2022 1IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC) | 978-1-6654-9423-6/22/$31.00 ©2022 IEEE | DOI: 10.1109/HiPC56025.2022.00030

2022 IEEE 29th International Conference on High Performance Computing, Data, and Analytics (HiPC)

A Portable Sparse Solver Framework for Large
Matrices on Heterogeneous Architectures

Fazlay Rabbi*, Christopher S. Daley?, Umit V. Catalyiirek!, Hasan Metin Aktulga*
*Computer Science & Engineering, Michigan State University
¥ Lawrence Berkeley National Laboratory
tAmazon Web Services® and School of Computational Science & Engineering, Georgia Institute of Technology
rabbimd @msu.edu, csdaley @1bl.gov, umit@gatech.edu, hma@msu.edu

Abstract—Programming applications on heterogeneous sys-
tems with hardware accelerators is challenging due to the disjoint
address spaces between the host (CPU) and the device (GPU).
The limited device memory further exacerbates the challenges
as most data-intensive applications will not fit in the limited
device memory. CUDA Unified Memory (UM) was introduced to
mitigate such challenges. UM improves GPU programmability
by supporting oversubscription, on-demand paging, and migra-
tion. However, when the working set of an application exceeds
the device memory capacity, the resulting data movement can
cause significant performance losses. We propose a tiling-based
task-parallel framework, named DeepSparseGPU, to accelerate
sparse eigensolvers on GPUs by minimizing data movement
between the host and device. To this end, we tile all operations
in a sparse solver and express the entire computation as a
directed acyclic graph (DAG). We design and develop a memory
manager (MM) to execute larger inputs that do not fit into
GPU memory. MM keeps track of the data on CPU and GPU,
and automatically moves data between them as needed. We
use OpenMP target offload in our implementation to achieve
portability beyond NVIDIA hardware. Performance evaluations
show that DeepSparseGPU transfers 1.39x-2.18x less host to
device (H2D) and device to host (D2H) data, while executing
up to 2.93x faster than the UM-based baseline version.

Index Terms—sparse solvers, task parallelism, performance
optimization, directive-based GPU programming, performance
portability.

I. INTRODUCTION

Graphics Processing Units (GPUs) have been employed in
more than a quarter of TOP500 [28] supercomputers due to
their massive peak performance and power efficiency. GPUs
have been used to accelerate applications in various domains,
such as graph analytics, machine learning, computational
finance, climate modeling, multimedia. Given NVIDIA’s dom-
inance in GPU computing, most GPU acceleration efforts to
date have focused on CUDA, which is an NVIDIA-hardware
specific programming model. Considering the increasing num-
ber of computing systems with GPUs from different vendors,
choosing a portable programming model that allows appli-
cations to adapt to the diversity in heterogeneous comput-
ing is crucial from software maintenance and sustainability
perspectives. OpenMP 4.5+ and OpenACC have emerged as
portable directive-based programming models to provide a

$This publication describes work performed at the Georgia Institute of
Technology and is not associated with Amazon.

unified programming model for CPUs and GPUs. Higher-
level abstraction adopted in these directive-based programming
models yields application portability and developer produc-
tivity. Recent studies show that OpenMP and OpenACC are
robust and able to provide good performance on different
hardware [8], [12], [27].

Regardless of whether an application uses a device-specific
(e.g., CUDA) or a portable (e.g., OpenMP) programming
model, the amount of data moved between CPU and GPU
is a key concern in heterogeneous systems due to the wide
gap between computational performance and data movement.
For best performance, programmers have to explicitly control
the data movement between the host and the device, but
this comes at the expense of programmer productivity. As a
general solution, Unified Virtual Memory (UVM) has become
available since CUDA 8.0 and the Pascal architecture (2016).
The key idea behind UVM is that programmers no longer need
to think about GPU and CPU memory as two distinct memory
spaces. Instead, UVM creates a pool of managed memory
that is shared between the CPU and GPU, and is accessible
from both with memory pages being migrated on-demand by
the CUDA runtime system automatically. Even though UVM
dramatically reduces developer effort in regards to managing
data movement, it can cause a significant hit in performance.

While the size of data needed by scientific applications and
machine learning/data analytics workloads increase at a rapid
pace, the memory available on GPUs increase at a much more
modest pace. For example, NVIDIA’s Tesla V100 “Volta”
GPUs have only 16 GBs of device memory available; one
could have up to 80 GBs of memory on the newest generation
NVIDIA A100s, but even 80 GBs is not enough for all
application use cases. To illustrate this issue, take for instance
the Many Fermion Dynamics - nuclei (MFDn) code, which
is a quantum many-body code based on the configuration
interaction model. MFDn is a total memory-bound application,
i.e., scientific studies using this code typically utilize all
memory (DRAM) space available, thus easily exceeding the
total device memory available [2], [23]. When an application’s
working set size exceeds the device memory size, the resulting
data movement becomes a critical design and performance
bottleneck [32].

In this paper, we present a tiling-based task-parallel sparse
linear algebra framework, named DeepSparseGPU, which

2640-0316/22/$31.00 ©2022 IEEE 145
DOI 10.1109/HiPC56025.2022.00030
Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



aims to make it easy to develop sparse solvers for large prob-
lems on GPU-accelerated architectures. Due to the irregular
data access patterns and low arithmetic intensities associated
with sparse matrix computations, achieving a high percentage
of the peak processor performance, especially on GPUs, is
challenging. These challenges are further exacerbated due to
the increasing number of hardware accelerators by different
vendors (i.e., NVIDIA, AMD, Intel, etc.). The main goal
of the DeepSparseGPU framework is therefore to ease the
development of performant and portable sparse solvers. Hence,
building upon the DeepSparse framework [1] which runs on
CPUs, DeepSparseGPU leverages OpenMP’s target offload
functionality. As we aim to optimize DeepSparseGPU for
GPUs, several changes were made to the original DeepSparse
framework, especially to support applications with memory
requirements that exceed the available device memory capac-
ity. We adopt the same task-based tiling approach which serves
the double purpose of enabling data locality optimizations and
facilitates the management of application data so that it can
be processed in batches that fit into the device memory. For
this, DeepSparseGPU automatically generates and expresses
the entire computation as a task dependency graph (TDG),
which is then executed using OpenMP’s tasking and target
offloading functionalities.

