+ 𝑘𝑘2

𝑁𝑁2
0
− 𝜔𝜔2

𝑑𝑑

𝜔𝜔2
𝑑𝑑

.� (7)

Here m is the vertical component of the AGW wave vector (also referred to as the vertical wavenumber), h = c 2/γg 
is the scale height, γ is the ratio of specific heats at constant pressure and constant volume, and 𝐴𝐴 𝐴𝐴2

0
= (𝛾𝛾 − 1)𝑔𝑔2∕𝑐𝑐2 

is close to but generally different from the buoyancy frequency squared, N 2 = gρ −1dρ/dz − g 2c −2. The function 
N0(z) in Equation 7 has the meaning of the smoothed vertical profile of the buoyancy frequency N(z).

The necessary condition of validity of the WKB approximation can be written as the inequality |m −2 dm/dz| ≪ 1 
(Godin, 2015). In the WKB approximation [more accurately, in the first WKB approximation, see (Godin, 2015)] 
the one-dimensional AGW wave equation has two linearly independent solutions,

� (�, �) =

√

√

√

√

(

�−2 − �2�−2
�

)

�0�0
(

�−20 − �2�−2
� 0

)

��
exp(��)

× exp
⎛

⎜

⎜

⎝

�

�

∫
0

��1
2�

[

�
��1

(

1
2ℎ

−
��2

�2
�
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−

(

1
2ℎ

−
��2

�2
�

)

�
��1

ln

(

ℎ
�2

− �2ℎ
�2

�

)]

⎞

⎟

⎟

⎠

,

� (8)

where 𝐴𝐴 𝐴𝐴 = ±
√

𝑚𝑚2, subscript 0 indicates the values of respective quantities at z = 0, and φ is the phase integral:

𝜑𝜑(𝐤𝐤, 𝑧𝑧) = exp

⎛

⎜

⎜

⎝

𝑖𝑖

𝑧𝑧

∫
0

𝑚𝑚𝑚𝑚𝑚𝑚1

⎞

⎟

⎟

⎠

.� (9)

Note that waves with m 2 < 0 are evanescent.

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039121 by U
niversity O

f C
olorado Librari, W

iley O
nline Library on [12/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

GODIN ET AL.

10.1029/2023JD039121

5 of 19

When m 2 ≥ 0, AGWs with wave vector (kx, ky, m) carry the wave energy from the source along the rays in the 
direction of the group speed cg = (∂ω/∂kx,∂ω/∂ky,∂ω/∂m). It follows from Equation 7 that

𝐜𝐜𝑔𝑔 = 𝐮𝐮 +
1

𝜔𝜔𝑑𝑑

(

𝑘𝑘2𝑁𝑁2
0

𝜔𝜔4
𝑑𝑑

−
1

𝑐𝑐2

)−1(

𝑁𝑁2
0
− 𝜔𝜔2

𝑑𝑑

𝜔𝜔2
𝑑𝑑

𝐤𝐤 − 𝑚𝑚𝐳̂𝐳

)

,� (10)

where 𝐴𝐴 𝐳̂𝐳 is a unit vertical vector in the direction of increasing altitude z. The sign of vertical component cg, z of 
the group velocity is opposite for the waves with 𝐴𝐴 𝐴𝐴 =

√

𝑚𝑚2 and 𝐴𝐴 𝐴𝐴 = −
√

𝑚𝑚2. Note that cg, z > 0 and the wave 
propagates toward increasing altitudes when m > 0 for AGWs on the acoustic branch (i.e., at ωd > γg/2c) and 
when m < 0 for AGWs on the gravity (or buoyancy) branch (i.e., at 0 < ωd < N0) (Godin, 2015; Gossard & 
Hooke, 1975).

Both m and cg are constant, and the rays are straight lines in the atmosphere with constant sound speed and 
composition and uniform wind. The rays are generally 3-D curves in stratified atmosphere and may have turning 
points z = zt, where the signs of m and the vertical component of the group speed change. Ray geometry follows 
from Equation 10. Let the two-dimensional vector rh(z, k) give the horizontal coordinates of the ray at altitude z. 
Then, for any two altitudes z1 and z2 we have

𝐫𝐫ℎ(𝑧𝑧1, 𝐤𝐤) − 𝐫𝐫ℎ(𝑧𝑧2, 𝐤𝐤) =

𝑧𝑧1

∫
𝑧𝑧2

(𝑐𝑐𝑔𝑔𝑔𝑔𝑔, 𝑐𝑐𝑔𝑔𝑔𝑔𝑔, 0)

𝑐𝑐𝑔𝑔𝑔𝑔𝑔
𝑑𝑑𝑑𝑑 =

𝑧𝑧1

∫
𝑧𝑧2

[(

𝜔𝜔𝑑𝑑

𝑐𝑐2
−

𝑘𝑘2𝑁𝑁2
0

𝜔𝜔3
𝑑𝑑

)

𝐮𝐮 +
𝜔𝜔2

𝑑𝑑
−𝑁𝑁2

0

𝜔𝜔2
𝑑𝑑

𝐤𝐤

]

𝑑𝑑𝑑𝑑

𝑚𝑚
� (11)

on any segment of the ray without turning points.

Equations 7–11 are used below for physical interpretation of the numerical results and, where appropriate, to 
increase computational efficiency of the mathematical model based on the integral representations Equations 3 
and 6 of the AGW field.

2.3.  AGWs in a Dissipative Atmosphere

Wave Equation 4 describes AGWs in an ideal fluid and disregards dissipation of atmospheric waves. Full descrip-
tion of dissipation of linear AGWs due to viscosity and thermal conductivity requires solution of coupled partial 
differential equations expressing mass, momentum, and energy balance as well as equation of state of the atmos-
phere (e.g., Godin, 2014). AGWs prove to be coupled to the evanescent viscous and entropy waves, which leads 
to a high-order wave equation. However, the coupling is weak in fluids with gradually varying parameters, and, 
as long as the relative loss of wave energy per wavelength is small, the dominant effect of dissipative processes on 
the wave field can be described by assigning complex values to the vertical component m of the wave vector in the 
phase integral (9). The effective value of the vertical component of the AGW wave vector in viscous, thermally 
conductive gas is given by the equation (Godin, 2014; Golitsyn, 1965)

𝑚𝑚2
𝑒𝑒 = 𝑚𝑚2 + 𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =

1

𝜔𝜔𝑑𝑑𝜌𝜌

[

𝐵𝐵1𝜂𝜂 + 𝐵𝐵2𝜁𝜁 + 𝐵𝐵3

(𝛾𝛾 − 1)𝜅𝜅

𝐶𝐶𝑝𝑝

]

,� (12)

where Cp, η, ζ, and κ are the specific heat at constant pressure, shear viscosity, bulk viscosity, and thermal conduc-
tivity of the gas. In the atmosphere, κ/Cp = 4γη/(9γ − 5) to good accuracy (Sutherland & Bass, 2004).

