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1 INTRODUCTION

Graphs are a universal and widely used way to model relations between objects. They are useful
in a wide range of applications from social networks, simulation grids, road networks/route plan-
ning, (graph) neural networks, and many more. With exploding data sets, the scalability of graph
processing methods has become an increasing challenge. As huge problem instances in the area
become abundant, there is a need for scalable algorithms to perform analysis. Often (hyper)graph
partitioning is a key technology to make various algorithms scale in practice. More precisely, scal-
able algorithms for various applications often require a subroutine that partitions a (hyper)graph
into k blocks of roughly equal size such that the number of edges that run between blocks is min-
imized. Balance is most often modeled using a balancing constraint that demands that all block
weights are below a given upper bound. The number of applications that require such partitions
of (hyper)graphs as key subroutine is huge. Social network operators use graph partitioning tech-
niques to load balance their operation and make sure that site response times are low [95]; efficient
route planning algorithms rely on a precomputation phase in which a road network needs to be
partitioned [43]; scientific simulations that run on supercomputers use (hyper)graph partitioning
to balance load and minimize communication between processors [35, 58, 158]; partitioning (graph)
neural networks is helpful to speedup training times [193]; and (hyper)graph partitioning helps to
improve chip placements in very-large-scale integration (VLSI) design [7, 137].

On the other side, the problem is NP-hard [62] even for unweighted trees of maximum degree
three [9] and no constant-factor approximation algorithms exist [11]. Thus, heuristic algorithms
are used in practice. The purpose of this article is to give a structured overview of the rich literature,
with a clear emphasis on explaining key ideas and discussing work that has been published in the
last decade and is missing in other overviews. More precisely, our work serves as an update to a
previous generic survey on the topic [29]; in particular, we also extend the scope of the survey to
hypergraph partitioning algorithms.

There have been other (older) surveys on the topic. The book by Bichot and Siarry [23] covers
techniques for graph partitioning such as the multilevel method, metaheuristics, parallel methods,
and hypergraph partitioning, as well as applications of graph partitioning. The survey by Schloegel
etal. [159] was published around the turn of the millennium and has a focus on techniques for scien-
tific computing, including algorithms for adaptive and dynamic simulations and process mapping
algorithms. Static algorithms as well as formulations with multiple objectives and constraints are
also discussed. Monien et al. [130] discuss multilevel algorithms. Their description has a focus on
matching-based coarsening and local search that use vertex-swapping heuristics. Kim et al. [105]
cover memetic algorithms. The last generic survey on the topic by Bulug et al. [29] covers a wide
range of techniques and practical algorithms that have been published in or before 2013. For hy-
pergraph partitioning there exist two older surveys [7, 137]. Alpert and Kahng [7] discuss min-cut
and ratio cut bipartitioning formulations along with multi-way extensions, constraint-driven par-
titioning and partitioning with replication. Papa and Markov [137] discuss practical applications of
hypergraph partitioning, exact algorithms, and various local search heuristics for the problem as
well as software packages and benchmarks. Schlag [154] presents a recent overview of hypergraph
techniques in his dissertation.

Our survey' is structured as follows. We start by introducing the problems and other preliminar-
ies in Section 3. Then in Section 4, we focus on new applications that emerged in the last decade.
We continue with novel sequential techniques in Section 5. Then, we continue with covering

I This version of the survey is a shortened version of Reference [37]. The extended technical report also contains material
on streaming graph partitioning as well as process mapping.
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parallel algorithms in Section 6. We describe experimental methodology in Section 7. We conclude
with future challenges in Section 8.

2 OVERVIEW/CLASSIFICATION

The field is currently very active. On the one hand, there are streaming algorithms that are very fast
and consume little memory yet yield only low-quality solutions. These algorithms assume that in-
ternal memory of a single machine proportional to the number of vertices is available and typically
load nodes and their neighborhood one by one to directly make an assignment to a block. Hence,
the edges of a graph do not have to fit into the memory of the machine. On the other hand, there
is a wide range of sequential internal-memory algorithms that tackle partitioning problems that
fit into the main memory of a single machine without using parallelism. Recent advances in this
area provide a rich set of algorithms that are able to compute partitions of very high quality. These
high-quality algorithms often also have shared-memory parallel counterparts. While the sequen-
tial internal memory/parallel shared-memory non-metaheuristic algorithms in this area use a rea-
sonable amount of time for most applications, there are also memetic or evolutionary algorithms
that invest a lot of resources to achieve even higher quality. Note that memetic or evolutionary
algorithms can be sequential internal-memory, shared-memory or even distributed-memory paral-
lel. Due to their high running time, such algorithms are typically used only on graphs having a few
hundred thousand nodes. Exact solvers are currently able to solve only very small instances while
also requiring a lot of time to solve an instance even for few blocks. For larger numbers of blocks,
the exact solvers currently do not work well. Distributed parallel algorithms scale well to large in-
stances, but if these tools do not implement multilevel strategies, they typically have much lower
quality than sequential internal memory partitioning algorithms. Even when such algorithms use
the multilevel scheme, solution quality of the algorithms operating in this model of computation is
typically worse compared to their internal memory/shared-memory counterparts. However, this
mode of computation has the advantage that huge instances can be partitioned very quickly and
also that it enables researchers to partition huge graphs on cheap machines. Last, researchers also
work on algorithms for other platforms like GPUs to be able to fully use the capabilities of existing
hardware. However, GPUs have limited memory size and current algorithms running on a GPU
compute partitions that cut significantly more edges than high-quality internal memory schemes.

3 PRELIMINARIES
3.1 Notation

Hypergraphs and Graphs. A weighted undirected hypergraph H = (V,E, ¢, w) is defined as a set
of n vertices V and a set of m hyperedges/nets E with vertex weights ¢ : V' — R and net weights
o : E — Ry, where each net e is a subset of the vertex set V (i.e., e C V). The vertices of a
net are called pins. We extend ¢ and o to sets in the natural way, i.e., ¢(U) := Y ey c(v) and
o(F) := Y .crw(e). A vertex v is incident to a net e if v € e. I(v) denotes the set of all incident
nets of v. The set I'(v) := {u | de € E : {v,u} C e} denotes the neighbors of v. The degree of a
vertex v is d(v) := |I(v)|. We assume nets to be sets rather than multisets, i.e., a vertex can only be
contained in a net once. Nets of size one are called single-vertex nets. Given a subset V' C V, the
subhypergraph Hy- is defined as Hy» := (V/,{eN V' |e € E:enV’ % 0}).

A weighted undirected graph G = (V, E, ¢, w) is defined as a set of n vertices V and a set of m edges
E with vertex weights ¢ : V. — R, and edge weights o : E — R.. In contrast to hypergraphs,
the size of the edges is restricted to two. Let G = (V, E, ¢, w) be a weighted (directed) graph. We
use hyperedges/nets when referring to hypergraphs and edges when referring to graphs. However,
we use the same notation to refer to vertex weights c, edge weights w, vertex degrees d(v), and
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the set of neighbors I'. In an undirected graph, an edge (u,v) € E implies an edge (v,u) € E and
w(u,v) = w(v,u).

Partitions and Clusterings. A k-way partition of a (hyper)graph H is a partition of its vertex set
into k blocks IT = {V;,...,Vi} such that Uf:IVi =V, Vi#0for1 <i<kandV;NV; =0 for
i # j. We call a k-way partition II e-balanced if each block V; € II satisfies the balance constraint:
c(Vi) € Liax := (1 +¢) [@] for some parameter .2 We call a block V; overloaded if c¢(V;) > Liax.
For each net e, A(e) := {V; | Vi Ne # 0} denotes the connectivity set of e. The connectivity A(e)
of a net e is the cardinality of its connectivity set, i.e., A(e) := |A(e)|. A net is called a cut net if
Ae) > 1; otherwise (i.e., if |A(e)| = 1), it is called an internal net. A vertex u that is incident to
at least one cut net is called a border vertex. The number of pins of a net e in block V; is defined
as ®(e, Vi) := |{V; N e}|. A block V; is adjacent to a vertex v ¢ V; if de € 1(v) : V; € A(e). We
use B(v) to denote the set of all blocks adjacent to v. Given a k-way partition I of H, the quotient
graph Q := (IL{(V;,V;) | de € E : {V;,V;} € A(e)}) contains an edge between each pair of adjacent
blocks. A clustering C = {Cy, ..., C;} of a hypergraph is a partition of its vertex set. In contrast to a
k-way partition, the number of clusters is not given in advance, and there is no balance constraint
on the actual sizes of the clusters C;.

A k-way (hyper)edge partition of a (hyper)graph H is a partition of its (hyper)edge set into k
blocks 11 = {E4, ..., Ex} such that Ule E;=EE #0for1<i<k,andE;NE; =0fori#+j We
call a k-way (hyper)edge partition IT e-balanced if each block E; € II satisfies the balance constraint:
w(E)) < (1+ 6)[#] for some parameter ¢. A vertex is called a cut vertex if it contains two or
more edges in different blocks. The (weighted) vertex-cut of a k-way (hyper)edge partition is the
total weight of cut vertices.

3.2 The k-way (Hyper)Graph Partitioning Problem

Problem Definition. The k-way (hyper)graph partitioning problem is to find an ¢-balanced k-way
partition IT of a (hyper)graph H = (V, E, ¢, w) that minimizes an objective function over the cut
nets for some value of ¢. The two most commonly used cost functions in case we are dealing
with hypergraphs are the cut-net metric f.(IT) := },,cp w(e) and the connectivity metric 5 (II) :=
Y eer(Ale) — 1) w(e), where E’ is the cut-set (i.e., the set of all cut nets) [44, 49]. While the cut-
net metric sums the weights of all nets that connect more than one block of the partition II, the
connectivity metric additionally takes into account the actual number A of blocks connected by the
cut nets. When partitioning graphs, the objective is often to minimize };; w(E;;) (weight of all
cut edges), where E;; == {{u,v} € E | u € V;,v € V;}. Note that for graphs the objective functions
fe(IT) and ) (IT) revert to edge-cut (i.e., the sum of the weights of those edges that have endpoints
in different blocks). Apart from these common cost functions, other specialized objective functions
exist [29]. Figure 1 shows an example partition of a graph. Throughout the article, we use the term
high quality if the respective objective function is small compared to other tools, and low quality
if the opposite is the case.

4 APPLICATIONS

Research on graph partitioning algorithms has always been motivated by its numerous applica-
tions. Some traditional applications are parallel processing (e.g., in scientific computing), VLSI
design, route planning and image segmentation; see also the previous survey [29]. Yet, in recent
years several new applications have emerged.

>The [-] in this definition ensures that there is always a feasible solution for inputs with unit vertex weights. For general
weighted inputs, there is no commonly accepted way how to deal with feasibility; see also References [74, 83].
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Fig. 1. Left: An example graph that is partitioned into four blocks indicated by the colors. Vertices are the
small colored circles. The partition has an edge cut of 17, the block weights |V;| are green (7), red (8), blue
(10), purple (8). Right: An example hypergraph that is partitioned into four blocks indicated by the colors.
Hyperedges are indicated by black lines or colored blobs around the vertices (if more than two nodes are
contained in a net). Blocks have the same weight as in the graph case. The connectivity objective is 22 and
the number of nets cut is 20.

