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ABSTRACT

TEE-based smart contracts are an emerging blockchain architecture,

offering fully programmable privacy with better performance than

alternatives like secure multiparty computation. They can also

support compatibility with existing smart contract languages, such

that existing (plaintext) applications can be readily ported, picking

up privacy enhancements automatically. While previous analysis

of TEE-based smart contracts have focused on failures of TEE itself,

we asked whether other aspects might be understudied. We focused

on state consistency, a concern area highlighted by Li et al., as well

as new concerns including access pattern leakage and software

upgrade mechanisms. We carried out a code review of a cohort

of four TEE-based smart contract platforms. These include Secret

Network, the first to market with in-use applications, as well as

Oasis, Phala, and Obscuro, which have at least released public test

networks.

The first and most broadly applicable result is that access pat-

tern leakage occurs when handling persistent contract storage. On

Secret Network, its fine-grained access pattern is catastrophic for

the transaction privacy of SNIP-20 tokens. If ERC-20 tokens were

naively ported to Oasis they would be similarly vulnerable; the oth-

ers in the cohort leak coarse-grained information at approximately

the page level (4 kilobytes). Improving and characterizing this will

require adopting techniques from ORAMs or encrypted databases.

Second, the importance of state consistency has been underap-

preciated, in part because exploiting such vulnerabilities is thought

to be impractical. We show they are fully practical by building a

proof-of-concept tool that breaks all advertised privacy properties

of SNIP-20 tokens, able to query the balance of individual accounts

and the token amount of each transfer. We additionally demon-

strate MEV attacks against the Sienna Swap application. As a final

consequence of lacking state consistency, the developers have inad-

vertently introduced a decryption backdoor through their software

upgrade process. We have helped the Secret developers mitigate
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this through a coordinated vulnerability disclosure, after which

their state consistency should be roughly on par with the rest.

1 INTRODUCTION

Ever since the very first projects in the blockchain space, achieving

transaction privacy on a public blockchain has been a pivotal issue.

Because the drawbacks of pseudonymity are well-known [31, 46,

61], many privacy-focused projects including Monero and Zcash

have emerged with the goal of bringing true usable transaction

privacy to end users. However, while these projects can handle ba-

sic anonymous payment functionality relatively well, the broader

question of how to achieve general private computation through

smart contracts remains unanswered. While enhanced privacy for

more sophisticated decentralized finance applications is a worth-

while goal in its own right, it is also a promising solution to harmful

forms of Miner Extractable Value (MEV) in which publically-visible

market orders can be frontrun by block producers.

TEE-based smart contracts are an attractive solution. Compared

with purely cryptographic approaches such as zero-knowledge

proofs (ZKP) and secure multiparty computation (MPC), trusted

execution environments (TEEs) Ð especially Intel SGX Ð are more

efficient and are very expressive as well, capable of running existing

smart contract applications from Ethereum and Cosmos. A line of

research works has explored the design of secure TEE-based smart

contracts [9, 14, 79, 82]. In this setting, the attacker model includes

the untrusted host in possession of the TEE, where the TEE must

rely on the host for all network access and to respond to queries

about external data, such as clock times. In terms of real-world

deployment, TEE-based smart contracts appear poised to grow. Se-

cret Network (formerly known as Enigma [82]) launched the first

public deployment of a TEE-based smart contract system in 2020.

As of Feb 2023, it has a market cap of approximately $200M includ-

ing native and bridged tokens.1 Other TEE-based smart contract

platforms, including Oasis [55], Obscuro [13], and Phala [59], are

at varying stages of public launch ś each of them has deployed at

minimum a public test network with open-source code, often with

a considerable backing from investors and interested users2.

1https://secretanalytics.xyz/
2We survey the usage and fundraising situations for each in Appendix C
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Li, et al. [38] examined the research literature and pre-production

industry whitepapers, pointing out several potential areas of con-

cern. Looking at real-world implementations, the discussion of

security issues in TEE-based smart contracts has focused largely

on compromises of the TEE instantiation itself, specifically SGX,

which has had to recover from a sequence of catastrophic vulnerabil-

ities [7, 73, 75, 76]. The exposure of Secret Network to AepicLeak [7]

highlighted the importance of compartmentalization and key ro-

tation [77]. Although having systems in place to mitigate risks of

TEE failures is crucial, focusing solely on this would miss the bigger

picture of other forms of vulnerability.

In this paper, we ask the following: besides hardware vulnerabil-

ities in the TEE itself, are TEE-based smart contracts implemented

today vulnerable to non-TEE attacks? We analyze the codebases

and documentation of Secret, Oasis, Obscuro, and Phala, especially

focusing on the interface between untrusted and trusted code and

the interaction between newly written code and software inher-

ited from existing plaintext blockchains. We summarize the main

lessons learned:

Access pattern leakage is a concern for all the systems we reviewed.

This is especially a problem for fungible token applications ported

from plaintext blockchains, such as ERC-20 tokens. These platforms

support stateful contracts and are built around a high-performance

key-value storage library that persists on disk, such as LevelDB.

However, the patterns at which these databases are accessed when

processing confidential transactions can themselves leak crucial

information. In the worst case, this reveals to the untrusted oper-

ating system the sender and the receiver in every token transfer,

violating the desired transaction privacy guarantees. This is the

case for SNIP-20 tokens (privacy-enhanced fungible tokens based

on the ERC-20 and CW-20 standards) on Secret Network, the only

ones in use today. This leakage is also present in Oasis Sapphire

and Cipher, suggesting that ERC-20 tokens that are naively ported

would also fail to provide privacy. Obscuro and Phala mitigate this

to some extent because their use of block-based paging means that

the access pattern is only leaked to the nearest 4 kilobytes.

A comprehensive fix to access pattern leakage could make use of

oblivious data structures (ORAM) or encrypted database techniques,

found in other TEE-based distributed systems, but have not yet been

adapted to smart contracts [4, 17, 26, 47, 70]. The MobileCoin [33]

cryptocurrency (developed by Signal [1]) also uses ORAM with

SGX to provide privacy-preserving transaction retrieval [43]. These

solutions show the viability and scalability of a TEE solution that

implements ORAM for interacting with untrusted storage.

State consistency and replay defenses are critical to privacy but do

not apply intrinsically in L1 TEE-backed blockchains. The need for

rollback protection for TEEs in general has been discussed in previ-

ous work [42], and has featured prominently in security research

papers on TEE-based smart contracts [14, 32, 38]. This seems like a

natural synergy for the two technologies Ð blockchains are good

for committing to a sequential ordering of published transactions,

and TEE-based smart contracts must rely on this. Li et al. suggested

that state consistency and blockchain data confirmation come along

as "intrinsic features" for a Layer 1 (L1) architecture, meaning that

the consensus protocol to create new blocks is carried out by the

same validator nodes that execute smart contracts using TEEs [38].

It turns out that even though Secret Network is considered an L1,

Secret Network’s design is incomplete in that it does not incorpo-

rate any defense against replay or rollback attacks. The untrusted

host is therefore able to simulate or replay transactions in any order,

regardless of what appears on-chain. Oasis and Phala have already

implemented defenses against these, and it is on Obscuro’s list of

requirements prior to launch.

Design flaws in TEE-backed blockchains lead to practical attacks

without compromising the TEE. Since Secret Network is the only

TEE-based smart contract system with live running applications,

we explore the impact of the above vulnerabilities. SNIP-20 tokens

are believed to hide account balances, and the receiver and token

amount involved in each transfer transaction [65]. Beyond just

identifying vulnerabilities, we show how these can be exploited to

break the advertised privacy guarantees. In fact, due to the fine-

grained access pattern, just adding print statements to the debug log

is enough to trace the senders and receivers in each token transfer.

We design new transaction simulation attacks that enable the

forensic analysis of past and present SNIP-20 transfers, as well as

query the balances of individual accounts. We also show how par-

tial storage replay can amplify the attack, meaning attackers do

not need capital deposits of their own to carry it out. Besides trans-

action privacy, we also show that replay defenses are critical for

MEV prevention, one of the benefits of TEE-based smart contracts.

Our attacks can be used by validator nodes to strategically frontrun

automated market maker (AMM) swaps. All of our attacks can be

performed by an unprivileged node (e.g., no stake deposits or devel-

oper keys are needed), without relying on any vulnerabilities of the

underlying TEE, and without requiring any kernel patches. Given

the threat, we have coordinated with Secret Network’s development

team on vulnerability disclosure and helped deploy mitigations.

The need for software updates creates a backdoor hazard. Every

blockchain needs a software upgrade mechanism, though this is

notoriously challenging [6] even before TEEs are involved. In order

to update software, existing enclaves must transfer key material

to enclaves running the new software. In Secret Network, the only

policy enforced by the enclaves is code signing. Unfortunately this

means that Secret developers have the ability to unilaterally apply

updates to the software on their own machines, enabling them to

decrypt every transaction - an unintentional backdoor. Oasis and

Phala both implement not just a distributed code signing authority,

but require proof of on-chain publication of the software binaries

to hold them accountable. Obscuro has not implemented such a

process but lists it on their requirements prior to mainnet launch.

To summarize our main contributions:

• We analyze the codebases of existing TEE-based smart contract

systems that offer at least public test networks. Specifically we

focus on issues involving the boundary between the trusted and

the untrusted code, and especially the application storage.
• We provide evidence that access pattern leakage from the un-

derlying key-value storage means that ordinary token contracts

ported to any of the platforms today would fail to provide strong

privacy. We discuss possible mitigations for the future including

ORAM or decoys.
• For Secret Network in particular, we demonstrate new transaction

simulation attacks, demonstrating that a lack of state consistency

leads to breaking all the privacy guarantees of existing tokens.

