SGXonerated: Finding (and Partially Fixing) Privacy Flaws in
TEE-based Smart Contract Platforms Without Breaking the TEE

Nerla Jean-Louis Yunqi Li Yan Ji Harjasleen Malvai
University of Illinois at University of Illinois at Cornell University University of Illinois at
Urbana-Champaign Urbana-Champaign NY, USA Urbana-Champaign
IL, USA IL, USA yj348@cornell.edu IL, USA
nerlaj2@illinois.edu yunqil3@illinois.edu hmalvai2@illinois.edu
Thomas Yurek Sylvain Bellemare Andrew Miller
University of Illinois at IC3 (Cornell University) University of Illinois at
Urbana-Champaign NY, USA Urbana-Champaign, IC3
1L, USA sbellemare@cornell.edu 1L, USA
yurek2@illinois.edu soc1024@illinois.edu
ABSTRACT this through a coordinated vulnerability disclosure, after which
TEE-based smart contracts are an emerging blockchain architecture, their state consistency should be roughly on par with the rest.
offering fully programmable privacy with better performance than
alternatives like secure multiparty computation. They can also 1 INTRODUCTION

support compatibility with existing smart contract languages, such
that existing (plaintext) applications can be readily ported, picking
up privacy enhancements automatically. While previous analysis
of TEE-based smart contracts have focused on failures of TEE itself,
we asked whether other aspects might be understudied. We focused
on state consistency, a concern area highlighted by Li et al., as well
as new concerns including access pattern leakage and software
upgrade mechanisms. We carried out a code review of a cohort
of four TEE-based smart contract platforms. These include Secret
Network, the first to market with in-use applications, as well as
Oasis, Phala, and Obscuro, which have at least released public test

Ever since the very first projects in the blockchain space, achieving
transaction privacy on a public blockchain has been a pivotal issue.
Because the drawbacks of pseudonymity are well-known [31, 46,
61], many privacy-focused projects including Monero and Zcash
have emerged with the goal of bringing true usable transaction
privacy to end users. However, while these projects can handle ba-
sic anonymous payment functionality relatively well, the broader
question of how to achieve general private computation through
smart contracts remains unanswered. While enhanced privacy for
more sophisticated decentralized finance applications is a worth-
while goal in its own right, it is also a promising solution to harmful
networks. forms of Miner Extractable Value (MEV) in which publically-visible

The first and most broadly applicable result is that access pat- market orders can be frontrun by block producers.
tern leakage occurs when handling persistent contract storage. On TEE-based smart contracts are an attractive solution. Compared
Secret Network, its fine-grained access pattern is catastrophic for with purely cryptographic approaches such as zero-knowledge
the transaction privacy of SNIP-20 tokens. If ERC-20 tokens were proofs (ZKP) and secure multiparty computation (MPC), trusted
naively ported to Oasis they would be similarly vulnerable; the oth- execution environments (TEEs) — especially Intel SGX — are more
ers in the cohort leak coarse-grained information at approximately efficient and are very expressive as well, capable of running existing
the page level (4 kilobytes). Improving and characterizing this will smart contract applications from Ethereum and Cosmos. A line of
require adopting techniques from ORAMs or encrypted databases. research works has explored the design of secure TEE-based smart

Second, the importance of state consistency has been underap- contracts [9, 14, 79, 82]. In this setting, the attacker model includes
preciated, in part because exploiting such vulnerabilities is thought the untrusted host in possession of the TEE, where the TEE must
to be impractical. We show they are fully practical by building a rely on the host for all network access and to respond to queries
proof-of-concept tool that breaks all advertised privacy properties about external data, such as clock times. In terms of real-world
of SNIP-20 tokens, able to query the balance of individual accounts deployment, TEE-based smart contracts appear poised to grow. Se-
and the token amount of each transfer. We additionally demon- cret Network (formerly known as Enigma [82]) launched the first
strate MEV attacks against the Sienna Swap application. As a final public deployment of a TEE-based smart contract system in 2020.
consequence of lacking state consistency, the developers have inad- As of Feb 2023, it has a market cap of approximately $200M includ-
vertently introduced a decryption backdoor through their software ing native and bridged tokens.! Other TEE-based smart contract

upgrade process. We have helped the Secret developers mitigate platforms, including Oasis [55], Obscuro [13], and Phala [59], are

This work is licensed under the Creative Commons Attribu- @ at Varying stages of pUbliC launch - each of them has deployed at

tion 4.0 International License. To view a copy of this license @ minimum a public test network with open-source code, often with
BY

visit https://creativecommons.org/licenses/by/4.0/ or send a

letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.
Proceedings on Privacy Enhancing Technologies 2024(1), 617-634 -
© 2024 Copyright held by the owner/author(s). !https://secretanalytics.xyz/

https://doi.org/10.56553/popets-2024-0035 2We survey the usage and fundraising situations for each in Appendix C

a considerable backing from investors and interested users?.

617

Proceedings on Privacy Enhancing Technologies 2024(1)

Li, et al. [38] examined the research literature and pre-production
industry whitepapers, pointing out several potential areas of con-
cern. Looking at real-world implementations, the discussion of
security issues in TEE-based smart contracts has focused largely
on compromises of the TEE instantiation itself, specifically SGX,
which has had to recover from a sequence of catastrophic vulnerabil-
ities [7, 73, 75, 76]. The exposure of Secret Network to AepicLeak [7]
highlighted the importance of compartmentalization and key ro-
tation [77]. Although having systems in place to mitigate risks of
TEE failures is crucial, focusing solely on this would miss the bigger
picture of other forms of vulnerability.

In this paper, we ask the following: besides hardware vulnerabil-
ities in the TEE itself, are TEE-based smart contracts implemented
today vulnerable to non-TEE attacks? We analyze the codebases
and documentation of Secret, Oasis, Obscuro, and Phala, especially
focusing on the interface between untrusted and trusted code and
the interaction between newly written code and software inher-
ited from existing plaintext blockchains. We summarize the main
lessons learned:

Access pattern leakage is a concern for all the systems we reviewed.
This is especially a problem for fungible token applications ported
from plaintext blockchains, such as ERC-20 tokens. These platforms
support stateful contracts and are built around a high-performance
key-value storage library that persists on disk, such as LevelDB.
However, the patterns at which these databases are accessed when
processing confidential transactions can themselves leak crucial
information. In the worst case, this reveals to the untrusted oper-
ating system the sender and the receiver in every token transfer,
violating the desired transaction privacy guarantees. This is the
case for SNIP-20 tokens (privacy-enhanced fungible tokens based
on the ERC-20 and CW-20 standards) on Secret Network, the only
ones in use today. This leakage is also present in Oasis Sapphire
and Cipher, suggesting that ERC-20 tokens that are naively ported
would also fail to provide privacy. Obscuro and Phala mitigate this
to some extent because their use of block-based paging means that
the access pattern is only leaked to the nearest 4 kilobytes.

A comprehensive fix to access pattern leakage could make use of
oblivious data structures (ORAM) or encrypted database techniques,
found in other TEE-based distributed systems, but have not yet been
adapted to smart contracts [4, 17, 26, 47, 70]. The MobileCoin [33]
cryptocurrency (developed by Signal [1]) also uses ORAM with
SGX to provide privacy-preserving transaction retrieval [43]. These
solutions show the viability and scalability of a TEE solution that
implements ORAM for interacting with untrusted storage.

State consistency and replay defenses are critical to privacy but do
not apply intrinsically in L1 TEE-backed blockchains. The need for
rollback protection for TEEs in general has been discussed in previ-
ous work [42], and has featured prominently in security research
papers on TEE-based smart contracts [14, 32, 38]. This seems like a
natural synergy for the two technologies — blockchains are good
for committing to a sequential ordering of published transactions,
and TEE-based smart contracts must rely on this. Li et al. suggested
that state consistency and blockchain data confirmation come along
as "intrinsic features" for a Layer 1 (L1) architecture, meaning that
the consensus protocol to create new blocks is carried out by the
same validator nodes that execute smart contracts using TEEs [38].
It turns out that even though Secret Network is considered an L1,

618

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

Secret Network’s design is incomplete in that it does not incorpo-
rate any defense against replay or rollback attacks. The untrusted
host is therefore able to simulate or replay transactions in any order,
regardless of what appears on-chain. Oasis and Phala have already
implemented defenses against these, and it is on Obscuro’s list of
requirements prior to launch.

Design flaws in TEE-backed blockchains lead to practical attacks
without compromising the TEE. Since Secret Network is the only
TEE-based smart contract system with live running applications,
we explore the impact of the above vulnerabilities. SNIP-20 tokens
are believed to hide account balances, and the receiver and token
amount involved in each transfer transaction [65]. Beyond just
identifying vulnerabilities, we show how these can be exploited to
break the advertised privacy guarantees. In fact, due to the fine-
grained access pattern, just adding print statements to the debug log
is enough to trace the senders and receivers in each token transfer.

We design new transaction simulation attacks that enable the
forensic analysis of past and present SNIP-20 transfers, as well as
query the balances of individual accounts. We also show how par-
tial storage replay can amplify the attack, meaning attackers do
not need capital deposits of their own to carry it out. Besides trans-
action privacy, we also show that replay defenses are critical for
MEV prevention, one of the benefits of TEE-based smart contracts.
Our attacks can be used by validator nodes to strategically frontrun
automated market maker (AMM) swaps. All of our attacks can be
performed by an unprivileged node (e.g., no stake deposits or devel-
oper keys are needed), without relying on any vulnerabilities of the
underlying TEE, and without requiring any kernel patches. Given
the threat, we have coordinated with Secret Network’s development
team on vulnerability disclosure and helped deploy mitigations.

The need for software updates creates a backdoor hazard. Every
blockchain needs a software upgrade mechanism, though this is
notoriously challenging [6] even before TEEs are involved. In order
to update software, existing enclaves must transfer key material
to enclaves running the new software. In Secret Network, the only
policy enforced by the enclaves is code signing. Unfortunately this
means that Secret developers have the ability to unilaterally apply
updates to the software on their own machines, enabling them to
decrypt every transaction - an unintentional backdoor. Oasis and
Phala both implement not just a distributed code signing authority,
but require proof of on-chain publication of the software binaries
to hold them accountable. Obscuro has not implemented such a
process but lists it on their requirements prior to mainnet launch.

To summarize our main contributions:

e We analyze the codebases of existing TEE-based smart contract
systems that offer at least public test networks. Specifically we
focus on issues involving the boundary between the trusted and
the untrusted code, and especially the application storage.

e We provide evidence that access pattern leakage from the un-

derlying key-value storage means that ordinary token contracts

ported to any of the platforms today would fail to provide strong
privacy. We discuss possible mitigations for the future including

ORAM or decoys.

For Secret Network in particular, we demonstrate new transaction

simulation attacks, demonstrating that a lack of state consistency

leads to breaking all the privacy guarantees of existing tokens.

We have conducted a coordinated vulnerability disclosure and

SGXonerated

helped developers with mitigations. They have now added replay
defenses, although receiver privacy for SNIP-20 tokens is left
currently unresolved.

2 BACKGROUND

Blockchains and smart contracts A blockchain is a decentral-
ized ledger whose state is replicated and agreed upon by mutually
untrusting nodes. A smart contract is a program whose execu-
tion is recorded on this ledger. Many blockchains, most notably
Ethereum [23], support smart contracts. In Ethereum the state of all
contracts on the chain is public, and identities are pseudonymous.
Many works [46, 50, 60, 61] have shown that these pseudonyms
are a weak form of privacy. The public nature of the Ethereum
blockchain impedes many applications, though in particular we are
interested in decentralized finance. Decentralized finance facilitates
manipulation of financial assets without relying on centralized au-
thorities like banks, and its applications include payments, lending,
auctions, and other financial derivatives.

Fungible tokens. Fungible tokens serve as currency that can
be owned and transferred using smart contracts in decentralized
finance applications. The pseudocode for the transfer function
of a fungible token is shown in Figure 1a. These contracts can
be customized for specific tokens while maintaining standardized
interfaces such as ERC-20 on Ethereum and SNIP-20 on Secret.
Privacy expectations of fungible tokens. The appeal of Secret
Network is that existing blockchain paradigms from the world of
transparent blockchains, such as ERC-20 tokens in Ethereum, can
be easily translated over to receive immediate privacy guarantees.

On a transparent blockchain all of the transaction data is view-
able on chain. For Alice to send $5 to Bob, the network must know
Alice’s current balance of $10, Bobs’s balance of $20, the value of
the transaction $5, and Alice’s and Bob’s addresses. We summarize
the possible privacy goals for transactions as: sender privacy and
receiver privacy to hide the addresses involved in the transaction
and value privacy and balance privacy to hide the amounts involved
in the transaction.