The coefficients B1, B2, and B3 in Equation 12 are

�1 =

(

4�2
�

3�2
− �2

�2
0

�2
�

)(

�2
�

�2
+ �2

�2
0

�2
�

)

+
5��2

3ℎ�2
− �2

ℎ2
,

�2 =
�4

� − �2�2

�4
, �3 =

(

1 +
��2�2

�4
�ℎ

−
�2�2

�4
�

)

�2,

� (13)

if η/ρ, ζ/ρ, and κ/ρ are assumed to be slowly varying functions of altitude (Godin, 2014; Golitsyn, 1965). If the 
more realistic assumption is made that η, ζ, and κ are slowly varying functions, so that kinematic viscosity of air 
increases nearly exponentially with altitude, a different set of coefficients B1 = αB11,B2 = αB22, B3 = αB33 arises 
from the asymptotic analysis of the problem and M = αM1 in Equation 12 (Godin, 2014), where
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� = �2 +
(

� − �
2ℎ

)2
,�1 =

1
���

[

�11� + �22� + �33
(� − 1)�

��

]

,

�11 =
4�2

�

3�2
− �2


2
0

�2
�

, �22 =
�2

�

�2
, �33 =

(

1 −
�2�2

�4
�

)

�2
�

�2
.

� (14)

The wave frequency ω enters Equations 12–14 via the intrinsic frequency ωd. Note that AGWs with the same 
frequency ω and the same horizontal wavenumber k experience different absorption in the atmosphere when they 
propagate in different directions with respect to the local wind (Godin, 2014).

Asymptotic results Equations  12 and  13 will be reproduced by the solutions of the AGW wave equation if 
viscosity- and thermal conductivity-related terms are introduced in Equation 4 as follows:

𝑑𝑑

𝑑𝑑𝑑𝑑

[

𝜌𝜌𝜌𝜌2
𝑑𝑑
𝑑𝑑𝑑𝑑 ∕𝑑𝑑𝑑𝑑

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

]

+

[

𝜔𝜔2
𝑑𝑑
−

𝑔𝑔2𝑘𝑘2𝑐𝑐−2 − 𝑖𝑖𝑖𝑖2
𝑑𝑑
𝑀𝑀

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

−
𝑔𝑔

𝜌𝜌

𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝜌𝜌𝜌𝜌2

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

)]

𝜌𝜌𝜌𝜌 = 0.� (15)

When dissipation is negligible, M→0 according to Equations 12, and Eq. 15 reduces to Equation 4.

In contrast to Equation 13, Equations 12 and 14 predict that dissipation rates are different for waves propagating 
up and down (i.e., for different signs of m). This cannot be captured by Equation 15 with any value of M, and a 
different modification of the AGW wave Equation 4 becomes necessary. The asymptotic results Equations 12 
and 14 are reproduced by solutions of the following AGW wave equation:

𝑑𝑑

𝑑𝑑𝑑𝑑

[

𝜌𝜌𝜌𝜌2
𝑑𝑑
(1 − 𝑖𝑖𝑖𝑖1)

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑

]

+

[

𝜔𝜔2
𝑑𝑑
− 𝑘𝑘2

𝑔𝑔2𝑐𝑐−2 − 𝑖𝑖𝑖𝑖2
𝑑𝑑
𝑀𝑀1

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

−
𝑔𝑔

𝜌𝜌

𝑑𝑑

𝑑𝑑𝑑𝑑

(

𝜌𝜌𝜌𝜌2

𝜔𝜔2
𝑑𝑑
𝑐𝑐−2 − 𝑘𝑘2

)]

𝜌𝜌𝜌𝜌 = 0.� (16)

In both Equations  15 and  16, the effects of viscosity and thermal conductivity of the real atmosphere are 
accounted for by assigning complex values to the coefficients of the second-order differential equation, which are 
real-valued for AGWs in ideal fluids. The agreement of the modified wave Equations 15 and 16 with the corre-
sponding asymptotic results can be readily verified by deriving respective eikonal equations using the technique 
described in Godin (2015).

In moving atmosphere AGWs may have critical levels, where the intrinsic frequency ωd = 0. At the critical level, 
the trace speed ω/k, that is, the speed with which phase front of the wave moves along a horizontal plane, equals 
the component uk = u·k/k of the wind velocity in the direction of the horizontal wave vector k. Wind speed 
needs  to be greater or equal to ω/k for the critical level to occur. As the wave approaches its critical level, the verti-
cal component of the wave vector m tends to infinity, m ≈ ±kN0/ωd from Equation 7, and the vertical component 
of the group speed cg Equation 10 vanishes. Coefficients α, B1, B3, B11, and B33 in Equations 13 and 14 tend to 
infinity, and Equation 12 predicts very strong dissipation of AGWs in the vicinity of the critical level due to shear 
viscosity and thermal conductivity of the atmosphere. In the linear asymptotic theory, the AGW is completely 
dissipated as it approaches the critical level. This is the well-known effect of wave blocking at the critical level 
(Gossard & Hooke, 1975; Hines, 1960).

2.4.  Computational Considerations

Numerical modeling of the AGW field using the 3-D or 2-D integral representations Equations 3 and 6 requires 
reducing the integration domain in the wavenumber space and the range of altitudes, in which the one-dimensional 
wave Equation 15 or 16 is solved numerically. Integration over a finite range of horizontal wavenumbers in Equa-
tions 3 and 6 is efficiently implemented using the FFT algorithm (Jensen et al., 2011).

In acoustics, large values of the horizontal wavenumber k contribute negligibly to the integrals in Equations 3 
and 6 because waves are evanescent, and the function W exponentially decreases with z (Jensen et al., 2011). 
Indeed, Equation 7 with g = 0 gives m 2 < 0 when 𝐴𝐴 𝐴𝐴2 > 𝜔𝜔2

𝑑𝑑
𝑐𝑐−2. Here and below we take into account that the wind 

speed is less than the sound speed in the atmosphere. For AGWs on the acoustic branch, waves also become 
evanescent at large k according to Equation 7. However, m 2 increases with k 2 on the gravity branch, and short 
waves remain propagating. Equations 12–14 show that absorption increases rapidly with increasing k 2and m 2. 
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For waves on the gravity branch, the limits of integration must be chosen from the condition that the accumulated 
wave attenuation is sufficiently large in the spatial domain of interest.

A separate analysis is required for AGWs in moving atmosphere because the intrinsic frequency varies with k: 
ωd = ω − kuk. According to the dispersion Equation 7, AGWs are strongly evanescent and contribute negligibly 
to the integrals in Equations 3 and 6 when 𝐴𝐴 𝐴𝐴 𝐴 (2ℎ)

−1
(

1 − 𝑢𝑢2
𝑘𝑘
∕𝑐𝑐2

)−1∕2
, 𝑘𝑘𝑘  𝑘𝑘0∕|𝑢𝑢𝑘𝑘|, and k ≫ ω/|uk|. In a strati-

fied atmosphere, these conditions should be met at all altitudes, where the AGW field is calculated. In practice, 
the necessary integration domain is further restricted by the critical level filtering of waves traveling downwind 
(more accurately, when uk > 0) and by the strong attenuation of short AGWs.

The density of air changes by several orders of magnitude between the ground level and the upper atmosphere, 
and the solution W of Equations 4, 15 and 16 may increase exponentially with z. Application of general-purpose 
ordinary differential equation (ODE) solvers to the one-dimensional wave equations is simplified, if balancing of 
exponentially large and exponentially small terms is avoided by using another dependent variable, the normalized 
vertical displacement

𝑄𝑄(𝐤𝐤, 𝑧𝑧) =
√

𝜌𝜌(𝑧𝑧)∕𝜌𝜌(0)𝑊𝑊 (𝐤𝐤, 𝑧𝑧),� (17)

and eliminating ρ from coefficients of the equation, see Godin et al. (2020).