We have conducted a coordinated vulnerability disclosure and
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helped developers with mitigations. They have now added replay

defenses, although receiver privacy for SNIP-20 tokens is left

currently unresolved.

2 BACKGROUND

Blockchains and smart contracts A blockchain is a decentral-

ized ledger whose state is replicated and agreed upon by mutually

untrusting nodes. A smart contract is a program whose execu-

tion is recorded on this ledger. Many blockchains, most notably

Ethereum [23], support smart contracts. In Ethereum the state of all

contracts on the chain is public, and identities are pseudonymous.

Many works [46, 50, 60, 61] have shown that these pseudonyms

are a weak form of privacy. The public nature of the Ethereum

blockchain impedes many applications, though in particular we are

interested in decentralized finance. Decentralized finance facilitates

manipulation of financial assets without relying on centralized au-

thorities like banks, and its applications include payments, lending,

auctions, and other financial derivatives.

Fungible tokens. Fungible tokens serve as currency that can

be owned and transferred using smart contracts in decentralized

finance applications. The pseudocode for the transfer function

of a fungible token is shown in Figure 1a. These contracts can

be customized for specific tokens while maintaining standardized

interfaces such as ERC-20 on Ethereum and SNIP-20 on Secret.

Privacy expectations of fungible tokens. The appeal of Secret

Network is that existing blockchain paradigms from the world of

transparent blockchains, such as ERC-20 tokens in Ethereum, can

be easily translated over to receive immediate privacy guarantees.

On a transparent blockchain all of the transaction data is view-

able on chain. For Alice to send $5 to Bob, the network must know

Alice’s current balance of $10, Bobs’s balance of $20, the value of

the transaction $5, and Alice’s and Bob’s addresses. We summarize

the possible privacy goals for transactions as: sender privacy and

receiver privacy to hide the addresses involved in the transaction

and value privacy and balance privacy to hide the amounts involved

in the transaction.

For SNIP-20 tokens, the sender’s address is automatically made

public due to the nature of executing transactions on a public

blockchain. Transaction fees in Secret are paid using the public

native token Secret Token (SCRT), which must be checked for suffi-

cient balance by running nodes. SCRT tokens are converted into the

SNIP-20 token called Secret Secret Token (sSCRT) by wrapping it

in a smart contract. SNIP-20 tokens like sSCRT are believed to hide

receiver address, transaction value, and balances of involved par-

ties. sSCRT is the most widely used smart contract on Secret, with

approximately 36,000 token accounts and approximately 500,000 in-

teractions3, while other popular tokens include bridged versions of

stablecoins like USDT and USDC, Bitcoin, Ethereum, and Monero.

Trusted execution environments. A trusted execution environ-

ment (TEE) or secure encalves are an isolated environment, often

implemented with hardware, that provides privacy and integrity

guarantees about the code it executes. Intel Software Guard Exten-

sions (SGX) [2, 18, 29, 45] is the basis for Secret and other upcoming

systems. It is a hardware TEE that supports remote attestation [63].

3https://secretnodes.com/contracts

Hardware TEEs such as SGX are designed to defend against an

attacker with OS kernel-level access. Due to the hardware isolation

of these TEEs such an attacker should not be able to tamper with

or observe the execution of a running TEE program. This model

describes a malicious blockchain node operator running a cloud

tenant with a dedicated instance. Because these guarantees only

apply to a running TEE, any restart of the TEE will result in data

being lost. SGX therefore makes use of sealed data to encrypt state

on disk and securely load it into the TEE.

Remote attestation allows a node operator to prove to other net-

work participants that they are running a legitimate TEE with the

correct version of the software. At a high-level remote attestation

is an interactive protocol where a measurement of the data and

software running in the enclave is taken and signed using a secret

key hidden in the hardware. This measurement and signature is

checked and endorsed by the hardware manufacturer based on

their secret knowledge of the hardware keys determined during

the manufacturing process.

Following successful remote attestation, the operator’s TEE can

access confidential data, such as smart contract states, without re-

quiring the network to trust individual node operators or cloud

providers running the TEE. Even with physical access, breaching an

Intel CPU is thought to be expensive and difficult [18]. The root of

trust remains at the manufacturer (Intel in the case of SGX), respon-

sible for correctly manufacturing hardware and issuing certificates

only for appropriately manufactured TEE-enabled CPUs.

Even assuming this root of trust, however, the privacy and in-

tegrity guarantees provided by Intel SGX have been broken in

practice. Papers such as [7, 11, 76] have identified vulnerabilities

in the TEE implementation, resulting in memory and CPU register

leaks, as well as the creation of fake attestation reports. Side chan-

nel attacks allow attackers to extract secrets from the enclave by

observing resources such as caches [10, 15, 20, 27, 48, 64], branch

predictions [21, 30, 37], and memory usage [49]. Tools such as

SGX-Step [74] provide attackers with instruction level control and

increase the efficiency of side-channel attacks.

3 OVERVIEW OF TEE-BASED SMART
CONTRACT PLATFORMS DESIGN

In this section, we review some general design patterns used to

realize TEE-backed blockchains. We focus on explaining Secret

Network, though the general design is applicable to others.

Structure of TEE-based blockchains. In TEE-based systems,

the code is divided into trusted and untrusted portions. The trusted

portion runs inside the TEE with integrity and privacy guarantees,

while the untrusted portion runs on the host operating system and

acts as an interface between 1) the TEE and clients, 2) TEE and the

consensus layer, 3) TEE and persistent storage. Therefore, the main

threat model for a TEE-based blockchain is that the attacker has

full control of the untrusted portion of the nodes.

Both the enclave and the client need access to the encrypted

transaction data, necessitating the use of a Diffie-Hellman (DH)

key exchange scheme to generate a shared encryption key. This

symmetric key is unique to each transaction. The trusted enclave

calculates the key using an elliptic-curve DH key derivation proto-

col, incorporating the io exchange private key (derived from the
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1 storage balances: mapping { address => uint128 }

2 contract function transfer(sender, receiver, amount):

3 require contract_status == NormalRun

4 require balances[sender] >= amount

5 balances[receiver] += amount

6 require balances[receiver] + amount <= MAX_BAL

7 balances[sender] −= amount

(a) Contract pseudocode for transferring fungible tokens.

get 0x6592ff[...] // contract status

get 0x9e82b0[...] // sender balance

get 0x3d4982[...] // receiver balance

(b) The log of get traces in a SNIP-20 transfer.

Figure 1: This figure illustrates the access patterns visible to the untrusted host of an SGX Enclave within which a node runs a

token transfer contract. The left hand side includes the operations running in the contract and the right hand side shows the

corresponding pattern seen by the host for each step.

Transparent Blockchains Secret Network
𝐴𝑙𝑖𝑐𝑒

$10−$5
transfer($5)

−→
𝐵𝑜𝑏

$20+$5
𝐴𝑙𝑖𝑐𝑒

??
transfer(??)

−→
??
??

Figure 2: Privacy Goals for SNIP-20 tokens versus Transpar-

ent tokens such as ERC-20.

setup secret and exclusively accessed by the trusted portion) and

the client’s wallet public key. The client inputs their wallet private

key and the io exchange public key into the key derivation protocol

and acquires the same key. The io exchange public key is stored in

the publicly accessible file named genesis.json on Sercet’s website.

When a client submits a transaction to the network, it encrypts

the transaction using the unique encryption key. The untrusted

host code inputs the encrypted transaction to the enclaves, where

it is decrypted, processed, and its results get encrypted for secure

transmission back to the client through the untrusted code. Only

the client who creates the transaction can decrypt its results.

The relevant threat model for a TEE-based blockchain is that the

attacker is in full control of the untrusted portion of the applica-

tion running on its own nodes. An application using the TEE must

assume that the host is malicious and will attempt to learn informa-

tion about the confidential state using any queries it is permitted

to make. The TEE can only help to enforce the policies that the

enclave program explicitly writes.

In SGX the interface between the untrusted and the trusted por-

tions of the application are known as ecall’s and ocall’s which

make a function call from the untrusted process to the trusted

(ecall), or vice versa (ocall). Since these are function calls, argu-

ments and return values can be used to pass data between them.

Blockchains and proofs of publication. The separation of state

machine replication (and execution) from a global consensus layer

has been considered in prior work, notably [32] and [14]. [32]

considers a more general model, where an untrusted host provides

state and services thatmust be committed to a public ledger. They go

on to provide a framework to achieve security against misbehaving

hosts by introducing proofs of publication to the blockchain before

clients accept any request responses from hosts. [14] specializes

this model to a scenario similar to that of Secret Network, where

a large number of TEE nodes can accept messages and requests,

but only a small fraction of these nodes participate in consensus.

They utilize proofs of publication to achieve what they call atomic

delivery, that is, given any client transaction Tx, the output of this

TEE 
Enclave

Untrusted 
Code

Blockchain

Trusted 
Code

Fine grained 
access pattern

No proof of 
publication

Users

Encrypted 
transactions

No state replay 
protection

Secret Network

TEE 
Enclave

Oasis Sapphire/Cipher

4KB

TEE 
Enclave

Obscuro

TEE 
Enclave

4KB

Phala

4KB Page level 
access pattern

Contract State 
Storage

Figure 3: High-level architecture of TEE-based smart con-

tracts, focusing on the interfaces between the TEE and exter-

nal storage and between the TEE and the blockchain.

transaction is revealed to the client if and only if the consensus

nodes have provided a valid proof of publication for Tx.

Secret Network, on the other hand, does not require these proofs

of publication, breaking the atomic delivery requirement. Any Se-

cret node can unilaterally execute a valid transaction and obtain

an output (albeit in part encrypted). While an honest client may

not accept this output, the untrusted host of the executing TEE can

still glean important information from metadata or through its own

transactions as we will soon demonstrate.