A memory manager developed as a part of DeepSparseGPU
keeps track of the data residing on host and device memories,
and automatically migrates data between the two whenever
needed. Given the data dependencies between computational
tasks, DeepSparseGPU employs a topological-sorting based
heuristic to minimize the data movement and increase appli-
cation performance.

The paper is organized as follows. In Section II, we describe
the related work on efforts to manage the GPU memory effi-
ciently in different application domains, application experience
using directive-based programming models, and accelerating
LOBPCG solver using GPUs. In Section III, we describe
both the design of our proposed tile-based framework and the
main data structures used in our memory manager with an
illustrative example. In Section IV, we present performance
results obtained on the Cori-GPU platform. Finally, Section V
summarizes our conclusions and plans for future work.

II. RELATED WORK AND OUR CONTRIBUTION

Given the importance of sparse solvers in scientific com-
puting and machine learning, several optimization techniques
have been proposed for sparse matrix-vector multiplication
(SpMV) on GPUs [6], [7], [14], [31]. However, the perfor-
mance of SpMV is bounded by memory bandwidth [29].
Since sparse matrix-matrix multiplication (SpMM) has a much
higher arithmetic intensity than SpMV and can efficiently
leverage the performance benefits of GPUs, SpMM-based
solvers have recently drawn significant interest in scientific
computing in the form of block linear solvers and eigen-
solvers [2]. As such several groups have studied the optimiza-
tion of the SpMM kernel on GPUs [5], [15], [26], [30]. On
the solver side, Anzt et. al [S] optimize the performance of

SpMM using ELLPACK format [4] and compare the perfor-
mance of their implementation with the multithreaded CPU
implementation of LOBPCG provided in the BLOPEX [20]
package. Dziekonski et. al [13] implement LOBPCG method
to find eigenvalues in electromagnetics analysis. They use an
inexact nullspace filtering approach in their implementation.

As can be seen, most prior work on accelerating iterative
solvers for GPUs has focused only on optimizing the Sp-
MV/SpMM kernels with a few exceptions. In this work, we
present a holistic framework that includes all computational
kernels required for block eigensolvers (LOBPCG is used
as a case study). Another distinguishing aspect of our work
compared to the work reviewed above is the support we
provide for applications with memory demands significantly
larger than the available device memory capacity.

In addition to the support for large applications, we adopt
a directive-based programming model to achieve portability.
OpenMP and OpenACC have recently emerged as directive-
based programming models to accelerate applications on
GPUs. Several existing work studied the efficacy of the GPU
offload support in OpenMP and/or OpenACC in the context
of individual kernels [8], [12], [27], mini-applications [21]
or proxy applications [9]. In this regard, our evaluation of
OpenMP’s offloading support in the context of a real eigen-
solver applied to matrices from several domains also consti-
tutes a niche. In doing so, for the benefit of the community, we
also discuss the compiler support issues we faced, as OpenMP
offloading implementations are constantly evolving and are
advertised as having only partial support in different compilers.

In evaluating DeepSparseGPU, we compare against a base-
line Unified Virtual Memory (UVM) implementation using
GPU-accelerated cuSPARSE and cuBLAS library kernels.
UVM was introduced to provide a single, unified virtual
address space to applications for accessing CPU and GPU
memory. Data can be automatically migrated at an individual
page level between host memory and device memory. As
we aim to do for sparse solvers, UVM greatly simplifies
general-purpose GPU programming because the same pointer
to data can be used on both the host and the device side.
The current data communication strategy in UVM is full page
migration. Oversubscription of GPU memory and system-
wide automatic memory operations are enabled by full-page
migration [17], [32]. There are some performance risks in
UVM regarding large page migration. NVIDIA evaluated
UVM performance using the PGI OpenACC compiler in [11]
by creating UVM versions of OpenACC applications in the
SPEC ACCEL 1.2 benchmark suite. They found that the UVM
versions ran at 95% of the performance of the original explicit
data management versions when running the applications on
the Piz-Daint supercomputer. Our work also compares UVM
against explicit data management and considers problems
whose memory requirements significantly exceed the device’s
memory capacity. The performance of oversubscribing UM is
evaluated in [18]. The authors find that UM can be up to 2x
slower than explicit data management in several applications
on an x86+V100 system.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



Consequently, our contributions can be summarized as fol-
lows:

o We demonstrate that a complex block eigensolver can
be implemented efficiently using OpenMP target offload
directives by minimizing data movement between CPU
and GPU. We obtain up to 2.93x speedup and up to 2.18x
less data transfer between CPU and GPU over a well-
optimized UVM based implementation.

« We designed and developed a Memory Manager (MM)
that automatically keeps track of data on both CPUs
and GPUs, and migrates it whenever needed. Memory
manager helps to execute problem sizes that exceed
device memory.

« We use topological sort on the DAG to get a custom
schedule of the computing tasks. Empirically, we find that
topological sort helps minimize data movement compared
to the pain baseline schedule.

o We share and discuss our experiences and issues that
we faced during the development process so that the
community could benefit from it.

III. DEEPSPARSEGPU OVERVIEW

Figure 1 illustrates the architectural overview of the
DeepSparseGPU framework. DeepSparseGPU consists of two
major components: i) Primitive Conversion Unit (PCU), which
provides a front-end to domain scientists to express their
application, such as the LOBPCG solver, at a high-level and
generates the task dependency graph (TDG); and ii) Task
Executor (TE), which receives a DAG from the PCU and
performs a topological sort on the DAG to get a task schedule.
The task executor then launches proper kernels that correspond
to computational nodes in the TDG according to the task
schedule.

Primitive Conversion Unit (PCU)
Task Identifier (T1)

Task Executor

Memory Manager

TDG Generator

Fig. 1: Schematic overview of DeepSparseGPU framework.