For SNIP-20 tokens, the sender’s address is automatically made
public due to the nature of executing transactions on a public
blockchain. Transaction fees in Secret are paid using the public
native token Secret Token (SCRT), which must be checked for suffi-
cient balance by running nodes. SCRT tokens are converted into the
SNIP-20 token called Secret Secret Token (sSCRT) by wrapping it
in a smart contract. SNIP-20 tokens like sSCRT are believed to hide
receiver address, transaction value, and balances of involved par-
ties. sSSCRT is the most widely used smart contract on Secret, with
approximately 36,000 token accounts and approximately 500,000 in-
teractions®, while other popular tokens include bridged versions of
stablecoins like USDT and USDC, Bitcoin, Ethereum, and Monero.
Trusted execution environments. A trusted execution environ-
ment (TEE) or secure encalves are an isolated environment, often
implemented with hardware, that provides privacy and integrity
guarantees about the code it executes. Intel Software Guard Exten-
sions (SGX) [2, 18, 29, 45] is the basis for Secret and other upcoming
systems. It is a hardware TEE that supports remote attestation [63].

3https://secretnodes.com/contracts

619

Proceedings on Privacy Enhancing Technologies 2024(1)

Hardware TEEs such as SGX are designed to defend against an
attacker with OS kernel-level access. Due to the hardware isolation
of these TEEs such an attacker should not be able to tamper with
or observe the execution of a running TEE program. This model
describes a malicious blockchain node operator running a cloud
tenant with a dedicated instance. Because these guarantees only
apply to a running TEE, any restart of the TEE will result in data
being lost. SGX therefore makes use of sealed data to encrypt state
on disk and securely load it into the TEE.

Remote attestation allows a node operator to prove to other net-
work participants that they are running a legitimate TEE with the
correct version of the software. At a high-level remote attestation
is an interactive protocol where a measurement of the data and
software running in the enclave is taken and signed using a secret
key hidden in the hardware. This measurement and signature is
checked and endorsed by the hardware manufacturer based on
their secret knowledge of the hardware keys determined during
the manufacturing process.

Following successful remote attestation, the operator’s TEE can
access confidential data, such as smart contract states, without re-
quiring the network to trust individual node operators or cloud
providers running the TEE. Even with physical access, breaching an
Intel CPU is thought to be expensive and difficult [18]. The root of
trust remains at the manufacturer (Intel in the case of SGX), respon-
sible for correctly manufacturing hardware and issuing certificates
only for appropriately manufactured TEE-enabled CPUs.

Even assuming this root of trust, however, the privacy and in-
tegrity guarantees provided by Intel SGX have been broken in
practice. Papers such as [7, 11, 76] have identified vulnerabilities
in the TEE implementation, resulting in memory and CPU register
leaks, as well as the creation of fake attestation reports. Side chan-
nel attacks allow attackers to extract secrets from the enclave by
observing resources such as caches [10, 15, 20, 27, 48, 64], branch
predictions [21, 30, 37], and memory usage [49]. Tools such as
SGX-Step [74] provide attackers with instruction level control and
increase the efficiency of side-channel attacks.

3 OVERVIEW OF TEE-BASED SMART
CONTRACT PLATFORMS DESIGN

In this section, we review some general design patterns used to
realize TEE-backed blockchains. We focus on explaining Secret
Network, though the general design is applicable to others.
Structure of TEE-based blockchains. In TEE-based systems,
the code is divided into trusted and untrusted portions. The trusted
portion runs inside the TEE with integrity and privacy guarantees,
while the untrusted portion runs on the host operating system and
acts as an interface between 1) the TEE and clients, 2) TEE and the
consensus layer, 3) TEE and persistent storage. Therefore, the main
threat model for a TEE-based blockchain is that the attacker has
full control of the untrusted portion of the nodes.

Both the enclave and the client need access to the encrypted
transaction data, necessitating the use of a Diffie-Hellman (DH)
key exchange scheme to generate a shared encryption key. This
symmetric key is unique to each transaction. The trusted enclave
calculates the key using an elliptic-curve DH key derivation proto-
col, incorporating the io exchange private key (derived from the

Proceedings on Privacy Enhancing Technologies 2024(1)

1 storage balances: mapping { address => uint128 }
> contract function transfer(sender, receiver, amount):

3 require contract_status == NormalRun

4 require balances[sender] >= amount

5 balances[receiver] += amount

6 require balances[receiver] + amount <= MAX_BAL
7 balances[sender] —= amount

(a) Contract pseudocode for transferring fungible tokens.

Nerla Jean-Louis,

Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

get Ox6592ff[..
get 0x9e82b0] ..

.1 // contract status

.1 // sender balance

get 0x3d4982][...] // receiver balance

(b) The log of get traces in a SNIP-20 transfer.

Figure 1: This figure illustrates the access patterns visible to the untrusted host of an SGX Enclave within which a node runs a
token transfer contract. The left hand side includes the operations running in the contract and the right hand side shows the

corresponding pattern seen by the host for each step.

Secret Network
Alice transfer(??) 22
7? — 7?

Transparent Blockchains
Alice ¢ ransfer 5 Bob
$10°85 %) 205
Figure 2: Privacy Goals for SNIP-20 tokens versus Transpar-

ent tokens such as ERC-20.

setup secret and exclusively accessed by the trusted portion) and
the client’s wallet public key. The client inputs their wallet private
key and the io exchange public key into the key derivation protocol
and acquires the same key. The io exchange public key is stored in
the publicly accessible file named genesis.json on Sercet’s website.
When a client submits a transaction to the network, it encrypts
the transaction using the unique encryption key. The untrusted
host code inputs the encrypted transaction to the enclaves, where
it is decrypted, processed, and its results get encrypted for secure
transmission back to the client through the untrusted code. Only
the client who creates the transaction can decrypt its results.

The relevant threat model for a TEE-based blockchain is that the
attacker is in full control of the untrusted portion of the applica-
tion running on its own nodes. An application using the TEE must
assume that the host is malicious and will attempt to learn informa-
tion about the confidential state using any queries it is permitted
to make. The TEE can only help to enforce the policies that the
enclave program explicitly writes.

In SGX the interface between the untrusted and the trusted por-
tions of the application are known as ecall’s and ocall’s which
make a function call from the untrusted process to the trusted
(ecall), or vice versa (ocall). Since these are function calls, argu-
ments and return values can be used to pass data between them.
Blockchains and proof's of publication. The separation of state
machine replication (and execution) from a global consensus layer
has been considered in prior work, notably [32] and [14]. [32]
considers a more general model, where an untrusted host provides
state and services that must be committed to a public ledger. They go
on to provide a framework to achieve security against misbehaving
hosts by introducing proofs of publication to the blockchain before
clients accept any request responses from hosts. [14] specializes
this model to a scenario similar to that of Secret Network, where
a large number of TEE nodes can accept messages and requests,
but only a small fraction of these nodes participate in consensus.
They utilize proofs of publication to achieve what they call atomic
delivery, that is, given any client transaction Tx, the output of this

620

Secret Network Oasis Sapphire/Cipher Phala Obscuro
Contract State
Storage = = = =
Untrusted
Code P : : 4KB : 4KB :
T(r:us;ed TEE TEE TEE TEE
ode Enclave Enclave Enclave Enclave

Encrypted * * *
transactions v v v
» » »
w3 3 3
Fine grained 4KB Page level No proof of y No state replay
access pattern access pattern O publication protection

Figure 3: High-level architecture of TEE-based smart con-
tracts, focusing on the interfaces between the TEE and exter-
nal storage and between the TEE and the blockchain.

transaction is revealed to the client if and only if the consensus
nodes have provided a valid proof of publication for Tx.

Secret Network, on the other hand, does not require these proofs
of publication, breaking the atomic delivery requirement. Any Se-
cret node can unilaterally execute a valid transaction and obtain
an output (albeit in part encrypted). While an honest client may
not accept this output, the untrusted host of the executing TEE can
still glean important information from metadata or through its own
transactions as we will soon demonstrate.

How to pass private outputs to individual users. Ordinary
transparent smart contracts typically define "query” or "getter"
methods in order to view the current application state (for example,
to check a token account balance). User wallets typically use RPC
servers to process these queries on their behalf. Private TEE smart
contracts need a way to send query results from a remote enclave
to the client, without revealing them to the untrusted host.

There are two main approaches that all of these networks follow:
The first approach is based on encrypted log events. As a contract
executes a transaction, it may write outputs to a log. This log is
included in the public blockchain data. The contract encrypts by
associating the intended receiver with a public encryption key. Since
users are already identified by their address (a hash of a public key
for digital signatures), it makes sense to extend the address format
to include a public key for receiving outputs. Oasis and Obscuro

SGXonerated

Access Tx Replay Storage Replay Upgrade

Leakage Protection Protection Transparency
Secret ¢ O key o0—-e O — ik o
Oasis ¢ | Okey e ° °
Obscuro ¢ | @ page O — il =) [o)
Phala ¢ Q page [] e [}

@ SecretNetwork fd2745 ? oasis-sdk 82319 € oasis-core 5302f72

4 go-obscuro b5a7% € phala-blockchain 55479¢
Table 1: Analysis of security and privacy hazards in existing
TEE-based smart contract codebases at time of writing. An
arrow and filled circle, — @, indicates a fix as a result of our
disclosure; — < indicates a planned mitigation.

support atomic delivery so that the outputs would not decrypt until
the transaction is committed. An oracle could be used to determine
the transaction confirmation.

The second approach uses off-chain queries. Nodes with enclaves
are allowed to process “queries” executing the smart contract and
retrieving the data from the local dastabase state of the TEE node.
A viewing key is shared between the smart contract and a user. The
viewing key is stored in the contract’s application state, and the
contract query results are encrypted using this key before they are
passed on to the host. These off-chain queries are susceptible to
access pattern leakage.

4 PRIVACY ANALYSIS OF REAL-WORLD
TEE-BASED BLOCKCHAINS

We analyze the landscape of TEE-backed blockchain platforms in
practice through the codebases of Secret Network, Oasis, Obscuro,
and Phala. Table 1 and Figure 3 summarize the different privacy
hazards relevant to TEE smart contracts detailed in this section.

4.1 Integration with existing blockchain
codebases and smart contract languages

Secret Network. As we discussed in Sec. 3 Secret Network’s
code base, like other SGX applications, is divided into a trusted
portion that is executed in the TEE and an untrusted portion that
is run on the host operating system. Secret Network’s untrusted
code is packaged into two binaries: (1) the secretd binary contain-
ing a command line interface client to interact with the network
and to start a node server, and (2) the libgo_cosmwasm. so bi-
nary, which provides a programmatic API to secretd to interact
with contract code and make calls to the TEE code. The code for
both 1ibgo_cosmwasm.so and secretd can be modified by a
malicious host.

Much of Secret Network’s codebase is inherited from the Cosmos
Software Development Kit (Cosmos SDK) [68]. The Cosmos SDK
code handles message authentication and processing of transac-
tions and blocks. Secret Network uses Tendermint [69] to handle
consensus and communication between nodes and clients. In or-
der to use the Cosmos SDK and Tendermint frameworks Secret
Network extends Cosmos SDK’s default Application interface
with functions and variables specific to their implementation. This
includes the function DeliverTx that triggers the execution of a
transaction after consensus. The Secret Network contract code is
implemented using a Rust-based interface, called CosmWasm, which

621

Proceedings on Privacy Enhancing Technologies 2024(1)

integrates with Cosmos SDK. CosmWasm contracts are compiled
into binaries, which are eventually executed in the TEE.

Contract code storage occurs without the use of TEE and is stored
unencrypted on disk. To initialize, execute, or query a contract the
node server retrieves the stored contract code, a reference to the
contract’s key-value stores, and the encrypted message. Then pass
these to the 1ibgo_cosmwasm. so interface.

libgo_cosmwasm.so passes messages to the TEE using the
ecall interface used for communication between the untrusted
and trusted portions of SGX applications. ecall_init is used to
initialize a contract, ecall_handle to execute a transaction on
a contract, and ecall_query to query a contract. The trusted
code is responsible for executing Rust contract code using Secret
Network’s CosmWasm interface.

libgo_cosmwasm. so also defines callback handlers for ocalls
that are used for communication between the trusted and untrusted
code bases. They include ocall_read_db and ocall_write_db
to read and write values to the contract’s key-value store that is
stored on the untrusted host OS.

Once a transaction is committed, the transaction data itself, as
well as the updated account balances of the sender and receiver are
stored in an encrypted database or key-value store. The key-value
store is accessible through a storage API but is stored in encrypted
form on the untrusted host, due to the TEE’s space constraints. To
read or operate on a record, the TEE retrieves it from untrusted
storage and decrypts it in the TEE.

Oasis. Oasis Network [55] is a Layer 1 (L1) blockchain in that it

runs its own standalone consensus layer built on Tendermint (like

Secret Network). On top of the consensus layer is an execution layer

organized as independent "ParaTimes," which make use of the con-
sensus layer. They are implemented using the 0oasis-runtime-sdk
and are customized for different purposes.