How to pass private outputs to individual users. Ordinary

transparent smart contracts typically define "query" or "getter"

methods in order to view the current application state (for example,

to check a token account balance). User wallets typically use RPC

servers to process these queries on their behalf. Private TEE smart

contracts need a way to send query results from a remote enclave

to the client, without revealing them to the untrusted host.

There are two main approaches that all of these networks follow:

The first approach is based on encrypted log events. As a contract

executes a transaction, it may write outputs to a log. This log is

included in the public blockchain data. The contract encrypts by

associating the intended receiverwith a public encryption key. Since

users are already identified by their address (a hash of a public key

for digital signatures), it makes sense to extend the address format

to include a public key for receiving outputs. Oasis and Obscuro
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Access

Leakage

Tx Replay

Protection

Storage Replay

Protection

Upgrade

Transparency

Secret 𝑎 key → →

Oasis 𝑏𝑐 key

Obscuro 𝑑 page → →

Phala 𝑒 page
𝑎 SecretNetwork fd2745 𝑏 oasis-sdk c82319 𝑐 oasis-core 5302f72
𝑑 go-obscuro b5a79e 𝑒 phala-blockchain 55479c

Table 1: Analysis of security and privacy hazards in existing

TEE-based smart contract codebases at time of writing. An

arrow and filled circle, → , indicates a fix as a result of our

disclosure; → indicates a planned mitigation.

support atomic delivery so that the outputs would not decrypt until

the transaction is committed. An oracle could be used to determine

the transaction confirmation.

The second approach uses off-chain queries. Nodes with enclaves

are allowed to process łqueriesž executing the smart contract and

retrieving the data from the local dastabase state of the TEE node.

A viewing key is shared between the smart contract and a user. The

viewing key is stored in the contract’s application state, and the

contract query results are encrypted using this key before they are

passed on to the host. These off-chain queries are susceptible to

access pattern leakage.

4 PRIVACY ANALYSIS OF REAL-WORLD
TEE-BASED BLOCKCHAINS

We analyze the landscape of TEE-backed blockchain platforms in

practice through the codebases of Secret Network, Oasis, Obscuro,

and Phala. Table 1 and Figure 3 summarize the different privacy

hazards relevant to TEE smart contracts detailed in this section.

4.1 Integration with existing blockchain
codebases and smart contract languages

Secret Network. As we discussed in Sec. 3 Secret Network’s

code base, like other SGX applications, is divided into a trusted

portion that is executed in the TEE and an untrusted portion that

is run on the host operating system. Secret Network’s untrusted

code is packaged into two binaries: (1) the secretd binary contain-

ing a command line interface client to interact with the network

and to start a node server, and (2) the libgo_cosmwasm.so bi-

nary, which provides a programmatic API to secretd to interact

with contract code and make calls to the TEE code. The code for

both libgo_cosmwasm.so and secretd can be modified by a

malicious host.

Much of Secret Network’s codebase is inherited from the Cosmos

Software Development Kit (Cosmos SDK) [68]. The Cosmos SDK

code handles message authentication and processing of transac-

tions and blocks. Secret Network uses Tendermint [69] to handle

consensus and communication between nodes and clients. In or-

der to use the Cosmos SDK and Tendermint frameworks Secret

Network extends Cosmos SDK’s default Application interface

with functions and variables specific to their implementation. This

includes the function DeliverTx that triggers the execution of a

transaction after consensus. The Secret Network contract code is

implemented using a Rust-based interface, called CosmWasm, which

integrates with Cosmos SDK. CosmWasm contracts are compiled

into binaries, which are eventually executed in the TEE.

Contract code storage occurs without the use of TEE and is stored

unencrypted on disk. To initialize, execute, or query a contract the

node server retrieves the stored contract code, a reference to the

contract’s key-value stores, and the encrypted message. Then pass

these to the libgo_cosmwasm.so interface.

libgo_cosmwasm.so passes messages to the TEE using the

ecall interface used for communication between the untrusted

and trusted portions of SGX applications. ecall_init is used to

initialize a contract, ecall_handle to execute a transaction on

a contract, and ecall_query to query a contract. The trusted

code is responsible for executing Rust contract code using Secret

Network’s CosmWasm interface.

libgo_cosmwasm.so also defines callback handlers for ocalls

that are used for communication between the trusted and untrusted

code bases. They include ocall_read_db and ocall_write_db

to read and write values to the contract’s key-value store that is

stored on the untrusted host OS.

Once a transaction is committed, the transaction data itself, as

well as the updated account balances of the sender and receiver are

stored in an encrypted database or key-value store. The key-value

store is accessible through a storage API but is stored in encrypted

form on the untrusted host, due to the TEE’s space constraints. To

read or operate on a record, the TEE retrieves it from untrusted

storage and decrypts it in the TEE.

Oasis. Oasis Network [55] is a Layer 1 (L1) blockchain in that it

runs its own standalone consensus layer built on Tendermint (like

Secret Network). On top of the consensus layer is an execution layer

organized as independent "ParaTimes," which make use of the con-

sensus layer. They are implemented using the oasis-runtime-sdk

and are customized for different purposes.

There are two ParaTimes, Sapphire and Cipher, that provide

confidential smart contracts. The main difference between the two

is that Sapphire is EVM-compatible while Cipher runs Wasm-based

contracts. Both do not further modify oasis-runtime-sdk. Emer-

ald is an EVM-compatible ParaTime that does not aim to provide

any privacy, which we ignored throughout our analysis.

Obscuro. Obscuro [13] is an L2 rollup network that aims to ad-

dress privacy concerns in the transparent blockchain Ethereum.

During each epoch aggregator nodes compete to become the leader

and generate a new rollup transaction that is posted to the L1

Ethereum chain. This leader election is based on a random nonce

that each aggregator generates in their TEE. All contract data is

encrypted and added to the rollup. Because the data is replicated

on chain they do not rely on the TEE for data integrity.

To participate in the next leader election, aggregator TEEs must

validate the previous L1 blocks containing the previous rollup in

the sequence. They are therefore reliant on the L1 for safety of the

consensus mechanism.

Obscuro is designed to be EVM-compatible for easy porting

of smart contracts. While it is the sole framework that encrypts

contract bytecode, the degree to which this feature offers explicit

privacy protection remains uncertain. In fact, it is possible for at-

tackers to probe the contract code via side-channel attacks like

SGX-Step [74].
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Phala. Phala [59, 80] (Phat Contract) is an L1 blockchain imple-

mented as a Polkadot parachain. Unlike the others, their focus is

to act as middleware for other blockchains. Their goal is to enable

serverless smart contracts called "Phat Contracts" similar to Ama-

zon Lambda functions that can handle concurrent user requests

and do not rely on fast updates to a global state.

They note their goal is not to replace existing smart contract

infrastructure: łInstead of implementing an ERC-20 tokenwith Phat

Contract (whose balance has to be stored on-chain), we recommend

deploying your ERC-20 contract on Ethereum and using a Phat

Contract to operate itž4. Depending on the amount of stake held

by the contract owner, a set of worker nodes are assigned to a

contract. Although they encourage stateless smart contracts, they

also support łvanilla on-chain states and transaction processingž

for applications that need it, hence such contracts would be subject

to the same state consistency hazards we consider.

Phat Contracts are written in Rust-based Ink! 5 language, com-

piled into Web Assembly and executed in TEE using Parity sub-

strate6. The contract code and the initial parameters are public.

4.2 Storage access pattern leakage

All of these blockchains inherit a key-value storage programming

model for their existing smart contract languages. This is backed by

encrypted data stored locally on the node performing the execution.

In the example of a private token, each account balance may be

stored as a separate record.

None of the systems whose codebases we evaluate hides access

pattern, and so an untrusted host OS can potentially learn private

information (such as receiver addresses in the private token exam-

ple) by monitoring accesses to the key-value storage. This is most

pronounced in Secret and Oasis, which leak the exact key that is

being accessed. Obscuro uses a TEE-based database library called

EdgelessDB, which reads and writes to the filesystem using 4KB

blocks. Phala uses an entirely in-memory data structure for con-

tract state, thus it would leak to the untrusted OS page fault handler

which memory page is being accessed. To address this issue, it is

crucial to employ effective obfuscation techniques such as the use

of oblivious RAM/data structures or encrypted databases.

Secret Network. Each Secret Network contract has access to

a key-value storage, where it implements an application-specific

state. Each value is encrypted using an authenticated encryption

mode, using the plaintext key as a tag. In this way, encrypted values

cannot be replayed on different keys (important for Sec. 5.5).

A separate encryption key is derived for every contract. Each

plaintext key-value store record is encrypted using the contract’s

encryption key and a fixed initialization vector (IV). The IV must be

fixed, i.e., the encryption must be deterministic since the encrypted

field name is used to retrieve the encrypted value.

Oasis. Oasis, like Secret, also uses an underlying database in the

untrusted host, in this case BadgerDB. This similarly leaks the

access pattern of each accessed record.

Obscuro/EdgelessDB. In addition to storing all contract data on

chain Obscuro uses EdgelessDB to store and retrieve data during

4https://wiki.phala.network/en-us/build/general/intro/
5https://paritytech.github.io/ink/
6https://www.parity.io/technologies/substrate/

the execution of the smart contract. EdgelessDB runs in a separate

TEE and uses a RocksDB backend. The data is stored in sorted string

table (SST) files, and accessed in 4KB blocks.