A. Primitive Conversion Unit (PCU)

The Primitive Conversion Unit (PCU) is composed of two
parts: 1) Task Identifier and ii) Task Dependency Graph (TDG)
Generator.

1) Task Identifier (TI): DeepSparseGPU provides an appli-
cation programming interface (API) for developers, which is
a combination of the GraphBLAS interface [16] for sparse
matrix related operations, the BLAS/LAPACK interface [3],
[22] for vector and occasional dense matrix related compu-
tations and custom kernels. While the GraphBLAS interface
is implemented as tiled operations in the DeepSparseGPU li-
brary, optimized BLAS/LAPACK libraries (which are typically
available on HPC systems; otherwise needs to be provided by
the user) are used for dense vector and matrix operations. As
DeepSparse [1] and DeepSparseGPU are used to implement
new solvers, we extend the library with support for necessary
operations not found in GraphBLAS, BLAS or LAPACK.
Through this interface, developer can express their algorithms
at a high level without having to worry about architectural de-
tails (e.g., memory hierarchy) or parallelization considerations
(e.g., determining the tiles, tasks resulting from tiling and their
scheduling).

Task identifier parses the given application code to identify
the specific BLAS/LAPACK and GraphBLAS function calls
and the input/output of each function call. It then passes this
information to the local task dependency graph generator. The
parsed data is maintained in TI as an unordered map of (Key,
Value) pairs in a data structure named ParserMap. Each
Key is defined by three pieces of information: The operation
code (opCode), the operation id (id) to distinguish between
multiple calls to the same function in different parts of the
code, and a relative ordering info (t imestamp) used to infer
the input/output dependencies between different operations.
ParserMap uses two helper data structures called Keywords
and idTracker to uniquely identify all kernels in a given solver
code. The Value object corresponding to each Key stores the
input and output variable information along with their sizes for
that function call.

2) Task Dependency Graph Generator (TDGG): The output
of Task Identifier (TI) is a dependency graph at a very coarse-
level, i.e., at the function call level. Tasks must be generated
at a much finer granularity for efficient parallel execution of
larger problems on the GPU by carefully planning the data
movement between the CPU and GPU. This is accomplished
by the Task Dependency Graph Generator (TDGG), which
goes over the input/output data information generated by TI for
each function call and starts decomposing/tiling these kernels
and data structures.

In DeepSparseGPU, the decomposition into finer granularity
tasks starts with the first function call involving the sparse
matrix (or matrices) in the solver code, which is typically an
SpMYV, SpMM, or SpGEMM operation. For example, SpMM
is the main sparse matrix kernel in the LOBPCG solver. We
use compressed sparse row (CSR) matrix format to store
the sparse matrix. First, the TDGG decomposes the sparse
matrix using a 1D decomposition. Then, the main sparse
matrix kernel decomposition induces the decomposition of all
kernels above and below (i.e., the full solver) the sparse matrix
operation. TDGG also generates the dependencies between
individual fine-granularity tasks by examining the function call

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



Nl RN e R N N N S

w N

dependencies determined by TI as part of the task dependency
graph generation procedure. The resulting task dependency
graph generated by TDGG is a directed acyclic graph (DAG)
representing the data flow in the solver code where vertices
denote computational tasks, incoming edges represent the
input data, and outgoing edges represent the output data for
each task. TDGG uses an instance of Taskinfo [listing 1] as the
name of each vertex in TDG to store the necessary information
to execute each task in the DAG. TDGG also labels the
vertices in the TDG with the estimated computational cost
of each task, and the directed edges with the name and size of
the corresponding data, respectively. During execution, such
information can be used for load balancing and/or ensuring
that active tasks fit in the available GPU memory.

Listing 1: TaskInfo Structure

struct TaskInfo
{
int opCode; //type of computational kernel
int numParamsCount;
int xnumParamsList; //tile id, matrix dimensions etc.
int strParamsCount;

char *xstrParamslList; //i.e. buffer name

int taskID; //which operation of a specific kernel

Listing 2: An example pseudocode

dmmadd(E, F, G, m, n); // G =E + F

SpMM (X, G, D, m, n); // D =X % G

cblas_dgemm (CblasRowMajor, CblasTrans,
CblasNoTrans, n, n, m, 1.0, D, n,
n); // R =D'G

G, n, 0, R,

3) Illustrative Example of PCU: We use the simple code
snippet provided in Listing 2 to demonstrate how the PCU
operates. As TI parses the sample solver code, it discovers
that the dmmadd call on the first line corresponds to a
matrix addition operation (available as a custom kernel in the
DeepSparseGPU library), the second line is a sparse matrix
vector block multiplication (SpMM) that is part of GraphBLAS
and the cblas_dgemm at the end is an inner product of two
vector blocks (XTY) as defined in the BLAS library. These
function calls, their parameters as well as dependencies are
captured by TI in the ParserMap, Keywords, and idTracker
data structures as shown in Table I.

Data Structure Content
ParserMap <{dmmadd, 1, 1},{<E, F>, <G>, <m, n, k>}>
<{SpMM, 1, 2} {<X, G>, <D>, <m, m, n>}>
<{XTY, 1, 3},{<D, G>, <R>, <m, n, n>}>
keyword <dmmadd, SpMM, XTY>
idTracker <L, 1, 1>

TABLE I: Major data structures after parsing third line.

Based on the parsed data from TI, TDGG determines the
tiling of operand data structures for each kernel (based on a
tile size chosen by the user), as well as their origins (where
each data tile is coming from). TDGG then builds the DAG of
each computational kernel individually and appends it to the

2,100, 2,1,10,1

4,1,0,1,RBUE-1

Fig. 2: Task graph for the psudocode in listing 2.

global TDG with proper dependencies. In the resulting TDG,
each vertex is named using an encoding of its corresponding
TaskInfo structure and tile id. Figure 2 shows the task depen-
dency graph of the solver code in Listing 2, assuming m =
100, k = 8, n = 8, tilesize = 50, m/tilesize = 2, so each
input matrix is partitioned into 2 chunks.

B. Task Executor (TE)

The Task Executor (TE) is composed of two parts as well:
1) Kernel Launcher, and ii) Memory Manager.