There are two ParaTimes, Sapphire and Cipher, that provide
confidential smart contracts. The main difference between the two
is that Sapphire is EVM-compatible while Cipher runs Wasm-based
contracts. Both do not further modify oasis- runtime-sdk. Emer-
ald is an EVM-compatible ParaTime that does not aim to provide
any privacy, which we ignored throughout our analysis.
Obscuro. Obscuro [13] is an L2 rollup network that aims to ad-
dress privacy concerns in the transparent blockchain Ethereum.
During each epoch aggregator nodes compete to become the leader
and generate a new rollup transaction that is posted to the L1
Ethereum chain. This leader election is based on a random nonce
that each aggregator generates in their TEE. All contract data is
encrypted and added to the rollup. Because the data is replicated
on chain they do not rely on the TEE for data integrity.

To participate in the next leader election, aggregator TEEs must
validate the previous L1 blocks containing the previous rollup in
the sequence. They are therefore reliant on the L1 for safety of the
consensus mechanism.

Obscuro is designed to be EVM-compatible for easy porting
of smart contracts. While it is the sole framework that encrypts
contract bytecode, the degree to which this feature offers explicit
privacy protection remains uncertain. In fact, it is possible for at-
tackers to probe the contract code via side-channel attacks like
SGX-Step [74].

Proceedings on Privacy Enhancing Technologies 2024(1)

Phala. Phala [59, 80] (Phat Contract) is an L1 blockchain imple-
mented as a Polkadot parachain. Unlike the others, their focus is
to act as middleware for other blockchains. Their goal is to enable
serverless smart contracts called "Phat Contracts" similar to Ama-
zon Lambda functions that can handle concurrent user requests
and do not rely on fast updates to a global state.

They note their goal is not to replace existing smart contract
infrastructure: “Instead of implementing an ERC-20 token with Phat
Contract (whose balance has to be stored on-chain), we recommend
deploying your ERC-20 contract on Ethereum and using a Phat
Contract to operate it"*. Depending on the amount of stake held
by the contract owner, a set of worker nodes are assigned to a
contract. Although they encourage stateless smart contracts, they
also support “vanilla on-chain states and transaction processing”
for applications that need it, hence such contracts would be subject
to the same state consistency hazards we consider.

Phat Contracts are written in Rust-based Ink! > language, com-
piled into Web Assembly and executed in TEE using Parity sub-
strate®. The contract code and the initial parameters are public.

4.2 Storage access pattern leakage

All of these blockchains inherit a key-value storage programming
model for their existing smart contract languages. This is backed by
encrypted data stored locally on the node performing the execution.
In the example of a private token, each account balance may be
stored as a separate record.

None of the systems whose codebases we evaluate hides access

pattern, and so an untrusted host OS can potentially learn private
information (such as receiver addresses in the private token exam-
ple) by monitoring accesses to the key-value storage. This is most
pronounced in Secret and Oasis, which leak the exact key that is
being accessed. Obscuro uses a TEE-based database library called
EdgelessDB, which reads and writes to the filesystem using 4KB
blocks. Phala uses an entirely in-memory data structure for con-
tract state, thus it would leak to the untrusted OS page fault handler
which memory page is being accessed. To address this issue, it is
crucial to employ effective obfuscation techniques such as the use
of oblivious RAM/data structures or encrypted databases.
Secret Network. Each Secret Network contract has access to
a key-value storage, where it implements an application-specific
state. Each value is encrypted using an authenticated encryption
mode, using the plaintext key as a tag. In this way, encrypted values
cannot be replayed on different keys (important for Sec. 5.5).

A separate encryption key is derived for every contract. Each
plaintext key-value store record is encrypted using the contract’s
encryption key and a fixed initialization vector (IV). The IV must be
fixed, i.e., the encryption must be deterministic since the encrypted
field name is used to retrieve the encrypted value.

Oasis. Oasis, like Secret, also uses an underlying database in the
untrusted host, in this case BadgerDB. This similarly leaks the
access pattern of each accessed record.

Obscuro/EdgelessDB. In addition to storing all contract data on
chain Obscuro uses EdgelessDB to store and retrieve data during

“https://wiki.phala.network/en-us/build/general/intro/
Shttps://paritytech.github.io/ink/
®https://www.parity.io/technologies/substrate/

622

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

the execution of the smart contract. EdgelessDB runs in a separate
TEE and uses a RocksDB backend. The data is stored in sorted string
table (SST) files, and accessed in 4KB blocks.

Phala. While Phala encourages mainly stateless applications, per-
sistent contract state is nonetheless supported. Since significant
usage is not anticipated, they use an in-memory data structure, pe-
riodically saved in its entirety to disk as a "checkpoint." Compared
with the alternatives like LevelDB, this incurs greater cost when
saving and restoring from these checkpoints.

In addition to this contract state Phala allows contract owners
to bring their own external database services that the contract can
connect to via HTTP requests. This model requires contract owners
to handle access patterns hiding themselves. They can choose to
store and load data in blocks rather than fine-grained key-value
pairs, but they are still subject 4KB limit for loading pages in a TEE.
Contract owners must also ensure that the HTTP queries them-
selves do not uniquely leak the data block or key being accessed.
Amazon S3 is one of the supported external database services in
Phala. To perform a request to S3, the URL contains a unique iden-
tifier for the object and bucket being accessed. The access pattern
could be inferred from logs viewable by the $3 bucket owner .
We use a half circle in Table 1 since Phala ensures storage replay
protection for contract state but not external database accesses.

4.3 State consistency and blockchain data
confirmation

The ability to perform transaction simulations can undermine pri-
vacy goals for TEE-based smart contracts. Even if transactions are
encrypted and private their execution can have some side effects
that change some public states, e.g. the public pool balance of a
token will change depending on the amount of tokens traded in a
private transaction. In the expected case, 1) the TEE only executes
a transaction after it has already been committed/finalized by the
validators’ consensus, and 2) the execution permanently modifies
the stored records on disk. However, these rules are not enforced
by the TEE and are only expressed in the untrusted code. The result
is that a validator can run simulations of a block prior to consensus,
varying the subset of included transactions and their execution
order to maximize profit.

Ensuring the validity and up-to-dateness of external storage

data is crucial for secure TEE-based smart contract platform design.
Failure to do so may result in storage replay attacks, which can lead
to the exposure of private information.
Secret Network.
tion mechanism, so uncommitted transactions can be run against
the local TEE. To carry out a simulation attack, the untrusted code
is modified so that a) the ecall_handle can be invoked directly to
execute a transaction without waiting for network consensus, and
b) the ocall_read_db and ocall_write_db handlers provide
a “snapshot”/“restore” mechanism to reset the simulated contract
state. The potential for transaction replay is acknowledged in Secret
Network developer documentation as “Theoretical Attacks” but is
not considered a practical concern [22].

In Secret Network, there is no Proof of Publica-

"https://github.com/Phala-Network/phala-blockchain/blob/aébé6c7f/crates/
pink-libs/s3/src/lib.rs#L123

SGXonerated

As mentioned, Secret Network stores records with encrypted
field names and encrypted values. In more detail:
(Encyey (field_name, Tag=""),

Encyey (value, Tag = Encie, (field_name, Tag=""))).

While each record has an authentication tag (specifically AES-SIV
authenticated encryption), such that values cannot be replayed
across different records, this does not prevent the replay of previous
values for the same record.
Oasis. Oasis uses a Proof of Publication similar to that described
in Ekiden, in which the enclave verifies that a transaction is com-
mitted before executing. A slight difference is that in Oasis [55],
transactions are executed before confirmation, however the decryp-
tion key to their results and events is not released until they are
committed on-chain.

Oasis comes with a Merklized Key-Value Store (MKVS). All data

provided to the enclave is authenticated by the current root hash
of the state Merkle tree stored inside the enclave.
Obscuro. As of writing this paper, Obscuro does not implement
any method to prevent simulation attacks, but they propose strate-
gies to defend against these attacks in their design documentation 8.
Obscuro uses Sequencer nodes to order transactions before they are
included in a rollup transaction. In order for the Sequencer to simu-
late different orderings of transactions it would have to be restarted
using an old state. They plan to require the sequencer to be delayed
or re-register to the network after restarting so they cannot execute
multiple simulations in the same epoch before proposing a block.

As mentioned in Section 4.2, Obscuro makes use of EdgelessDB

which uses sorted string table (SST) files. These SST files consist of
4KB blocks and are append-only (meaning blocks are not modified
after being written). EdgelessDB notably aims to provide integrity
guarantees but does not aim to prevent rewinding the entire data-
base to a previous state. The position in the block and a file-specific
key is used as a parameter for encryption to get position-dependent
authenticated encryption. This prevents fine-grained replays be-
cause blocks cannot be swapped between files and values cannot
be changed in a block [16].
Phala. The contract state in the Phala blockchain is determined by
a sequence of transactions executed in order in a TEE. The TEE also
validates the blocks containing these transactions before writing
the expected outputs back to the blockchains in "checkpoints" [80].
The transaction order is determined before execution.

Replay attacks on contract state are not possible in Phala. As de-
scribed in Section 4.3 transaction ordering occurs before execution
and this ordering is validated in the TEE. If a contract makes use
of an additional external database it falls to the contract owner to
ensure that a malicious worker node cannot replay old database
values when the contract makes an HTTP request to the server.
This can be done by including a random nonce in the requests that
are signed by the server in the response.

4.4 Software update transparency

Software upgrades are notoriously challenging for blockchains [44],
even before we consider privacy and TEEs. In short, to avoid par-
titioning the network, it is important that all nodes participating

8https://github.com/obscuronet/go-obscuro/blob/e626db/design/fast_finality.
md#possible-designs-for-preventing-value-extraction

623

Proceedings on Privacy Enhancing Technologies 2024(1)

in the network can apply updates simultaneously. Additionally,
developers should not have the ability to unilaterally change the
rules, e.g., to print more coins.

The standard process involves several steps. First developers
publish a proposed software update. The upgraded software initially
behaves the same as existing software so that node operators can
gradually update without risk of partition. An on-chain vote is
collected, such as through miners or validators signaling support
for/against the blocks they produce, and with enough votes it is
approved. The upgraded software includes a "flag day" timestamp
(or block number), after which the software switches to the new
behavior; at this point, any nodes that have not yet updated will
find themselves partitioned from the network.

The additional challenge in TEE-based smart contracts is that
enclaves running the old software must somehow transfer key ma-
terial to enclaves running the upgraded software, but only after the
update has been approved on-chain. In Secret Network, although
software updates follow the on-chain approval process outlined
above, the enclaves do not enforce this policy. Instead, key material
is transferred between versions through the use of SGX-sealed data.

As mentioned in Section 2, TEEs use sealing to survive power
resets and to make use of on-disk storage. Sealing in SGX takes one
of two modes: MRENCLAVE, which means that only the exact same
TEE that created the sealed file can unseal it; and MRSIGNER, which
means that any enclave code signed by the developers can load
the sealed file. Although using MRSIGNER simplifies the upgrade
process, it means that the developers have the unilateral authority
to secretly decrypt every transaction on the network, simply by
code-signing a TEE that outputs the master key in plaintext and
running that on their own node. In other words, the upgrade process
has introduced an unwanted backdoor. Furthermore, as this could
be carried out offline, there is no way for developers to provide
evidence they have not exploited this.

Obscuro similarly uses MRSIGNER to seal enclave data on their
public testnet. As a result of our disclosure, they have committed to
transition to MRENCLAVE prior to their mainnet launch. ?. They
propose to do these updates by creating a transaction on the net-
work to propose the upgrade and allow for disputes/objections to
the update. After the upgrade is accepted all enclaves will be re-
quired to use the new version. Secret keys are transferred between
versions of the enclave via an RPC call. 0

Phala and Oasis already use MRENCLAVE sealing. For upgrades,
their enclaves check that an update has been approved on-chain.
As this relies on proof of publication, Obscuro and Secret will need
to fix this first before changing their update process.

5 FLESHING OUT THE ATTACKS ON SNIP-20
TOKENS IN SECRET

It is clear that the vulnerabilities noted in the previous section
may have some effect on the privacy properties of the systems in
which they are present. But are they real-world issues? To evaluate
this, we analyzed Secret Network, since it is the only of the TEE-
based systems advertising strong privacy guarantees with currently

“https://github.com/obscuronet/go-obscuro/pull/1065
Ohttps://github.com/obscuronet/go-obscuro/blob/bacb60/design/security/
Upgrade_Design.md

Proceedings on Privacy Enhancing Technologies 2024(1)

in-production-use applications. Especially popular are its fungible
privacy tokens, known as SNIP-20. SNIP-20 tokens have nearly iden-
tical functionality to the ERC-20 tokens from plaintext blockchains,
following the pseudocode mentioned in Sec. 2. The balances are
stored as smart contract application states in the encrypted key-
value storage. Users can transfer a token balance by including a
"transfer” message in the transaction payload. In order to query
the account balance, users need to set a viewing key through an
on-chain transaction, but afterward they can query their balance
with the help of any network node. At the time of writing, while
the market cap of circulating SCRT (i.e., the native asset that is not
"staked" in the consensus protocol) is $169 million, of that a frac-
tion $5.87 million is wrapped in sSSCRT!!. As explained in Section 2
the sender address in SNIP 20 tokens are public, therefore we can
query the number of unique addresses that have interacted with the
token contracts as well as the number of transactions sent to each
contract in Appendix Table 3. The most popular SNIP-20 tokens we
investigated have a combined market cap of $20.2 million'2, over 1
million successful transactions, and 44.9 thousand unique senders.