Phala. While Phala encourages mainly stateless applications, per-

sistent contract state is nonetheless supported. Since significant

usage is not anticipated, they use an in-memory data structure, pe-

riodically saved in its entirety to disk as a "checkpoint." Compared

with the alternatives like LevelDB, this incurs greater cost when

saving and restoring from these checkpoints.

In addition to this contract state Phala allows contract owners

to bring their own external database services that the contract can

connect to via HTTP requests. This model requires contract owners

to handle access patterns hiding themselves. They can choose to

store and load data in blocks rather than fine-grained key-value

pairs, but they are still subject 4KB limit for loading pages in a TEE.

Contract owners must also ensure that the HTTP queries them-

selves do not uniquely leak the data block or key being accessed.

Amazon S3 is one of the supported external database services in

Phala. To perform a request to S3, the URL contains a unique iden-

tifier for the object and bucket being accessed. The access pattern

could be inferred from logs viewable by the S3 bucket owner 7.

We use a half circle in Table 1 since Phala ensures storage replay

protection for contract state but not external database accesses.

4.3 State consistency and blockchain data
confirmation

The ability to perform transaction simulations can undermine pri-

vacy goals for TEE-based smart contracts. Even if transactions are

encrypted and private their execution can have some side effects

that change some public states, e.g. the public pool balance of a

token will change depending on the amount of tokens traded in a

private transaction. In the expected case, 1) the TEE only executes

a transaction after it has already been committed/finalized by the

validators’ consensus, and 2) the execution permanently modifies

the stored records on disk. However, these rules are not enforced

by the TEE and are only expressed in the untrusted code. The result

is that a validator can run simulations of a block prior to consensus,

varying the subset of included transactions and their execution

order to maximize profit.

Ensuring the validity and up-to-dateness of external storage

data is crucial for secure TEE-based smart contract platform design.

Failure to do so may result in storage replay attacks, which can lead

to the exposure of private information.

Secret Network. In Secret Network, there is no Proof of Publica-

tion mechanism, so uncommitted transactions can be run against

the local TEE. To carry out a simulation attack, the untrusted code

is modified so that a) the ecall_handle can be invoked directly to

execute a transaction without waiting for network consensus, and

b) the ocall_read_db and ocall_write_db handlers provide

a łsnapshotž/łrestorež mechanism to reset the simulated contract

state. The potential for transaction replay is acknowledged in Secret

Network developer documentation as łTheoretical Attacksž but is

not considered a practical concern [22].

7https://github.com/Phala-Network/phala-blockchain/blob/a6b6c7f/crates/
pink-libs/s3/src/lib.rs#L123
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As mentioned, Secret Network stores records with encrypted

field names and encrypted values. In more detail:

(Enckey(field_name, Tag=“”),

Enckey(value, Tag = Enckey(field_name, Tag=“”))).

While each record has an authentication tag (specifically AES-SIV

authenticated encryption), such that values cannot be replayed

across different records, this does not prevent the replay of previous

values for the same record.

Oasis. Oasis uses a Proof of Publication similar to that described

in Ekiden, in which the enclave verifies that a transaction is com-

mitted before executing. A slight difference is that in Oasis [55],

transactions are executed before confirmation, however the decryp-

tion key to their results and events is not released until they are

committed on-chain.

Oasis comes with a Merklized Key-Value Store (MKVS). All data

provided to the enclave is authenticated by the current root hash

of the state Merkle tree stored inside the enclave.

Obscuro. As of writing this paper, Obscuro does not implement

any method to prevent simulation attacks, but they propose strate-

gies to defend against these attacks in their design documentation 8.

Obscuro uses Sequencer nodes to order transactions before they are

included in a rollup transaction. In order for the Sequencer to simu-

late different orderings of transactions it would have to be restarted

using an old state. They plan to require the sequencer to be delayed

or re-register to the network after restarting so they cannot execute

multiple simulations in the same epoch before proposing a block.

As mentioned in Section 4.2, Obscuro makes use of EdgelessDB

which uses sorted string table (SST) files. These SST files consist of

4KB blocks and are append-only (meaning blocks are not modified

after being written). EdgelessDB notably aims to provide integrity

guarantees but does not aim to prevent rewinding the entire data-

base to a previous state. The position in the block and a file-specific

key is used as a parameter for encryption to get position-dependent

authenticated encryption. This prevents fine-grained replays be-

cause blocks cannot be swapped between files and values cannot

be changed in a block [16].

Phala. The contract state in the Phala blockchain is determined by

a sequence of transactions executed in order in a TEE. The TEE also

validates the blocks containing these transactions before writing

the expected outputs back to the blockchains in "checkpoints" [80].

The transaction order is determined before execution.

Replay attacks on contract state are not possible in Phala. As de-

scribed in Section 4.3 transaction ordering occurs before execution

and this ordering is validated in the TEE. If a contract makes use

of an additional external database it falls to the contract owner to

ensure that a malicious worker node cannot replay old database

values when the contract makes an HTTP request to the server.

This can be done by including a random nonce in the requests that

are signed by the server in the response.

4.4 Software update transparency

Software upgrades are notoriously challenging for blockchains [44],

even before we consider privacy and TEEs. In short, to avoid par-

titioning the network, it is important that all nodes participating

8https://github.com/obscuronet/go-obscuro/blob/e626db/design/fast_finality.
md#possible-designs-for-preventing-value-extraction

in the network can apply updates simultaneously. Additionally,

developers should not have the ability to unilaterally change the

rules, e.g., to print more coins.

The standard process involves several steps. First developers

publish a proposed software update. The upgraded software initially

behaves the same as existing software so that node operators can

gradually update without risk of partition. An on-chain vote is

collected, such as through miners or validators signaling support

for/against the blocks they produce, and with enough votes it is

approved. The upgraded software includes a "flag day" timestamp

(or block number), after which the software switches to the new

behavior; at this point, any nodes that have not yet updated will

find themselves partitioned from the network.

The additional challenge in TEE-based smart contracts is that

enclaves running the old software must somehow transfer key ma-

terial to enclaves running the upgraded software, but only after the

update has been approved on-chain. In Secret Network, although

software updates follow the on-chain approval process outlined

above, the enclaves do not enforce this policy. Instead, key material

is transferred between versions through the use of SGX-sealed data.

As mentioned in Section 2, TEEs use sealing to survive power

resets and to make use of on-disk storage. Sealing in SGX takes one

of two modes: MRENCLAVE, which means that only the exact same

TEE that created the sealed file can unseal it; andMRSIGNER, which

means that any enclave code signed by the developers can load

the sealed file. Although using MRSIGNER simplifies the upgrade

process, it means that the developers have the unilateral authority

to secretly decrypt every transaction on the network, simply by

code-signing a TEE that outputs the master key in plaintext and

running that on their own node. In other words, the upgrade process

has introduced an unwanted backdoor. Furthermore, as this could

be carried out offline, there is no way for developers to provide

evidence they have not exploited this.

Obscuro similarly uses MRSIGNER to seal enclave data on their

public testnet. As a result of our disclosure, they have committed to

transition to MRENCLAVE prior to their mainnet launch. 9. They

propose to do these updates by creating a transaction on the net-

work to propose the upgrade and allow for disputes/objections to

the update. After the upgrade is accepted all enclaves will be re-

quired to use the new version. Secret keys are transferred between

versions of the enclave via an RPC call. 10

Phala and Oasis already use MRENCLAVE sealing. For upgrades,

their enclaves check that an update has been approved on-chain.

As this relies on proof of publication, Obscuro and Secret will need

to fix this first before changing their update process.

5 FLESHING OUT THE ATTACKS ON SNIP-20
TOKENS IN SECRET

It is clear that the vulnerabilities noted in the previous section

may have some effect on the privacy properties of the systems in

which they are present. But are they real-world issues? To evaluate

this, we analyzed Secret Network, since it is the only of the TEE-

based systems advertising strong privacy guarantees with currently

9https://github.com/obscuronet/go-obscuro/pull/1065
10https://github.com/obscuronet/go-obscuro/blob/bacb60/design/security/

Upgrade_Design.md
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in-production-use applications. Especially popular are its fungible

privacy tokens, known as SNIP-20. SNIP-20 tokens have nearly iden-

tical functionality to the ERC-20 tokens from plaintext blockchains,

following the pseudocode mentioned in Sec. 2. The balances are

stored as smart contract application states in the encrypted key-

value storage. Users can transfer a token balance by including a

"transfer" message in the transaction payload. In order to query

the account balance, users need to set a viewing key through an

on-chain transaction, but afterward they can query their balance

with the help of any network node. At the time of writing, while

the market cap of circulating SCRT (i.e., the native asset that is not

"staked" in the consensus protocol) is $169 million, of that a frac-

tion $5.87 million is wrapped in sSCRT11. As explained in Section 2

the sender address in SNIP 20 tokens are public, therefore we can

query the number of unique addresses that have interacted with the

token contracts as well as the number of transactions sent to each

contract in Appendix Table 3. The most popular SNIP-20 tokens we

investigated have a combined market cap of $20.2 million12, over 1

million successful transactions, and 44.9 thousand unique senders.

5.1 Tracing attacks on SNIP-20 Transfers

Before getting to transaction simulation attacks, we start by simply

adding logging statements to the untrusted software with to ob-

serve the storage access patterns. This is enough to invalidate the

Receiver Privacy guarantees of the SNIP-20 tokens. In particular,

the receiver and the amount are both intended to be confidential.

The combination of encrypted transaction requests and encrypted

storage is the basis for expecting receiver privacy and value pri-

vacy for transactions. As discussed in Section 4.2, however, users’

balances are maintained by a key-value store and the encrypted

key for each account remains the same. By logging the keys fetched

from the storage, we can infer the receiver of a SNIP-20 transfer.