Distributed Databases and Query Optimization. A prominent application is distributed database
sharding [14, 41, 95, 109, 187]. Vertices represent data records, nets represent queries that access
records, and blocks correspond to shards (machines). Minimizing connectivity thus corresponds
to minimizing the average number of shards involved in a query, which optimizes the latency and
query processing time.

A similar application is to boost IO throughput in the Google search engine backend by improv-
ing cache utilization. Archer et al. [13] initialize a voting table that assigns search requests, using
graph partitioning on a bipartite graph where vertices are search terms and queries, and an edge
exists for each term contained in a query. Subsequent simulation-and-refinement further boosts
the prediction accuracy (item in cache) of the voting table.

Lietal. [116] use graph partitioning to construct a set similarity search index. The approach first
filters candidate sets using the index, then checks the remaining candidates brute-force. Vertices
represent sets, edges connect sets that are k-nearest neighbors (or within a similarity threshold,
depending on the query type), and cut size is correlated with pruning efficiency.

Data Distribution and Scheduling. Djidjev et al. [47] use graph partitioning to accelerate and
parallelize the computation of density matrices for molecular dynamics simulations. Lattice Boltz-
mann Fluid Flow simulations [57, 65, 108] fall into the classic load balancing and communication
minimization application category of graph partitioning. Yu et al. [192] consider sparse matrix vec-
tor multiplication [32], however focused on shared-memory machines with many NUMA nodes
instead of distributed systems.

Parallel graph processing systems such as Pregel [124] or Giraph [82] have become wide-spread
tools for network analysis tasks. These systems employ a think-like-a-vertex or think-like-an-
edge programming paradigm, requiring a balanced partition of vertices or edges across machines.
Streaming approaches [91, 123] based on label propagation result in better performance than tra-
ditional range-based or hash-based partitioning.

Quantum Circuit Simulation. Several papers employ nested dissection on hypergraphs to find
good contraction trees, to speed up the simulation of quantum circuits on classical non-quantum
machines [77, 93, 136]. This can be used to experimentally verify the correctness of a quantum
circuit, and push back premature claims of having achieved quantum supremacy.
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SAT Solving. Boolean satisfiability (SAT) formulas can be represented as hypergraphs. One
representation is the dual representation with clauses as vertices and variables as nets, consisting
of clauses that contain the variable (either negated or not). Mann and Papp [121] use balanced
bipartitioning to identify variables that branching solvers should focus on assigning first, such
that the formula is split into two once variables in the cut are assigned. The two sub-formulas
can be solved independently, which is expected to be faster. Most SAT solvers employ a heuristic
(variable state independent decaying sum (VSIDS)) that assigns priorities (frequency in ob-
served conflict clauses) to variables, selecting the highest priority to branch on next. The authors
consider two variants, the latter of which is more successful: force split the formula first and use
VSIDS for tie-breaking, or initialize the priorities with the partition and let VSIDS overrule the
decision.

Miscellaneous. Lamm et al. [111] formulate recombine-operators in an evolutionary framework
for independent sets based on separator decompositions and graph partitions. Given two indepen-
dent sets, their vertices in the two blocks of a separator decomposition are exchanged, yielding
two offspring independent sets that are refined using local search.

Kumar et al. [110] use a clustering formulation to compute trajectories of moving objects in
videos. Detected objects in a frame correspond to vertices and each block corresponds to an object.
The authors enforce special constraints such that each partition contains only one object per frame
and such that objects do not jump between frames.

Yao etal. [188] consider the placement of control units in software-defined networks to minimize
the average latency of messages from switches (nodes) to controllers. First the number of necessary
controllers is estimated based on message volume capacities, then the switch graph is partitioned
and one control unit is placed in each block, using a separate routine to perform placement inside
the blocks.

Quantum chemical simulations such as density functional theory exhibit quadratic time com-
plexity, which is why calculations on largely independent sub-systems are used to approximate
and accelerate the process. Von Looz et al. [178] propose to use graph partitioning to automa-
tize the sub-system construction process, where small edge cuts correspond to small introduced
calculation errors.

5 SEQUENTIAL TECHNIQUES
5.1 Classic (Hyper)Graph Partitioning Techniques

This section discusses partitioning techniques repeatedly used in this survey. We briefly outline
the multilevel paradigm and the most common local search algorithms. These algorithms move
vertices according to gain value. The gain value g, (V;) reflects the change in the objective function
when we move a vertex u from its current to a target block V; (e.g., reduction in the edge cut).

The Multilevel Paradigm. The most successful approach to solve the (hyper)graph partitioning
problem is the multilevel paradigm. It consists of three phases. In the coarsening phase, a hier-
archy of successively smaller and structurally similar (hyper)graphs are created by contracting
matchings or clusters of vertices. Once the (hyper)graph is small enough, an initial partitioning al-
gorithm obtains a partition of the coarsest (hyper)graph. In the uncoarsening phase, the partition
is projected to the next larger (hyper)graph in the hierarchy, and, at each level, local search algo-
rithms improve the objective function (e.g., edge cut). Figure 3 illustrates the multilevel paradigm.

A contraction of several vertices into a supervertex aggregates their weight in the supervertex.
To further reduce the size of the coarser (hyper)graph, one can also remove all edges that become
identical except for one, at which their weight is aggregated (self-loops or single-vertex nets in the
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Fig. 2. Label propagation algorithm in graphs. Top: nodes are scanned in a specific order. Colors of nodes
indicate their block. The algorithm initially assigns each node its own label and then visits the vertices in
some order, assigning the current vertex the label that is most frequent in its neighborhood.

hypergraph case are discarded). This way, one obtains a partition with the same balance and cut
properties when projecting a partition to the next larger hypergraph in the hierarchy.

The Label Propagation Algorithm. The label propagation algorithm, illustrated in Figure 2, was
originally proposed to detect community structures in large-scale networks [142, 194] but was also
used as a refinement technique in the partitioning context [101]. The label propagation algorithm
works in rounds, and each vertex u is associated with a label L[u]. Initially, each vertex is assigned
its own label (i.e., L[u] = u). In each round, the vertices are visited in some order, and whenever
a vertex u is visited, it adapts its label to the label appearing most frequently in its neighborhood
(ties are broken randomly). The algorithm proceeds until it reaches a predefined number of rounds
or none of the vertices changes its label in a round. The algorithm can be used as a clustering algo-
rithm in the coarsening phase [126] or a local search algorithm when the current k-way partition
is used for the initial label assignment.

The Fiduccia-Mattheyses Algorithm. Fiduccia and Mattheyses [55] presented the first linear-time
heuristic for the balanced bipartitioning problem (referred to as FM algorithm). The algorithm
works in passes, and a vertex can change its block at most once in a pass. The FM algorithm uses
two priority queues (one for each block). Initially, it inserts each boundary vertex into the prior-
ity queue, along with the gain of moving the vertex to the opposite block. Each step repeatedly
performs the move with the highest gain that does not violate the balance constraint and, subse-
quently, updates the gain of all non-moved neighbors. A pass ends when all vertices are moved,
or the balance constraint prevents further moves. The FM algorithm also performs negative gain
moves and is therefore able to escape from local optima. In the end, it reverts to the best seen
solution during the pass.

5.2 Recent Advances in Multilevel Partitioning

This section discusses recent developments in the multilevel partitioning context. We start with
two new multilevel partitioning schemes preferable in situations where either the number of blocks
is large or high solution quality is required. We then take a closer look at the different phases of
the multilevel scheme and highlight recent algorithmic improvements.

Deep Multilevel Partitioning. A k-way partition of a (hyper)graph can be obtained either by re-
cursive bipartitioning (RB) or direct k-way partitioning. The former computes a bipartition of
the input (hyper)graph and then recurses on both blocks until the (hyper)graph is divided into the
desired number of blocks. The latter partitions the (hyper)graph directly into k blocks and applies
k-way local search algorithms to improve the solution.

ACM Computing Surveys, Vol. 55, No. 12, Article 253. Publication date: March 2023.
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Fig. 3. The multilevel paradigm and its different instantiations to obtain a k-way partition.

Recently, these approaches have been generalized to deep multilevel partitioning [74]. The ap-
proach continues coarsening until only 2X vertices are left (where X is an input parameter) and
computes an initial bipartition of the coarsest (hyper)graph. In the uncoarsening phase, it biparti-
tions a block when its size becomes larger than 2X vertices as long as there are less than k blocks.
Thus one arrives at a k-partition in the end. See Figure 3 for an illustration.

The deep multilevel approach combines the strengths of the RB and direct k-way scheme: It
recursively bipartitions blocks of size O(1) in the uncoarsening phase and thereby enables using k-
way local search algorithms, while the RB scheme recursively bipartitions blocks of size O(k) and
direct k-way reverts to RB for initial partitioning [3, 17, 101, 160]. Figure 3 illustrates the different
instantiations of the multilevel scheme.

n-Level (Hyper)Graph Partitioning. The depth of the multilevel hierarchy offers a trade-off be-
tween running time and solution quality of a multilevel algorithm [6]. More levels provide “more
opportunities to refine the current solution” [6] at different granularities but require fast local
search algorithms to achieve reasonable running times. The most extreme version of the multi-
level paradigm is to contract only a single vertex at each level, which induces a hierarchy with
almost n levels. This technique was first studied by Osipov et al. [135] for graph partitioning and
later improved further by Schlag et al. [3, 154, 155] for hypergraph partitioning. The approach is
made feasible by using a highly localized variant of the classical FM algorithm [55] that initial-
izes the priority queue only with the uncontracted nodes and expands the search to neighbors of
moved nodes [135, 147]. Furthermore, the implementation uses a gain cache to avoid expensive
recomputations of move gains [3] (reducing the running time of the FM algorithm by 45%) and
an adaptive stopping rule that terminates a search early if it becomes unlikely to find further im-
provements [135] (reducing the running time by an order of magnitude). A parallel version of the
n-level scheme exists [72, 73] that uncontracts a fixed number of vertices in parallel on each level
(instead of a single vertex).

Coarsening. The coarsening phase aims to compute successively coarser approximations of the
input (hyper)graph such that its structural properties are maintained and act in some sense as a
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filter that removes as much unnecessary information from the search space as possible [179]. In
the past years, research focused on clustering techniques for complex networks and enhancing the
coarsening process with information about the community structure of the (hyper)graph.

Meyerhenke et al. [127] use the size-constraint label propagation algorithm [142] to compute
a vertex clustering, which is then contracted to form the multilevel hierarchy. Clustering algo-
rithms can reduce the size of complex networks (power-law degree distribution) more efficiently
than previously used matching-based approaches. The latter has the problem that vertices inci-
dent to high-degree vertices often remain unmatched. Therefore, Davis et al. [42] propose several
techniques to reduce the number of unmatched vertices. Two non-adjacent unmatched vertices
are matched if they share a common neighbor (also known as two-hop matching [98]) or if they
are adjacent to two vertices that are already matched. Additionally, one can extend two matched
vertices with an unmatched neighbor (three-way match).