5.1 Tracing attacks on SNIP-20 Transfers

Before getting to transaction simulation attacks, we start by simply
adding logging statements to the untrusted software with to ob-
serve the storage access patterns. This is enough to invalidate the
Receiver Privacy guarantees of the SNIP-20 tokens. In particular,
the receiver and the amount are both intended to be confidential.

The combination of encrypted transaction requests and encrypted
storage is the basis for expecting receiver privacy and value pri-
vacy for transactions. As discussed in Section 4.2, however, users’
balances are maintained by a key-value store and the encrypted
key for each account remains the same. By logging the keys fetched
from the storage, we can infer the receiver of a SNIP-20 transfer.

We modified the untrusted code, specifically ocall_read_db,
to simply print the get traces of encrypted keys fetched while
executing a contract program. For instance, an abridged trace re-
sulting from executing a SNIP-20 transfer is illustrated in Figure 1b,
each trace corresponding to a smart contract instruction in Fig-
ure la. The same sender or receiver in different transfer transac-
tions will always leave a get trace of the same encrypted key, e.g.,
0x3d4982[. . .] in Figure 1b. We carried out experiments on pub-
lic testnet by sending transactions between our own addresses to
confirm our hypothesis.

As the above discussion implies, the balances of the parties
(sender/receiver) involved in a transaction are accessed using fixed
keys for each address. By correlating two transactions, Tx1 and
Tx2, such that the sender of Tx1 is the receiver of Tx2, we were
able to deanonymize the supposedly private receiver of Tx2. Over
time, a graph of the transaction history can be built, and used to
fully de-anonymized users.

5.2 Implementing transaction simulation

We now describe how we modified (the untrusted portion of) the
existing Secret Network codebase, to build a forensic analysis node
capable of carrying out offline simulation attacks.

hittps://secretnodes.com/
2https://secretanalytics.xyz/bridge, https://www.coingecko.com

624

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

Simulate transactionl:> Attacker Account value SuccessfulTransaction\/

Balance change +-V ®

. —— Victim Account values (E) Failed Transaction
after simulate =

Override DB Value

Replay balance = = Pool Account Values

Figure 4: Legend for transaction simulation schematics. El-
ements with the same shape have the same key and can be
replaced with one another. Elements with the same color
have the same representation as encrypted values.

We focus on adding a wrapper around the ecall_handle func-
tion described in Section 4.1. Secret’s untrusted codebase includes
DeliverTx and SimulateTx, two high level wrappers that call
this function. DeliverTx is intended to used after a transaction has
been committed in a block — though lacking a Proof of Publication,
the enclave cannot ensure this. SimulateTx is used to estimate
gas costs. While either could be used, we found SimulateTx to be
the easiest code to modify. We then added the following new RPC
calls to support transaction simulation:

e Fork(): (Re-)Initializes a new in-memory cache, SimState, for

persisting state changes between transaction simulations.

e Simulate(Tx) — [ck=cv, ...]:Simulates one transaction, mod-
ifying only SimState. During contract execution, interactions
with key-value storage (through ocall_get, ocall_set) are
diverted to SimState. Returns a transcript [ck=cv,...] re-
sulting from interacting with key-value storage.

Replay (ck=cv, .. .):Replays previously stored mappings from
encrypted keys ck to encrypted values cv. Since the empty string
is a default value, this can be replayed for any key regardless of
whether it has been previously observed.

5.3 Inferring SNIP-20 Transfer Amounts

As our first transaction simulation attack, we can infer the amount
of tokens transferred in a SNIP-20 transaction. While access pattern
leakage from Sec. 5 enabled us to determine the receiver’s address,
the number of tokens transferred remains encrypted.

Assume that our goal is to infer the transfer amount T of a
victim transaction TXyjctim- For now, let us assume the attacker
has an account with balance A that we know is greater than T. We’ll
design a simulation attack that probes the victim transaction by
constructing a comparison oracle, i.e., for each choice of a probe
value P, we learn whether T < P.

In Fig. 5 we give a schematic for our approach along with a pseu-
docode description. The legend in Fig. 4 should help for following
the schematic. We start by Replaying balance[sender]=0, where
the encrypted field name corresponding to balance[sender] can be
inferred from the access pattern analysis. Next we generate and
Simulate the execution of a transaction that transfers the probe
amount P from the attacker’s balance to the sender’s balance. Fi-
nally, we Simulate the victim’s transaction TXyjctjm- As a result
of transaction simulation, we learn whether or not the transaction
succeeds. If it succeeds, we’ve learned that P > T, and if it fails
then P < T. We can simply rewind the simulation to the beginning
by calling Fork, choosing a different probe value via binary search.

5.4 Surveillance without having to buy tokens

We previously assumed that the attacker’s balance A at the begin-
ning of the attack was larger than the transaction they sought to

SGXonerated

Attacker
Account

O—G»

Sender
Account
(if P=T)
Sender
Account
(if P<T)

i function TransferAmountInferenceAttack(TXyictim)

2 sender := TXyjctim-sender

3 # assume balance[attacker] > T

4 low := 0, high := A := balance[attacker]

5 while low < high do # start bisection search

s P := (low+high)/2

7 Fork()

5 # replay 0 for the sender's account balance
9 Replay(balance[sender] = 0)

10 # transfer amount = P to sender's account
1 Simulate(Transfer(attacker, sender, P))
12 if Simulate(TXyjctim) succeeds then

13 low = P+1 # try larger

14 else

15 high = P # failed, try smaller

16 end if

17 end while

18 return low # return the probed amount low = T

Figure 5: Schematic and Pseudocode for Transaction Simula-
tion Attack to Infer SNIP-20 Transfer Amount

analyze, meaning that the attack had large upfront investment re-
quirements. We now explain how to get around this assumption by
starting with a very small balance and simulating the inflation of the
attacker’s account. Pseudocode and a schematic are given in Fig. 6.
The main idea is that the attacker simulates transferring a balance
between two of her own accounts, replenishing each empty account
with a replayed value. Since this algorithm doubles the balance of
an adversarial account at each step, it takes 128 iterations to reach
the maximum representable value. This only needs to be carried
out once per token type since the resulting encrypted value can be
stored for later use.

Note that this inflation is only occurring within the attacker’s
local simulation and does not in any way imply that the integrity of
the overall blockchain is at risk. The reason for this is that even if
there were no enclaves at all, the integrity of the blockchain would
still be ensured by the consensus among validator nodes, just as in
any transparent blockchain.

5.5 Querying SNIP-20 account balances

We now present an attack that allows us to probe the account bal-
ance of an arbitrary victim, just given their address. We assume
the attacker begins with a maximal account balance of 2'28 — 1
(obtained in Section 5.4). SNIP-20 tokens throw an exception when

625

Proceedings on Privacy Enhancing Technologies 2024(1)

Attacker
Account T~

Attacker ﬁ
Account 2
+B B + B

1 function BalancelnflationAttack(addri,addry)

2B

2 # both accounts are controlled by the attacker

3 # start with balance[addr1]>0 & balance[addr2]=0
4 Fork()

5 while balance[addr;] < (21?8 — 1) do

6 # store the current balance B of addr1

7 B := balance[addr;]

8 Simulate(Transfer(addry,addrz,balance[addr;]))
9 # now balance[addr1]=0

10 # replay the balance of addr1 back to B

1 Replay(balance[addr;]=B)

12 amt := B if 2B<(21%8 — 1) else (2128 — 1)-B
13 Simulate(Transfer(addry, addry, amt))

14 # now balance[addr1]=min((2"128-1), 2B)

15 end while

Figure 6: Schematic and pseudocode for a transaction simu-
lation attack that inflates the attacker’s (simulated) balance

adding two ul28 elements that overflow. We use this as our next
oracle to probe whether a victim’s account with balance B is less
than a parameter 2!2% — 1 — P. Following along with the illustration
in Fig. 5, we simulate a transaction that transfers P from the at-
tacker’s account to the victim’s account. This transaction succeeds
if B+P < 2128, and fails otherwise. Using the Replay capability and
a binary search we can recover the exact value after 128 iterations.

5.6 Forensic analysis of past SNIP-20 transfers

For reasons involving details of Secret Network’s implementation,
it is difficult to obtain a snapshot of the blockchain state from very
far back. State snapshots are cycled on a rolling basis, and while
archive nodes provide most old blocks, we found we were unable to
sync a node by replaying blocks from "genesis." So, how would we
break receiver privacy for transactions prior to the last available
state checkpoint?

The first challenge is that Secret Network, like most blockchains,
implements a form of replay prevention based on "sequence num-
bers." Transactions are rejected unless they have a sequence number
that matches a counter associated with each account. The counter
for an account is incremented each time a transaction from that
account is committed. However, this mechanism is implemented
only within the untrusted codebase, so we simply disable the checks
on the sequence number of a transaction before ecall_handle.

Next, the sender’s balance at the snapshot time may be lower
than it was when the past transaction of interest was committed.
However, the techniques we described earlier enable us to control
the sender’s simulated balance, as we make use of when inferring

Proceedings on Privacy Enhancing Technologies 2024(1)

Attacker -

Account. <21 ﬁ (o)
Victim +P Tp
Account B+P

(if B+P < 2128)

........................... o) S
Victim

Account P O lP

EO—C)

1 function BalancelnferenceAttack(victim)

(if B+P 2 212%)

2 # begin with inflated balance[attacker]=2"128-1
3 low = 0, high = 2128 — 1

4 while low<high do

5 P := (low+high)/2

6 Fork()

7 if Simulate(Transfer(attacker, victim, P))
8 succeeds then

9 low = P+1 # try larger

10 else

1 high = P # failed, try smaller

12 end if

13 end while

14 return (2128 — 1)-low # return the probed balance[victim]

Figure 7: Schematic and Pseudocode for Transaction Simula-
tion Attack to Probe the Balance of Arbitrary Address

the transaction amounts. Therefore, forensic analysis of prior trans-
actions does not require syncing a node to old application state.

6 MEV ON TEE-BASED NETWORKS

Though the privacy of SNIP-20 tokens is the most important issue
for Secret Network, this is not the only application at risk. We
also explain how transaction simulation attacks can undermine
defenses decentralized exchanges (DEXes) built on top of TEE-
backed platforms against front-running.

6.1 Background on MEV

MEYV and Frontrunning attacks. Any operations that clients
want to be executed on the blockchain must be committed in a
block by the validator nodes running a consensus protocol. Since
the validators must collect pending transactions before assembling
them into a block, they can insert their own transactions (such
as when frontrunning) and reorder the pending ones in whatever
order they see fit. In blockchains, the notion of validators benefiting
economically from the ability to determine transaction order is
called miner extractable value (MEV) [71].

MEV in AMMs. Automated Market Maker (AMM) is one of the
most popular DEXes. Most well-known AMMs, e.g., Uniswap [36],
are constant product AMM. An AMM is meant to help trade any
number of token pairs, which we will generalize to calling tokenA
and tokenB. Let PoolAmtA and PoolAmtB represent the total
amount of tokens in the liquidity pool for this token pair (tokens
are provided by liquidity providers who make profits by charging
transaction fees). When trading one token for another, the price is

626

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

1 contract function UniswapTrade(amtA, slippage_limit)

2 amtB = calcB(PoolAmtA, PoolAmtB, amtA)

3 if amtB < slippage_limit then

4 # no state change but the transaction is committed.
5 else

6 # changes to caller account balances as well as the
7 # contract's variables are committed to chain.

8 PoolAmtB -= amtB

9 PoolAmtA += amtA

10 end if

1 contract function calcB(PoolAmtA, PoolAmtB, amtA)

_ _ PoolAmtB * PoolAmtA
12 amtB = PoolAmtB PoolAmiA + amiA

Figure 8: Contract Pseudocode for Uniswap Trade.

determined as shown line 10 in Figure 8, which keeps the product
PoolAmtA*“PoolAmtB invariant. The amtA refers to the amount
of tokenA the client wants to trade and amtB is the amount of
tokenB they will receive back.

Upon seeing that a client wants to buy tokenB using tokenA,
the miner generates a transaction buying tokenB, ahead of the
client, artificially inflating the demand for tokenB. This means the
client would end up getting less tokenB with the same amount
of tokenA. Subsequently, the price of tokenB would inflate even
more and the adversarial miner could now “sell” tokenB to get
more of tokenA than it originally spent buying it.Thus, the miner
benefits from sandwiching the client transaction. For a more de-
tailed discussion of MEV and the other perils to the blockchain
introduced by it, see [19].