1) Kernel Launcher (KL): The KL receives a DAG from
the PCU that represents the full execution flow of the given
application. Then, KL performs a depth-first topological sort
based on the dependencies in the DAG to get an execution
schedule of tasks and saves the tasks in an array of TaskInfo
structures according to the task schedule. The topological
ordering of the DAG respects the data dependencies and
guarantees the numerical correctness of the given application.
Furthermore, it is expected that the depth-first strategy used
in the topological ordering would help minimize the data
movement between the CPU and GPU by placing tasks with
data dependencies together in the task schedule.

Once the topological ordering of the DAG is done, the KL
picks each node from the task array one by one and launches
a kernel for them on the GPU. While GPUs are the preferred
target in DeepSparseGPU, we realize that some kernels may
not be suitable for GPU acceleration or they simply may not
be available in existing GPU libraries. DeepSparseGPU is
designed to be flexible in such cases, and can execute kernels
which do not have a corresponding GPU implementation on
the CPU.

The KL first extracts the task information from the task
name. Then, it consults with the Memory Manager (MM) to
check if the operands of the task are ready on the GPU memory
(or on the CPU memory). Once all operands are ready, the
kernel can be launched.

As shown in listing 3, we use target teams
distribute parallel for directives to offload com-

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



putations to the GPU. The nowait clause is used for
asynchronous execution on the GPU. Whenever possible, the
collapse clause is used to merge nested loops to obtain
higher degrees of parallelism in the kernels. All directives use
the depend clause to respect the input/output dependencies
among tasks.

Listing 3: Kernel Launcher skeleton code in OpenMP

1 // main.cpp

2 [task, numTask] = topologicalSort (DAG) ;

3 || #pragma omp parallel

4| {

5 #pragma omp master

6 {

7 while (!converged)

8 {

9 for(i = 0 ; i < numTask ; i++)

10 {

11 = task information

12 taskinfo = tractTaskInfo (task[i]);

13 // pre 1g operands on gpu (or cpu) using

14 // Me y Manager

15 operands = memoryManger (taskinfo) ;

16 // launch the proper kernel on GPU

17 // (or CPU) based on taskinfo

18 kernel (operands) ;

19 }

20 }

21 }

22 ||}

23

24 || // an example gpu application kernel, dst = srcl + src2

25 void dmmadd (double *device_memory, int offsetl /+srclx/,

int offset2 /*src2x/, int offset3 /xdst*/, int
blksz, int col)

26 || {

27 int sz = blksz * col;

28 #pragma omp target is_device_ptr (device_memory)\

29 depend (in: device_memory[offsetl:sz], device_memory|[

offset2:sz])\

30 depend (out: device_memory[offset3:sz]) nowait

31 #pragma omp teams distribute parallel for collapse(2)

32 for(int i = 0; i < row ; i++)

33 for(int j = 0 ; j < col ; J++)

34 device_memory[offset3 + i x col + j] =
device_memory[offsetl + i * col + j] +
device_memory[offset2 + i * col + jl;

35 || 1

2) Memory Manager (MM): The memory manager (MM)
is a low-overhead runtime system which is responsible for
keeping track of all data tiles on the host and device memory.
As illustrated in Fig. 1, the KL consults with MM before
launching each kernel on the GPU (or CPU). MM makes
sure that the latest copy of each of the operands of a kernel
is available on GPU (or CPU) before launching the kernel.
MM moves data tiles between host and device automatically
whenever needed and implements a First-In-First-Out (FIFO)
eviction policy to evict blocks when the device memory
becomes full.

Data Structures used in MM: The MM maintains a few
data structures to fulfill its operations. Figure 3 shows the
important data structures that MM maintains to manage all
data tiles between the host and device. The purposes of these
data structures are as follows:

o device_memory: This is an array of double-precision
numbers that spans the total available device memory in
our target machine. We reserve a small fraction of the de-
vice memory to store some matrices if the computational

149

memory blocks on device

0 1 2 3 4 5 6

Value

device_memory

memory_view

Key

memory_map

<matrix name, tile id> <index, no. of occupied blocks, size, isModified>

Key Value

freeblock_map

<# of blocks>

<«—In

Out FIFO Queue

<indexl, index2, index3, index4, ........ccccceerreeenn.>

evictionQueue

Fig. 3: Data structures used in managing tile information in
Memory Manager.

model requires it. The rest of the device memory is allo-
cated as this bigger array. We divide the device_memory
array into blocks of memory chunks according to user-
provided computational granularity. If the size of the
device_memory array is m bytes and memory granularity
is B bytes, then we divide the full device_memory array
into n = [%] memory blocks. We use omp_target_alloc
function in our OpenMP implementation to allocate the
needed memory on device.

memory_view: This is an array of n elements (<data
structure name, tile id> pair). It contains name and id
of the data tiles stored in the ¢-th memory block of
device_memory array.

memory_map: This is an unordered map that holds
detailed information on the data tiles stored in de-
vice_memory in the form of (Key, Value) pairs. The Key
is a <data structure name, tile id> pair so that each tile
of all data structures associated with the computation has
a unique key. The Value is an array of 4 numbers (<index,
# of occupied blocks, size, isModified>). The first number
in the Value field is the index of device_memory where
the data block (<data structure name, tile id>) is stored
on the device. The second number in the array is the
number of memory blocks occupied on the device by
the stored tile. Depending on the size of the tile, it may
require more than one device memory block for storage.
The third element of the array is the actual size of the
tile that is stored at index location on device_memory.
The fourth element of the array indicates whether the tile
data is modified on the device or not. If isModified = 0,
then the matrix tile data is not modified on the device.
If isModified = 1, then it indicates that the matrix tile
data is modified on the device. MM always checks the
isModified field before evicting a matrix tile from the
device memory. If tile data is modified, the MM copies
the latest matrix tile data to the proper host location
before evicting it from the device memory.