The following two techniques recompute the (hyper)edge weights of the input (hyper)graph
and use them as an input for a multilevel algorithm. The new weights encode more information
about the importance of a (hyper)edge and should prevent a coarsening algorithm from collapsing
(hyper)edges into a single vertex that are in the cut set of a good partition. Glantz et al. [64] define
the weight of an edge e € E as the minimum conductance value of all bipartitions induced by a

spanning tree in which e is a cut edge. The conductance of a bipartition (V1, V2) is cond(V1, Vz) =
(B (V1, )

min[vol(VI;, vf)l(Vz)}

Safro [162] use the maximum algebraic distance [39, 145] between two pins of a net as its weight.

Lotfifar and Johnson [119] compute a net (hyperedge) clustering and assign a vertex to the
cluster containing most of its incident nets. Their matching-based coarsening algorithm uses the
restriction that matched vertices must be part of the same cluster. Heuer and Schlag [90] also
use vertex clustering to restrict contractions to densely coupled regions of a hypergraph. Their
algorithm transforms the hypergraph into its bipartite graph representation and then uses the
Louvain algorithm [26] maximizing the modularity objective function to exploit its community
structure.

Shaydulin and Safro [163] use ideas from algebraic multigrid as well as stable matching in which
the preference lists determine a good combination of nodes for aggregation-based coarsening. The
authors integrate their approaches into the Zoltan tool. Their experimental results with Zoltan,
hMetis and PaToH demonstrate that given the same refinement, the proposed schemes are at least
as effective as traditional matching-based schemes, while outperforming them on many instances.

where vol(V;) is the weight of all edges incident to vertices in V;. Chen and

Initial Partitioning. Coarsening usually proceeds until Q(k) vertices remain. Partitioners based
on the direct k-way scheme often use multilevel recursive bipartitioning to obtain an initial k-way
partition of the coarsest (hyper)graph [3, 17, 101, 160]. Heuer [87] showed that this leads to better
initial partitions than flat partitioning techniques. To obtain an initial bipartition, many partition-
ers run a portfolio of different flat bipartitioning algorithms multiple times (e.g., greedy graph grow-
ing, random or spectral partitioning) followed by label propagation or FM local search and continue
uncoarsening with the best bipartition out of these runs [3, 33, 98]. Preen and Smith [141] showed
that the decision when to stop coarsening is often instance-dependent and proposed an adaptive
stopping criterion (instead of using the same constant number of vertices for all instances).

Refinement. Sanders and Schulz [148] propose a flow-based refinement technique for biparti-
tions that is scheduled on block pairs for k-way partitions. The idea is to choose a subset R of
vertices around the cut of a bipartition IT = {V;, V2}. A flow network is constructed by contract-
ing Vi \ R to the source and V; \ R to the sink. The resulting maximum flow induces a possibly
improved cut, which may violate the balance constraint. Therefore, |R| is chosen adaptively and
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Fig. 4. Left: a flow network that is constructed around a bipartition of a hypergraph. Running a max-flow
min-cut algorithm on this network is used to find a reduced cut in the original network. Right: illustration
of one step in FlowCutter [80, 186], where the smaller side (source-side) plus a piercing node are contracted
to the corresponding terminal.

Fig. 5. ILP-based refinement. From left to right: a graph that is partitioned into four blocks; the set K close
to the boundary that will stay in the ILP model; the model in which the sets V; \ K have been contracted.
The latter is used as input to an ILP graph partitioning solver and the improved result is adopted.

a strongly connected-component calculation is used to characterize the set of all minimum cuts
that can then be searched for a balanced bipartition. Heuer et al. [89] generalize this approach
to hypergraphs. Gottesbiiren et al. [69, 70] accelerate flow-based hypergraph refinement by run-
ning the flow algorithm directly on the hypergraph. By incorporating FlowCutter [80, 186], which
solves incremental flow problems to trade off cut size for better balance, they explore the solu-
tion space more effectively, which leads to partitions with smaller cuts/connectivity. Examples are
shown in Figure 4. FlowCutter [80, 186] is an iterative algorithm that starts with the minimum cut
(and corresponding bipartition) between a given source and sink. If the bipartition is imbalanced,
then the smaller block is grown by contracting all of its vertices plus an additional vertex (pierc-
ing node) to the corresponding terminal. This vertex is chosen incident to the cut, and if possible
without increasing the cut-size in the following iteration. The resulting flow problems are nested
in the sense that the terminal sets only grow, which makes the flow assignment from the previous
iteration feasible but its maximality is violated.

Henzinger et al. [84] use integer linear programming (ILP) to refine k-way partitions directly.
Analogously to flow-based refinement, a small region of vertices allowed to move is selected. The
remaining vertices are contracted to one super-vertex per block. The ILP formulation is then run
on this model graph. An example is shown in Figure 5. Techniques to speed up the ILP are giving a
heuristic solution to the solver and symmetry breaking by fixing sufficiently heavy super-vertices
to their corresponding blocks. Ugander and Backstrom [174] use linear programming to select
from a set of possible moves a subset that yields the largest reduction in cut while satisfying the
balance constraint.

In experiments, flow-based (hyper)graph refinement turns out to be a key ingredient of high-
quality partitioning, i.e., it has a much better cost-benefit-ratio than other approaches to improve
quality like using ILPs, evolutionary techniques, restarts, V-cycles, and so on.
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Partitioning With Unevenly Distributed Vertex Weights. Whereas real-world applications often
use vertex and edge weights to accurately model the underlying problem, the (hyper)graph par-
titioning research community commonly works with unweighted instances [88, 154]. Multilevel
algorithms incorporate techniques to prevent the formation of heavy vertices (restricting the max-
imum allowed vertex weight or incorporate the weight of a vertex into the coarsening rating func-
tion as a penalty term), but considerably struggle if such vertices are already present in the in-
put [88], as is the case for many real-world instances [5].

There are two approaches to compute balanced k-way partitions under a tight balance constraint
in a multilevel partitioner: (i) ensure that initial partitioning finds a balanced partition [88] and that
refinement applies node moves to the partition only when they satisfy the balance constraint, or
(ii) allow intermediate balance violations [30, 31, 52, 74] and use rebalancing techniques to ensure
that the final k-way partition is balanced [74, 120, 150, 180]. Given that finding a balanced k-way
partition is a NP-hard problem [61] (reducible to the most common version of the job scheduling
problem), both approaches do not guarantee balance.

Recently, Heuer et al. [88] proposed a technique that enables partitioners based on recursive
bipartitioning to reliably compute balanced partitions in practice. The idea is to preassign a small
portion of heaviest vertices to one of the two blocks (treated as fixed vertices) and optimize the
objective function on the remaining vertices.

5.3 Evolutionary Computation

A genetic or evolutionary algorithm (GA) starts with a population of individuals (in our case,
partitions of the (hyper)graph) and evolves the population over several generational cycles or
rounds. If a genetic algorithm is combined with local search, then it is called a memetic algorithm
(MA) [105]. In each round, the GA uses a selection rule to select good individuals based on the
fitness of the individuals of the population and combines them to obtain improved offspring [66].
The combination step is typically done using a recombination operation. When an offspring is
generated, an eviction rule is used to select a member of the population to be replaced by the new
offspring. For an evolutionary algorithm, it is of major importance to preserve diversity in the
population [18]; i.e., the individuals should not become too similar to avoid premature convergence
of the algorithm. This is usually achieved by using mutation operations and by using eviction rules
that take similarity of individuals into account. All of the algorithms in the literature follow a rather
generic overall scheme. Hence, we focus on the description of the recombination operations.

Benlic and Hao [21] cluster large sets of vertices together that have been assigned to the same
block in each individual to perform a recombination operation and combine their operator with
tabu search. The recombination operation is motivated by the observation that given a number
of high-quality solutions, there is always a high number of vertices that are clustered together
throughout these solutions.

Sanders and Schulz introduced a distributed evolutionary algorithm, KaFFPaE (KaFFPaEvo-
lutionary) [149]. The recombination operation uses a modified version of the multilevel graph
partitioning solver within Karlsruhe high-quality partitioning (KaHIP) [148] that will not
contract edges that are cut in one of the input partitions. Thus, the better of the two input indi-
viduals can be used as initial partitioning and local search can efficiently exchange good parts of
solutions on multiple levels of the multilevel hierarchy. Moreover, the recombination operation
guarantees that the offspring is at least as good as the better of the two input individuals.

Ruiz and Segura [146] present a memetic algorithm using a weighted matching-based recom-
bination and diversity preservation that is similar to the algorithm by Benlic and Hao [21]. More
precisely, given two individuals, the recombination operation computes a matching in a bipartite
graph where the left hand side represents the blocks of the first individual and the right hand side
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Fig. 6. lllustration of the repartitioning process. A graph that has an initial four-way partition goes through
two subsequent changes: Al where portions of the graph are removed, A? where new elements (vertices
and edges) are inserted in the graph. After each of these changes, a repartitioning routine adapts the previ-
ous four-way partition to the new graph state while optimizing for one or more metrics such as edge-cut,
imbalance, and migration of elements between blocks.

represent the blocks of the second individual. Edges between the vertices are weighted by the size
of the intersection of the corresponding blocks. In this bipartite graph, a matching is computed
and the corresponding intersections are used as the core of the sets in the new partition (offspring).
Moreover, the algorithms use local search with negative cycle detection to further reduce the edge-
cut of the computed partitions [151]. When an offspring is inserted into the population, the indi-
vidual having the highest similarity is evicted. Here, similarity between two individuals is based
on the weight of the matching in the bipartite graph defined above.

Henzinger et al. [84] provide a recombination operator that is based on integer linear program-
ming and integrate this into KaFFPaE [149]. The new recombination operation builds and solves
an integer linear program from multiple individuals of the population. Roughly speaking, the au-
thors take [ individuals (partitions) and build an overlap graph by contracting pairs of nodes that
are in the same block in every partition. The original partitioning problem is then solved on the
(much smaller) overlap graph using integer linear programming that is initialized with the block
affiliations according to the partition that has the lowest cut value. When multiple partitions have
the same cut value, one is chosen at random.

Andre et al. [10] generalize KaFFPaE to the multilevel memetic hypergraph partitioner KaHy-
ParE. They also introduce a multilevel multi-point recombination operator that is applied to the
best individuals. This operator penalizes contraction of vertices that appear in nets that are cut in
many parents. Preen and Smith [141] refine KaHyParE with an adaptive scheme to stop coarsening.

Besides memetic algorithms for hypergraph and graph partitioning, there are also algorithms
for other problem variations. For example, Moreira et al. [131] and Popp et al. [139] gave memetic
algorithms for acyclic (hyper)graph partitioning in which the input is an acyclic (hyper)graph
and the partition has to fulfill an acyclicity constraint. Moreover, Schulz and Sanders [152] gave a
distributed evolutionary framework to compute k-way vertex separators in graphs.

5.4 Repartitioning

Graph repartitioning is an extension of graph partitioning that copes with dynamic graphs, i.e.,
graphs whose set of vertices and edges are modified over time. Assuming that a graph is partitioned,
dynamic changes on its components can make its blocks imbalanced and its edge-cut or vertex-cut
larger. Figure 6 illustrates the evolution of a graph over time followed by repartitioning efforts, In
general, a rough upper bound for repartitioning quality can be obtained by partitioning the whole
graph from scratch every time it is modified. Since this is expensive, many repartitioners use faster
approaches.