Note that to know the frontrun amount, the adversarial miner
needs to see the amounts in the client’s transaction. This is be-
cause if the miner increases PoolAmtA (raises the price to buy
tokenB) too little it will not profit, and if it increases it too much,
the slippage_limit (the minimum amount of tokenB the client
would like to receive) parameter of the client causes the target trans-
action to fail altogether. Thus, if the miner were unable to access
the amounts input by the target transaction caller, they would not
be able to mount MEV attacks effectively.

6.2 Sandwich attacking a private swap

SiennaSwap * and SecretSwap 4 have gained significant popular-
ity as AMMs built on Secret. They have comulated trading volumes
of $1.07B and $1.26B, support 149 and 184 trading pairs, attract
8.94K and 24.22K users respectively 1°. Although they all claimed
that they are front-running resistant as they are based on a privacy-
preserving platform, we demonstrate a sandwich attack does exist.
Consider a victim transaction Trade (amtA, slippage_limit).
The value of amtA can be inferred from the change in PoolAmtA
after execution, but slippage_limit here would be secret. The
main parameter of a sandwich attack is how large the frontrun
transaction should be. The attacker’s profit is maximized when the
victim transaction succeeds but just barely within the slippage limit.

Bhttps://sienna.network/swap/
4https://secretswap.net/swap
Shttps://archive.is/ A8 Tk, https://archive.is/NcYOF

SGXonerated
Attacker balA -guessM balA":=balA-guessM
Account balB +calcB balB’:=balB+calcB
Victim ‘// balA ﬁ -amtA ‘/ balA'=balA-amtA
Account _balB / +calcB’ \VbalB':=balB+caIcB'/)

UniswapTrade

UniswapTrade Loset
(guessM,0 (amtA, slippage_limit) ar
lguessM
Sienna
Swa PoolAmt: A +guessM +amtA
Account | PoolAmt:B | -calcB(A,B,guessM) -calcB(A',B’,amtA)

1 function FindMaxFrontrunAmt(T Xyictim)

2 low := 0, high := balA

3 while low < high do

4 guessM := (low+high)/2

5 Fork()

6 Simulate(Trade,iacker(guessM, 0))

7 if Simulate(TXyictim) succeeded then
8 low := guessM+1 # try larger

9 else

10 high := guessM # failed, try smaller

11 end if
12 end while
13 return low # the maximal frontrun amount

Figure 9: Schematic and Pseudocode for Transaction Simula-
tion Attack to Determine the Maximal Frontrun Amount

Optimizing a sandwich attack thus requires determining the vic-
tim’s slippage limit, which can be done through a “bisection” search,
as shown in Figure 9. This bisection search iteratively reduces the
range of possible values of the slippage limit by determining larger
minimum and smaller maximum for the value. Once the bisection
search ends and the slippage_limit is revealed the attacker can
frontrun of the transaction on the real network.

Note that the attacker’s ability to front run is limited by their
available capital. Thus while the attacker could use simulated bal-
ance inflation as described earlier to infer the slippage limit even
for larger trades, this would not help them to front run.

6.3 Validating our implementation and artifact

There are two main ways we validate our implementation. The
first is through the use of container-based local networks, which
are used by Secret Network for integration tests. This requires
us to compile both the Secret enclave as well as the smart con-
tracts from the sSCRT implementation from source code. This is
ideal for reproducing our demonstrations, so we plan to publish an
artifact based on this. We benchmark the cost of conducting the
sandwich attack in this setting. As the sandwich attack is based
on the transaction simulation attack, no transaction is broadcast
to the network so there’s no monetary cost to find the optimal
profit-making transactions. The primary bottleneck for launching
this attack lies in the bisection search process. Each iteration of the
bisection search takes about 0.40s. Given the attacker’s constrained
ability to execute only a limited number of iterations/simulations
during the block time to explore the slippage limit of the victim
transaction, there’s a tradeoff between the range and precision of
the bisection search. The success of the attack hinges on the target

627

Proceedings on Privacy Enhancing Technologies 2024(1)

value falling within the search range; thus, a broader range ensures
the target’s inclusion. However, a wider search range sacrifices
precision, preventing the attacker from optimally extracting profits.
We provide more detailed microbenchmarks in Appendix A and
attack accuracy analysis in Appendix B.

The second is through the use of Secret’s public test network,
pulsar-2.The test network runs an enclave binary that was signed
by the developers, so it is ideal for demonstrating that the vulnerabil-
ities we rely on were not introduced by our own modifications. The
production versions of Secret Swap and Sienna Swap also provide
development versions on the test network.

7 MITIGATIONS

7.1 Coordinated vulnerability disclosure and
mitigating retroactive SNIP-20 privacy leaks

We discussed our preliminary findings with developers from all
four projects. As only Secret Network had already launched their
production network, so we focused on coordinating with them on
a public disclosure and mitigations. These vulnerabilities are more
easily exploited than those related to AepicLeak [77], as they do
not require a special hardware configuration to exploit - even cloud
tenants without hypervisor privileges or physical could carry them
out. Despite the much larger attack surface, several principles for
deploying mitigations are the same.

The most immediate intervention developers could take, as they
did for AepicLeak, is to disable remote attestation by revoking the
API key associated with their IAS account. This is a "registration
freeze" that prevents new nodes from joining the network. Once de-
velopers have updated their software with mitigations (e.g., proofs
of publication and storage replay defense), they can reenable regis-
tration by generating a new IAS API key. In this case, developers
instead deployed a proof-of-publication defense against transaction
replay attacks. We coordinated our public disclosure to follow this
upgrade. Regardless, existing nodes that had already registered on
the network prior to the intervention are still able to carry out these
attacks at any time in the future.

7.2 Preventing future SNIP-20 leaks

As mentioned, in response to our disclosure, Secret Network has
implemented proofs-of-publication to mitigate transaction replay
attacks [66]. Essentially, the updated mechanism incorporates a
Tendermint verifier in the trusted enclave code. However, it is im-
portant to note that the current implementation is not yet complete
as it lacks database rollback protection. Specifically, values loaded
from the database are not verified against the proof-of-publication
commitment, such as the state Merkle root, published in the latest
block. As a result, it is still possible to rewind the state to an earlier
version, either entirely or partially. Exploring the privacy implica-
tions of this incomplete implementation of proofs-of-publication
remains an interesting open problem for future work.
Additionally, developers have taken initial steps towards miti-
gating access pattern leakage. Every method of SNIP-20 tokens that
accesses an account balance is now extended to support additional
"decoy" parameters, inspired by Monero [54], as we describe below.
The smart contract, called SNIP-25, now accesses the actual account
as well as the decoys in sorted order, thus obfuscating which is

Proceedings on Privacy Enhancing Technologies 2024(1)

the real one. 1° Although this is supported at the smart contract
level, there is not yet guidance on how to choose these decoys in
an appropriate way.

Access pattern decoys. Here, we propose and analyze a straw-
man strategy for adding privacy to SNIP-20 tokens, using decoys a la
Monero [54]. To implement this decoy strategy, the token contract
maintains a list L of all addresses that interact with the contract.
Prior to creating a transaction, a client queries the contract to get
L. The client samples!” an array D of k random addresses from L
to use as decoys. D included in the encrypted parameters to the
Transfer function. This protocol requires the use of real addresses
for the decoys rather than random strings due to the fact that if an
accessed key does not exist, an error is thrown in full view of the
untrusted host OS, revealing that it was a decoy access.

As of the SNIP-25 update, the token transfer contract generates
a seed by hashing the transaction, uses this to deterministically
sample a random number 0 < r < k. To update the receiver balance
the contract inserts the real receiver address at position r in D. The
contract then reads and all of the addresses in D and only updates
the value of the balance of the address at position r. The contract
re-randomizes and writes back the balances of the decoy addresses.

We provide pseudocode for a SNIP-25-like transfer method that
makes several decoy accesses along with the actual access in Fig. 10.
The developers acknowledge that this is not a comprehensive solu-
tion as it relies on choosing decoy addresses effectively!8. There
is a minimum 1/len(X) chance that the attacker can guess the real
receiver’s address — a criticism that extends to Monero [54].

The private cryptocurrency Monero also employs this decoy
strategy [52]. Several attacks described on Monero would also ap-
ply to this proposed strategy and can be used to raise the attacker’s
chances. For example, if the decoys are chosen uniformly at ran-
dom, more frequently used receiver addresses, such as a token pool
contract, have a higher chance of being the real address.

An attacker can also create a large amount of addresses with
minimal balance to poison the list of potential decoy addresses [57].
This would require some gas fees but could allow them to eliminate
some decoys. As of writing this paper there are 36k unique addresses
interacting with the most popular token contract on Secret Network
(sSCRT). An attacker could add 10k more addresses, subsequently
eliminating about 20% of the decoy addresses on a given transaction,
paying only 175 SCRT in transaction fees or $52.71.

The privacy offered by this scheme is akin to to the notion of
k-anonymity [67] where k is chosen as denoted above. The effec-
tiveness of this protocol depends on the number of decoys, but
more decoys increases the transaction fees, leading to a dilemma.
Block Based Paging. Next, we discuss the effectiveness of a
block-based paging strategy that is a simplification of the imple-
mentations used in Obscuro and Phala. The exact leakage from the
access patterns of these schemes depends on several implementa-
tion factors but the following construction provides intuition.

16https://github.com/scrtlabs/snip20-reference-impl/blob/92ff4bd5/README.
md#snip-25-security-update

71deally the subset D is selected uniformly at random, but the distribution from
which the client samples is up to the client and trust assumptions based on it are brittle,
as we discuss later.

8https://github.com/scrtlabs/snip20- reference-impl/tree/ea9fb0#future-work

628

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

Suppose, token contracts store their users’ account balances in

4KB blocks. In order to access the account balance the entire block
must be loaded into enclave memory. Depending on the storage
space required to store the data associated with an account, a fixed
number of accounts fits in a 4KB block. Even assuming the mapping
of addresses to block locations is fully private, some data is leaked
by each access. Essentially, this simple block based strategy means
that the same block (and corresponding set of addresses) are loaded
each time a particular address is accessed. This is essentially k-
anonymity with the same anonymity set, for each time an address
interacts with a contract. The size of the k-anonymity set can be
increased through policies such as using larger blocks.
ORAM. Oblivious RAM (ORAM), originally proposed by Goldre-
ich and Ostrovsky [24, 25, 56], is a functionality for hiding storage
access patterns for an outsourced, encrypted database. In the ORAM
model, a trusted client can temporarily hold and operate on a subset
of a vast database, while primarily delegating the storage responsi-
bilities to an untrusted server. ORAM solutions essentially separate
the logical access pattern of a program from the physical access
pattern, hiding the locations being accessed. In blockchains such
as Secret Network, the SGX enclave is the client which outsources
most of its state on an untrusted host. Thus, if an ORAM solu-
tion were to be deployed for SNIP-20 contracts, the untrusted host
would not be able to distinguish between two different Transact
executions based on the access pattern. While Secret Network has
expressed an interest in ORAM as a future strategy, at the moment
there is “no clear path forward”.!®

One way to integrate ORAM into SNIP-20 contracts is to create
a wrapped version of the get/set instructions to obliviously read-
/write. This seamlessly benefits existing contracts without modifi-
cation. However, all ORAM solutions add overhead, with a memory
of N blocks requiring the client to fetch O(log(N)) values [78] per
access. Since not all storage accesses are sensitive and require pri-
vacy, applying ORAM everywhere is potentially inefficient. Another
challenge of merging existing ORAM constructions is that Secret
Network (and others) relies on off-chain queries for faster/cheaper
read operations, such as checking account balances. Existing ORAM
models ensure privacy by assuming sequential reads and writes, re-
sulting in permanent alterations to the untrusted database post each
access. Consequently, users would have to submit balance check
requests on-chain as transactions, greatly impacting usability.

Implementing ORAM at the application level is an alternative.
Insights from previous research on oblivious programming, which
recommends breaking down an application into smaller ORAMs
based on the preferred leakage model [40], could be instructive.
In principle, smart contracts could serve as the trusted ORAM
client, utilizing the current key-value interface as the untrusted
ORAM server. However, this approach could substantially increase
on-chain transaction costs relative to an integrated solution. A
subsequent study !° utilizing off-chain queries to perform ORAM
on an individual node and later posting the results on-chain may
offer a cost-effective alternative.

Yhttps://medium.com/@dsl_uiuc/tee-rollups-fixing-access-patterns-in-tee-
based-smart-contracts-with-off-chain-computing-b2f3acfe335f

SGXonerated

1 contract function send(address[] decoys,

2 address receiver, uint amount)

3 seed := Hash(decoys || receiver || amount)

4 r := RandInt(0, len(decoys), seed)

5 combined := decoys

6 combined.insert(r, receiver)

7 for each address a in combined do

8 balances[a] := balances[a] + (amount + (a == receiver))
9 end for

Figure 10: A decoy-based mitigation for access pattern leak-
age inspired by Monero

7.3 Ethical principles

Beyond coordinating our vulnerability disclosure with develop-
ers, our main concern has been to avoid contributing to the data
breach hazard created by this vulnerability. We did not collect a
dataset or carry out a measurement study by probing balances and
transactions on the production network.