AGW reflection in the upper atmosphere becomes negligible at altitudes above certain altitude H because of the 
exponential increase of kinematic viscosity and thermal diffusivity with altitude and/or because of decrease in 
the wind speed and temperature gradients at sufficiently high altitudes. Details of the wind velocity and temper-
ature profiles at z > H have negligible effect on the AGW field at z < H. Then, the condition that the wave either 
vanishes or carries energy to z→∞ can be reformulated and imposed at z = H. We model the non-reflecting 
half-space z > H as an isothermal and uniformly moving medium with the sound speed, scale height, wind veloc-
ity, and other parameters retaining the values these have at z = H in real atmosphere. Solving the wave equation 
at z > H we find that the solution satisfying the radiation conditions at z→∞ is Q = const. × exp(imez), where 
Im me > 0 and me 2 is given by Equation 12. With Q known at z > H, the boundary conditions of continuity of 
the Lagrangian pressure perturbation and vertical displacement at z = H (Godin, 1997) can be written as the 
one-sided boundary condition for the wave field at z < H:

1

𝑄𝑄

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑖𝑖𝑖𝑖𝑒𝑒 −

1

2ℎ

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, 𝑧𝑧 = 𝐻𝐻 − 0.� (18)

With the boundary condition Equation 18, numerical solution of one-dimensional wave equation is required in 
the finite interval 0 < z < H only. If Equation 15 or 16 are solved with the initial conditions

𝑄𝑄1 = 1,
𝑑𝑑𝑑𝑑1

𝑑𝑑𝑑𝑑
= 𝑖𝑖𝑖𝑖𝑒𝑒 −

1

2ℎ

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, 𝑧𝑧 = 𝐻𝐻 − 0� (19)

imposed just below the altitude H, then the altitude dependence of the normalized vertical displacement in the 
quasi-plane wave is

𝑄𝑄(𝐤𝐤, 𝑧𝑧) = 𝑄𝑄1(𝐤𝐤, 𝑧𝑧)∕𝑄𝑄1(𝐤𝐤, 0).� (20)

Equations 19 and 20 ensure that the boundary conditions (Equation 18) at the top and W(k, z) = 1 at the bottom 
of the computation domain are met.

A modified approach is used for the quasi-plane waves that have critical levels. Due to the effect of wave block-
ing at the critical level discussed in Section 2.3, waves with a particular horizontal wave vector k contribute to 
the integrals in Equations 3 and 6 only at the altitudes below their lowest critical level. Then, the altitude H in 
Equations 18 and 19, where the numerical solution is terminated, can be chosen slightly below the lowest critical 
level (e.g., where ωd = 0.01ω). The function W is replaced with zero at z > H. This approach allows one to avoid 
solving the one-dimensional wave equation around the critical level, which is a singular point for ODEs Equa-
tions 4, 15 and 16.

Another way to separate unphysical solutions that describe the waves generated at infinity or at the critical levels 
is to consider monochromatic waves of frequency ω as the limit at Γ→ + 0 of the waves generated by sources 
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with gradually increasing amplitude and the time dependence exp(Γt −  iωt), where Γ > 0 (Brekhovskikh & 
Godin, 1999). With such sources, the waves that arrive from infinity or the critical level and have infinite travel 
times, have zero amplitude. In practice, assigning a small, positive imaginary part iΓ to the wave frequency ω in 
Equations 4, 15 and 16 reduces sensitivity of the numerical solution to the choice of the upper boundary z = H 
of the computational domain.

As an alternative to imposing the initial conditions at the top of the computational domain, one can instead 
impose the initial conditions

𝑄𝑄 = 1,
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
= 𝑖𝑖𝑖𝑖𝑒𝑒 −

1

2ℎ

𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
, 𝑧𝑧 = 0� (21)

at the ground level. The initial conditions (Equation  21) are exact in isothermal atmosphere with uniform 
wind and with the dissipation term M in Equation 12 being either constant or negligible near the ground level. 
The  approach expressed by Equation  21 is attractive due to its simplicity, but has limited applicability. It is 
implied in Equation 21 that there is no appreciable reflections from the wind velocity and temperature gradients. 
That assumption certainly fails if there exists a turning point between the ground level and the lowest critical 
level. On the other hand, for realistic temperature and wind velocity profiles such as considered in Section 3, 
the initial conditions (Equation 21) lead to numerically efficient and sufficiently accurate solutions, when either 
there are no turning points, or the lowest critical level is located below any turning points. In the latter case, the 
numerical solution is terminated slightly below the critical level.

3.  AGWs Generated by the Ross Ice Shelf (RIS)
In this section, the integral representations of the AGW field in two and three spatial dimensions, Equations 3 
and 6, are applied to model the atmospheric waves that are generated by free vibrations of large ice shelves and 
specifically the RIS. The free vibrations can be represented as a superposition of normal modes with distinct 
natural frequencies. Below we investigate how the spatial structure of vibrations in a single normal mode, the 
wind, and the atmospheric stratification combine to produce a complex distribution of AGW energy above the 
ice shelf.

3.1.  Long-Period Oscillations of the RIS

Because of the large dimensions of the RIS, the fundamental mode and other low-order modes of its free oscil-
lations have periods of several hours. To interpret observations of unusual persistent atmospheric wave activity 
in the RIS vicinity as well as seismic observations of long period RIS vibrations, a simple, analytical model 
of low-order vibrations of the ice shelf and their excitation by the ocean has been developed in Godin and 
Zabotin (2016) and Zabotin et al. (2023). RIS is modeled as a homogeneous rectangular plate of constant thick-
ness over ocean of constant depth with a rigid bottom. The ice shelf is grounded on one (southern) side, faces 
the ocean on the opposite (northern) side, and is supported by solid earth on the other (east and west) sides 
(Figure 1a). The ice shelf grounding line (the south edge of the ice shelf) is located at x = 0. The ice front 
(the north edge of the ice shelf) is located at x = L (Figure 1b). The east and west edges of the ice shelf are at 
y = ±Ly/2, 0 < x < L. Representative values of the RIS horizontal extent, ice thickness H1, and under-ice water 
depth H2 are L = 550 km, Ly = 800 km, H1 = 300 m, and H2 = 400 m (Figures 1a and 1b).