We modified the untrusted code, specifically ocall_read_db,

to simply print the get traces of encrypted keys fetched while

executing a contract program. For instance, an abridged trace re-

sulting from executing a SNIP-20 transfer is illustrated in Figure 1b,

each trace corresponding to a smart contract instruction in Fig-

ure 1a. The same sender or receiver in different transfer transac-

tions will always leave a get trace of the same encrypted key, e.g.,

0x3d4982[...] in Figure 1b. We carried out experiments on pub-

lic testnet by sending transactions between our own addresses to

confirm our hypothesis.

As the above discussion implies, the balances of the parties

(sender/receiver) involved in a transaction are accessed using fixed

keys for each address. By correlating two transactions, Tx1 and

Tx2, such that the sender of Tx1 is the receiver of Tx2, we were

able to deanonymize the supposedly private receiver of Tx2. Over

time, a graph of the transaction history can be built, and used to

fully de-anonymized users.

5.2 Implementing transaction simulation

We now describe how we modified (the untrusted portion of) the

existing Secret Network codebase, to build a forensic analysis node

capable of carrying out offline simulation attacks.

11https://secretnodes.com/
12https://secretanalytics.xyz/bridge, https://www.coingecko.com
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Figure 4: Legend for transaction simulation schematics. El-

ements with the same shape have the same key and can be

replaced with one another. Elements with the same color

have the same representation as encrypted values.

We focus on adding a wrapper around the ecall_handle func-

tion described in Section 4.1. Secret’s untrusted codebase includes

DeliverTx and SimulateTx, two high level wrappers that call

this function. DeliverTx is intended to used after a transaction has

been committed in a block Ð though lacking a Proof of Publication,

the enclave cannot ensure this. SimulateTx is used to estimate

gas costs. While either could be used, we found SimulateTx to be

the easiest code to modify. We then added the following new RPC

calls to support transaction simulation:

• Fork(): (Re-)Initializes a new in-memory cache, SimState, for

persisting state changes between transaction simulations.
• Simulate(Tx)→ [ck=cv,...]: Simulates one transaction, mod-

ifying only SimState. During contract execution, interactions

with key-value storage (through ocall_get, ocall_set) are

diverted to SimState. Returns a transcript [ck=cv,...] re-

sulting from interacting with key-value storage.
• Replay(ck=cv,...): Replays previously storedmappings from

encrypted keys ck to encrypted values cv. Since the empty string

is a default value, this can be replayed for any key regardless of

whether it has been previously observed.

5.3 Inferring SNIP-20 Transfer Amounts

As our first transaction simulation attack, we can infer the amount

of tokens transferred in a SNIP-20 transaction. While access pattern

leakage from Sec. 5 enabled us to determine the receiver’s address,

the number of tokens transferred remains encrypted.

Assume that our goal is to infer the transfer amount 𝑇 of a

victim transaction Txvictim. For now, let us assume the attacker

has an account with balance𝐴 that we know is greater than𝑇 . We’ll

design a simulation attack that probes the victim transaction by

constructing a comparison oracle, i.e., for each choice of a probe

value 𝑃 , we learn whether 𝑇 < 𝑃 .

In Fig. 5 we give a schematic for our approach along with a pseu-

docode description. The legend in Fig. 4 should help for following

the schematic. We start by Replaying balance[sender]=0, where

the encrypted field name corresponding to balance[sender] can be

inferred from the access pattern analysis. Next we generate and

Simulate the execution of a transaction that transfers the probe

amount 𝑃 from the attacker’s balance to the sender’s balance. Fi-

nally, we Simulate the victim’s transaction Txvictim. As a result

of transaction simulation, we learn whether or not the transaction

succeeds. If it succeeds, we’ve learned that 𝑃 ≥ 𝑇 , and if it fails

then 𝑃 < 𝑇 . We can simply rewind the simulation to the beginning

by calling Fork, choosing a different probe value via binary search.

5.4 Surveillance without having to buy tokens

We previously assumed that the attacker’s balance 𝐴 at the begin-

ning of the attack was larger than the transaction they sought to
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1 function TransferAmountInferenceAttack(Txvictim)

2 sender := Txvictim .sender

3 # assume balance[attacker] > T

4 low := 0, high := A := balance[attacker]

5 while low < high do # start bisection search

6 P := (low+high)/2

7 Fork()

8 # replay 0 for the sender's account balance

9 Replay(balance[sender] = 0)

10 # transfer amount = P to sender's account

11 Simulate(Transfer(attacker, sender, P))

12 if Simulate(Txvictim) succeeds then

13 low = P+1 # try larger

14 else

15 high = P # failed, try smaller

16 end if

17 end while

18 return low # return the probed amount low = T

Figure 5: Schematic and Pseudocode for Transaction Simula-

tion Attack to Infer SNIP-20 Transfer Amount

analyze, meaning that the attack had large upfront investment re-

quirements. We now explain how to get around this assumption by

starting with a very small balance and simulating the inflation of the

attacker’s account. Pseudocode and a schematic are given in Fig. 6.

The main idea is that the attacker simulates transferring a balance

between two of her own accounts, replenishing each empty account

with a replayed value. Since this algorithm doubles the balance of

an adversarial account at each step, it takes 128 iterations to reach

the maximum representable value. This only needs to be carried

out once per token type since the resulting encrypted value can be

stored for later use.

Note that this inflation is only occurring within the attacker’s

local simulation and does not in any way imply that the integrity of

the overall blockchain is at risk. The reason for this is that even if

there were no enclaves at all, the integrity of the blockchain would

still be ensured by the consensus among validator nodes, just as in

any transparent blockchain.

5.5 Querying SNIP-20 account balances

We now present an attack that allows us to probe the account bal-

ance of an arbitrary victim, just given their address. We assume

the attacker begins with a maximal account balance of 2128 − 1

(obtained in Section 5.4). SNIP-20 tokens throw an exception when

00 2BB

Attacker
Account 2

+2B

-B

+B -B

Simulated Balance Inflation

B 2B 2128-
1

B 2B00

Attacker
Account 1

-2B+B

1 function BalanceInflationAttack(addr1,addr2)

2 # both accounts are controlled by the attacker

3 # start with balance[addr1]>0 & balance[addr2]=0

4 Fork()

5 while balance[addr1] < (2128 − 1) do

6 # store the current balance B of addr1

7 B := balance[addr1]

8 Simulate(Transfer(addr1,addr2,balance[addr1]))

9 # now balance[addr1]=0

10 # replay the balance of addr1 back to B

11 Replay(balance[addr1]=B)

12 amt := B if 2B≤(2128 − 1) else (2128 − 1)−B

13 Simulate(Transfer(addr2, addr1, amt))

14 # now balance[addr1]=min((2^128−1), 2B)

15 end while

Figure 6: Schematic and pseudocode for a transaction simu-

lation attack that inflates the attacker’s (simulated) balance

adding two u128 elements that overflow. We use this as our next

oracle to probe whether a victim’s account with balance 𝐵 is less

than a parameter 2128 − 1− 𝑃 . Following along with the illustration

in Fig. 5, we simulate a transaction that transfers 𝑃 from the at-

tacker’s account to the victim’s account. This transaction succeeds

if 𝐵+𝑃 < 2128, and fails otherwise. Using theReplay capability and

a binary search we can recover the exact value after 128 iterations.

5.6 Forensic analysis of past SNIP-20 transfers

For reasons involving details of Secret Network’s implementation,

it is difficult to obtain a snapshot of the blockchain state from very

far back. State snapshots are cycled on a rolling basis, and while

archive nodes provide most old blocks, we found we were unable to

sync a node by replaying blocks from "genesis." So, how would we

break receiver privacy for transactions prior to the last available

state checkpoint?

The first challenge is that Secret Network, like most blockchains,

implements a form of replay prevention based on "sequence num-

bers." Transactions are rejected unless they have a sequence number

that matches a counter associated with each account. The counter

for an account is incremented each time a transaction from that

account is committed. However, this mechanism is implemented

only within the untrusted codebase, so we simply disable the checks

on the sequence number of a transaction before ecall_handle.

Next, the sender’s balance at the snapshot time may be lower

than it was when the past transaction of interest was committed.

However, the techniques we described earlier enable us to control

the sender’s simulated balance, as we make use of when inferring
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1 function BalanceInferenceAttack(victim)

2 # begin with inflated balance[attacker]=2^128−1

3 low = 0, high = 2128 − 1

4 while low<high do

5 P := (low+high)/2

6 Fork()

7 if Simulate(Transfer(attacker, victim, P))

8 succeeds then

9 low = P+1 # try larger

10 else

11 high = P # failed, try smaller

12 end if

13 end while

14 return (2128 − 1)−low # return the probed balance[victim]

Figure 7: Schematic and Pseudocode for Transaction Simula-

tion Attack to Probe the Balance of Arbitrary Address

the transaction amounts. Therefore, forensic analysis of prior trans-

actions does not require syncing a node to old application state.

6 MEV ON TEE-BASED NETWORKS

Though the privacy of SNIP-20 tokens is the most important issue

for Secret Network, this is not the only application at risk. We

also explain how transaction simulation attacks can undermine

defenses decentralized exchanges (DEXes) built on top of TEE-

backed platforms against front-running.

6.1 Background on MEV

MEV and Frontrunning attacks. Any operations that clients

want to be executed on the blockchain must be committed in a

block by the validator nodes running a consensus protocol. Since

the validators must collect pending transactions before assembling

them into a block, they can insert their own transactions (such

as when frontrunning) and reorder the pending ones in whatever

order they see fit. In blockchains, the notion of validators benefiting

economically from the ability to determine transaction order is

called miner extractable value (MEV) [71].