Previous blockchain deanonymization and tracing attacks [31, 46,
52] have only required the public dataset as input, i.e., the blocks and
transactions, which are widely replicated. They publish their tracing
analysis concept along with a measurement study. While the Secret
blockchain itself is a public dataset, executing transactions requires
a sealed copy of the master key, which can only be obtained through
remote attestation. Thus while we could have retained the ability to
carry out measurements, having our authority "grandfathered in,'
other researchers are unable to obtain this authority for themselves.

We have reset our authority to baseline by erasing our node’s
sealed key, such that we have to upgrade and re-register our node
like anyone else. However, as part of our public disclosure, we plan
to provide an "access pattern dashboard" service that displays the
access pattern logs that remain leaked to the untrusted host by an
ordinary node post-mitigation.

8 RELATED WORK

Security issues in TEE-based smart contracts. Our work is
most closely related to Li et al. [38] in aiming to systematize pri-
vacy hazards in TEE-based smart contracts. Whereas they consider
frameworks including research proposals, we focus on production
systems and the specific design choices they make. While they point
out potential hazards, our goal is to demonstrate how these hazards
translate into real world application failures. Previous real world
attacks have also been demonstrated, again using Secret Network
as the concrete example due to its in-use applications. Specifically
Van Schaik et al. [77] showed that Secret Network was vulnerable
to AepicLeak [7] (the most recent in a long line of SGX vulner-
abilities [11, 73, 76]). Although TEE breaks threaten any system
that relies on it, Phala and Oasis limit access to the key material to
nodes who are trusted or at least have committed financial stakes;
in contrast, Secret Network, as well as Obscuro, allow anyone with
a compatible processor to register and obtain the ability to execute
contract transactions in an enclave. Our attacks are different in
that they do not involve a failure of the TEE itself, but rather the
integration of the TEEs within a blockchain architecture.

629

Proceedings on Privacy Enhancing Technologies 2024(1)

Smart contract security and privacy. While smart contracts
have enabled many innovative decentralized applications, their his-
tory could easily be characterized by the many high-profile hacks
and losses of funds that have taken place over the years. Conse-
quently, much research effort has been devoted to surveying these
risks [3, 58] and creating tools to reduce them [41, 51, 72, 81]. At the
same time, researchers have begun to explore the intersection of pri-
vate computation and public blockchains. For example, Zether [12]
proposes an Ethereum-compatible confidential payments contract,
Hawk [34] creates a framework for private smart contract devel-
opment, and Zexe [8] extends this idea to also obfuscate which
functions are being executed. More recently, Aztec [35] with a hy-
brid zk-rollup, and Zama [28] with FHE, are both planning devnet
deployments for private smart contracts. Relative to these works,
however, TEE-backed chains offer high performance along with
the features developers expect from transparent smart contracts.
Secure systems based on TEEs. The need for defense against
replay and rollback attacks is well understood in the security liter-
ature. Systems such as Rote [42] and Microsoft Confidential Con-
sortium Framework [62] create a distributed network of TEEs such
that an honest subset remains online. Since today’s TEEs cannot
offer reliable non-volatile monotonic counters, this network im-
plements a monotonic counter and keeps track of the most recent
version of the sealed data output by the enclave and signs the input
along with a hash of the sealed data. On restart, the TEE must verify
that signature, ensuring that it can only execute one input using
that sealed data. Narrator [53] similarly uses a distributed system
of TEEs but application enclaves send a state update message to
the system before revealing the output of the computation. Our
work reinforces these efforts by demonstrating the consequences
of foregoing these defenses.

Besides the blockchain itself, TEEs have also been proposed for
blockchain-adjacent services; here too rollback prevention is a cen-
tral focus. Bite [43] implements a privacy preserving light client
for Bitcoin that can receive payments and construct transactions
requests without running a full Bitcoin node. It uses ORAM to
hide data access patterns and Rote [42] to prevent rollback attacks.
TEEChain [39] uses TEEs to create a private payment channel sys-
tem and requires hardware monotonic counters to protect against
rollback attacks. Tesseract [5] implements a private real-time cryp-
tocurrency exchange using TEEs and requires an honest subset of
nodes participating in the protocol to be online to prevent rollbacks.

9 CONCLUSION

The usage of TEEs is a promising way to realize practical, per-
formant, and private general computation on blockchains. While
it is well-known that TEE compromises are a possibility, this is
just one of the attack surfaces to contend with. Previous discus-
sions on replay and access pattern hazards have been somewhat
abstract, making them easy to underestimate when transitioning
research to practice. In this work we bring clarity to this issue by
demonstrating the first replay and access pattern attacks on in-use
TEE-based smart contract systems. The impact of our vulnerability
disclosure has already led to rapid deployment of mitigations for
Secret Network’s in-use SNIP-20 tokens, as well as to influence the
development plans of other mainnet launches.

Proceedings on Privacy Enhancing Technologies 2024(1)

ACKNOWLEDGMENTS

This work was funded in part by the National Science Foundation
under grants #1943499 and #2112726, and by IC3 industry partners.

REFERENCES

[1] 2017. Technology preview: Private contact discovery for Signal. https://signal.

[2

[3

[4

[10

[11

[12

[13

[14

[16

[17

=

=

=

]

]

]

org/blog/private-contact-discovery/.

Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13. Intel, ACM New York, NY, USA, 7 pages.

Nicola Atzei, Massimo Bartoletti, and Tiziana Cimoli. 2017. A survey of attacks
on ethereum smart contracts (sok). In Principles of Security and Trust: 6th Interna-
tional Conference, POST 2017, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings 6. Springer, 164-186.

Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Chris-
tian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter
Pietzuch. 2018. LibSEAL: Revealing Service Integrity Violations Using Trusted
Execution. In Proceedings of the Thirteenth EuroSys Conference (Porto, Portugal)
(EuroSys ’18). Association for Computing Machinery, New York, NY, USA, Article
24, 15 pages. https://doi.org/10.1145/3190508.3190547

Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip Daian, and Ari Juels.
2019. Tesseract: Real-Time Cryptocurrency Exchange Using Trusted Hardware. In
Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communications
Security (London, United Kingdom) (CCS ’19). Association for Computing Machin-
ery, New York, NY, USA, 1521-1538. https://doi.org/10.1145/3319535.3363221
Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind Narayanan, Joshua A.
Kroll, and Edward W. Felten. 2015. SoK: Research Perspectives and Challenges for
Bitcoin and Cryptocurrencies. In 2015 IEEE Symposium on Security and Privacy.
IEEE, San Jose, CA, USA, 104-121. https://doi.org/10.1109/SP.2015.14

Pietro Borrello, Andreas Kogler, Martin Schwarzl, Moritz Lipp, Daniel Gruss, and
Michael Schwarz. 2022. {Z£PIC} Leak: Architecturally Leaking Uninitialized
Data from the Microarchitecture. In 31st USENIX Security Symposium (USENIX
Security 22). USENIX Association, BOSTON, MA, USA, 3917-3934.

Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers, Pratyush Mishra, and
Howard Wu. 2020. Zexe: Enabling decentralized private computation. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 947-964.

Marcus Brandenburger, Christian Cachin, Rudiger Kapitza, and Alessandro
Sorniotti. 2018. Blockchain and Trusted Computing: Problems, Pitfalls, and
a Solution for Hyperledger Fabric. https://doi.org/10.48550/ARXIV.1805.08541
Ferdinand Brasser, Urs Miiller, Alexandra Dmitrienko, Kari Kostiainen, Srd-
jan Capkun, and Ahmad-Reza Sadeghi. 2017. Software Grand Exposure: SGX
Cache Attacks Are Practical.. In WOOT. USENIX Association, VANCOUVER, BC,
CANADA, 11-11.

Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
2018. Foreshadow: Extracting the Keys to the Intel SGX Kingdom with Transient
Out-of-Order Execution. In 27th USENIX Security Symposium (USENIX Security
18). USENIX Association, Baltimore, MD, 991-1008. https://www.usenix.org/
conference/usenixsecurity18/presentation/bulck

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. 2020. Zether:
Towards privacy in a smart contract world. In Financial Cryptography and Data
Security: 24th International Conference, FC 2020, Kota Kinabalu, Malaysia, February
10-14, 2020 Revised Selected Papers. Springer, 423-443.

James Carlyle, Tudor Malene, Cais Manai, Neal Shah, Gavin Thomas, and Roger
Willi. 2021. Obscuro White Paper. hhttps://whitepaper.obscu.ro/assets/images/
obscuro-whitepaper-0-10-0.pdf

Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah
Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform for
Confidentiality-Preserving, Trustworthy, and Performant Smart Contracts. In
2019 IEEE European Symposium on Security and Privacy (EuroS&P). IEEE, Stock-
holm, Sweden, 185-200. https://doi.org/10.1109/EuroSP.2019.00023
Chitchanok Chuengsatiansup, Daniel Genkin, Yuval Yarom, and Zhiyuan Zhang.
2022. Side-channeling the Kalyna key expansion. In Topics in Cryptology-CT-RSA
2022: Cryptographers’ Track at the RSA Conference 2022, Virtual Event, March 1-2,
2022, Proceedings. Springer, Springer, San Francisco, CA, USA, 272-296.

Jenny Cook. 2021. Introducing EdgelessDB: A Database Designed for Confiden-
tial Computing. https://techcommunity.microsoft.com/t5/azure-confidential-
computing/introducing-edgelessdb-a-database- designed-for-confidential/ba-
p/2813631

Manuel Costa, Lawrence Esswood, Olga Ohrimenko, Felix Schuster, and Sameer
Wagh. 2017. The Pyramid Scheme: Oblivious RAM for Trusted Processors. https:
//doi.org/10.48550/ARXIV.1712.07882

630

(18]

[19]

[20

[21

[22

[23

[24

[25

[26

[27

(28]

™
0,

[30

[31

[32

[33

(34

(35

[36

[37

[38

[39

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. Cryptology
ePrint Archive, Paper 2016/086. https://eprint.iacr.org/2016/086 https://eprint.
iacr.org/2016/086.

Philip Daian, Steven Goldfeder, Tyler Kell, Yungi Li, Xueyuan Zhao, Iddo Ben-
tov, Lorenz Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning in
Decentralized Exchanges, Miner Extractable Value, and Consensus Instability. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA,
910-927. https://doi.org/10.1109/SP40000.2020.00040

Fergus Dall, Gabrielle De Micheli, Thomas Eisenbarth, Daniel Genkin, Nadia
Heninger, Ahmad Moghimi, and Yuval Yarom. 2018. CacheQuote: Efficiently
Recovering Long-term Secrets of SGX EPID via Cache Attacks. JACR Transactions
on Cryptographic Hardware and Embedded Systems 2018, 2 (May 2018), 171-191.
https://doi.org/10.13154/tches.v2018.i2.171-191

Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, ECE, and Dmitry Pono-
marev. 2018. BranchScope: A New Side-Channel Attack on Directional Branch
Predictor. In Proceedings of the Twenty-Third International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Williamsburg,
VA, USA) (ASPLOS ’18). Association for Computing Machinery, New York, NY,
USA, 693-707. https://doi.org/10.1145/3173162.3173204

Leor Fishman. 2020. Secret Network documentation: Theoretical At-
tacks. https://github.com/scrtlabs/SecretNetwork/blob/61cfc4/docs/protocol/
encryption-specs.md.

Ethereum Foundation. 2023. Ethereum: Blockchain App Platform. https:
//ethereum.org/. Accessed: 2023-01-22.

Oded Goldreich. 1987. Towards a theory of software protection and simulation
by oblivious RAMs. In Proceedings of the nineteenth annual ACM symposium on
Theory of computing. 182-194.

Oded Goldreich and Rafail Ostrovsky. 1996. Software protection and simulation
on oblivious RAMs. Journal of the ACM (JACM) 43, 3 (1996), 431-473.

Daniel Gruss, Julian Lettner, Felix Schuster, Olya Ohrimenko, Istvan Haller, and
Manuel Costa. 2017. Strong and Efficient Cache {Side-Channel } Protection using
Hardware Transactional Memory. In 26th USENIX Security Symposium (USENIX
Security 17). USENIX Association, Vancouver, BC, Canada, 217-233.

Marcus Héhnel, Weidong Cui, and Marcus Peinado. 2017. High-Resolution Side
Channels for Untrusted Operating Systems. In 2017 USENIX Annual Technical Con-
ference (USENIX ATC 17). USENIX Association, Santa Clara, CA, 299-312. https:
//www.usenix.org/conference/atc17/technical-sessions/presentation/hahnel
Rand Hindi. 2023. Private Smart Contracts Using Homomorphic Encryp-
tion. https://www.zama.ai/post/private-smart-contracts-using-homomorphic-
encryption.

Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan
Del Cuvillo. 2013. Using innovative instructions to create trustworthy software
solutions. HASP@ ISCA 11, 10.1145 (2013), 2487726—2488370.

Tianlin Huo, Xiaoni Meng, Wenhao Wang, Chunliang Hao, Pei Zhao, Jian Zhai,
and Mingshu Li. 2019. Bluethunder: A 2-level Directional Predictor Based Side-
Channel Attack against SGX. IACR Transactions on Cryptographic Hardware and
Embedded Systems 2020, 1 (Nov. 2019), 321-347. https://doi.org/10.13154/tches.
v2020.i1.321-347

George Kappos, Haaroon Yousaf, Rainer Stiitz, Sofia Rollet, Bernhard Haslhofer,
and Sarah Meiklejohn. 2022. How to Peel a Million: Validating and Expanding
Bitcoin Clusters. In 31st USENIX Security Symposium (USENIX Security 22). Usenix
Association, Boston, MA, 2207-2223.

Gabriel Kaptchuk, Ian Miers, and Matthew Green. 2017. Giving State to the
Stateless: Augmenting Trustworthy Computation with Ledgers. Cryptology
ePrint Archive, Paper 2017/201. https://eprint.iacr.org/2017/201 https://eprint.
iacr.org/2017/201.

koe. 2022. Mechanics of MobileCoin. https://mobilecoin.com/files-uploads/2022/
09/Mechanics-of-MobileCoin-v0-0-39-preview-10-11.pdf.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papaman-
thou. 2016. Hawk: The blockchain model of cryptography and privacy-preserving
smart contracts. In 2016 IEEE symposium on security and privacy (SP). IEEE, 839—
858.

Aztec Labs. 2023. Aztec: the Hybrid zkRollup. https://medium.com/aztec-
protocol/aztec-the-hybrid-zkrollup-a90a197bf22e.

Uniswap Labs. 2023. The Uniswap Protocol. https://docs.uniswap.org/concepts/
uniswap-protocol. Accessed: 2023-01-23.

Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Mar-
cus Peinado. 2017. Inferring Fine-grained Control Flow Inside SGX Enclaves
with Branch Shadowing. In 26th USENIX Security Symposium (USENIX Security
17). USENIX Association, Vancouver, BC, 557-574. https://www.usenix.org/
conference/usenixsecurity17/technical-sessions/presentation/lee- sangho

Rujia Li, Qin Wang, Qi Wang, David Galindo, and Mark Ryan. 2022. SoK: TEE-
Assisted Confidential Smart Contract. Proceedings on Privacy Enhancing Tech-
nologies 3 (2022), 711-731.

Joshua Lind, Oded Naor, Ittay Eyal, Florian Kelbert, Emin Giin Sirer, and Peter Piet-
zuch. 2019. Teechain: A Secure Payment Network with Asynchronous Blockchain
Access. In Proceedings of the 27th ACM Symposium on Operating Systems Principles
(Huntsville, Ontario, Canada) (SOSP '19). Association for Computing Machinery,

SGXonerated

[40]

[41]

[42

[43

[44

[45

[46

[47

[48

[49]

[50

[51]

[52]

[53

[54

[55]

[56

[57]

[59]

[60

[61

New York, NY, USA, 63-79. https://doi.org/10.1145/3341301.3359627

Chang Liu, Xiao Shaun Wang, Kartik Nayak, Yan Huang, and Elaine Shi. 2015.
ObliVM: A Programming Framework for Secure Computation. In 2015 IEEE
Symposium on Security and Privacy. IEEE, San Jose, CA, USA, 359-376. https:
//doi.org/10.1109/SP.2015.29

Loi Luu, Duc-Hiep Chu, Hrishi Olickel, Prateek Saxena, and Aquinas Hobor.
2016. Making smart contracts smarter. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security. 254-269.

Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,
Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection
for Trusted Execution. In Proceedings of the 26th USENIX Conference on Secu-
rity Symposium (Vancouver, BC, Canada) (SEC’17). USENIX Association, USA,
1289-1306.

Sinisa Matetic, Karl Wiist, Moritz Schneider, Kari Kostiainen, Ghassan Karame,
and Srdjan Capkun. 2019. BITE: Bitcoin Lightweight Client Privacy Using Trusted
Execution. In Proceedings of the 28th USENIX Conference on Security Symposium
(Santa Clara, CA, USA) (SEC’19). USENIX Association, USA, 783-800.

Patrick McCorry, Ethan Heilman, and Andrew Miller. 2017. Atomically Trad-
ing with Roger: Gambling on the Success of a Hardfork. In Data Privacy Man-
agement, Cryptocurrencies and Blockchain Technology, Joaquin Garcia-Alfaro,
Guillermo Navarro-Arribas, Hannes Hartenstein, and Jordi Herrera-Joancomarti
(Eds.). Springer International Publishing, Cham, 334-353.

Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy (Tel-
Aviv, Israel) (HASP ’13). Association for Computing Machinery, New York, NY,
USA, Article 10, 1 pages. https://doi.org/10.1145/2487726.2488368

Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon
McCoy, Geoffrey M. Voelker, and Stefan Savage. 2016. A Fistful of Bitcoins:
Characterizing Payments among Men with No Names. Commun. ACM 59, 4 (mar
2016), 86-93. https://doi.org/10.1145/2896384

Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An Efficient Oblivious Search Index. In 2018 IEEE Symposium
on Security and Privacy (SP). IEEE, San Francisco, CA, USA, 279-296. https:
//doi.org/10.1109/SP.2018.00045

Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. 2017. CacheZoom:
How SGX Amplifies The Power of Cache Attacks. CoRR abs/1703.06986 (2017),
69-90. arXiv:1703.06986 http://arxiv.org/abs/1703.06986

Ahmad Moghimi, Jan Wichelmann, Thomas Eisenbarth, and Berk Sunar. 2017.
MemJam: A False Dependency Attack Against Constant-Time Crypto Implemen-
tations. International Journal of Parallel Programming 47 (2017), 538-570.

Malte Méser and Rainer Béhme. 2017. The price of anonymity: empirical evidence
from a market for Bitcoin anonymization. Journal of Cybersecurity 3, 2 (2017),
127-135.

Bernhard Mueller. 2018. Smashing ethereum smart contracts for fun and real
profit. HITB SECCONF Amsterdam 9 (2018), 54.

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat
Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,
and Nicolas Christin. 2017. An Empirical Analysis of Traceability in the Monero
Blockchain. https://doi.org/10.48550/ARXIV.1704.04299

Jianyu Niu, Wei Peng, Xiaokuan Zhang, and Yingian Zhang. 2022. NARRATOR:
Secure and Practical State Continuity for Trusted Execution in the Cloud. In
Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications
Security (Los Angeles, CA, USA) (CCS "22). Association for Computing Machinery,
New York, NY, USA, 2385-2399. https://doi.org/10.1145/3548606.3560620

Shen Noether, Adam Mackenzie, et al. 2016. Ring confidential transactions. Ledger
1(2016), 1-18.

Oasis Labs. 2020. The Oasis Blockchain Platform. Whitepaper. https://assets.
website-files.com/5{59478e350b91447863{593/628ba74a9%aee37587419¢f65_
20200623TheOasisBlockchainPlatform.pdf. Accessed: 2023-01-22.

Rafail Ostrovsky. 1990. Efficient computation on oblivious RAMs. In Proceedings
of the twenty-second annual ACM symposium on Theory of computing. 514-523.
Joao Otavio Chervinski, Diego Kreutz, and Jiangshan Yu. 2021. Analysis of
transaction flooding attacks against Monero. In 2021 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC). 1-8. https://doi.org/10.1109/ICBC51069.
2021.9461084

Daniel Perez and Benjamin Livshits. 2021. Smart Contract Vulnerabilities: Vul-
nerable Does Not Imply Exploited.. In USENIX Security Symposium. 1325-1341.
Phala. 2020. Phala Wiki. Wiki. https://wiki.phala.network/en-us/general/phala-
network/intro/. Accessed: 2023-01-22.

Ashay Rane, Calvin Lin, and Mohit Tiwari. 2015. Raccoon: Closing Digital {Side-
Channels} through Obfuscated Execution. In 24th USENIX Security Symposium
(USENIX Security 15). Usenix Association, Santa Clara, CA, 431-446.

Fergal Reid and Martin Harrigan. 2013. An Analysis of Anonymity in the Bitcoin
System. Springer New York, New York, NY, 197-223. https://doi.org/10.1007/978-
1-4614-4139-7_10

631

[62]

[63

=
=

[65

[66

=
=

(68

[69

[70

[71

ks
&,

[73

[74

k=
2

[76

[77

[78

[79

(80

(81

Proceedings on Privacy Enhancing Technologies 2024(1)

Mark Russinovich, Edward Ashton, Christine Avanessians, Miguel Castro,
Amaury Chamayou, Sylvan Clebsch, Manuel Costa, Cédric Fournet, Matthew
Kerner, Sid Krishna, Julien Maffre, Thomas Moscibroda, Kartik Nayak, Olya
Ohrimenko, Felix Schuster, Roy Schwartz, Alex Shamis, Olga Vrousgou,
and Christoph M. Wintersteiger. 2019. CCF: A Framework for Building
Confidential Verifiable Replicated Services. Technical Report MSR-TR-2019-
16. Microsoft. https://www.microsoft.com/en-us/research/publication/ccf-a-
framework-for-building-confidential-verifiable-replicated- services/

Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Capkun, and
Ronald Perez. 2022. SoK: Hardware-supported Trusted Execution Environments.
https://arxiv.org/abs/2205.12742. https://doi.org/10.48550/ARXIV.2205.12742
Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan
Mangard. 2017. Malware Guard Extension: Using SGX to Conceal Cache Attacks.
In Detection of Intrusions and Malware, and Vulnerability Assessment, Michalis
Polychronakis and Michael Meier (Eds.). Springer International Publishing, Cham,
3-24.

scrtlabs. 2023. Snip-20 Reference Implementation. https://github.com/scrtlabs/
snip20-reference-impl/tree/20b0dfd5b1e594e0a23bbb7cc508f7f650accde7. Ac-
cessed: 2023-02-15.

Secret Network. 2023. Resolving Newly Discov-
ered Privacy Vulnerabilities with SNIP-20 Tokens.
https://web.archive.org/web/20230614213000/https://scrt.network/blog/resolving-
newly-discovered-privacy-vulnerabilities-with-snip-20-tokens/. Accessed:
2023-06-14.

Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Interna-
tional journal of uncertainty, fuzziness and knowledge-based systems 10, 05 (2002),
557-570.

Interchain Core Teams. 2023. Cosmos SDK Documentation. https://docs.cosmos.
network/v0.47. Accessed: 2023-02-23.

Tendermint. 2023. Tendermint Core. https://tendermint.com/core/. Accessed:
2023-02-23.

Afonso Tinoco, Sixiang Gao, and Elaine Shi. 2022. EnigMap: Signal Should Use
Oblivious Algorithms for Private Contact Discovery. Cryptology ePrint Archive,
Paper 2022/1083. https://eprint.iacr.org/2022/1083 https://eprint.iacr.org/2022/
1083.

Christof Ferreira Torres, Ramiro Camino, and Radu State. 2021. Frontrunner Jones
and the Raiders of the Dark Forest: An Empirical Study of Frontrunning on the
Ethereum Blockchain. In 30th USENIX Security Symposium (USENIX Security 21).
USENIX Association, online, 1343-1359. https://www.usenix.org/conference/
usenixsecurity21/presentation/torres

Petar Tsankov, Andrei Dan, Dana Drachsler-Cohen, Arthur Gervais, Florian
Buenzli, and Martin Vechev. 2018. Securify: Practical security analysis of smart
contracts. In Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security. 67-82.

Jo Van Bulck, Daniel Moghimi, Michael Schwarz, Moritz Lippi, Marina Minkin,
Daniel Genkin, Yuval Yarom, Berk Sunar, Daniel Gruss, and Frank Piessens.
2020. LVI: Hijacking Transient Execution through Microarchitectural Load
Value Injection. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, San
Francisco, CA, USA, 54-72. https://doi.org/10.1109/SP40000.2020.00089

Jo Van Bulck, Frank Piessens, and Raoul Strackx. 2017. SGX-Step: A Practical
Attack Framework for Precise Enclave Execution Control. In Proceedings of the 2nd
Workshop on System Software for Trusted Execution (Shanghai, China) (SysTEX'17).
Association for Computing Machinery, New York, NY, USA, Article 4, 6 pages.
https://doi.org/10.1145/3152701.3152706

Stephan van Schaik, Andrew Kwong, Daniel Genkin, and Yuval Yarom. 2020.
SGAxe: How SGX Fails in Practice. https://sgaxeattack.com/.