Vaquero et al. [176] propose a distributed repartitioning algorithm for large-scale graph process-
ing systems. In their algorithm, hashing is used as initial partitioning for all vertices. Based on local
information, a label propagation scheme iteratively migrates vertices to blocks where most of their
neighbors are located until a convergence is achieved. This procedure natively deals with modifi-
cations in the graph. Their experiments show that their approach is able to keep a better edge-cut
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and application performance upon graph changes in comparison to the hashing algorithm. The
authors did not compare their algorithm against other state-of-the art repartitioning algorithms.

Xu et al. [185] propose LogGP, a repartitioning algorithm with centralized coordination for
graph processing systems. Their algorithm analyzes and reuses historical information to improve
the partitioning. Particularly, LogGP builds a hypergraph by combining the graph with hyper-
edges that represent previous historical partitions. This hypergraph is then partitioned by a novel
streaming pin partitioning algorithm. During the execution, the system uses statistical inferences
from running logs to optimize the partitioning process. In their experiments, LogGP outperforms
state-of-the-art streaming and repartitioning algorithms with respect to edge-cut and application
runtime.

Nicoara et al. [134] propose a lightweight repartitioning algorithm and integrate it in their own
distributed social network database system Hermes. Within Hermes, the initial partitioning is per-
formed with hashing or Metis, while their repartitioning algorithm is triggered when there is a
change in the vertex set of the graph. Repartitioning uses iterative local improvement of balance
and edge cut. The associated data is moved only when the improvement process is finished. In
their experiments with real-world workloads, their algorithm produces roughly the same edge-cut
while migrating up to an order of magnitude less data in comparison with Metis (repartitioning
from scratch). Moreover, their algorithm improves around 1.7 times over hashing with respect to
aggregate throughput.

Huang and Abadi [94] propose Leopard, an algorithm that solves graph repartitioning while also
replicating vertices. Leopard can potentially take advantage of any one-pass vertex partitioning
algorithm. This is possible, since these algorithms are vertex-centered, so they can be used locally
on a dynamic graph at any moment. Moreover, Leopard is the first algorithm to integrate vertex
replication with the repartitioning. This replication provides fault tolerance and improves locality,
which even increases the partitioning quality, since it is mostly based on local information. Their
experiments show that Leopard without vertex replication maintains a partition quality compa-
rable to running Metis from scratch at any moment. However, Leopard with vertex replication
further reduces edge-cut by up to an order of magnitude.

Kiefer et al. [104] propose a repartitioning algorithm optimized for systems whose performance
does not scale linearly with the input size. The authors start by formulating a penalized version
of the graph partitioning problem by defining the weight of a block as the sum of weights of its
vertices plus a penalty function that grows monotonically with the cardinality of the block. In
practice, this formulation penalizes resource consumption, which models the nonlinear behavior
of the performance of some real-world systems. The authors modify a static multilevel algorithm
for graph partitioning to solve the penalized version of the problem, then this multilevel algorithm
is used within an adapted version of a hybrid repartitioning strategy. Their hybrid repartitioning
algorithm works by triggering a local refinement whenever the balance constraint is violated and
computing a whole new partition in the background after a given number of refinements. More
specifically, this new partition is computed from scratch; afterward its blocks are mapped onto
the blocks of the previous partition to minimize migration costs (see extended version of this
survey [37] or supplementary material for more details on process mapping). Then it replaces
the current partition only if the new edge-cut compensates the migration overhead. The authors
implement their algorithms on the Metis [98] framework and show that their static algorithm takes
28% more time than Metis on average while keeping a linear complexity on the amounts of vertices,
edges and blocks. Finally, their repartitioning algorithm is able to keep imbalance, edge-cut, and
migration time low throughout graph updates.

Fan et al. [54] study the problem of repartitioning vertices (edges) to simultaneously mini-
mize edge-cut (vertex-cut) and the modifications to the initial partition. The authors prove robust
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intractability even for restricted cases of the problem. Moreover, they provide nontrivial proofs
that this problem is unbounded with respect to edge-cut and vertex-cut. Based on the presented
theorems, the authors derive a strategy to convert successful partitioning algorithms into repar-
titioning algorithms while ensuring small migration cost and keeping the same partition quality
bounds of the original algorithm. As proof of concept, the authors apply their strategy on algo-
rithms such as Fennel [172] (vertex partitioning) and higher degree replicated first (HDRF) [28]
(edge partitioning). Finally, the authors validate their algorithm experimentally against the repar-
titioning algorithm Hermes [134] and algorithms to partition from scratch such as ParMetis [97].
In their experiments, their algorithms are up to an order of magnitude faster then their original
counterparts while retaining a comparable or even better partition quality.

5.5 Objective Functions and Problem Variations

The simple balanced (hyper)graph partitioning problems studied in most of this survey does not
capture all aspects relevant to applications. Therefore, additional issues such as multiple con-
straints, directed edges, matrix partitioning, process mapping, and various ways of modelling com-
munication costs have been considered.

5.5.1 Objective Functions. Kaya et al. [102] present an experimental study on the influence of
different partitioning models and metrics on the performance of parallel sparse matrix-vector
multiplication (SpMxV). To do so, real-life and artificial sparse matrices are partitioned using
several matrix partitioning models. The authors then measure the running time of matrix-vector
multiplications using three different SpMxV implementations and determine the influence of dif-
ferent partition metrics on the running time by performing a regression analysis. The experimental
evaluation shows that the right partition model and metric depends on the number of processing
elements used, the specific SpMxV implementation and the size and structure of the matrix. More
specifically, minimizing the total number of messages sent is more important than minimizing
the per-processing element send volume, in particular if the number of processing elements is
> 64. The checkerboard partition model [34] reduces most of the partition metrics and generally
achieves the lowest running time.

Originally proposed by Schloegel et al. [157], the multi-objective approach attempts to minimize
multiple objective functions simultaneously. To this end, Deveci et al. [44] recently introduced
the multi-objective hypergraph partitioner UMPa. While previous work [24, 173] on this problem
variation minimized multiple objectives in multiple phases, where the first phase optimizes the pri-
mary objective, which may not be worsened by later phases, UMPa uses a single-phased approach
to optimize a primary metric in combination with a secondary and tertiary metric. This is done
by greedily moving boundary vertices such that the primary metric is optimized, while using the
secondary (and tertiary) metrics for tie-breaking if multiple eligible target blocks maximize the
primary (or secondary) metric. The choice of the best target block of a boundary vertex depends
on its gain values, i.e., the change of the metric if the vertex is moved to another block. To this end,
the authors describe how gain values can be computed efficiently for the communication volume
and number of messages metrics as well as both metrics on a per-block basis.

5.5.2  Multi-constraint Graph Partitioning. Balanced graph partitions are usually constrained
by an upper limit on the weight of each block. In the multi-constraint graph partitioning model
introduced by Karypis and Kumar [99], each vertex of the graph is associated with a vector of
weights, and a balance constraint is imposed on each weight. Multi-constraint partitioning was ex-
tended for hypergraphs [38], enabling 2D coarse-grain partitioning of sparse matrices/graphs [34].
Recently, Recalde et al. [144] introduced an exact algorithm for the multi-constraint graph par-
titioning problem. Two integer programming formulations are provided, and the authors prove
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several families of inequalities associated with the respective polyhedras. Using a branch-and-
bound-based approach, Recalde et al. can solve real-world instances with 30 vertices in approxi-
mately half a minute of CPU time. Moreover, several of the proven families of inequalities signifi-
cantly reduce the number of branch-and-bound vertices and the optimality gap.

5.5.3 Directed Acyclic (Hyper)graph Partitioning. If the input instance is a directed acyclic
graph (DAG), then one is often interested in finding a partition with an acyclic quotient graph.
Moreira et al. [132] show that perfectly balanced graph partitioning is NP-complete even under the
additional acyclicity constraint, and that there are no constant-factor approximation algorithms for
k > 3. Herrmann et al. [85, 86] and Moreira et al. [132] both propose multilevel heuristics for DAG
partitioning. Popp et al. [139] adapt these techniques to directed acyclic hypergraph partitioning.

Moreira et al. [132] coarsen the graph using size-constraint label propagation [127]. Since this
algorithm is not adapted to DAGs, contracting the computed clusters creates coarse graphs with
cycles. Thus, the partitioner computes an initial acyclic partition before coarsening. Restricting
clusters to single blocks then ensures that the partition of the input graph can also be used as a
partition of the coarsest graph. Herrmann et al. [86] present an acyclic clustering algorithm, which
ensures that coarse graphs are acyclic. The top-level of a DAG vertex v is defined as the longest
distance from any source of the DAG to v. Based on the top-level of adjacent vertices, conditions
for inter- and intra-cluster edges are formulated and it is shown that a clustering respecting those
conditions yields an acyclic coarse graph. Moreira et al. compute an initial partition by cutting
the topologically ordered vertices of the graph into k chunks of equal size. Herrmann et al. adapt
greedy graph growing to initial bipartitioning [85] and initial k-way partitioning [86]. Moreover,
bipartitioning the graph as if it was undirected (using, for instance, Metis [98]) and fixing the
acyclicity constraint afterwards [86] seems promising. For refinement, both Herrmann et al. and
Moreira et al. adapt the FM algorithm to DAG partitioning by restricting the set of possible vertex
moves to those that do not violate the acyclicity constraint. Herrmann et al. [86] note that this
condition can be checked efficiently if the partition has only two blocks.

5.5.4  Symmetric Rectilinear Matrix Partitioning. Yasar et al. [189, 190] consider the symmetric
rectilinear (Cartesian) sparse matrix partitioning problem. Here, the columns and rows of a sparse
matrix are partitioned using the same partition vector (in contrast to the more general rectilinear
matrix partitioning problem [78, 122], in which different vectors are used). This yields a tiling of
the sparse matrix with square tiles on the diagonal. The goal is to find a partition that minimizes
the weight (i.e., the sum of all nonzero matrix entries assigned to a tile) of the heaviest tile or, given
an upper limit on the weight of a tile, to find a partition subject to the constraint with a minimum
number of cuts. The authors show that both problem variations are NP-complete [189], propose
heuristics to optimize either objective, and provide efficient implementations thereof. Running
time is reduced by sparsifying the matrix. Using these techniques, the algorithm can partition a
graph representing the Twitter social network with approximately 1.5 billion edges in less than 3
seconds on a modern 24-core system.

6 PARALLEL ALGORITHMS

Most of the initial work on graph partitioning involved sequential algorithms. These algorithms
have been extended to work in distributed-memory environments, in particular for balancing
processor workloads in parallel applications. In this use case, a distributed-memory application
already has a distribution of the graph; for memory scalability, the entire graph is not stored in
every processor. Thus, distributed-memory partitioning algorithms do not typically have a global
view of the entire graph; they often make partitioning decisions based on partial views of local
graph data. As a result, they can have lower solution quality than their sequential counterparts.
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Still, distributed-memory algorithms are crucial for graphs that are too large to fit in a single mem-
ory space, and for applications wishing to partition their data dynamically to adjust for changing
computational workloads.