MEV in AMMs. Automated Market Maker (AMM) is one of the

most popular DEXes. Most well-known AMMs, e.g., Uniswap [36],

are constant product AMM. An AMM is meant to help trade any

number of token pairs, which we will generalize to calling tokenA

and tokenB. Let PoolAmtA and PoolAmtB represent the total

amount of tokens in the liquidity pool for this token pair (tokens

are provided by liquidity providers who make profits by charging

transaction fees). When trading one token for another, the price is

1 contract function UniswapTrade(amtA, slippage_limit)

2 amtB = calcB(PoolAmtA, PoolAmtB, amtA)

3 if amtB < slippage_limit then

4 # no state change but the transaction is committed.

5 else

6 # changes to caller account balances as well as the

7 # contract's variables are committed to chain.

8 PoolAmtB −= amtB

9 PoolAmtA += amtA

10 end if

11 contract function calcB(PoolAmtA, PoolAmtB, amtA)

12 amtB = PoolAmtB −
PoolAmtB * PoolAmtA
PoolAmtA + amtA

.

Figure 8: Contract Pseudocode for Uniswap Trade.

determined as shown line 10 in Figure 8, which keeps the product

PoolAmtA*PoolAmtB invariant. The amtA refers to the amount

of tokenA the client wants to trade and amtB is the amount of

tokenB they will receive back.

Upon seeing that a client wants to buy tokenB using tokenA,

the miner generates a transaction buying tokenB, ahead of the

client, artificially inflating the demand for tokenB. This means the

client would end up getting less tokenB with the same amount

of tokenA. Subsequently, the price of tokenB would inflate even

more and the adversarial miner could now łsellž tokenB to get

more of tokenA than it originally spent buying it.Thus, the miner

benefits from sandwiching the client transaction. For a more de-

tailed discussion of MEV and the other perils to the blockchain

introduced by it, see [19].

Note that to know the frontrun amount, the adversarial miner

needs to see the amounts in the client’s transaction. This is be-

cause if the miner increases PoolAmtA (raises the price to buy

tokenB) too little it will not profit, and if it increases it too much,

the slippage_limit (the minimum amount of tokenB the client

would like to receive) parameter of the client causes the target trans-

action to fail altogether. Thus, if the miner were unable to access

the amounts input by the target transaction caller, they would not

be able to mount MEV attacks effectively.

6.2 Sandwich attacking a private swap

SiennaSwap 13 and SecretSwap 14 have gained significant popular-

ity as AMMs built on Secret. They have comulated trading volumes

of $1.07𝐵 and $1.26𝐵, support 149 and 184 trading pairs, attract

8.94𝐾 and 24.22𝐾 users respectively 15. Although they all claimed

that they are front-running resistant as they are based on a privacy-

preserving platform, we demonstrate a sandwich attack does exist.

Consider a victim transaction Trade(amtA, slippage_limit).

The value of amtA can be inferred from the change in PoolAmtA

after execution, but slippage_limit here would be secret. The

main parameter of a sandwich attack is how large the frontrun

transaction should be. The attacker’s profit is maximized when the

victim transaction succeeds but just barely within the slippage limit.

13https://sienna.network/swap/
14https://secretswap.net/swap
15https://archive.is/A8fTk, https://archive.is/NcY9F
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Attacker 
Account

PoolAmt: A
PoolAmt: B

balA
balB

Sienna 
Swap 

Account

+guessM

balA
balB

A’’:=A+guessM+amtA
B’’:=B-calB-calcB’

Victim 
Account

+amtA

-calcB(A,B,guessM) -calcB(A’,B’,amtA)

↑guessMUniswapTrade
(amtA, slippage_limit)

balA’:=balA-guessM
balB’:=balB+calcB

-guessM

+calcB

balA’:=balA-amtA
balB’:=balB+calcB’

-amtA

+calcB’
UniswapTrade

(guessM,0)

↓guessM

1 function FindMaxFrontrunAmt(Txvictim)

2 low := 0, high := balA

3 while low < high do

4 guessM := (low+high)/2

5 Fork( )

6 Simulate(Tradeattacker(guessM, 0))

7 if Simulate(Txvictim) succeeded then

8 low := guessM+1 # try larger

9 else

10 high := guessM # failed, try smaller

11 end if

12 end while

13 return low # the maximal frontrun amount

Figure 9: Schematic and Pseudocode for Transaction Simula-

tion Attack to Determine the Maximal Frontrun Amount

Optimizing a sandwich attack thus requires determining the vic-

tim’s slippage limit, which can be done through a łbisectionž search,

as shown in Figure 9. This bisection search iteratively reduces the

range of possible values of the slippage limit by determining larger

minimum and smaller maximum for the value. Once the bisection

search ends and the slippage_limit is revealed the attacker can

frontrun of the transaction on the real network.

Note that the attacker’s ability to front run is limited by their

available capital. Thus while the attacker could use simulated bal-

ance inflation as described earlier to infer the slippage limit even

for larger trades, this would not help them to front run.

6.3 Validating our implementation and artifact

There are two main ways we validate our implementation. The

first is through the use of container-based local networks, which

are used by Secret Network for integration tests. This requires

us to compile both the Secret enclave as well as the smart con-

tracts from the sSCRT implementation from source code. This is

ideal for reproducing our demonstrations, so we plan to publish an

artifact based on this. We benchmark the cost of conducting the

sandwich attack in this setting. As the sandwich attack is based

on the transaction simulation attack, no transaction is broadcast

to the network so there’s no monetary cost to find the optimal

profit-making transactions. The primary bottleneck for launching

this attack lies in the bisection search process. Each iteration of the

bisection search takes about 0.40s. Given the attacker’s constrained

ability to execute only a limited number of iterations/simulations

during the block time to explore the slippage limit of the victim

transaction, there’s a tradeoff between the range and precision of

the bisection search. The success of the attack hinges on the target

value falling within the search range; thus, a broader range ensures

the target’s inclusion. However, a wider search range sacrifices

precision, preventing the attacker from optimally extracting profits.

We provide more detailed microbenchmarks in Appendix A and

attack accuracy analysis in Appendix B.

The second is through the use of Secret’s public test network,

pulsar-2. The test network runs an enclave binary that was signed

by the developers, so it is ideal for demonstrating that the vulnerabil-

ities we rely on were not introduced by our own modifications. The

production versions of Secret Swap and Sienna Swap also provide

development versions on the test network.

7 MITIGATIONS

7.1 Coordinated vulnerability disclosure and
mitigating retroactive SNIP-20 privacy leaks

We discussed our preliminary findings with developers from all

four projects. As only Secret Network had already launched their

production network, so we focused on coordinating with them on

a public disclosure and mitigations. These vulnerabilities are more

easily exploited than those related to AepicLeak [77], as they do

not require a special hardware configuration to exploit - even cloud

tenants without hypervisor privileges or physical could carry them

out. Despite the much larger attack surface, several principles for

deploying mitigations are the same.

The most immediate intervention developers could take, as they

did for AepicLeak, is to disable remote attestation by revoking the

API key associated with their IAS account. This is a "registration

freeze" that prevents new nodes from joining the network. Once de-

velopers have updated their software with mitigations (e.g., proofs

of publication and storage replay defense), they can reenable regis-

tration by generating a new IAS API key. In this case, developers

instead deployed a proof-of-publication defense against transaction

replay attacks. We coordinated our public disclosure to follow this

upgrade. Regardless, existing nodes that had already registered on

the network prior to the intervention are still able to carry out these

attacks at any time in the future.

7.2 Preventing future SNIP-20 leaks

As mentioned, in response to our disclosure, Secret Network has

implemented proofs-of-publication to mitigate transaction replay

attacks [66]. Essentially, the updated mechanism incorporates a

Tendermint verifier in the trusted enclave code. However, it is im-

portant to note that the current implementation is not yet complete

as it lacks database rollback protection. Specifically, values loaded

from the database are not verified against the proof-of-publication

commitment, such as the state Merkle root, published in the latest

block. As a result, it is still possible to rewind the state to an earlier

version, either entirely or partially. Exploring the privacy implica-

tions of this incomplete implementation of proofs-of-publication

remains an interesting open problem for future work.

Additionally, developers have taken initial steps towards miti-

gating access pattern leakage. Every method of SNIP-20 tokens that

accesses an account balance is now extended to support additional

"decoy" parameters, inspired by Monero [54], as we describe below.

The smart contract, called SNIP-25, now accesses the actual account

as well as the decoys in sorted order, thus obfuscating which is
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the real one. 16 Although this is supported at the smart contract

level, there is not yet guidance on how to choose these decoys in

an appropriate way.

Access pattern decoys. Here, we propose and analyze a straw-

man strategy for adding privacy to SNIP-20 tokens, using decoys á la

Monero [54]. To implement this decoy strategy, the token contract

maintains a list 𝐿 of all addresses that interact with the contract.

Prior to creating a transaction, a client queries the contract to get

𝐿. The client samples17 an array 𝐷 of 𝑘 random addresses from 𝐿

to use as decoys. 𝐷 included in the encrypted parameters to the

Transfer function. This protocol requires the use of real addresses

for the decoys rather than random strings due to the fact that if an

accessed key does not exist, an error is thrown in full view of the

untrusted host OS, revealing that it was a decoy access.

As of the SNIP-25 update, the token transfer contract generates

a seed by hashing the transaction, uses this to deterministically

sample a random number 0 < 𝑟 < 𝑘 . To update the receiver balance

the contract inserts the real receiver address at position 𝑟 in 𝐷 . The

contract then reads and all of the addresses in 𝐷 and only updates

the value of the balance of the address at position 𝑟 . The contract

re-randomizes and writes back the balances of the decoy addresses.