In this paper, we limit the analysis to the two-dimensional ice shelf vibrations, where the vertical displacement χ 
of the ice upper surface is uniform along y (i.e., independent of the along-the-front coordinate y), and to vibration 
periods of less than about 4 hours so that the inertial effects due to Earth rotation can be neglected. The RIS vibra-
tions without dependence on y are two-dimensional in the sense that the ice and water displacements vary with x 
and z and have both x and z components (Godin & Zabotin, 2016). The structure of the oscillations below z = 0 
affects the AGW generation indirectly through the natural frequencies and the spatial spectrum of the vertical 
displacement of the upper surface of the ice shelf. In an individual normal mode of two-dimensional vibrations, 
w0 in Equation 1 is

𝑤𝑤0(𝑥𝑥𝑥 𝑥𝑥) =
𝐴𝐴𝐴𝐴1

𝑖𝑖𝑖𝑖1

(

cos 𝜉𝜉1𝑥𝑥 −
𝑐𝑐2
1
cos 𝜉𝜉1𝐿𝐿

𝑐𝑐2
2
cos 𝜉𝜉2𝐿𝐿

cos 𝜉𝜉2𝑥𝑥

)

� (22)
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at 0 < x < L, –Ly/2 < y < Ly/2 and zero otherwise (Godin & Zabotin, 2016). Here A is the mode amplitude, ξ1 = ω/
c1,ξ2 = ω/c2, c1 > c2 are speeds of “fast” and “slow” long gravity waves in the ice shelf:

𝑐𝑐1,2 =

√

√

√

√

𝑔𝑔

2
(𝐻𝐻1 +𝐻𝐻2)

[

1 ±

√

1 −
4𝐻𝐻1𝐻𝐻2

(𝐻𝐻1 +𝐻𝐻2)
2

(

1 −
𝜌𝜌1

𝜌𝜌2

)

]

,� (23)

ρ1 and ρ2 are the mass densities of ice and sea water. Equation 22 follows from Equations 22, 27, and 28 in Godin 
and Zabotin (2016) and the equation 𝐴𝐴 𝐴𝐴0 = −

(

𝜔𝜔2𝜌𝜌2
)−1

𝐻𝐻1𝜕𝜕
2𝑝𝑝∕𝜕𝜕𝜕𝜕2 [see Equation 6 in Zabotin et al. (2023)] that 

relates the vertical displacement to pressure perturbation p at z = 0. A natural frequency ω of vibrations is deter-
mined from the equation

𝜉𝜉1 tan 𝜉𝜉1𝐿𝐿 = 𝜉𝜉2 tan 𝜉𝜉2𝐿𝐿𝐿� (24)

The natural frequencies of free vibrations are also the resonance frequencies of the RIS oscillations forced by 
ocean waves (Zabotin et al., 2023). The normal mode solution in Equations 22–24 is obtained in the stratified 
fluid approximation, which for low-order modes is superior to the alternative thin-plate approximation (Zabotin 
et al., 2023).

When applied to the 2-D model of atmospheric wave generation, Equation 22 gives

Φ1(𝑘𝑘𝑥𝑥) =
𝐴𝐴𝐴𝐴1

2𝜋𝜋𝜋𝜋𝜋𝜋1

[

Φ0(𝜉𝜉1, 𝑘𝑘𝑥𝑥) −
𝑐𝑐2
1
cos 𝜉𝜉1𝐿𝐿

𝑐𝑐2
2
cos 𝜉𝜉2𝐿𝐿

Φ0(𝜉𝜉2, 𝑘𝑘𝑥𝑥)

]

,� (25)

Φ0(𝜉𝜉𝜉 𝜉𝜉) =
𝑒𝑒0.5𝑖𝑖(𝜉𝜉−𝑘𝑘)𝐿𝐿

𝑘𝑘 − 𝜉𝜉
sin

(

𝑘𝑘 − 𝜉𝜉

2
𝐿𝐿

)

+
𝑒𝑒−0.5𝑖𝑖(𝑘𝑘+𝜉𝜉)𝐿𝐿

𝑘𝑘 + 𝜉𝜉
sin

(

𝑘𝑘 + 𝜉𝜉

2
𝐿𝐿

)

� (26)

for the spatial spectrum of the vertical displacement of the lower boundary of atmosphere in Equation 5. The 
value of the spectrum Φ1 at kx = 0 is proportional to the RIS vertical displacement averaged over the RIS surface. 
It controls the amplitude of atmospheric waves with horizontal wavenumbers that are small compared to the 
wavenumbers ξ1,2 of fast and slow waves in the ice. We find Φ0(ξ,0) = ξ −1sinξL from Equation 26 and

Φ1(0) =
𝐴𝐴𝐴𝐴1 cos 𝜉𝜉1𝐿𝐿

2𝜋𝜋𝜋𝜋𝜋𝜋2
1

(

tan 𝜉𝜉1𝐿𝐿 −
𝜉𝜉1𝑐𝑐

2
1

𝜉𝜉2𝑐𝑐
2
2

tan 𝜉𝜉2𝐿𝐿

)

� (27)

from Equation 25. It follows from the dispersion relation of the ice shelf vibrations, Equation 24, that the quantity 
in parenthesis on the right side of Equation 27 is zero. Thus, Φ1(0) = 0, and the average vertical displacements 
due to slow and fast waves in the ice, each being non-zero, cancel each other. The fact that the average verti-
cal displacement of the RIS equals zero has significant implications for atmospheric wave generation, which 
are  discussed in Section 3.2.

Figure 1.  Ross Ice Shelf and its oscillations. (a) A transect of the shelf's ice/water/bedrock geometry along a line roughly orthogonal to the Ross Ice Shelf front 
[adapted from Bromirski et al. (2015)]. Horizontal axis is compressed by a factor of about 700 compared to the vertical one. (b) Simplified geometry of the ice 
shelf that is implied in the analytical model of long-period oscillations of the RIS in Godin and Zabotin (2016). The ice shelf grounding line and the ice front are 
perpendicular to the plane of figure. L is the distance between the grounding line and the ice front. H1 and H2 are the thicknesses of the ice and the water-filled cavity 
beneath the ice. (c) Absolute value of the spatial spectrum Φ1 of the vertical displacement of the lower boundary of the atmosphere, Equation 25, due to a single mode 
of two-dimensional RIS oscillations with frequency ω = 5.66317·10 −4 s −1 (oscillation period of about 3.0819 hr). Normalization of the spectrum is arbitrary. Gray 
dots show positions of the spectrum maxima at kx < 0. Purple and black dots show positions of the spectrum maxima at kx ≥ 0, for which the intrinsic frequency of 
atmospheric waves is, respectively, positive and negative, when the meridional component of the wind velocity ux = 10 m/s.
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In the 3-D problem of the AGW generation, the spatial spectrum of vibrations is affected by the finite extent of 
the ice shelf along the ice front. We obtain

Φ(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦) =
1

𝜋𝜋𝜋𝜋𝑦𝑦

Φ1(𝑘𝑘𝑥𝑥)sin

(

𝑘𝑘𝑦𝑦𝐿𝐿𝑦𝑦

2

)

.� (28)

from Equations 2 and 22. Here Φ1 is the spectrum in the 2-D model, Equation 25. Note that Φ = 0 at kx = 0, and 
the average vertical displacement of the ice shelf remains 0 in the 3-D problem.

When ξ1,2L ≫ 1, which corresponds to higher-order vibration modes, the dependence of Φ1(kx) and Φ(kx, ky) on 
kx has sharp, delta function-like peaks at kx = ±ξ1 and kx = ± ξ2. Shape of the spectrum Φ1(kx) Equation 25 for 
the low-order modes, which are of primary interest in this work, is illustrated in Figure 1c. The RIS parameters 
assumed in the calculation are L = 550 km, Ly = 800 km, H1 = 300 m, H2 = 400 m, and ρ2/ρ1 = 0.9. For illus-
tration purposes, we choose one of the natural frequencies of RIS oscillations, ω = 5.66317·10 −4 s −1, which is 
obtained by solving Equation 24.