o evictionQueue: The MM implements a First-In-First-Out

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



memory blocks on device

memory blocks on device

IRUPNY T Too Tco oo Joo oo [T . o oo [oo Lo oo oo
0 1 2 3 4 5 6 0 1 2 3 4 5 6

meronve. | N N T T T T
0 1 2 3 4 5 6
cveionaveve [T ET RN

D, 0>
+— ou FIFO Queue =

<A, 0> | <0, 2, 8, 1> ‘ ‘

<B,0> | <2, 1, 4, 0>

<C,0> | <3, 1,4, 1> freeblock_map

<B, 1> <4, 1, 4, 0>

<C, 1> <5, 1, 4, 1>
<D, 0> <6,1,4,1>

memory_map

(a) Device memory becomes full

STl - e oo o lon <o lon ]
0 1 2 3 4 5 6

O o |0 oo o oo o |
+— Out FIFO Queue «—n
<B,0> | <2, 1, 4, 0> ‘ <> ‘ > ‘

<C, 0> <3, 1,4, 1>

<B,1> | <4, 1, 4, 0> freeblock_map

<C 1> <5, 1, 4, 1>
<D, 0> <6,1,4,1>

<D, 1> <0,1,4,1>

memory_map

(b) Evicting <A,0> and copying <D,1>

Fig. 4: Illustrative example of how MM works

(FIFO) eviction policy using evictionQueue to execute
larger sparse matrix problems that exceed device memory.
As MM moves a tile from host to device, it adds the
<data structure name, tile id> of that block to the end
of evictionQueue. MM always tries to evict from the
beginning of evictionQueue.

o freeblock_map: This is an unordered map that keeps
track of the free memory blocks on the device_memory
array. The Key of the freeblock_map is the number of
contiguous free memory blocks on the device_memory
array. The Value of the freeblock_map is an array of start
indices of free memory blocks on the device_memory
array. The MM starts tracking the free memory blocks
once the eviction policy is activated, and MM always tries
to copy a matrix block from the host to the free mem-
ory blocks on the device. This helps minimize memory
fragmentation on the device.

Eviction/Replacement Policy: Data movement between the
host and device becomes the main performance bottleneck
when application working sets exceed the physical memory
capacity of the device. The MM uses a software-managed
First-In-First-Out (FIFO) eviction policy to efficiently manage
data movement between the host and device algorithm. From
the beginning of the execution of the application, MM adds
a matrix block at the end of the evictionQueue whenever
it moves a matrix block from host to device; an eviction
is performed when the device memory becomes full. MM
evicts the front element of the evictionQueue to make space
for newly required data on the device. If the data tile at the
front of evictionQueue is an operand of the current operation,
it is removed from the front and reinserted at the back of
evictionQueue.

List of MM methods: MM has multiple methods to
perform its functionality. These methods are internal to
DeepSparseGPU and are not to be used by a user. Here are
the list of important methods of MM:

o isOnDevice(mtx, tile_id): This function returns true if
the tile_id-th block of mtx matrix is available on device,
otherwise it returns false.

o copyToDevice(mtx, tile_id): This function is used to
copy the ftile_id-th block of mtx matrix from host to
the suitable available memory blocks on device memory.
It throws an exception if there is not enough space
or any suitable memory blocks on the device. We use
omp_target_memcpy function to copy data between host
and device in DeepSparseGPU.

o reserveOnDevice(mtx, tile_id): This function reserves
spaces for the tile_id-th block of mtx on the device. This
function is beneficial when any operation produces new
data. In such cases, we do not need to copy the output
matrix tile from host to device; reserving sufficient device
space for that matrix tile is enough in this case. This
function throws an exception if there is not enough space
or no suitable memory blocks exist on the device.

o copyToHost(mtx, tile_id): This function is used to copy
the tile_id-th block of mitx matrix from the device to the
host. It throws an exception, if it is unable to copy the
matrix block. We use omp_target_memcpy function to
copy data between from device to host.

How MM works: We provide an example in Figure 4 to
demonstrate the operations of MM. Let us assume we have
have 4 matrices (A, B, C and D) associated with a computation
and we have a total of 7 memory blocks on the device. Each
matrix is tiled into 2 x 1 blocks in this example. Each tile of
matrix A requires 2 memory blocks on the device, whereas
tiles for other matrices require 1 memory block on the device.
Due to the nature of the computation, let us assume that the
order of moving matrix tiles to device is - {<A, 0>, <B, 0>,
<C, 0>, <B, I>, <C, I>, <D, 0>, <D, I>}. As shown
in Figure 4a, device memory becomes full before moving the
last block (<D, I>) in due to the limited device memory
capacity. Figure 4a shows the status of all the data structures

150

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



of MM at this stage and MM activates the eviction policy,
as device memory is full now. The MM needs to move <D,
1> tile to device. In order to do so, MM evicts the front of
evictionQueue which is <A, 0> matrix tile. (<A, 0>) occupies
2 memory blocks on device and <D, I> requires only 1
memory block to be stored on device. So MM copies <D, 1>
at 0 index of device_memory array and adds index 1 in the
freeblock_map. MM also updates memory_view, map_map and
evictionQueue accordingly. As shown in Figure 4a, isModified
= [ in memory_map for <A, 0> which means <A, 0> is
modified on the device. MM copies the latest value of <A, 0>
from device to host before evicting it in Figure 4b. As memory
manager mostly performs insertion and look up operations on
an unordered map, an array or a FIFO queue that typically
take O(1) time on average, it incurs a negligible execution
overhead.