In recent years, progress has been made on shared memory algorithms as shared memory archi-
tectures offer greater flexibility than distributed-memory architectures. For example, random mem-
ory accesses or atomic updates can be done orders of magnitude faster compared to distributed-
memory machines. Because shared-memory algorithms have a global view of the graph, they can
achieve the same solution quality as their sequential predecessors. They are not feasible, however,
for extremely large graphs that do not fit in a single memory space.

6.1 Shared Memory

Most of the algorithms discussed in this section are multilevel algorithms. Therefore, we structure
the discussion into the separate contributions in each phase. The multilevel algorithms we con-
sider are Mt-Metis by Lasalle and Karypis [113], Mt-KaHiP by Akhremtsev et al. [4], Mt-KaHyPar
by Gottesbtiren et al. [71] (hypergraphs), KaMinPar by Gottesbiiren et al. [74] (deep multilevel),
and BiPart by Maleki et al. [120]. The following work is focused on transferring the sequential
approaches to shared memory as faithfully as possible, while sometimes incorporating lessons
learned from distributed memory.

6.1.1 Coarsening. Most coarsening algorithms are based on greedy matching or greedy cluster-
ing. These algorithms visit vertices in some order (e.g., random), calculate the ratings (e.g., heavy-
edge) for joining neighboring clusters (or match with neighbor), and then join the highest rated
cluster. Visiting vertices in parallel yields faithful parallelizations of the sequential approaches.
The challenge is to prevent inconsistent clustering decisions between threads.

Catalytirek et al. [36] propose parallel schemes for agglomerative clustering and greedy match-
ing that use locking, in addition to a lock-free version of greedy matching that resolves conflicts
in a second pass. The lock-based algorithms first try to lock the visited vertex, calculate ratings,
and then iterate through the candidates. When a better candidate is found, its lock is tested. If
successful, then the old candidate is replaced and unlocked. For the lock-free resolution scheme,
the matches are stored in a global array M without protecting write access. After one pass, vertices
u with M[M[u]] # u are matched with themselves M[u] « u. These are vertices whose match
was visited concurrently and matched to a different vertex. In their evaluation, the lock-based
algorithms fare equally well as the sequential versions in terms of cardinality and heavy-edge met-
ric, whereas the algorithm resolving conflicts in a second pass falls off by 10% in the heavy-edge
metric.

The resolution-based matching scheme is also used by LaSalle and Karypis [113] in Mt-Metis.
On inputs with skewed degree distributions (such as complex networks), maximal matchings are
small and thus coarsening converges too slowly. If too few vertices are matched after a pass, then
pairs of non-adjacent vertices that have identical neighbors and low degree are matched. If still
too few vertices are matched, then any vertex pair that shares a common neighbor can be matched.
This technique is dubbed two-hop matching [115].

Akhremtsev et al. [4] instead use parallel size-constrained label propagation clustering [126] to
coarsen skewed inputs more effectively. No locks are employed, so cyclic cluster joins may occur.
The cluster size constraint ensures that initial partitioning can find a feasible partition. Cluster
sizes are updated with atomic instructions. The size constraint is checked before the update, but
this offers no atomic consistency. Hence, the instructions’ results are checked to guarantee the size
constraint (and revert if exceeded). For coarsening it is not necessary to strictly adhere to the size
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constraint (whereas it is for refinement to guarantee balance). Label propagation is also used in
KaMinPar [74], but the atomic check is omitted for coarsening (not for refinement).

For Mt-KaHyPar, Gottesbiiren et al. [71] use parallel agglomerative clustering but defer the
locking after the rating and target cluster selection, locking only the visited vertex and target
cluster. Vertices trying to cyclically join each other are detected and resolved on-the-fly, recursively
merging the associated clusters.

6.1.2  Initial Partitioning. For initial partitions, LaSalle and Karypis [113] use recursive biparti-
tioning. Each thread sequentially computes a bipartition, from which the best one is selected. For
recursion, the threads are statically split into two groups, working on the two separate subgraphs.
This is later improved [115] to threads cooperating on one bipartition if the graph is sufficiently
large instead of independent sequential trials. Akhremtsev et al. [4] compute independent k-way
partitions with sequential KaHiP [148]. The downsides of these two approaches are potentially
severe load imbalance (recursive bipartitioning) or being a sequential bottleneck. To overcome
this, Gottesbiiren et al. [71] use a work-stealing task scheduler instead of splitting threads for re-
cursive bipartitioning with parallel (un)coarsening. For flat bipartitions, a portfolio of sequential
algorithms is run independently in parallel [87, 155].

The deep multilevel approach [74] offers additional parallelism through repetitions (forks) at
different coarsening levels. At these stages the graphs may be too small to make efficient use of
parallel (un)coarsening, such that splitting threads off for repetitions comes at little to no running
time penalty. Using randomized components (coarsening, initial bipartitioning, refinement) thus
offers multiple diversified solutions from which the best is chosen.

Slota et al. [165] use parallel k-source BFS to compute flat k-way partitions. Vertices join the
blocks of their parents. Their approach does not use coarsening, which justifies using a flat parallel
algorithm at this stage.

Maleki et al. [120] parallelize greedy hypergraph growing [32, 98] for bipartitioning. All vertices
are assigned to block V. Then the gains of moving the vertices in block V; to V; are computed.
The V|V] highest rated vertices are moved, before the gains of vertices remaining in block Vj are
recomputed. This is repeated until the bipartition is balanced.

6.1.3 Refinement. The two most crucial questions that must be addressed in the refinement
phase are how to maintain a balanced partition and how to make sure that concurrent moves do
not result in worse cuts. Some refinement algorithms are more difficult to parallelize than others.
Unsurprisingly, the more sophisticated techniques, in particular those able to escape local minima,
are more difficult to parallelize, as intermediate negative gain moves are required. In particular FM
and KL are known to be P-complete [153], which makes the existence of poly-log depth algorithms
unlikely.

Label Propagation. The most straightforward approach to parallelize is label propagation: simply
visit vertices in parallel. While gains can be incorrect due to concurrent moves in their neighbor-
hood, this does not affect cut optimization too much in practice. Balance can be ensured by using
atomic instructions to update block weights [4, 71], or by first collecting moves and approving in
a second step [75, 95, 120]. During refinement, it is important to enforce the size constraint by
checking the result of the atomic instruction, to guarantee a balanced partition.

Greedy. LaSalle and Karypis [113] parallelize Metis’ greedy refinement by statically assigning
vertices to threads and running the sequential algorithm on the local vertices. The sequential
algorithm performs FM on boundary vertices, but stops once no positive gain moves remain. This
eases parallelization, since no moves must be reverted, and thus there is no serial move order to
observe. However, it does eliminate the ability to escape local minima. Moves are communicated
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to other threads of neighboring vertices via message buffers. The threads frequently check their
buffers to update local gains. Further, the refinement is split into an upstream and a downstream
pass, where vertices are only allowed to move into blocks with higher (respectively, smaller) iden-
tifier than their current block. This avoids accidental cut-degrading concurrent moves [97] but
restricts the search space, since some blocks quickly become close to overloaded. Balance checks
are done optimistically with locally updated block weights. Since this may result in balance viola-
tions, synchronization points after passes are used to revert some moves to restore balance.

Parallel Localized FM. Localized FM [148] is a variant of FM that starts with a few boundary
vertices and expands its search space to neighbors of moved vertices. It is good at escaping local
minima due to allowing negative gain moves, but not wasting too much time on unpromising areas
through short search sprints. This approach can be parallelized by performing multiple indepen-
dent localized searches, as opposed to standard FM, which is difficult to parallelize efficiently [153].
Akhremtsev et al. [4] organize the boundary vertices in a queue that is randomly shuffled. Threads
repeatedly poll seed vertices from the queue and perform localized FM around their seeds. Moves
are not communicated to other threads. Instead, each thread maintains a local partition — an array
for block weights and a hash table for partition IDs. The rationale for keeping moves private is that
reverting (negative gain) moves at the end of a localized search confuses other searches. Searches
may overlap in their local vertices, but each vertex is moved only once (atomic test-and-set). Once
the global queue is empty, the local move sequences of the threads are concatenated into a single
sequence. To ensure a balanced partition and no cut degradation, the gains of this sequence are
recomputed sequentially, and the prefix that yields the smallest edge cut subject to the balance
constraint is applied.

In Mt-KaHyPar, Gottesbiiren et al. [71] apply local move sequences to the global partition as
soon as a local optimum is found. This provides more accurate information to the other threads.
Additionally, the resulting move order more adequately reflects the partition state on which the
move decisions of the localized searches are based. Finally, it reduces the memory for hash tables,
while keeping the negative gain moves at the end of a localized search private. This is important for
hypergraphs where there is more information (e.g., ®(e, i)) stored in local partition data structures
than in graph partitioning. Moves applied to the global partition are rejected if they violate the
balance constraint and block weights are maintained with atomic instructions.

Parallel Flow-based Refinement. The flow-based refinement from Section 5.2 offers two paral-
lelism sources that are investigated in Reference [76]. The core routine works on bipartitions,
such that it can be applied to different block pairs of a k-way partition in parallel. A basic ver-
sion only runs non-overlapping block pairs in parallel, but the authors show that overlapping
searches are feasible with certain restrictions, and necessary for better parallelism. The second
parallelism source is the flow algorithm, where the well-known push-relabel algorithm is nicely
amenable to parallelization. The approach is integrated in the state-of-the-art parallel multilevel
framework Mt-KaHyPar. Experiments show that the partition quality of the new algorithm is on
par with the highest-quality sequential code (KaHyPar), while being an order of magnitude faster
when using 10 threads.

Hill Scanning. LaSalle and Karypis extend their greedy refinement to escape local minima to
some extent [114] by employing a simplified variant of localized search. Whenever only negative
gain moves remain in the thread-local priority queue, a small group of vertices around u (up
to 16) is incrementally constructed, with the hope that moving the entire group reduces the
cut. The group is constructed in the same way as localized FM expands its search; however, the
expansion stops as soon as an improvement is possible. The selected vertices are not restricted to
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the thread-local ones, as opposed to the greedy algorithm. One restriction is that all vertices must
be moved to the same block.

Techniques for Accurate Gains. Gottesbiiren et al. [71] double-check gains for localized FM and
label propagation using a technique named attributed gains. Recall that ®(e, i) denotes the number
of pins that net e has in block V;. When vertex u is moved from block V; to V;, ®(e, s) is (atomi-
cally) decremented and ®(e, t) is incremented for each e € I(u). Reducing ®(e, s) to zero attributes
an w(e) connectivity reduction, whereas increasing ®(e,t) to one attributes an w(e) increase to
moving u. If the overall attributed gain of a move is negative, then it is reverted.

The global moves in localized FM are collected in a sequence in the order in which they were
applied. As in Mt-KaHiP, Gottesbiiren et al. perform a gain recalculation on this sequence in Mt-
KaHyPar, for which a parallelization is proposed [71]. Analogously to attributed gains the last pin
of a net e moved out of a block is attributed an w(e) reduction (if no pin moved in before) and the
first pin moved into the block is attributed an w(e) increase (if none were contained before). This
can be calculated in two passes over the pins of e. Each net incident to a moved vertex is handled
independently in parallel, with gain attributions distributed using atomic fetch-and-add.