3.2.  Vertical Cross-Section of the AGW Wave Field

The response of the polar atmosphere to vibrations of the RIS is illustrated in Figure 2. The atmospheric condi-
tions are chosen to represent one day, 14 July 2014, during the Antarctic winter and are illustrated in Figure 2a. 
Atmospheric waves are modeled in the vertical plane y = 0 through the center of the ice front using the integral 
representation Equation 6 for the AGW field. The atmosphere is forced by a single normal mode of the RIS vibra-
tions with the spatial spectrum illustrated in Figure 1c. The period of this mode and the linear AGWs it generates 
is 2π/ω ≈ 3.0819 hr. For the linear waves we consider, response of the atmosphere to the ground level vibrations 
represented by a set of normal modes of various amplitudes is given by a corresponding superposition of the 
AGW fields generated by each individual mode.

The vertical displacement W(k, z) in Equation 6 has been calculated as a numerical solution of the one-dimensional 
AGW wave Equation 15 written in terms of the normalized displacement Q defined in Equation 17. In describ-
ing the wave dissipation, we disregarded the contribution of the bulk viscosity in Equation 12 for M and used 
the Eucken expression for thermal conductivity and the Sutherland equation for shear viscosity (Sutherland & 
Bass, 2004). For the quasi-plane waves that have critical levels, the numerical solution was terminated at some 
altitude z = H slightly below the lowest critical level, see Section 2.4. A small positive imaginary part was added 

Figure 2.  Atmospheric waves generated by one mode of free vibrations of the RIS. (a) Altitude profiles of the sound speed, c, and the meridional, ux, and zonal, uy, 
components of the wind velocity at McMurdo, Antarctica. The wind velocity is provided by the HWM14 model (Drob et al., 2015) for 14:00 UT on 14 July 2014. 
Sound speed is calculated using the temperature profile as provided by the NRLMSISE-00.2 model (Picone et al., 2002) for the same day and time. (b) Vertical 
displacement in AGWs with the horizontal wave vector k = (kx, 0, 0). The amplitude of the normalized vertical displacement is shown on a logarithmic scale. The 
vertical displacement W(k, z) is found numerically by solving Equation 15 with the wind velocity and sound speed profiles shown in panel (a). Magenta lines show the 
altitudes in the vicinity of the critical levels, where numerical calculations are terminated and above which the waves are rapidly dissipated. (c) Atmospheric wave field 
in the meridional vertical plane through the center of the RIS. The amplitude of the normalized vertical displacement is shown by color on logarithmic scale. The values 
below 10 −1.5 of the maximum amplitude are shown in dark blue color. The vertical displacement is calculated using Equation 6 with the inputs illustrated in Figures 1c 
and 2b.
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to the wave frequency ω, as discussed in Section 2.4, to suppress non-causal artifacts in the numerical solution of 
the wave equation. Since Φ1(0) = 0 in the integrand in the right side of Equation 6 [see Equation 27], the waves 
with small values of kx contribute negligibly to the integral. That allowed us to avoid the unnecessary calculation 
of W(k, z) for very long quasi-plane waves with the trace speeds of hundreds of m/s. The result of calculation of 
the vertical displacement in quasi-plane waves is illustrated in Figure 2b. The color in Figure 2b shows the ampli-
tude of the normalized vertical displacement Q in a quasi-plane wave, Equation 17, on the logarithmic scale as 
log10|Q|. The sudden transitions between large and very small (zero) amplitudes of the normalized displacement 
at certain altitudes in Figure 2b correspond to the termination of the computational domain in the vicinity of the 
corresponding critical levels. Zero amplitude is also shown in the figure in the narrow band around kx = 0, where 
W(k, z) calculation was not needed.

The full wave field, which is obtained by integration over the horizontal wavenumber kx in Equation 6, is illus-
trated in Figure 2c. In that figure, color shows the amplitude of the normalized vertical displacement of the full 
AGW field on a logarithmic scale as 0.5log10[ρ(z)|w(x,z)| 2/ρ(0)] with an arbitrarily chosen amplitude A of the RIS 
vibrations in Equation 22.

The wave field appears to be a superposition of several wave beams associated with various peaks of the spatial 
spectrum of the vertical displacement of the ice surface, see Figure 1c. Various wave beams are refracted differ-
ently due to temperature and wind velocity gradients and can even cross each other (Figure 2c). The wave ampli-
tude tends to decrease with altitude due to the critical level filtering, geometrical spreading of the beams, and 
the wave dissipation, which accelerates with increasing z. However, a localized increase in the amplitude due to 
wave focusing by refraction can also be seen in Figure 2c. This focusing is unrelated to the well-known vertical 
displacement amplification with decreasing air density as the latter effect is compensated for in the normalized 
displacement.

Figure 2c shows that, for the atmospheric stratification shown in Figure 2a, most (but not all) of the energy 
radiated by the RIS vibrations propagates at a small angle to the horizontal plane and can travel 1,000 km hori-
zontally by the time it reaches the 20 km altitude. These features of Figure 2c suggest that, in addition to the RIS 
vibrations, oscillations of another ice shelf, for example, the Ronne Ice Shelf (Jenkins & Doake, 1991), the center 
of which is located about 1,500 km from the RIS center, can contribute to generation of the atmospheric waves 
observed at altitudes from about 20 km above the RIS.

Our model of the AGW generation is linear, and the results shown in Figure 2c do not include any nonlinear wave 
interactions. The main nonlinear effect is generation of secondary atmospheric waves above the critical level of 
primary AGWs due to the momentum and energy deposited near the critical level by the dissipating primary 
waves (Vadas et al., 2018). In addition to the waves generated by the ice shelf vibrations, the atmospheric wave 
field in the RIS vicinity is likely to include the nonlinearly generated secondary waves as well as linear waves that 
traveled to the region from sources outside the RIS.

The calculations illustrated in Figure 2 can be readily extended at a small additional computational cost to a differ-
ent spatial structure of vibrations of the lower boundary of the atmosphere as long as the vibrations' frequency 
remains the same. The bulk of the computational effort is in solving the one-dimensional wave equation for vari-
ous horizontal wavenumbers. Calculating the Fourier integral in Equation 6 with a new spatial spectrum Φ1(kx) of 
the ground-level vertical displacement is relatively quick, even for a large set of altitudes.

3.3.  Three-Dimensional Structure of the Wave Field in the Atmosphere

The multiple peaks in the spatial spectrum of RIS vibrations (Figure 1c) and the anisotropic nature of AGW 
propagation can result in a rather complex three-dimensional distribution of wave energy in the atmosphere. To 
separate the effects of the wind-induced horizontal anisotropy from the effects of atmospheric stratification, in 
this section we assume that the atmosphere is isothermal, and the wind velocity is uniform.

In isothermal atmosphere with uniform wind, rays are straight lines. For any horizontal wave vector k = (kx, ky, 
0) = k (cosψ, sinψ, 0), the ray direction is given by Equation 10 for the group speed cg = (cg x, cg y, cg z). The rays 
emanating from a point (x0, y0, 0) are given by the following equations: x = x0 + zcgx/cgz,y = y0 + zcgy/cgz. Let the 
wind velocity have no y component. In terms of the x-component of the horizontal wave vector and the angle ψ 
that k makes with the x coordinate axis, the ray equations become
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𝑥𝑥 = 𝑥𝑥0 +
𝑧𝑧

|𝑚𝑚|

[

𝑘𝑘𝑥𝑥

𝑁𝑁2
0
− 𝜔𝜔2

𝑑𝑑

𝜔𝜔2
𝑑𝑑

+
𝑘𝑘2
𝑥𝑥𝑢𝑢𝑥𝑥𝑁𝑁

2
0

𝜔𝜔3
𝑑𝑑
cos2 𝜓𝜓

−
𝑢𝑢𝑥𝑥𝜔𝜔𝑑𝑑

𝑐𝑐2

]

, 𝑦𝑦 = 𝑦𝑦0 +
𝑘𝑘𝑥𝑥𝑧𝑧

(

𝑁𝑁2
0
− 𝜔𝜔2

𝑑𝑑

)

tan𝜓𝜓

|𝑚𝑚|𝜔𝜔2
𝑑𝑑

.� (29)

according to Equations 10 and 11.