IV. PERFORMANCE EVALUATION
A. Experimental Setup

We conducted all of our experiments on the Cori-GPU
testbed at the National Energy Research Scientific Computing
Center (NERSC) [24]. Each compute node has two 20-core
Skylake processors clocked at 2.4 GHz and 8 NVIDIA Tesla
V100 “Volta” GPUs with 16 GB of HBM per GPU. The
V100 GPU model has a peak double-precision performance
of 7.0 TFLOP/s. There is a total of 384 GB DDR4 DRAM
space on each node. The CPUs are connected to the GPUs
via four PCle 3.0 switches and the GPUs are connected to
each other via NVIDIA’s NVLink 2.0 interconnect. Cori-GPU
provides extensive software environments to compile OpenMP
(and OpenACC) programs. We used the Cray Compiler En-
vironment (CCE) at version 9.1.0 to compile our software.
Our work used the classic CCE compiler as opposed to the
newer LLVM/Clang-based compiler that is also available in
the package. The GPU accelerated cuSPARSE and cuBLAS
libraries provided with CUDA v11.1.1 are used in our baseline
implementation. We used thread affinity to bind threads to
cores and we use 20 CPU threads and 1 GPU (1 CPU socket
+ 1 GPU) for our experiments to avoid NUMA issues. We
take a full Cori-GPU node for our experiments in order to
avoid noisy environment created by sharing the same node
with other users.

1) Benchmark Application: We demonstrate the perfor-
mance of the DeepSparseGPU framework on the LOBPCG
algorithm which is an important eigensolver for large-scale
scientific computing applications [19]. We give the pseudocode
for the LOBPCG solver in Algorithm 1. It involves kernels
with high arithmetic intensities such as SpMM and several
level-3 BLAS kernels. The total memory needed for block
vectors ¥, R, O and others can easily exceed the space matrix
H takes up. Figure 5 shows a sample task dependency graph
for the LOBPCG algorithm for a toy problem generated by
TDGG where the sparse matrix is decomposed into 2 x 1
tiles. Clearly, minimizing the data movement between CPU
and GPU to obtain an efficient LOBPCG implementation is
non-trivial.

Algorithm 1: LOBPCG Algorithm (for simplicity,
without a preconditioner) used to solve HY = E¥

Input: H , matrix of dimensions N x N
Input: ¥, a block of vectors of dimensions of N x m
Output: ¥ and F such that || H¥ — WE| p is small,
and VTV =1,
1 Orthonormalize the columns of ¥
2 P+ 0
3fori=0, 1, ..., until convergence do
s | B =0lHY
6 Apply the Rayleigh—Ritz procedure on
span{¥;, R;, P;}
7 Uiiq argmin trace(STHS)
Sespan{¥;.R;,P;}, STS=I,,
8 P11 =%
9 Check convergence
10 end
1n v+ WH,]

Fig. 5: A sample task graph for the LOBPCG algorithm using
a small sparse matrix.

2) Dataset: We selected 11 square matrices with varying
sizes, sparsity patterns, and domains from the SuiteSparse
Matrix Collection in addition to the Nm7 matrix, which is
from a nuclear shell model code (see Tab.Il and IIT) [10].
Matrices in Table II are used to evaluate bigger problem sizes
that do not fit in GPU memory. The bigger problem sizes
range from 32.06 GB to 84.54 GB. Matrices in Table III are
used to evaluate problem sizes that fit in the GPU memory.
The smaller problem sizes range from 2.64 GB to 13.87 GB.
Performance data for LOBPCG is averaged over five iterations.

3) Baseline Implementation: We compare the performance
of DeepSparseGPU with a baseline implementation that we
call Libcsr_UM, which is an implementation of the LOBPCG
solver using GPU accelerated cuSPARSE and cuBLAS li-
braries for SpMM (with CSR storage of the sparse matrix),
inner product, and linear combination kernels. The application

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



TABLE II: Matrices used to evaluate problem size > 16 GB.

Matrix #Rows #Non-zeros Problem Size (GB)
Nm7 4,985,944 648,890,590 32.06
nlpkkt200 16,240,000 448,225,632 44.98
nlpkkt240 27,993,600 760,648,352 77.32
it_2004 41,291,594 1,150,725,436 64.18
sk_2005 50,636,154 1,949,412,601 54.38
webbase_2001 | 118,142,155 | 1,019,903,190 84.54

TABLE III: Matrices used to evaluate problem size < 16 GB.

Matrix #Rows #Non-zeros | Problem Size (GB)
inline_1 503,712 36,816,342 2.64
dielFilterV3real | 1,102,824 | 89,306,020 6.07
Flan_1565 1,564,794 | 117,406,044 5.22
HVI15R 2,017,169 | 281,419,743 8.29
Bump_2911 2,911,419 | 127,729,899 8.63
Nm7 4,985,944 | 648,890,590 13.87
nlpkkt160 8,345,600 | 229,518,112 12.94

kernels are executed on the GPU using OpenMP directives.
Application kernels include tall skinny matrix operations
such as addition, subtraction, element-wise multiplication, etc.
We use NVIDIA’s unified memory technology (using the
cudaMallocManaged function) in this implementation. As
such, the runtime system automatically takes care of the data
movement between the host and device.

4) Incremental Implementation of DeepSparseGPU: We
incrementally implemented DeepSparseGPU. We imple-
mented two intermediate working versions of our tile-based
DeepSparseGPU framework. We adopted two different data
movement schemes in these two intermediate versions, which
helped us design and develop our memory manager. We
include the performance data from these intermediate versions
to show the margin of improvement using the latest version
of DeepSparseGPU:

o DeepSparse_UM: Like DeepSparseGPU, we tile all
computational kernels and express them as DAG in
DeepSparse_UM. But instead of using MM, we rely
on using unified memory for automatic data movement
between the host and the device. All associated matri-
ces are allocated using cudaMallocManaged. They
are accessed using is_device_ptr in target offload
pragmas which allows the kernels to treat the data tiles
as device pointers, and the runtime system automatically
makes the data available on the GPU whenever needed.

e DeepSparse_MAP: This version relies on OpenMP
map (to: <list>), map(tofrom: <list>)
and map (from: <1list>) clauses for transferring
data between host and device. Each offload pragma
moves the necessary data tiles on-the-fly right before
launching its GPU kernel.