Finally, the authors [71] show that updating a global gain table [3, 55, 112] can be performed in
parallel with atomic instructions. Analogously to attributed gains, gain table updates are triggered
by specific observed values when the ®(e, i) values are updated. For neighbors of moved vertices
their priority queue key is updated with the associated table entries. Further, when a vertex is
extracted from the priority queue, its key is checked against the table entries, and reinserted with
the new key, if worse. This way, searches gradually update their priority queues to global partition
changes without resorting to message passing.

Rebalancing. If vertices are moved concurrently, then it does not suffice to check whether each
single move would preserve balance, but rather some synchronization mechanism is necessary.
Therefore, some refinement algorithms cannot guarantee balanced partitions, so there is a need for
explicit rebalancing algorithms. Furthermore, even if some refinement algorithms can guarantee
balance, intermediate balance violations can lead to smaller cuts after a rebalancing step.

Slota et al. [165] use label propagation with gains multiplied by Ly« /|c(V;)] to favor moving into
lighter blocks [123]. Maleki et al. [120] use the same approach as their graph growing paralleliza-
tion for rebalancing two-way partitions, starting with a non-empty lighter block that is gradually
filled.

Lasalle and Karypis [113] integrate rebalancing into their parallel greedy refinement. The thread-
local move buffers are traversed in reverse order and moves into overloaded blocks are reverted.
Each thread is responsible for restoring excess weight proportional to the amount it moved into
that block.

For large k, Gottesbiiren et al. [74] use one priority queue per overloaded block with the ratio
of highest gain (to a non-overloaded block) and vertex weight as key. Each queue is filled with
just enough vertices to remove the excess weight, but neighbors of moved vertices in the same
former block are inserted, for the case that designated target blocks become close to overloaded.
Parallelism is achieved by emptying different overloaded blocks in parallel.

Gottesbiiren et al. [71] allow controlled balance violations in the gain recalculation step of local-
ized FM in Mt-KaHyPar. Label propagation on the next level is often able to rebalance, and explicit
rebalancing similar to label propagation is employed on the finest level.

Parallel n-level (Un)Coarsening. Gottesbiiren et al. [73] propose an n-level version [3, 135] of
Mt-KaHyPar [71]. With sequential n-level, only one vertex is (un)contracted at a time, which is
inherently sequential but offers high solution quality through highly localized refinement. In the
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parallel version, vertex pairs are contracted asynchronously with vertices to be contracted orga-
nized in a hierarchical forest data structure. The forest yields precedence conditions (bottom up)
for the asynchronous contractions. With this, vertices in different subtrees can be contracted in-
dependently in parallel, as soon as their children are finished. Fine-grained locking is employed to
edit the hypergraph data structure, and dynamically maintain consistency of the forest.

Uncoarsening introduces parallelism by uncontracting batches of b > 1 vertices in parallel. The
batches are constructed by traversing the forest in top-down order, assembling contractions that
can be reverted independently in a batch. Uncontracting a batch resolves the last dependencies
required to uncontract the next batch. The vertices of the current batch serve as seeds for highly
localized parallel refinement (label propagation and FM).

Determinism. Researchers have advocated the benefits of deterministic parallel algorithms for
several decades [25, 168], including ease of debugging, reasoning about performance, and re-
produciblity. A downside is less flexibility in terms of algorithm design choices and potential
overheads for synchronizing optimization decisions. For example, the deterministic version of
Mt-KaHyPar is a factor of 1.16 slower than an equivalent non-deterministic configuration, and
exhibits a factor of 1.029 higher connectivity (both aggregated using geometric mean). Interest-
ingly, this degradation stems from coarsening [75], not refinement.

Maleki et al. [120] propose BiPart [120], a deterministic multilevel recursive bipartitioning al-
gorithm. For coarsening, vertices are matched to their smallest net with ID hashes as tie breakers.
All vertices matched to the same net are contracted without restricting coarse vertex weights. Ini-
tial partitioning uses the parallel greedy graph growing described above. For refinement, the gain
for moving each vertex to the opposite block is computed in parallel. Let Iy, /; denote the number
of vertices with positive gain in block Vp, V. Then the min(ly, [;) vertices with highest gains are
swapped, an approach that was already proposed for Social Hash [95]. If the hypergraph has unit
vertex weights, then this maintains a balanced partition. However, this algorithm is used within the
multilevel framework, where non-uniform vertex weights occur from coarsening. Thus, the graph
growing rebalancing described above is employed. Note that gains become stale after a neighbor
is moved, and thus the overall cut reduction is not the sum of the gains.

Gottesbiiren and Hamann [75] present a deterministic version of Mt-KaHyPar [71]. The label
propagation style algorithms for preprocessing, coarsening and refinement of Mt-KaHyPar are
re-implemented in a deterministic fashion using synchronous local moving [81]. Move decisions
do not depend on other moves in the current round. Rounds are further split into sub-rounds to
incorporate more up-to-date information. After each sub-round some of the moves are approved
and some are denied, for example due to the balance constraint or a cluster size constraint for
coarsening. For refinement, the same method as BiPart [120] and SocialHash [95] is used: swapping
highest gain prefixes between block pairs. To incorporate non-unit vertex weights, the cumulative
weights of all prefixes of the move sequences are computed. The best prefix combination is then
selected similar to a parallel merge.

6.2 Distributed Memory

Distributed (hyper)graph partitioning is one way to handle large inputs that do not fit into the
main memory of a single machine. In the distributed-memory model, several processors (PEs) are
interconnected via a communication network, and each has its private memory inaccessible to oth-
ers. Computational tasks on each PE usually operate independently only on local data representing
a small subset of the input. Intermediate computational results must be exchanged via dedicated
network communication primitives.
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Distributed (hyper)graph processing algorithms require that the vertices and edges of the in-
put are partitioned among the processors. Since many applications use balanced (hyper)graph
partitioning to obtain a good initial assignment, much simpler techniques are used in distributed
partitioners. There exist range-based [128] and hash-based partitioning techniques [166, 167]. The
former splits the vertex IDs into equidistant ranges, which are then assigned to the PEs. Since
both techniques do not consider the (hyper)graph structure, it could lead to load imbalances or
high communication overheads. However, one could also migrate vertices as more information
about the structure of the (hyper)graph is available, e.g., when recursing on a subgraph obtained
via recursive bipartitioning [22, 45]. If geometric information is available, then one can also use
space-filling curves [16, 177].

Each PE then stores the vertices assigned to it and the edges incident to them. The edges stored
on a PE can be incident to local vertices or vertices on other PEs (also called ghost or halo vertices).
We say that a PE is adjacent to another PE if they share a common edge. Processors must be able to
identify adjacent PEs to propagate updates, e.g., if we move a vertex to a different block, then we
have to communicate that change to other PEs in the network such that local search algorithms
can work on accurate partition information. However, each communication operation introduces
overheads that can limit the scalability of the system. Thus, the main challenge in distributed
(hyper)graph partitioning is keeping the global partition information on each PE in some sense up
to date while simultaneously minimizing the required communication.

The remainder of this section describes the algorithmic core ideas of recent publications in that
field and abstracts from the physical placement of the vertices and the actual representation of the
distributed (hyper)graph data structure. However, we assume that each vertex knows on which PE
its neighbors are stored.

Local Search. The label propagation heuristic is the most widely used local search algorithm in
distributed systems [46, 95, 97, 123, 128, 166, 170, 180]. Other approaches schedule sequential two-
way FM [55] on adjacent block pairs in parallel [40, 92, 106]. However, this limits the available
parallelism to at most the number of blocks k.

Parallel label propagation implementations mostly follow the bulk synchronous parallel model.
In a computation phase, each PE computes for its local vertices their desired target block. In the
communication phase, updates are made visible to other PEs via personalized all-to-all commu-
nication [128, 166]. Meyerhenke et al. [128] use an asynchronous communication model. If the
computation phase of a PE ends, then it sends and receives updates to and from other PEs and
immediately continues with the next round.

In the parallel setting, the move gain of two adjacent vertices may suggest an improvement when
moved individually, but moving both simultaneously may worsen the solution quality. Therefore,
some partitioners use a vertex coloring [97] or a two-phase protocol where in the first phase,
vertices can only move from a block V; to V; if i < j and vice versa in the second phase [46, 113, 170].
Many systems do not use any techniques to protect against move conflicts. This can be seen as an
optimistic strategy assuming that conflicts rarely happen in practice.

The Social Hash Partitioner [95] (Facebook’s internal hypergraph partitioner) also uses the la-
bel propagation heuristic to optimize fanout(Il) := ﬁ YecpAle) where IT = {V;,..., Vi }isa
k-way partition. The authors note that the label propagation algorithm can easily get stuck in lo-
cal optima for fanout optimization and suggest a probabilistic version of the fanout metric, called
p-fanout(11) := ﬁ YiecE Dvien 1 — (1 - p)2(©V) for some probability p € (0, 1). The probabilistic
fanout function samples the pins of net with probability p and represents the expected fanout for
a family of similar hypergraphs. Thus, it should be more robust and reduce the impact of local
minima.
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Other recently published distributed local search techniques are based on vertex swapping tech-
niques that preserve the balance of the partition. Rahimian et al. [143] present JA-BE-JA that uses
such an approach. The algorithm iterates over the local vertices of each PE and for each vertex, it
considers all adjacent vertices as swap candidates. If no partner was found, then it selects a random
vertex from a sample as a candidate. If the selected vertex is assigned to a different PE, then the
instantiating PE sends a request with all the required information such that the receiving PE can
verify whether or not the swap operation would improve the edge cut. On success, both vertices
change their blocks. Additionally, simulated annealing is used to avoid local minima.

Aydin et al. [16] implement a distributed partitioner that computes a linear ordering of the
vertices, which is then split into k equally sized ranges to obtain an initial k-way partition. The
idea is similar to space-filling curves [19, 138], but does not require geometric information. The
initial ordering is computed by assigning labels to a tree constructed via agglomerative hierarchi-
cal clustering. Afterward, it sorts the labels of the leaves to obtain an initial ordering. To further
improve the ordering, it solves the minimum linear arrangement problem that tries to optimize
2w, 0)ek |7 (1) = m(v)|w(u, v) where 7 (u) denotes the position of u € V in the current ordering. To
do so, it uses a two-stage MapReduce algorithm that is repeated until convergence: First, each ver-
tex computes its desired new position as the weighted median of its neighbor’s positions. Second,
the final positions are assigned to the vertices by resolving duplicates with simple ID-based or-
dering. The second local search algorithm performs vertex swaps. First, it pairs adjacent blocks of
the partition. Then, it splits the vertices of each block into r disjoint intervals and randomly pairs
intervals between paired blocks. The paired sets are then mapped to the processors that perform
the following algorithm: It sorts the vertices in both sets according to their cut reduction if moved
to the opposite block and swaps the vertices with the highest combined cut reduction.

Balance Constraint. The label propagation algorithm only knows the exact block weights at the
beginning of each computation phase. In the computation phase, block weights are only main-
tained locally. In the communication phase, the combination of all moves may result in a partition
that violates the balance constraint. Thus, partitioners based on this scheme have to employ tech-
niques to ensure balance.