In stationary atmosphere, according to Equation 29, the rays launched in different azimuthal directions ψ from 
a monochromatic source of frequency ω < N0 intersect the horizontal plane z = const. along a circle with the 
center right above the source and the radius 𝐴𝐴 |𝑚𝑚|

−1
𝑘𝑘
(

𝜔𝜔−2𝑁𝑁2
0
− 1

)

𝑧𝑧 . When the trace speed is small compared to the 
sound speed, k ≫ ω/c, and the radius becomes 𝐴𝐴

(

𝜔𝜔−2𝑁𝑁2
0
− 1

)1∕2
𝑧𝑧𝑧 according to the dispersion Equation 7. Hence, 

all AGWs of frequency ω (and with small trace velocities) propagate at the same angle with the horizontal plane. 
The angle is small for low-frequency waves with ω ≪ N0.

In moving atmosphere (ux ≠ 0), Equation 29 shows that the rays with different kx values make different angles 
with the horizontal plane, and intersect the z = const. plane along a line, which goes to infinity in the downwind 
direction (Figure 3).

The three-dimensional structure of the atmospheric wave field generated by a single mode of RIS vibrations 
with period of about 3.0819 hr is illustrated in Figure 3. The figure shows the distribution of the amplitude of 
the normalized vertical displacement in horizontal and vertical planes. As in Figure 2c, the color in Figure 3 
shows the amplitude of the normalized vertical displacement on logarithmic scale, namely, 0.5log10[ρ(z)|w(x-
,y,z)| 2/ρ(0)]. The amplitude A of the RIS vibrations in Equation 22 is chosen arbitrarily. Figure 3a assumes the 
same RIS oscillations and serves as the counterpart of Figure 2b but from a full 3-D model in the simpler case 
of an isothermal atmosphere. The vertical displacement w(x, z) is calculated using the integral representation 
Equation 3. Significant savings in the computation time are achieved by analytically calculating the function W 
in the integrand. As long as AGW dissipation is negligible, the exact solution of the boundary value problem for 
W is W(k,z) = exp(−i|m|z) in the isothermal atmosphere with uniform wind. The dissipation is included in this 

solution through Equations 8 and 12 as the additional factor 𝐴𝐴 exp

(

−

𝑧𝑧∫
0

|𝑀𝑀∕2𝑚𝑚|𝑑𝑑𝑑𝑑

)

 . This is consistent with using 

the WKB Equation 8 and replacing m with me ≈ m + iM/2m in the phase integral Equation 9.

It is assumed in Figures 3a and 3b that the wind velocity has no y component and ux = 10 m/s. For comparison, 
wind velocity u = 0 in Figure 3c. We interpret the uniform wind u as the limiting case of a rapid rise of the x 
component of the wind velocity from 0 at z = 0 to ux at z > 0. Then, the critical level filtering removes contri-
butions of waves with kx > ω/ux into the integral Equation 3 in the calculations illustrated in Figures 3a and 3b.

Figure 3.  Radiation of AGWs by RIS vibrations into an isothermal atmosphere. The amplitude of the normalized vertical displacement is shown by color on a 
logarithmic scale. (a) Vertical cross-section of the wave field in the direction parallel to the wind velocity. Wind velocity is 10 m/s in the positive x direction. The RIS 
vibrations are due to a single normal mode with the spatial spectrum shown in Figure 1c. Thin colored lines show the AGW rays emitted from the center of RIS in 
the xz plane with the values of the kx component of the wave vector representing various peaks of the spatial spectrum of RIS oscillations that is shown in Figure 1c. 
The line color is the same as the color of the corresponding dot in Figure 1c. (b) Horizontal cross-section of the wave field at the altitude z = 100 km under the same 
conditions as in (a). Thin colored lines show intersections of the plane z = 100 km with the AGW rays emitted from the center of RIS with various values of the ky 
component of the wave vector and the kx component representing one of the peaks of the spatial spectrum of the RIS oscillations that is shown in Figure 1c. The line 
color is chosen in the same way as in (a). (c) Same as in (b) but in the absence of wind.
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In the vertical plane y = 0 (Figure 3a), the more significant maxima of the AGW amplitude in the full-wave 
simulation occur along the rays corresponding to those local maxima of the spectrum of RIS oscillations Φ1(kx) 
Equation 25 that produce atmospheric waves with the intrinsic frequency ωd > 0 and thus contribute to the field 
at z > 0. At y = 0, significant contributions to the integral in Equation 3 over ky come from the vicinity of ky = 0, 
where the magnitude of the spectrum Φ(kx, ky) in Equation 28 is maximum. The finite width of the “wave beams” 
that are seen in Figure 3a around the rays originates from the finite linear dimensions of RIS and the resulting 
finite width of the spectral maxima. Figure 3a shows that some wave energy travels upwards at near-vertical 
angles in the atmosphere even at a wave frequency much lower than the buoyancy frequency. This point is impor-
tant for interpretation of the observations (Chen et al., 2016; Chu et al., 2018; Kim et al., 2022; Kwon et al., 2018; 
Zabotin et al., 2023; Zhao et al., 2017) and is elaborated upon in Section 4.

In the horizontal cross-section of the AGW field in motionless atmosphere (Figure 3c) it is easy to recognize the 
circles that are discussed above in the ray context. The energy of the long-period RIS oscillations is concentrated 
at wavenumbers large compared to ω/c ∼2·10 −6 m −1 (Figure 1c), and therefore AGWs with different wave vectors 
propagate at the same angle to the vertical. The circle radius in the wave field distribution in Figure 3c is consist-
ent with the ray calculation, and the apparent shift of the circles is of the order of the RIS linear dimensions. The 
azimuthal distribution of the amplitude can be thought of as a result of interference of waves arriving from differ-
ent parts of the RIS, but it is best understood in terms of the spectrum Φ(kx, ky) in Equation 28. In the absence 
of wind, the azimuthal direction of wave propagation is parallel to the horizontal wave vector k. In Figure 3c, 
the AGW amplitude is largest along the x axis, where wave vectors have small ky values and |Φ(kx, ky)| is close to 
its maximum. The wave amplitude is much smaller around the y axis, where wave vectors have small kx values, 
because Φ(0, ky) = 0 according to Equations 27 and 28.