We provide pseudocode for a SNIP-25-like transfer method that

makes several decoy accesses along with the actual access in Fig. 10.

The developers acknowledge that this is not a comprehensive solu-

tion as it relies on choosing decoy addresses effectively18. There

is a minimum 1/𝑙𝑒𝑛(𝑋 ) chance that the attacker can guess the real

receiver’s address ś a criticism that extends to Monero [54].

The private cryptocurrency Monero also employs this decoy

strategy [52]. Several attacks described on Monero would also ap-

ply to this proposed strategy and can be used to raise the attacker’s

chances. For example, if the decoys are chosen uniformly at ran-

dom, more frequently used receiver addresses, such as a token pool

contract, have a higher chance of being the real address.

An attacker can also create a large amount of addresses with

minimal balance to poison the list of potential decoy addresses [57].

This would require some gas fees but could allow them to eliminate

some decoys. As of writing this paper there are 36k unique addresses

interacting with the most popular token contract on Secret Network

(sSCRT). An attacker could add 10k more addresses, subsequently

eliminating about 20% of the decoy addresses on a given transaction,

paying only 175 SCRT in transaction fees or $52.71.

The privacy offered by this scheme is akin to to the notion of

k-anonymity [67] where 𝑘 is chosen as denoted above. The effec-

tiveness of this protocol depends on the number of decoys, but

more decoys increases the transaction fees, leading to a dilemma.

Block Based Paging. Next, we discuss the effectiveness of a

block-based paging strategy that is a simplification of the imple-

mentations used in Obscuro and Phala. The exact leakage from the

access patterns of these schemes depends on several implementa-

tion factors but the following construction provides intuition.

16https://github.com/scrtlabs/snip20-reference-impl/blob/92ff4bd5/README.
md#snip-25-security-update

17Ideally the subset 𝐷 is selected uniformly at random, but the distribution from
which the client samples is up to the client and trust assumptions based on it are brittle,
as we discuss later.

18https://github.com/scrtlabs/snip20-reference-impl/tree/ea9fb0#future-work

Suppose, token contracts store their users’ account balances in

4KB blocks. In order to access the account balance the entire block

must be loaded into enclave memory. Depending on the storage

space required to store the data associated with an account, a fixed

number of accounts fits in a 4KB block. Even assuming the mapping

of addresses to block locations is fully private, some data is leaked

by each access. Essentially, this simple block based strategy means

that the same block (and corresponding set of addresses) are loaded

each time a particular address is accessed. This is essentially 𝑘-

anonymity with the same anonymity set, for each time an address

interacts with a contract. The size of the k-anonymity set can be

increased through policies such as using larger blocks.

ORAM. Oblivious RAM (ORAM), originally proposed by Goldre-

ich and Ostrovsky [24, 25, 56], is a functionality for hiding storage

access patterns for an outsourced, encrypted database. In the ORAM

model, a trusted client can temporarily hold and operate on a subset

of a vast database, while primarily delegating the storage responsi-

bilities to an untrusted server. ORAM solutions essentially separate

the logical access pattern of a program from the physical access

pattern, hiding the locations being accessed. In blockchains such

as Secret Network, the SGX enclave is the client which outsources

most of its state on an untrusted host. Thus, if an ORAM solu-

tion were to be deployed for SNIP-20 contracts, the untrusted host

would not be able to distinguish between two different Transact

executions based on the access pattern. While Secret Network has

expressed an interest in ORAM as a future strategy, at the moment

there is łno clear path forwardž.18

One way to integrate ORAM into SNIP-20 contracts is to create

a wrapped version of the get/set instructions to obliviously read-

/write. This seamlessly benefits existing contracts without modifi-

cation. However, all ORAM solutions add overhead, with a memory

of 𝑁 blocks requiring the client to fetch O(log(𝑁 )) values [78] per

access. Since not all storage accesses are sensitive and require pri-

vacy, applying ORAM everywhere is potentially inefficient. Another

challenge of merging existing ORAM constructions is that Secret

Network (and others) relies on off-chain queries for faster/cheaper

read operations, such as checking account balances. Existing ORAM

models ensure privacy by assuming sequential reads and writes, re-

sulting in permanent alterations to the untrusted database post each

access. Consequently, users would have to submit balance check

requests on-chain as transactions, greatly impacting usability.

Implementing ORAM at the application level is an alternative.

Insights from previous research on oblivious programming, which

recommends breaking down an application into smaller ORAMs

based on the preferred leakage model [40], could be instructive.

In principle, smart contracts could serve as the trusted ORAM

client, utilizing the current key-value interface as the untrusted

ORAM server. However, this approach could substantially increase

on-chain transaction costs relative to an integrated solution. A

subsequent study 19 utilizing off-chain queries to perform ORAM

on an individual node and later posting the results on-chain may

offer a cost-effective alternative.

19https://medium.com/@dsl_uiuc/tee-rollups-fixing-access-patterns-in-tee-
based-smart-contracts-with-off-chain-computing-b2f3acfe335f
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1 contract function send(address[] decoys,

2 address receiver, uint amount)

3 seed := Hash(decoys || receiver || amount)

4 r := RandInt(0, len(decoys), seed)

5 combined := decoys

6 combined.insert(r, receiver)

7 for each address a in combined do

8 balances[a] := balances[a] + (amount ∗ (a == receiver))

9 end for

Figure 10: A decoy-based mitigation for access pattern leak-

age inspired by Monero

7.3 Ethical principles

Beyond coordinating our vulnerability disclosure with develop-

ers, our main concern has been to avoid contributing to the data

breach hazard created by this vulnerability. We did not collect a

dataset or carry out a measurement study by probing balances and

transactions on the production network.

Previous blockchain deanonymization and tracing attacks [31, 46,

52] have only required the public dataset as input, i.e., the blocks and

transactions, which are widely replicated. They publish their tracing

analysis concept along with a measurement study. While the Secret

blockchain itself is a public dataset, executing transactions requires

a sealed copy of the master key, which can only be obtained through

remote attestation. Thus while we could have retained the ability to

carry out measurements, having our authority "grandfathered in,"

other researchers are unable to obtain this authority for themselves.

We have reset our authority to baseline by erasing our node’s

sealed key, such that we have to upgrade and re-register our node

like anyone else. However, as part of our public disclosure, we plan

to provide an "access pattern dashboard" service that displays the

access pattern logs that remain leaked to the untrusted host by an

ordinary node post-mitigation.

8 RELATED WORK

Security issues in TEE-based smart contracts. Our work is

most closely related to Li et al. [38] in aiming to systematize pri-

vacy hazards in TEE-based smart contracts. Whereas they consider

frameworks including research proposals, we focus on production

systems and the specific design choices they make.While they point

out potential hazards, our goal is to demonstrate how these hazards

translate into real world application failures. Previous real world

attacks have also been demonstrated, again using Secret Network

as the concrete example due to its in-use applications. Specifically

Van Schaik et al. [77] showed that Secret Network was vulnerable

to AepicLeak [7] (the most recent in a long line of SGX vulner-

abilities [11, 73, 76]). Although TEE breaks threaten any system

that relies on it, Phala and Oasis limit access to the key material to

nodes who are trusted or at least have committed financial stakes;

in contrast, Secret Network, as well as Obscuro, allow anyone with

a compatible processor to register and obtain the ability to execute

contract transactions in an enclave. Our attacks are different in

that they do not involve a failure of the TEE itself, but rather the

integration of the TEEs within a blockchain architecture.

Smart contract security and privacy. While smart contracts

have enabled many innovative decentralized applications, their his-

tory could easily be characterized by the many high-profile hacks

and losses of funds that have taken place over the years. Conse-

quently, much research effort has been devoted to surveying these

risks [3, 58] and creating tools to reduce them [41, 51, 72, 81]. At the

same time, researchers have begun to explore the intersection of pri-

vate computation and public blockchains. For example, Zether [12]

proposes an Ethereum-compatible confidential payments contract,

Hawk [34] creates a framework for private smart contract devel-

opment, and Zexe [8] extends this idea to also obfuscate which

functions are being executed. More recently, Aztec [35] with a hy-

brid zk-rollup, and Zama [28] with FHE, are both planning devnet

deployments for private smart contracts. Relative to these works,

however, TEE-backed chains offer high performance along with

the features developers expect from transparent smart contracts.

Secure systems based on TEEs. The need for defense against

replay and rollback attacks is well understood in the security liter-

ature. Systems such as Rote [42] and Microsoft Confidential Con-

sortium Framework [62] create a distributed network of TEEs such

that an honest subset remains online. Since today’s TEEs cannot

offer reliable non-volatile monotonic counters, this network im-

plements a monotonic counter and keeps track of the most recent

version of the sealed data output by the enclave and signs the input

along with a hash of the sealed data. On restart, the TEE must verify

that signature, ensuring that it can only execute one input using

that sealed data. Narrator [53] similarly uses a distributed system

of TEEs but application enclaves send a state update message to

the system before revealing the output of the computation. Our

work reinforces these efforts by demonstrating the consequences

of foregoing these defenses.

Besides the blockchain itself, TEEs have also been proposed for

blockchain-adjacent services; here too rollback prevention is a cen-

tral focus. Bite [43] implements a privacy preserving light client

for Bitcoin that can receive payments and construct transactions

requests without running a full Bitcoin node. It uses ORAM to

hide data access patterns and Rote [42] to prevent rollback attacks.

TEEChain [39] uses TEEs to create a private payment channel sys-

tem and requires hardware monotonic counters to protect against

rollback attacks. Tesseract [5] implements a private real-time cryp-

tocurrency exchange using TEEs and requires an honest subset of

nodes participating in the protocol to be online to prevent rollbacks.