The distributed multilevel graph partitioner ParHIP [128] divides a label propagation round into
subrounds and restores the exact block weights with an All-Reduce operation after each subround.
Note that this does not guarantee balance but gives a good approximation of the block weights
when the number of moved vertices in a subround is small.

Slota et al. [166] implemented a distributed graph partitioner that alternates between a balance
and refinement phase, both utilizing the label propagation algorithm. In the refinement phase, each
PE maintains approximate block weights a(V;) := ¢(V;) + yA(V;) where ¢(V;) is the weight of block
V; at the beginning of the computation phase, A(V;) is the weight of vertices that locally moved out,
respectively, into block V;, and y is a tuning parameter that depends on the number of PEs. Each
PE then ensures locally that a(V;) < Lyay for all i € {1,...,k}. In the balancing phase, the gain
of moving a vertex to block V; is multiplied with j(‘“‘;‘ix). As a consequence, moves to underloaded
blocks become more attractive. In a subsequent publication [167], the approach is generalized to
the multi-constraint partitioning problem, where each vertex is associated with multiple weights.

Recently, probabilistic methods were proposed that preserve the balance in expectation [95, 123].
The Social Hash Partitioner [95] aggregates the number of vertices S; ; that want to move from
block V; to V; after each computation phase at a dedicated master process. Then, a vertex part of

min(S;, ;,S;,
S, .

i) This ensures that the
ij

expected number of vertices that move from block V; to V; and vice versa is the same and, thus,
preserves the balance of the partition in expectation. However, each PE moves its highest ranked

block V; is moved to its desired target block V; with probability
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Fig. 7. A visualization of an airfoil. The graph has coordinates for each vertex. Geometric partitioning algo-
rithms use this type of information for partitioning. In the example above, recursive coordinated bisection
(always split the graph along the shorter axis) has been applied to derive a partition.

vertices with probability one and all remaining probabilistically. Martella et al. [123] moves a vertex

u to its desired target block V; with probability L'"+IC(V’) where M; are the number of vertices that
J

want to move to block V;. The advantage of the probabilistic method is that only the number of
vertices preferring a different block need to be communicated instead of all moves.

Multilevel Algorithms. Although it is widely known that multilevel algorithms produce better
partitions than flat partitioning schemes, the systems used in industry, e.g., at Google [16] or Face-
book [95, 123], are primarily non-multilevel algorithms. The main reason for this is that the scala-
bility of multilevel algorithms is often limited to a few hundred processors [92, 106]. Furthermore,
most parallel multilevel systems implement matching-based coarsening algorithms [40, 46, 92, 106,
170, 181] that are not capable to efficiently reduce the size of today’s complex networks (power-law
node degree distribution). The most prominent distributed multilevel algorithms are Jostle [181],
ParMetis [97], PT-Scotch [40], KaPPa [92], ParHIP [128] and ScalaPart [106] for graph, and Park-
way [170] and Zoltan [46] for hypergraph partitioning.

Meyerhenke et al. [128] build the parallel multilevel partitioner ParHIP that uses a parallel ver-
sion of the size-constraint label propagation algorithm [126]. The algorithm is used to compute
a clustering in the coarsening phase and as a local search algorithm in the refinement phase. To
obtain an initial partition of the coarsest graph, it uses the distributed evolutionary graph parti-
tioner KaFFPaE [149]. On complex networks, ParHIP computes edge cuts 38% smaller than those
of ParMetis [97] on average, while it is also more than a factor of two faster.

Wang et al. [182] use a similar approach that also utilizes the label propagation algorithm to
compute a clustering in the coarsening phase. The algorithm is implemented on top of Microsoft’s
Trinity graph engine [161]. The partitioner additionally uses external memory techniques to parti-
tion large graphs on a small number of machines. However, it does not perform multilevel refine-
ment (the initial partition is projected to the input graph).

Geometric Partitioners. Many graphs are derived from geometric applications and are enriched
with coordinate information (e.g., each vertex is associated with a d-dimensional point). A mesh
with coordinate information and a partition based on these coordinates is shown in Figure 7. Geo-
metric partitioning techniques use this information to partition the corresponding point set into
k equally sized clusters while minimizing an objective function defined on the clusters. The objec-
tive function should be chosen such that it implicitly optimizes the desired graph partitioning
metric (e.g., the sum of the lengths of all bounding boxes approximates the total communica-
tion volume [45]). Since geometric methods ignore the underlying structure of the (hyper)graph,
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the quality of the partitions is often inferior compared to traditional multilevel algorithms. How-
ever, these algorithms are often simpler leading to faster and more scalable algorithms. Promi-
nent techniques use space-filling curves [19, 138] that map a set of d-dimensional points to a
one-dimensional line. A fundamental property of this curve is that points that are close on the
line are also close in the original space. Other approaches recursively divide the space via cutting
planes such as Octree-based partitioning [129], recursive coordinate bisection [22, 164], and recur-
sive inertial bisection [169, 184]. The MultiJagged algorithm of Deveci et al. [45] uses multisection
rather than bisection to reduce the depth of the recursion and speed up computation relative to
recursive coordinate bisection; its hybrid implementation uses MPI and Kokkos [171] to support
both distributed-memory message passing between PEs and multithreading or GPU computation
within PEs.

Recently, Von Looz et al. [177] presented a scalable balanced k-means algorithm to partition
geometric graphs. The k-means problem asks for a partition of a point set P into k roughly equally
sized clusters such that the squared distances of each point to the mean of its cluster is minimized
(in the following also referred to as the center of a cluster). Clusters obtained with this problem
definition tend to have better shapes than computed with previous methods and also produce
better partitions when measured with graph metrics [125]. They present a parallel implementation
of Lloyd’s greedy algorithm [118] that repeats the following steps until convergence. First, each
point p € P is assigned to the cluster that minimizes the distance of p to its center. Afterwards, the
center of each cluster is updated by calculating the arithmetic mean of all points assigned to it. To
achieve balanced cluster sizes, an influence factor y. is introduced individually for each cluster ¢
and eft_dist(p, center(c)) := dist(p, center(c))/y. is used as the distance of point p to the center of
a cluster c. If a cluster ¢ becomes overloaded, then the influence factor y, is decreased; otherwise,
it is increased. Thus, underloaded clusters become more attractive. The implementation replicates
the cluster centers and influence factors globally and after each computation phase, it updates the
values via a parallel sum operation. To obtain an initial solution, it sorts the points according to
the index on a space-filling curve and splits the order into k equally sized clusters. Furthermore, it
establishes a lower bound for the distances of each point to the second-closest cluster, which allows
us to skip expensive distance computations for most of the points. Additionally, each processor
sorts the cluster centers according to their distances to a bounding box around the process-local
points. Evaluating the target clusters in increasing distance order allows us to abort early when
the minimum distance of the remaining clusters is above the distance of already found candidates.

Scalable Edge Partitioning. Schlag et al. [156] present a distributed algorithm to solve the edge
partitioning problem. The edge partitioning problem asks for a partition IT = {Ey, ..., E;} of the
edge set into k blocks each containing roughly the same number of edges, while minimizing the
vertex cut ), ey p(v) — 1 where p(v) = {E; | E; € 1 : I(v) N E; # 0}|. They evaluated two meth-
ods to solve the problem. The first transforms the graph into its dual hypergraph representation
(edges of the graph become vertices of the hypergraph and each vertex of the graph induces a net
spanning its incident edges). Using a hypergraph partitioner that optimizes the connectivity met-
ric to partition the vertex set directly optimizes the vertex cut of the underlying edge partitioning
problem. The second method uses a distributed construction algorithm of the so-called split-and-
connect (SPAC) graph. For each vertex u, it inserts d(u) auxiliary vertices into the SPAC graph
and connects them to a cycle using auxiliary edges each with weight one. Each auxiliary vertex
is a representative for exactly one incident edge of u. For each edge (u,v) € E, it adds an infinite
weight edge between the two representatives of the corresponding edge. Thus, a partition of the
vertex set of the SPAC graph cannot cut an edge connecting two representatives. Therefore, such
a partition can be transformed into an edge partition by assigning each edge to the block of its
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representatives. In the evaluation, they compare both representations while using different graph
and hypergraph partitioners. The results showed that parallel graph partitioners outperform dis-
tributed hypergraph partitioners. However, the sequential hypergraph partitioner KaHyPar [154]
produces significantly better vertex cuts than all other approaches (more than 20% better than the
best graph-based approach), but is an order of magnitude slower than the evaluated distributed
algorithms.

6.3 GPU

Due to their high computational power, modern GPUs have become an important tool for accelerat-
ing data-parallel applications. However, due to the highly irregular structure of graphs, it remains
challenging to design graph algorithms that efficiently utilize the SIMD architecture of modern
GPUs.

Multilevel Graph Partitioning. Goodarzi et al. [67, 68] present two algorithms for GPU-based
multilevel graph partitioning. Their earlier approach [67] uses heavy-edge matching for coarsen-
ing and transfers the coarsest graph onto CPU for initial partitioning (using Mt-Metis [96]). During
refinement, vertices are distributed among threads and each thread finds the blocks maximizing
the gain values of its assigned vertices. To prevent conflicting moves that worsen the edge cut in
combination, refinement alternates between rounds in which only moves to blocks with increasing
(respectively, decreasing) block IDs are considered. For each block, potential moves to the block
are collected in a global buffer, which is then sorted, and the highest rated moves are executed.

Their later approach [68] brings several improvements. First, the authors use Warp Segmenta-
tion [103] to improve the efficiency of the heavy-matching computation during coarsening. Initial
partitioning is then performed on the GPU using a greedy growing technique. During refinement,
vertices are once more divided among threads, and each thread finds the blocks maximizing the
gain of its assigned boundary vertices and collects the potential moves in a global buffer. Then,
the algorithm finds the highest rated £ moves in the global buffer, for some small input constant ¢.
Since moves might conflict with each other, their algorithm distributes all 2¢ move combinations
across thread groups and finds the best combination, which is then applied to the graph partition.
This process is repeated until the global buffer is empty. On average, their GPU-based approach
is approximately 1.9 times faster than Mt-Metis while computing slightly worse edge cuts across
their benchmark set of 16 graphs.

In his PhD thesis, Fagginer Auer [15] develops two multilevel algorithms running on a GPU.
One that uses spectral refinement and one that uses greedy refinement. Later, Fagginger Auer and
Bisseling [53] present a fine-grained shared-memory parallel algorithm for graph coarsening and
apply this algorithm in the context of graph clustering to obtain a fast greedy heuristic for maximis-
ing modularity in weighted undirected graphs. The algorithm is suitable for both multi-core CPUs
and GPUs. Later, Gilbert et al. [63] present performance-portable graph coarsening algorithms. In
particular, the authors study a GPU parallelization of the heavy edge coarsening method. The au-
thors evaluate their coarsening method using a multilevel spectral graph partitioning algorithm
as primary use case.

Spectral Graph Partitioning. The availability of efficient eigensolvers on GPUs has led to a recent
re-emergance of spectral techniques for graph partitioning on GPU systems [1, 2, 133]. These
techniques were first developed by Donath and Hoffman [50, 51] and Fiedler [56] to compute graph
bisections in the 1970s. Subsequently, these techniques have been improved [20, 27, 83, 140, 164]
and extended to partition a graph into more than two blocks using multiple eigenvectors [8, 83].