B. LOBPCG Evaluation

Our performance comparison criteria include the amount
of Host-to-Device (H2D), Device-to-Host (D2H) data transfer,
and average execution time per iteration among Libcsr_UM,
DeepSparse_UM, DeepSparse_MAP and DeepSparseGPU im-
plementations for the LOBPCG solver. The Memory Manager

quantifies and keeps track of the H2D and D2H data transfer in
the DeepSparseGPU framework. We use the NVIDIA nvprof
profiler tool to measure the amount of H2D and D2H data
transfer while using unified memory. In DeepSparse_ MAP, we
manually measure the total H2D and D2H data transfer based
on the data mentioned in the map clauses. The performance
of DeepSparseGPU, DeepSparse_UM, and DeepSparse_ MAP
depends on the tile size. Choosing a small tile size creates a
large number of fine granularity tasks. This means we have to
launch more kernels on GPU. There are overheads associated
with launching kernels on GPU. Also, a smaller tile size may
lead to poor H2D and D2H transfer rates. Increasing the tile
size reduces GPU execution overhead as GPU execution heav-
ily depends on data parallelism. Therefore, we use the tile size
as an optimization parameter based on matrix dimensions and
sparsity patterns. We experimented with different tile sizes of
32K, 64K, 128K, and 256K. We report the results of the best-
performing tile size for DeepSparseGPU, DeepSparse_UM,
and DeepSparse_MAP. In Libcsr UM, we are not required
to tile the input matrices as we used unified memory with
cuSPARSE and CUBLAS library kernels from CUDA and
OpenMP target offloaded application kernels.

1) Data Movement between Host and Device: Figure 6
shows the H2D data transferred for all four versions of the
LOBPCG algorithm. LOBPCG is a complex algorithm, as it
has several different kernel types, and its task graph results
in a vast number of tasks to be launched on GPU for each
iteration. As can be seen in Figure 6, DeepSparseGPU always
transfers less data from the host to the device compared to the
other three versions. DeepSparseGPU transfers 1.18x - 1.94x
less H2D data compared to Libcsr_UM version except for the
sk_2005 matrix. DeepSparseGPU also transfers 1.25x - 2.59x
less H2D data compared to DeepSparse_UM version.

DeepSparseGPU D

c

2552 2

W DeepSparse_MAP M Libcsr_UM

]
~N
~
~
p o
= 1
=
o
H © 2
@ {t-]
]

300.0

250.0

195.3

200.0

H2D Transfer (GB)

~
a < o
150.0 < = ~llE @
w 3 © -
100.0 ny N~ we 2 & @
< 202 b w3 - o
m 3 ~ wn n © n 2 3w
50.0 o8 o o 0 I
—ulm = HE
0.0 -
Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005  webbase_2001

Fig. 6: Average H2D data transfer per iteration.

Figure 7 shows the D2H data transferred for all four
versions of the LOBPCG algorithm. As can be seen in
Figure 7, DeepSparseGPU always outperforms the other three
versions when it comes to the amount of D2H data transfer.
DeepSparseGPU transfers 1.84x - 2.69x less D2H data com-
pared to Libcsr_UM, 2.39x - 3.70x less D2H data compared to
DeepSparse_UM and 1.95x - 3.12x less D2H data compared
to DeepSparse_MAP. Considering the total amount of data
transfer (H2D + D2H), DeepSparseGPU transfers 1.39x -
2.18x less data compared to Libcsr_UM, 1.89x - 2.79x less

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



data compared to DeepSparse_UM and 2.92x - 5.01x less data
compared to DeepSparse_ MAP.

=D U = DeepSparse_UM = DeepSparse_MAP  m Libcsr_UM
2 ©
140.0 P 5 s
2 S 3
120.0 g 8 ~
o ~ o
© 100.0 @ ~ H
- oM <
£ 800 0 ~a S ™
< o e n © o 0 1
£ 60.0 hog [ B
= © Se @ © sa v
T =1 o0 g o ™M
T 400 R R 5 n
a N ] ~ <
- i ool LM oM il
0o mulill N [ |
Nm?7 nlpkkt200  nlpkkt240 it_2004 sk_2005  webbase_2001

Fig. 7: Average D2H data transfer per iteration.

From Figure 6 and 7, we can see that the main reason why
DeepSparseGPU transfers significantly less data is due to the
explicit data management by the Memory Manager based on a
good task scheduling heuristic. The task scheduling heuristic
helps to maximize the utilization of the data while it resides in
GPU memory. DeepSparse_MAP is the worst regarding H2D
and D2H data transfer performance among all four versions.
This is expected because DeepSparse_ MAP moves all inputs
and outputs of a kernel in both H2D and D2H directions during
each kernel launch. Figure 6 and 7 show that the design of
our task scheduling scheme and memory manager is robust
and helps to minimize the data movement between host and
device.

2) Execution Time: As can be seen in Figure 8, the
significant reduction in H2D and D2H data transfer of
DeepSparseGPU over the other three versions leads to a
significant execution time speedups in general. In particular,
DeepSparseGPU achieves 1.21x - 1.38x speedup compared to
Libcsr_UM version except for Nm7, nlpkkt200 and sk_2005
matrices. We further investigated the reasons for the slower ex-
ecution of DeepSparseGPU for these matrices. We found that
our CSR format-based custom SpMM runs significantly slower
than the highly optimized cusparseSpMM (a cuSPARSE
library routine) used for SpMM operation in the Libcsr_UM
version. To be specific, our custom SpMM routine runs 1.47x
- 2.58x slower in case of these 3 matrices compared to the
cusparseSpMM routine in Libcsr_ UM.

m DeepSparseGPU 11 DeepSparse_UM  m DeepSparse_MAP  H Libcsr_UM

~
- © S
§. 100.0 5
o 80.0 o ; "
£ ® - ~ I
= 60.0 B o N
< < < 4 © < [
S P ~ 5 P bl
5 40.0 o™ N oMl = 2
F o © n ~N v ~ : N ~
S 200 o9+ @ : S I a I a o I
00 l m u Nm [ | |
nlpkkt200  nlpkkt240 it_2004 sk_2005  webbase_2001

Fig. 8: Average execution time per iteration.

We experimented with OpenMP target offload and CUDA
implemented versions of the most expensive kernels. Figure 9

shows the performance comparison between OpenMP target
offload implementation and CUDA implementation (cuBLAS,
cuSPARSE) of the most expensive kernels including inner
product (X'Y), linear combination (XY"), SpMM and column-
wise matrix reduction. The input size of the matrices used in
all of these kernels was less than 16 GB. As we can see,
the CUDA versions of these kernels are 1.67x - 12.79x faster
compared to the OpenMP target offload versions. We use
nvprof to get the execution time of cuBLAS and cuSPARSE
library kernels.