9 CONCLUSION

The usage of TEEs is a promising way to realize practical, per-

formant, and private general computation on blockchains. While

it is well-known that TEE compromises are a possibility, this is

just one of the attack surfaces to contend with. Previous discus-

sions on replay and access pattern hazards have been somewhat

abstract, making them easy to underestimate when transitioning

research to practice. In this work we bring clarity to this issue by

demonstrating the first replay and access pattern attacks on in-use

TEE-based smart contract systems. The impact of our vulnerability

disclosure has already led to rapid deployment of mitigations for

Secret Network’s in-use SNIP-20 tokens, as well as to influence the

development plans of other mainnet launches.
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A COST OF CONDUCTING SANDWICH
ATTACKS

We conducted benchmarking to assess the cost of running the

sandwich attack (other attacks should have similar costs) on a local

private network. The attack involves only offline simulation, which

would not be influenced by the network environment.We run a local

Secret node in v1.7.0-rc.2, on a machine with an Intel Xeon E-2276G

6-core CPU (3.80GHz) and 64 GB RAM. However, only 1 core is used

for the attack. The primary bottleneck for launching the sandwich

attack lies in the bisection search process, which progressively

reduces the range. Therefore, our focus was on benchmarking the

time required for a single iteration. It’s important to note that the

exact time to conduct each attack depends on the range being

searched and the specific application being targeted.

In our experiments, we found that one iteration of the bisection

search takes approximately 0.40s. Within each iteration, we begin

by restoring the database states, which takes around 0.06s. Addi-

tionally, we need to generate and sign a new adversary transaction.

Since we made minimal changes to Secret Network’s codebase, we

first generate a transaction and then modify the transaction nonce

by resigning it. This process involves two interactions with the

network and takes a total of 0.11s. Subsequently, we simulate the

victim and front-running transactions offline, with each simulation

costing approximately 0.06s. Furthermore, we need to query the liq-

uidity pool both before and after simulating the victim transaction,

with each query taking about 0.05s.

It is important to highlight that our focus was not on optimizing

performance, and we made modifications solely to the untrusted

code. During our benchmarking we found that 5% of the time to sim-

ulate a transaction was spent in the trusted code base (i.e. executing

ecall_handle, ecall_init, and ecall_query) and represents

code that cannot be optimized. Considering the block time of ap-

proximately 6-7 seconds in the Secret network, our unoptimized

implementation allows a malicious miner to iterate approximately

17 times before proposing a block. The miner can search within a

range of 𝑥 · 217, where 𝑥 represents the precision they set for the

attack. Notably, 𝑥 can exceed the minimal unit of SNIP-20 tokens,

enabling the miner to enlarge the search range within this limited

time.

B ANALYSIS OF STRATEGIES FOR
CONDUCTING SANDWHICH ATTACKS

To assess the accuracy of the MEV sandwhich attacks described

in Section 6.2, we simulated various potential attacker strategies.

These strategies also assume that the attacker can paralyze their

execution of bisection sort. In a real scenario paralyzing the search

on one transaction would not affect the accuracy of the attack but

executing one transaction would affect the price of any transaction

after it, therefore attacking two transactions in parallel would affect

the accuracy of the attack on the second transaction. Typically, we

can assume users set their transaction’s slippage limit based on a

fixed percentage of the received token’s price.

The attacker can use one round of bisection sort to determine

if a transaction is in a given range of values. To determine if a

transaction is trading above or below 𝑋 of a given token (assuming

a fixed slippage percentage) the attackerwould calculate the amount

of the token they would have to buy before the victim’s transaction

to result in the victim’s transaction failing. They would set guessM

from Figure 9 to this value. If that round of bisection sort fails then

that victim’s transaction is below the threshold 𝑋 . If it succeded

the victim’s transaction is above the threshold.

Using this technique the attacker can filter out transactions

above or below certain values. One strategy includes spending

more rounds of bisection sort being more precise in attacking large

"whale" transactions as they would result in larger profit after the

attack. But large transactions are less common so another strategy

is to target many smaller transactions.

Our simulation code executes by looking at the transaction data

and using one round of bisection sort to filter out the top or bottom

percentage of transactions. We assume the attacker will aim to

spend the same amount of rounds of bisection sort on all transac-

tions in a the desired range. If the optimal frontrun amount for a

transaction was determine in less than the allowed rounds the extra

rounds are used on a different transactions. In our scenario the

attacker had the resources to execute the given number of rounds

of bisection sort, and the transaction mempool (i.e. list of pend-

ing transactions) always contained transactions to full use these

resources.

We analyzed these strategies using a dataset from the Trader Joe

decentralized exchange on Avalanche blockchain. This dataset in-

cludes transaction data for users trading UCSD for e-WAVAX token.

This it is the most prolific pool among the top 40 trading pairs on

Sushiswap and Uniswap on the Ethereum Network, and Trader Joe

on the Avalanche Network. The data contains 47,069 transactions

collected over 5 days. The average token transfer amount was 0.59

with a standard deviation of 1.15. The maximum transfer amount

was 48.94. We assume that the users would accept a slippage limit

of 80% of the original price of the token. We also assumed the same

starting pool amounts for each transaction. While in a real scenario

the effect of one transaction would change the pool values we use

this as an estimate. The total profits the attacker would receive for

strategies targeting the smallest and largest percentage of transac-

tions are shown in Figure 11. Figure 11 shows that the best strategy

is to consider as many transactions as possible. This dataset did not

have enough difference between the small and large transactions

where it would have been advantageous to filter out transactions.

When comparing the strategies that use the largest 10% and

smallest 90% and the largest 25% and smallest 75% of transactions

targeting the smaller half of transactions results in more profit than

the larger half because resources are wasted filtering out the smaller

transactions. But targeting the smaller half of transactions results

in a lower cap of profit as the largest transactions yielding the most

profit are excluded.
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Figure 11: Average profits that an attacker can receive for

a number the rounds of bisection sort executed across all

transactions from the Trader Joe USCD to e-WAVAX pool 5

day historical dataset

C USAGE STATISTICS FOR TEE-BACKED
SMART CONTRACT PLATFORMS

In Table 2 we provide some additional statistics about the TEE-

backed smart contract platforms we evaluate in this work, so to

provide additional context about their real-world usage and inter-

est. While most of these platforms are either prelaunch or have

launched recently, we note that there is considerable investment

and community interest in developing platforms which use this

technology. In order gauge to a rough measure of community in-

terest, we provide both the number of unique addresses that have

interacted with the ecosystem and the number of members in each

community’s official Discord (collected June 2023).

Table 3 includes more detailed statistics about specific SNIP-20

tokens on Secret Network.

20https://web.archive.org/web/20230614000618/https://www.mintscan.io/secret,
https://web.archive.org/web/20230614000028/https://coinmarketcap.com/currencies/
secret/, https://www.businesswire.com/news/home/20220119005731/en/Secret-
Network-Announces-400-Million-in-Ecosystem-Funding-Alongside-Substantial-
New-Investment-from-Leading-Firms

21https://web.archive.org/web/20230613233731/https://explorer.sapphire.oasis.
io/, https://web.archive.org/web/20230613234509/https://coinmarketcap.com/
currencies/oasis-network/, https://oasisprotocol.org/blog/the-oasis-ecosystem-fund-
reaches-235-million, https://archive.is/NphXH

22https://archive.is/yUJ8w, https://web.archive.org/web/20230613235845/https://
coinmarketcap.com/currencies/phala-network/, https://medium.com/phala-network/
phala-network-value-tops-10-million-on-new-fundraising-31a8c25f9bb9

23https://www.crunchbase.com/organization/obscuro-labs
24The data has not been updated since Nov 2022. https://archive.is/OxfnG
25https://secretanalytics.xyz/bridge, https://www.coingecko.com
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Table 2: Chain Data of TEE-based Frameworks as of June 2023. Obscuro is still in development and has not launched a mainnet

yet. We list the overall count of utilized addresses across all paratimes within Oasis, where 427 of them are from the Sapphire

paratime.

Secret Network20 Oasis Sapphire21 Phala22 Obscuro23

Online since 2020-02-13 2022-12-16 2022-04-01 N/A

Number of Transactions 8,317,479 176,951 3,363,334 N/A

Market cap $63M $257M $55M N/A

Funding $400M $235M $10+M $5.85M

Cumulative Unique Addresses 248.1K24 258,255 3,447 N/A

Discord Members 37,142 63,029 6,660 8,171

Table 3: Snip-20 Token Statistics as of February 2023

Token Name Market Cap (USD) 25 Successful Transactions Unique Senders

Secret Secret (sSCRT) $5.94m 477.6k 36.2k

Shade (SHD) $4.88m 35.7k 10.3k

Sienna $2.87m 94.2k 6.7k

Secret Eth (SETH)
$1.93m

39.5k 4.3K

Eth (SETH BSC) 5.2k 0.7k

Tether (SUSDT) $1.55m 53.8k 2.8k

Secret Wrapped BTC (SWBTC) $950k 22.7k 1.2k

Monero (SXMR) $890k 26.5k 1.5k

Secret USDC (SUSDC)
$475k

8.3k 0.5K

USDC (SUSDC BSC) 9.6k 1.7k

Secret Finance (SEFI) $339k 111.5k 8.8k

Binance (SBNB BSC) $124k 27.0k 3.8k

Buttcoin (BUTT) $108k 13.4k 1.7k

ALTER $123k 21.8k 2.7k

Dai (SDAI) N/A 105.0k 0.5k

StkdSecret (stkd-SCRT) N/A 32.0k 5.7k

(Combined) $20.2m 1.08m 44.9k
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