In the moving atmosphere (Figure 3b), the effects of the wave source directionality, which are encapsulated in 
the spectrum Φ(kx, ky), combine with the horizontal anisotropy of AGW propagation to produce a more intricate 
dependence of the wave field on horizontal coordinates than in Figure 3c. The spectrum Φ(kx, ky) of the RIS 
vibrations varies rapidly with kx and has multiple local maxima at specific kx values, while variation of the spec-
trum with ky is much more gradual in Equation 28. The ice shelf radiates a number of wave beams, each one being 
associated with a local maximum of |Φ1(kx)|. Different beams travel upwards in different directions. With kx fixed 
and the angle ψ varying from 0 to 2π, Equation 29 defines the line, along which the beam intersects the horizontal 
plane at the altitude z. Largest amplitudes of the wave field in Figure 3b occur in bands along the lines predicted 
by Equations 25 and 29. For each beam, the AGW amplitude in Figure 3b is largest around y = 0 and decreases 
with increasing |y|. The amplitude decreases, first, because of the decrease of |Φ(kx, ky)| with increasing | ky | (i.e., 
due to the source directionality) and, second, because the energy in a fixed interval of ky values spreads over a 
larger area in the horizontal plane as |y| increases (i.e., due to geometrical spreading of the beam).

Comparison of Figures 3b and 3c shows that the maximum of the AGW energy is expected to be observed much 
closer to the RIS in moving atmosphere than in the motionless case. Moreover, Figure 3b shows significant AGW 
amplitudes directly above the RIS at 100 km altitude. These properties of the simulated AGW field provide a 
physical explanation of the recently reported observations (Zabotin et al., 2023) of the correlations between the 
seismometer-measured vertical displacements of the top surface of the RIS and HF radar measurements of the 
thermospheric wave activity at the Antarctic Jang Bogo Station, which is located at the distance of approximately 
500 km from the edge of the RIS.

4.  Short, Low-Frequency AGWs
Persistent atmospheric wave activity with wave periods of several hours is observed in the middle and upper 
atmosphere above and close to RIS (Chen et al., 2016; Chu et al., 2018; Kim et al., 2022; Kwon et al., 2018; 
Zabotin et  al.,  2023; Zhao et  al.,  2017). At such wave periods, as illustrated in Figure  3c, AGWs propagate 
in near-horizonal directions in a windless atmosphere (Gossard & Hooke, 1975), which seems to suggest that 
the waves were generated at large horizontal distances from the observation point. In fact, near-zenith AGW 
propagation can result from a particular wind profile, see Equation 11. In this section, we consider short AGWs 
on the gravity branch of the AGW dispersion curve (i.e., with intrinsic frequencies 0 < ωd < N0) and show that, 
at least for short waves, propagation in near-zenith direction can occur even when wind velocity does not change 
with altitude.

 21698996, 2023, 22, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JD

039121 by U
niversity O

f C
olorado Librari, W

iley O
nline Library on [12/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



Journal of Geophysical Research: Atmospheres

GODIN ET AL.

10.1029/2023JD039121

14 of 19

4.1.  Stationary Atmosphere, Moderate Winds, or Down-Wind Propagation of Short AGWs

Assume that the intrinsic frequency ωd of an atmospheric wave is of the same order of magnitude, or less than, 
ω. This is always the case for waves propagating down-wind (more accurately, for the AGWs with k·u ≥ 0), the 
intrinsic frequency of which varies between ω in the absence of wind and 0 at the critical level. In the limit of 
large k, the dispersion Equation 7 becomes

𝑚𝑚2 = 𝑘𝑘2
(

𝑁𝑁2
0
− 𝜔𝜔2

𝑑𝑑

)

∕𝜔𝜔2
𝑑𝑑
.� (30)

In this regime, m 2 > 0 and there are no turning points. Both k and m 2 are “large.” Quantitatively, Equation 30 is 
a good approximation when

𝑚𝑚2ℎ2 ≫ 1.� (31)

The approximate dispersion Equation 30 is similar to the often-used “dispersion equation of moderate-frequency 
gravity waves” (Fritts & Alexander, 2003). For the persistent wave activity observed at McMurdo, Antarctica, the 
assumption Equation 31 is very well satisfied at stratospheric altitudes (Zhao et al., 2017) and is approximately 
satisfied in the mesosphere and lower thermosphere (Chen et al., 2016).

The frequencies ω of interest in the RIS problem are much smaller than N0. (For orientation, for the 3-hr wave 
period T = 2π/ω, we have N0/ω ∼ 30–40.) Then m 2 ≫ k 2 according to Equation 30, and from Equation 10 for the 
group speed we find

𝐜𝐜𝑔𝑔 = 𝐮𝐮 + 𝜔𝜔𝑑𝑑

(

𝑘𝑘−2
𝐤𝐤 − 𝑚𝑚−1

𝐳̂𝐳
)

.� (32)

Equation 32 shows that, in the reference frame moving with the local wind, the ratio of the horizontal and vertical 
components of the group speed is |m|/k ≫ 1, that is, the AGWs propagate nearly horizontally making the angle 
arctan(k/|m|) ∼ ω/N0 ≪ 1 with the horizontal plane.

It follows from Equation 32 that

𝐜𝐜𝑔𝑔 ⋅ 𝐤𝐤∕𝑘𝑘 = 𝜔𝜔∕𝑘𝑘 = 𝑉𝑉� (33)

in this approximation, where V is the trace velocity. Hence, the projection of the group speed on the direction of k 
(which equals the horizontal component of group speed in the 2-D problem and, in the absence of the transverse 
wind, also in the 3-D case) coincides with the trace speed and does not change with altitude. It follows from 
Equations 32 and 33 that, in the reference frame of the solid ground,

(𝑐𝑐𝑔𝑔)𝑧𝑧

𝐜𝐜𝑔𝑔 ⋅ 𝐤𝐤∕𝑘𝑘
= −

𝜔𝜔𝑑𝑑𝑘𝑘

𝜔𝜔𝜔𝜔
.� (34)

Thus, the ratio of the vertical and horizontal components of the group speed remains small and of the same order 
of magnitude as in the moving reference frame.

In the absence of winds, the ratio of the vertical and horizontal components equals k/|m| and, according to Equa-
tion 30, depends only on the wave frequency, that is, waves of frequency ω with different V and k propagate in the 
same direction. With wind, the directions are no longer exactly the same for waves with different k (or V); but the 
ratios k/|m| for these waves are still small and of the same order of magnitude.

4.2.  Upwind Propagation of Short AGWs

The analysis in Section 4.1 assumes that ωd is of the same order of magnitude, or less than, ω. Now, consider 
the opposite case, where ωd ≫ ω. This situation occurs, when slow atmospheric waves propagate upwind, more 
precisely, when the wind velocity component in the direction of vector k, uk = k·u, is negative and has the magni-
tude large compared to the trace speed V = ω/k. Then we have, approximately,

𝜔𝜔𝑑𝑑 = 𝑘𝑘|𝑢𝑢𝑘𝑘|.� (35)

Given prevailing wind speeds of tens of m/s in a wide range of altitudes of polar atmosphere, this is not an 
exceptional regime for AGWs with V < 10 m/s as long as the wind direction is not reversed with altitude. (As 
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previously discussed, AGWs with V < 10 m/s and even larger V are absorbed in the vicinity of their critical levels 
at propagation downwind from the sources located at the ground level.) Short AGWs with ω ≪ ωd < N0 prove to 
have rather different properties than those discussed in Section 4.1.