Stephan van Schaik, Marina Minkin, Andrew Kwong, Daniel Genkin, and Yuval
Yarom. 2021. CacheOut: Leaking Data on Intel CPUs via Cache Evictions. In
2021 IEEE Symposium on Security and Privacy (SP). IEEE, San Francisco, CA, USA,
339-354. https://doi.org/10.1109/SP40001.2021.00064

Stephan van Schaik, Alex Seto, Thomas Yurek, Adam Batori, Bader AlBassam,
Christina Garman, Daniel Genkin, Andrew Miller, Eyal Ronen, and Yuval Yarom.
2022. SoK: SGX Fail: How Stuff Get eXposed. https://sgx.fail.

Xiao Wang, Hubert Chan, and Elaine Shi. 2015. Circuit oram: On tightness of
the goldreich-ostrovsky lower bound. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security. 850-861.

Ying Yan, Changzheng Wei, Xuepeng Guo, Xuming Lu, Xiaofu Zheng, Qi Liu,
Chenhui Zhou, Xuyang Song, Boran Zhao, Hui Zhang, and Guofei Jiang. 2020.
Confidentiality Support over Financial Grade Consortium Blockchain. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Management of
Data (Portland, OR, USA) (SIGMOD °20). Association for Computing Machinery,
New York, NY, USA, 2227-2240. https://doi.org/10.1145/3318464.3386127
Hang Yin, Shunfan Zhou, and Jun Jiang. 2022. Phala Network: A Secure De-
centralized Cloud Computing Network Based on Polkadot. https://files.phala.
network/phala-paper.pdf

Yi Zhou, Deepak Kumar, Surya Bakshi, Joshua Mason, Andrew Miller, and Michael
Bailey. 2018. Erays: Reverse Engineering Ethereum’s Opaque Smart Contracts. In

Proceedings on Privacy Enhancing Technologies 2024(1)

27th USENIX Security Symposium (USENIX Security 18). USENIX Association, Bal-
timore, MD, 1371-1385. https://www.usenix.org/conference/usenixsecurity18/
presentation/zhou

[82] Guy Zyskind, Oz Nathan, and Alex Pentland. 2015. Enigma: Decentralized
Computation Platform with Guaranteed Privacy. https://doi.org/10.48550/
ARXIV.1506.03471

A COST OF CONDUCTING SANDWICH
ATTACKS

We conducted benchmarking to assess the cost of running the
sandwich attack (other attacks should have similar costs) on a local
private network. The attack involves only offline simulation, which
would not be influenced by the network environment. We run a local
Secret node in v1.7.0-rc.2, on a machine with an Intel Xeon E-2276G
6-core CPU (3.80GHz) and 64 GB RAM. However, only 1 core is used
for the attack. The primary bottleneck for launching the sandwich
attack lies in the bisection search process, which progressively
reduces the range. Therefore, our focus was on benchmarking the
time required for a single iteration. It’s important to note that the
exact time to conduct each attack depends on the range being
searched and the specific application being targeted.

In our experiments, we found that one iteration of the bisection
search takes approximately 0.40s. Within each iteration, we begin
by restoring the database states, which takes around 0.06s. Addi-
tionally, we need to generate and sign a new adversary transaction.
Since we made minimal changes to Secret Network’s codebase, we
first generate a transaction and then modify the transaction nonce
by resigning it. This process involves two interactions with the
network and takes a total of 0.11s. Subsequently, we simulate the
victim and front-running transactions offline, with each simulation
costing approximately 0.06s. Furthermore, we need to query the lig-
uidity pool both before and after simulating the victim transaction,
with each query taking about 0.05s.

It is important to highlight that our focus was not on optimizing
performance, and we made modifications solely to the untrusted
code. During our benchmarking we found that 5% of the time to sim-
ulate a transaction was spent in the trusted code base (i.e. executing
ecall_handle, ecall_init, and ecall_query) and represents
code that cannot be optimized. Considering the block time of ap-
proximately 6-7 seconds in the Secret network, our unoptimized
implementation allows a malicious miner to iterate approximately
17 times before proposing a block. The miner can search within a
range of x - 217, where x represents the precision they set for the
attack. Notably, x can exceed the minimal unit of SNIP-20 tokens,
enabling the miner to enlarge the search range within this limited
time.

B ANALYSIS OF STRATEGIES FOR
CONDUCTING SANDWHICH ATTACKS

To assess the accuracy of the MEV sandwhich attacks described
in Section 6.2, we simulated various potential attacker strategies.
These strategies also assume that the attacker can paralyze their
execution of bisection sort. In a real scenario paralyzing the search
on one transaction would not affect the accuracy of the attack but
executing one transaction would affect the price of any transaction
after it, therefore attacking two transactions in parallel would affect
the accuracy of the attack on the second transaction. Typically, we

632

Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

can assume users set their transaction’s slippage limit based on a
fixed percentage of the received token’s price.

The attacker can use one round of bisection sort to determine
if a transaction is in a given range of values. To determine if a
transaction is trading above or below X of a given token (assuming
a fixed slippage percentage) the attacker would calculate the amount
of the token they would have to buy before the victim’s transaction
to result in the victim’s transaction failing. They would set guessM
from Figure 9 to this value. If that round of bisection sort fails then
that victim’s transaction is below the threshold X. If it succeded
the victim’s transaction is above the threshold.

Using this technique the attacker can filter out transactions
above or below certain values. One strategy includes spending
more rounds of bisection sort being more precise in attacking large
"whale" transactions as they would result in larger profit after the
attack. But large transactions are less common so another strategy
is to target many smaller transactions.

Our simulation code executes by looking at the transaction data
and using one round of bisection sort to filter out the top or bottom
percentage of transactions. We assume the attacker will aim to
spend the same amount of rounds of bisection sort on all transac-
tions in a the desired range. If the optimal frontrun amount for a
transaction was determine in less than the allowed rounds the extra
rounds are used on a different transactions. In our scenario the
attacker had the resources to execute the given number of rounds
of bisection sort, and the transaction mempool (i.e. list of pend-
ing transactions) always contained transactions to full use these
resources.

We analyzed these strategies using a dataset from the Trader Joe
decentralized exchange on Avalanche blockchain. This dataset in-
cludes transaction data for users trading UCSD for e-WAVAX token.
This it is the most prolific pool among the top 40 trading pairs on
Sushiswap and Uniswap on the Ethereum Network, and Trader Joe
on the Avalanche Network. The data contains 47,069 transactions
collected over 5 days. The average token transfer amount was 0.59
with a standard deviation of 1.15. The maximum transfer amount
was 48.94. We assume that the users would accept a slippage limit
of 80% of the original price of the token. We also assumed the same
starting pool amounts for each transaction. While in a real scenario
the effect of one transaction would change the pool values we use
this as an estimate. The total profits the attacker would receive for
strategies targeting the smallest and largest percentage of transac-
tions are shown in Figure 11. Figure 11 shows that the best strategy
is to consider as many transactions as possible. This dataset did not
have enough difference between the small and large transactions
where it would have been advantageous to filter out transactions.

When comparing the strategies that use the largest 10% and
smallest 90% and the largest 25% and smallest 75% of transactions
targeting the smaller half of transactions results in more profit than
the larger half because resources are wasted filtering out the smaller
transactions. But targeting the smaller half of transactions results
in a lower cap of profit as the largest transactions yielding the most
profit are excluded.

SGXonerated

5000

4000 -

3000

Total Profits

2000 -

1000 +

T T T T T T
0 10000 20000 30000 40000 50000 60000
Total Rounds of Bisection Sort

Transactions Targeted

— largest 10% largest 50%

—-=-- smallest 90% smallest 50%

— largest 25% —— largest 90%

-=-- smallest 75% —-—- smallest 10%
largest 75% — 100%
smallest 25%

Figure 11: Average profits that an attacker can receive for
a number the rounds of bisection sort executed across all
transactions from the Trader Joe USCD to e-WAVAX pool 5
day historical dataset

C USAGE STATISTICS FOR TEE-BACKED
SMART CONTRACT PLATFORMS

In Table 2 we provide some additional statistics about the TEE-
backed smart contract platforms we evaluate in this work, so to
provide additional context about their real-world usage and inter-
est. While most of these platforms are either prelaunch or have
launched recently, we note that there is considerable investment
and community interest in developing platforms which use this
technology. In order gauge to a rough measure of community in-
terest, we provide both the number of unique addresses that have
interacted with the ecosystem and the number of members in each
community’s official Discord (collected June 2023).

Table 3 includes more detailed statistics about specific SNIP-20
tokens on Secret Network.

Dhttps://web.archive.org/web/20230614000618/https://www.mintscan.io/secret,
https://web.archive.org/web/20230614000028/https://coinmarketcap.com/currencies/
secret/, https://www.businesswire.com/news/home/20220119005731/en/Secret-
Network- Announces-400-Million-in-Ecosystem-Funding- Alongside-Substantial-
New-Investment-from-Leading-Firms

Hhttps://web.archive.org/web/20230613233731/https://explorer.sapphire.oasis.
io/, https://web.archive.org/web/20230613234509/https://coinmarketcap.com/
currencies/oasis-network/, https://oasisprotocol.org/blog/the- oasis-ecosystem-fund-
reaches-235-million, https://archive.is/NphXH

Zhttps://archive.is/yUJ8w, https://web.archive.org/web/20230613235845/https://
coinmarketcap.com/currencies/phala-network/, https://medium.com/phala-network/
phala-network-value-tops-10-million- on-new-fundraising-31a8c25f9bb9

Bhttps://www.crunchbase.com/organization/obscuro-labs

%4The data has not been updated since Nov 2022. https://archive.is/OxfnG

Zhttps://secretanalytics.xyz/bridge, https://www.coingecko.com

633

Proceedings on Privacy Enhancing Technologies 2024(1)

Proceedings on Privacy Enhancing Technologies 2024(1) Nerla Jean-Louis, Yungi Li, Yan Ji, Harjasleen Malvai, Thomas Yurek, Sylvain Bellemare, and Andrew Miller

Table 2: Chain Data of TEE-based Frameworks as of June 2023. Obscuro is still in development and has not launched a mainnet
yet. We list the overall count of utilized addresses across all paratimes within Oasis, where 427 of them are from the Sapphire
paratime.

Secret Network?® Qasis Sapphire?! Phala?? Obscuro??
Online since 2020-02-13 2022-12-16 2022-04-01 N/A
Number of Transactions 8,317,479 176,951 3,363,334 N/A
Market cap $63M $257M $55M N/A
Funding $400M $235M $10+M $5.85M
Cumulative Unique Addresses 248.1K%** 258,255 3,447 N/A
Discord Members 37,142 63,029 6,660 8,171

Table 3: Snip-20 Token Statistics as of February 2023

Token Name Market Cap (USD) %> Successful Transactions Unique Senders
Secret Secret (sSCRT) $5.94m 477.6k 36.2k
Shade (SHD) $4.88m 35.7k 10.3k
Sienna $2.87m 94.2k 6.7k
Secret Eth (SETH) 39.5k 43K
Eth (SETH BSC) $1.93m 5.2k 0.7K
Tether (SUSDT) $1.55m 53.8k 2.8k
Secret Wrapped BTC (SWBTC) $950k 22.7k 1.2k
Monero (SXMR) $890k 26.5k 1.5k
Secret USDC (SUSDC) 5475k 8.3k 0.5K
USDC (SUSDC BSO) 9.6k 17k
Secret Finance (SEFI) $339k 111.5k 8.8k
Binance (SBNB BSC) $124k 27.0k 3.8k
Buttcoin (BUTT) $108k 13.4k 1.7k
ALTER $123k 21.8k 2.7k
Dai (SDAI) N/A 105.0k 0.5k
StkdSecret (stkd-SCRT) N/A 32.0k 5.7k
(Combined) $20.2m 1.08m 44.9k

634

	Abstract
	1 Introduction
	2 Background
	3 Overview of TEE-based Smart Contract Platforms Design
	4 Privacy analysis of real-world TEE-based blockchains
	4.1 Integration with existing blockchain codebases and smart contract languages
	4.2 Storage access pattern leakage
	4.3 State consistency and blockchain data confirmation
	4.4 Software update transparency

	5 Fleshing out the attacks on SNIP-20 tokens in Secret
	5.1 Tracing attacks on SNIP-20 Transfers
	5.2 Implementing transaction simulation
	5.3 Inferring SNIP-20 Transfer Amounts
	5.4 Surveillance without having to buy tokens
	5.5 Querying SNIP-20 account balances
	5.6 Forensic analysis of past SNIP-20 transfers

	6 MEV on TEE-based networks
	6.1 Background on MEV
	6.2 Sandwich attacking a private swap
	6.3 Validating our implementation and artifact

	7 Mitigations
	7.1 Coordinated vulnerability disclosure and mitigating retroactive SNIP-20 privacy leaks
	7.2 Preventing future SNIP-20 leaks
	7.3 Ethical principles

	8 Related Work
	9 Conclusion
	Acknowledgments
	References
	A Cost of Conducting Sandwich Attacks
	B Analysis of Strategies for Conducting Sandwhich Attacks
	C Usage Statistics for TEE-backed Smart Contract Platforms