Naumov and Moon [133] present an implementation of spectral graph partitioning for single
GPU systems as part of the nvGRAPH library, whereas Acer et al. [1, 2] propose the multi-GPU
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implementation Sphynx. Both partitioners precondition the matrix and use the LOBPCG [107]
eigenvalue solver. The eigenvectors are then used to embed the graph into a multidimensional
coordinate space, which is then used to derive a partition of the graph. In nvGRAPH, this is done
using a k-means clustering algorithm on the embedded graph, whereas Sphynx uses the geomet-
ric graph partitioner Multi-Jagged [45], which supports multi-GPU systems. Since the approach
by Acer et al. outperforms nvGRAPH in terms of partition balance, cut size and running time
(when run on a single GPU system), we focus on their experimental evaluation. To this end, when
Sphynx is compared against ParMETIS [100], ParMETIS generally obtains significantly better cuts
than Sphynx—approximately 20% (respectively, 70%) lower cuts on regular (respectively, irregular)
graph instances). On irregular graphs, the authors report a significant speedup of approximately
19 using Sphynx on 24 GPUs compared to ParMETIS with 168 MPI processes across four compute
nodes, although ParMETIS is approximately three times faster than Sphynx on regular graphs even
when using a single CPU core for each GPU used by Sphynx. Additionally, Acer et al. report the
influence of several matrix preconditioners on different classes of graphs.

6.4 Approaches for Other Types of Hardware

Recently, Ushijima-Mwesigwa et al. [175] explore graph partitioning using quantum annealing
on the D-Wave 2X machine. The main idea is to formulate the graph partitioning problem as a
quadratic unconstraint binary optimization problem via a spectral approach. These problems can
be mapped to minimizing Ising objective functions, which the D-wave system can minimize. The
method could run directly on the D-Wave system for small graphs and used a hybrid approach for
large graphs.

Lio et al. [117] experiment with solving the graph partitioning problem on the Fujitsu Digital
Annealer, which is a special-purpose hardware designed for solving combinatorial optimization
problems. In particular, the authors also model the problem as a quadratic unconstrained binary op-
timization problem via a spectral approach.. The Fujitsu Digital Annealer then utilizes application-
specific integrated circuit hardware for solving fully connected quadratic unconstraint binary op-
timization problems. The authors identify a dense network for which their approach significantly
outperforms KaffpaE. Then a range of similar instances is created using the MUSKETEER [79]
framework. On most of those instances, their approach outperforms KaffpaE and Gurobi.

7 EXPERIMENTAL METHODOLOGY

As more applications of (hyper)graph partitioning have emerged in recent years, it becomes in-
creasingly important to evaluate algorithms on many (hyper)graph instances to demonstrate their
effectiveness for practical applications. The presentation of results using tables comparing the
running time and solution quality of different algorithms can quickly become difficult to interpret,
while evaluations based on aggregated numbers can lead to misleading conclusions. This section
discusses several alternative methods helpful for presenting and interpretting experimental results.

Performance Profile. Performance profiles can be used to compare the solution quality of different
algorithms [48]. Let A be the set of all algorithms, 7 the set of instances, and g (I) the value of
a quality metric (e.g., edge-cut) of algorithm A € A on instance I € 7. For each algorithm A,
performance profiles show the fraction of instances (y-axis) for which g4 (I) < 7 - Best(I), where
7 is on the x-axis and Best(I) := ming ez qa (I) is the best solution produced by an algorithm
A € Aonaninstance I € 7.For r = 1, the y-value indicates the percentage of instances for which
an algorithm A € A performs best. Achieving higher fractions at smaller 7 values is considered
better.

Figure 8 (left) compares a quality metric of four different algorithms using a performance profile.
Algorithms B and C compute on roughly 40% of the instances the best solutions while Algorithms
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Fig. 8. Performance profiles comparing four different algorithms (left) and the result of a effectiveness test
between two algorithms (right). The © tick marks instances for which the corresponding algorithm has
computed an infeasible solution or has ran into a time limit.

A and D only on 10% (see 7 = 1). The solutions produced by Algorithm A are worse than the
best solutions by ~ 4% in the median (intersection of y = 0.5 with the red line is at 7 ~ 1.04). If
we compare Algorithms C and D based on their geometric mean of the quality metric, then we
would observe that Algorithm C is only 0.2% better than Algorithm D. Hence, we would probably
conclude that there is no significant difference between both. If we look at the performance profile,
then we see that Algorithm C is on most of the instances closer to the best solution than Algorithm
D. However, on ~ 10% of the instances the solutions are worse than the best one by more than a
factor of two, which has a large influence on its geometric mean (see green line at 7 = 2).

Effectiveness Tests. The performance profile in Figure 8 (left) suggests that Algorithm B pro-
duces solutions that are better than those of Algorithm A. However, if we look at their running
times, we observe that Algorithm A is more than an order of magnitude faster than Algorithm
B on average. Thus, Algorithm B may have an unfair advantage due to its longer running time.
Therefore, Akhremtsev et al. [4] introduces effectiveness tests to compare solution quality when
two algorithms are given a similar running time, by performing additional repetitions with the
faster algorithm. Consider Algorithms A and B and an instance I. Effectiveness tests first sample
one run of both algorithms. Let ¢, and t; be their running times and assume that t} > t5. Then,
additional runs of Algorithm B are sampled until the accumulated time exceeds ti‘. Let tg, e, tll3
denote their running times. The last run is accepted with probability (tj\ - Zf;i té)/ tg so that the
expected time for the runs of B equals . The quality metric taken is the minimum out of all runs.

Figure 8 (right) shows the result of the effectiveness test for Algorithms A and B using a perfor-
mance profile. The plot shows that there is no significant difference between the two algorithms.

Significance Tests. It is not immediately obvious from the performance profile in Figure 8 (left)
whether Algorithm B performs better than Algorithm C or vice versa, since both lines are close
to each other. Here, statistical tests can give further information that helps to decide whether the
difference between two algorithms is statistically significant.

A widely used technique is to formulate a null hypothesis assuming that there is no difference
between the observed distributions. A significance test then calculates the probability (p-value)
that the observed distribution occurs under the assumption that the null hypothesis is true [191].
The null hypothesis is rejected if the probability is below a predefined significance level a (e.g.,
a = 5% as suggested by Fisher [59]). To compute the p-value, the Wilcoxon signed rank test [183]
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is often used to compare two algorithms while the Friedman test [60] makes pairwise comparisons
between multiple algorithms.

Significance tests based on a null hypothesis decide if the difference between two measurements
is statistically significant but do not reveal any information whether or not the difference is rele-
vant in practice. For example, a significance test comparing the running times Algorithms A and B
may conclude that Algorithm A is faster than Algorithm B. However, Algorithm A might be only
1% faster on average and, thus, the relevance of the improvement is questionable. Therefore, An-
griman et al. [12] recommend using parameter estimation instead of hypothesis testing. To apply
parameter estimation to our example, we could compute the running time ratios t4(I)/tg(I) for
each instance I and determine the confidence interval that contains 95% of the measurements. The
confidence interval gives additional information on the effect size of the improvement.

8 FUTURE CHALLENGES

While there has been a considerable progress in the field in the last decade, there is a wide range
of challenges that remain open. It is an interesting question to what extent the multitude of results
sketched above have reached a state of maturity where future improvements become less and less
likely. Algorithms like multi-threaded graph partitioning for balanced graph partitioning using a
small number of threads and standard inputs may be difficult to improve. Long time open problems
like large gaps between theory and practice may remain open for a long time. However, other
important issues have considerable potential. We try to identify some of them below.

Parallelism and Other Hardware Issues. Scalability of high-quality parallel (hyper)graph parti-
tioning remains an active area of research. In particular, achieving good scalability and quality
on large distributed-memory machines is still a challenge, but even on shared-memory machines,
scalability to a large number of threads seems difficult. Even more difficult is aligning the inherent
complexity and irregularity of state-of-the-art algorithms with the restrictions of GPUs or SIMD-
instructions. Another conundrum is that, for good memory access locality during partitioning,
(hyper)graphs need to already be partitioned reasonably well.

Hierarchies of supercomputers have to be taken into account during partitioning. This can be
done by using multi-recursive approaches taking the system hierarchy into account or by adapting
the deep multilevel partitioning approach sketched above to the distributed-memory case. When
arriving at a compute-node level, additional techniques are necessary to employ the full capabili-
ties of a parallel supercomputer. For example, many of those machines have GPU’s on a node level.
Recently, researchers started to develop partitioning algorithms that run on GPUs and while of
independent interest, partitioning algorithms developed for this type of hardware can help in that
regard. Hence, future parallel algorithms have to compute partitions on and for heterogeneous
machines. However, algorithms should be energy-efficient and performance per watt has to be
considered. Lastly, future hardware platforms have to be taken into consideration when develop-
ing such algorithms. One way to achieve this will be to use performance portable programming
ecosystems like the Kokkos library [171].

Problem Variations. Current partitioning algorithms work well on a wide range of instances.
Most of these instances are either unweighted and translate into well behaved weighted problems
if a multilevel algorithm is used or instances have a fairly even distribution of node weights. For
instances with vastly different values of node weights, partitioning problems discussed in this
article get close to bin packing problems. Currently solvers are not able to handle this case well.

Algorithms for the well established objective functions like edge cut (in the graph case) or
connectivity/cut (in the hypergraph case) are able to compute very high-quality partitions. Many
open problems remain when optimizing for other or multiple objectives and when the problem
has other/multiple constraints. For example, in parallel computing, bottleneck objectives such
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as minimizing the maximum edge cut of a block should perform better, but few partitioners
optimize for such objectives. The same is true for high-quality solvers for problems with multiple
constraints in the case of repartitioning. Streaming algorithms currently compute much worse
quality partitions than internal memory partitioning algorithms. This is partially due to the fact
that such algorithms do not have a global view of the optimization problem. Improving quality of
streaming algorithms is an open problem. Last, we believe that directed variants of the problems
will become more important to model different applications.

Multilevel Partitioning. The multilevel technique has been incredibly successful in the field of
decomposition. Yet, multilevel algorithms in the area still consist in practice of a very limited
number of multilevel techniques. Development and understanding components of more sophisti-
cated coarsening schemes, edge ratings, and metrics of nodes’ similarity that can be propagated
throughout the hierarchies are among the future challenges for (hyper)graph partitioning. Addi-
tional challenges occur in attempt of their rigorous analysis. For example, coarsening at the mo-
ment is typically stopped based on simple formulas. However, in practice it may be much more
fruitful to derive stopping rules for coarsening that take the given instance into account. This also
translates to different parameters of sub-algorithms that should be chosen based on the type of
input that is provided to the algorithm.

Modeling and Experiments. Traditionally instances for partitioning algorithms came from scien-
tific simulations and thus were fairly well structured. For these networks, edge cut and commu-
nication volume of the application have been highly correlated. However, for instances having
much more complex structures like social networks that recently became important in practice,
the correlation is not that high. It remains an open question how different models of (hyper)graph
partitioning translate into concrete performance of applications.
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