Substitution of Equation 35 into the dispersion Equation 7 gives

𝑚𝑚2 =
𝑁𝑁2

0

𝑢𝑢2
𝑘𝑘

−
1

4ℎ2
− 𝑘𝑘2

(

1 −
𝑢𝑢2
𝑘𝑘

𝑐𝑐2

)

.� (36)

Note that, unlike Equation 30, m 2 decreases with increasing k 2, as for acoustic waves, and that short waves can 
have turning points, provided |uk| < 2hN0. The latter condition reduces to 𝐴𝐴 |𝑢𝑢𝑘𝑘|∕𝑐𝑐 𝑐 2

√

𝛾𝛾 − 1∕𝛾𝛾 ≈ 0.9 and is always 
met in the atmosphere.

Let us now additionally assume that ωd remains small compared to N0:

𝜔𝜔 𝜔 𝜔𝜔|𝑢𝑢𝑘𝑘| ≪ 𝑁𝑁0.� (37)

We also assume for simplicity that uk 2 ≪ c 2. It follows from Equation 36 that

𝑚𝑚2 = 𝑁𝑁2
0
∕𝑢𝑢2

𝑘𝑘� (38)

in this approximation. Then inequality (31) holds and m 2 ≫ k 2according to Equation 37. From Equation 10 for 
the group speed we find

𝐜𝐜𝑔𝑔 ⋅
𝐤𝐤

𝑘𝑘
=

𝑘𝑘2𝑢𝑢3
𝑘𝑘

𝑁𝑁2
0

= −|𝑢𝑢𝑘𝑘|
𝜔𝜔2

𝑑𝑑

𝑁𝑁2
0

.� (39)

Direction of the horizontal component of the group speed is opposite to the direction of k in Equation 39; while 
the wave vector is directed upwind, wave energy travels downwind. Under conditions (37), the vertical compo-
nent of the group speed in Equation 10 becomes

(𝑐𝑐𝑔𝑔)𝑧𝑧 = −|𝑢𝑢3
𝑘𝑘
|

𝑚𝑚𝑚𝑚

𝑁𝑁2
0

= −|𝑢𝑢𝑘𝑘|
𝑚𝑚

𝑘𝑘

𝜔𝜔2
𝑑𝑑

𝑁𝑁2
0

,� (40)

and

|

(𝑐𝑐𝑔𝑔)𝑧𝑧

𝐜𝐜𝑔𝑔 ⋅ 𝐤𝐤∕𝑘𝑘
| =

|𝑚𝑚|

𝑘𝑘
≫ 1.� (41)

Hence, the wave propagates almost vertically. This is in contrast to near-horizontal propagation found in 
Section 4.1, see Equation 34.

We conclude that short AGWs with trace velocities V within about 10 m/s directed upwind can provide a mech-
anism for transporting wave energy from RIS vibrations into middle atmosphere at observation points right 
above  RIS.

A simple result for the group speed direction can also be obtained under somewhat relaxed assumptions. Now, 
we no longer assume validity of Equation 37 and allow k|uk| to be as large as N0. Then, from Equation 36 we have 
the approximate dispersion equation

𝑚𝑚2 =
𝑁𝑁2

0

𝑢𝑢2
𝑘𝑘

− 𝑘𝑘2� (42)

instead of Equation 38, and the relative magnitude of m 2 and k 2 can be arbitrary. Using Equations 10 and 42, for 
the group speed and its components we find

𝐜𝐜𝑔𝑔 = 𝐮𝐮 −
𝑚𝑚2𝑘𝑘𝑘𝑘𝑘𝑘

𝑘𝑘2 + 𝑚𝑚2

(

𝐤𝐤

𝑘𝑘2
−

𝐳̂𝐳

𝑚𝑚

)

,� (43)
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𝐜𝐜𝑔𝑔 ⋅
𝐤𝐤

𝑘𝑘
=

𝑘𝑘2𝑢𝑢𝑘𝑘

𝑘𝑘2 + 𝑚𝑚2
= −

𝑘𝑘2
|𝑢𝑢3

𝑘𝑘
|

𝑁𝑁2
0

,
(𝑐𝑐𝑔𝑔)𝑧𝑧

𝐜𝐜𝑔𝑔 ⋅ 𝐤𝐤∕𝑘𝑘
=

𝑚𝑚

𝑘𝑘
.� (44)

Equations 39–41 are recovered from Equations 43 and 44 when m 2 ≫ k 2. It should be emphasized, again, that 
the result (Equation 44) for the group speed direction is similar in appearance but opposite to the prediction of 
Equation 34, which is valid in the case of weak winds with 𝐴𝐴 |𝑢𝑢𝑘𝑘|  < V. When m 2 ≫ k 2, Equations 44 and 34 indicate 
near-vertical and near-horizontal propagation, respectively, for the same, near-horizontal orientation of the AGW 
wave fronts, that is, surfaces of constant wave phase.

5.  Concluding Remarks
An efficient quantitative description of the waves generated in a stratified atmosphere by distributed and/or direc-
tional wave sources can be achieved by a Fourier synthesis of waves with harmonic dependence on horizontal 
coordinates. This approach is superior to representing the distributed source as a superposition of point sources, 
because AGW Green's functions have singularities away from the point source (Adam, 1977) and are numerically 
expensive to calculate in an inhomogeneous, moving atmosphere. We have extended to atmospheric AGWs the 
wavenumber integration method, a full-field approach that was originally developed for sound and seismic waves. 
In contrast to acoustic and seismic applications, the integration domain in the wavenumber space is primarily 
restricted by the AGW absorption and critical level filtering in the atmosphere rather than by the waves with short 
horizontal wavelengths becoming evanescent.

The approach developed in this paper provides the AGW field in a wide spatial domain and is particularly 
suitable for modeling the background wave activity (the “geophysical noise”), against which the atmospheric 
manifestations of earthquakes, tsunamis, and other transient events (Artru et al., 2005; Astafyeva et al., 2013; 
Garcia et al., 2014; Hickey et al., 2009; Inchin et al., 2021; Maruyama et al., 2012; Meng et al., 2019) are to be 
detected. This work has focused on waves generated by vibrations of the lower boundary of the atmosphere, but 
the numerical model can be readily extended to include waves generated in the atmosphere by using previously 
obtained spectral representations of the field due to various compact or distributed wave sources (e.g., Godin & 
Fuks, 2012; Kanamori et al., 1994; Pierce, 1963; Watada & Kanamori, 2010).

The linear response of the polar atmosphere to free vibrations of the RIS has been quantified by using the wave-
number integration approach and a previously developed model of the long-period vibrations of ice shelves 
(Godin & Zabotin, 2016). Each normal mode of the RIS vibrations generates an intricate, unique wave pattern 
from the ground level to the middle and upper atmosphere. Remarkably, the AGWs due to the RIS vibrations with 
natural frequencies that are small compared to the buoyancy frequency, propagate in a wide range of directions 
from near-horizontal to near-vertical in an atmosphere with moderate winds. Distribution of the wave energy in 
the horizontal plane is dramatically different in the moving and stationary atmospheres. The predicted amplitude 
of the atmospheric waves and the spatial structure of the AGW field are controlled by the temporal and spatial 
spectra of the atmospheric forcing by the RIS, which determine the wave source directionality and affect the 
AGW diffraction, and by the variations of the temperature and wind velocity with altitude, which influence the 
AGW refraction and dissipation.

Data Availability Statement
The data used in this research were obtained from the models HWM14 and NRLMSISE-00.2 (Drob et al., 2015; 
Picone et al., 2002) as detailed in Figure 2 caption.
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