= OpenMP CUDA

14
12

1

g

308

go6 < ~

= i) ]
0.4 i o ™

]
0.2 3 P4
S

o

X'y SpMM Reduction

Fig. 9: OpenMP vs CUDA execution time comparison for most
expensive kernels.

3) Effect of Pinned Memory: It is important to note that
even if our DeepSparseGPU transfers less H2D and D2H
data, the overall H2D data transfer rate in DeepSparseGPU is
4.49 GB/sec, whereas the average H2D rate is 6.34 GB/sec
in Libcsr_UM for all test matrices. The overall D2H data
transfer rates are more striking, Libcsr_UM (12.13 GB/sec)
achieves 2.82x higher data transfer rates DeepSparseGPU
(4.29 GB/sec). Despite this lower data transfer rate and the
worse SpMM performance mentioned above, DeepSparseGPU
runs faster than Libcsr_UM with the Unified Memory. We had
used pageable memory with DeepSparseGPU for the results
shown in Figure 6, 7 and 8, therefore we also experimented
with pinned memory to achieve a better bandwidth and see
its effect on execution time. Figure 10 shows the execu-
tion time performance comparison of DeepSparseGPU using
pinned memory with the results shown in Figure 8. As can
be seen, we achieve 1.45x - 1.98x execution time speedup
using pinned memory with DeepSparseGPU compared to its
pageable memory version and up to 2.93x speedup compared
to Libcsr_UM.

" D 5eGPU (Pinned) = D seGPU (| ) =D se_UM
B DeepSparse_MAP M Libesr_UM

120.0

©
~
o
1
b4 n
- ~ o
=] o o n
i o
: « NS 5 ] < <
40.0 w:m \oﬁ w =R o™ m q'm- " qm.
" H wn wn J <
E=Kal [) Lol ] @ © ]
200 = I,\ "‘\!.—. S = o= I 06"'. B
0o M l - = m N | ] m N

nlpkkt200 nlpkkt240 it_2004 sk_2005  webbase_2001

o
=)
I
o

Execution Time (Sec.)
(-]
S
o

N

Fig. 10: Performance of DeepSparseGPU using pinned mem-
ory

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



4) Comparison with a CPU version: Figure 11 shows
the execution time performance comparison between
DeepSparseGPU (using pinned memory) and the baseline
version running on CPU for bigger problem sizes. The CPU
baseline implementation uses thread-parallel Intel MKL
Library calls (including SpMM) with CSR storage of the
sparse matrix. As we can see, DeepSparseGPU is running
slower in comparison. However, it should be noted that even
with the pinned memory optimization above, we get only
about 12 GB/sec bandwidth between the CPU and GPU using
a PCle express 3.0 interconnect. In contrast, the bandwidth
between the CPU and DRAM is approximately 90 GB/sec.

CPU 1 DeepSparseGPU

14.9

16.0 ; :
~14.0 a - -
$ 120 = o o
o s @ ©
£ 10.0 ° g o ~ o
= 8.0 ~ ~ N~ o
s ©
2 6.0
2 a0
g 4
w20

0.0

Nm7 nlpkkt200 nlpkkt240 it_2004 sk_2005 webbase_2001

Fig. 11: CPU vs DeepSparseGPU execution time comparison
(problem size > 16 GB)

Figure 12 shows the theoretical execution time of
DeepSparseGPU with different types of interconnect such
as PCle-Gen3 (16 GB/Sec), PCle-Gen4 (32 GB/Sec), PCle-
Gen5 (64 GB/Sec), and NVLINK-4 (450 GB/Sec) [25]. For
this experiment, we took the total compute time of V100
from Figure 11 and assumed it remains the same for each
configuration. We calculated the data movement time by
dividing the total amount of data transfer in Figure 11 by
80% of the peak per-direction bandwidth for each type of
interconnect and added it to the total compute time to get the
total theoretical execution time. As we can see from Figure 12,
the theoretical execution time with PCle-Gen3 is still on par
with the CPU time. However, we can see that the theoretical
time of DeepSparseGPU with PCle-Gen4, PCle-Gen5 and
NVLINK-4 beat the CPU time.

CPU DeepSparseGPU  H PCle-Gen3 M PCle-Gen4 M PCle-Gen5 M NVLINK-4
o

16.0 ~ © ¢
a3 IR
~14.0 e a
2120 afls a0
[ j °
2 10.0 ~ oo @ =
= Q0 oy © - )
F 80 Rido NN g ~ o 2 v
H nlo Co © o ° -
2 6.0 15 BN G = ) - U
3 A - <o <
§ 40 - N e
" | 1 Vil Vit
0.0 |
Nm?7 nlpkkt200 nlpkkt240 it_2004 sk_2005  webbase_2001

Fig. 12: CPU vs DeepSparseGPU execution time comparison
with different CPU-GPU interconnect

The above simulation indicates that with the availability
of platforms with faster interconnects (some such platforms
currently exist, but those hardware have not been available
for us to experiment with), DeepSparseGPU would have real

merit in accelerating actual machine learning or scientific
computing workloads. Figure 13 which shows the execution
time performance comparison between DeepSparseGPU when
the application working set fits into GPU memory (Table III)
provides further evidence in this direction.

As can be seen, DeepSparseGPU achieves 1.77x - 4.87x
speedup compared to the CPU baseline implementation when
the total memory footprint is less than 16GB, i.e., when data
movement is not a big bottleneck.

CPU DeepSparseGPU

3.4

Ti
N
«n o
1.7

tio
-
«n
11

1.2

3 ~
§ 1.0 @ 3

on
0.5 o

0.6
0.7
0.6

n
« o
o

- «
P =]

inline_1 dielFilterV3real  Flan_1565 HV15R Bump_2911 Nm7 nlpkkt160

Fig. 13: CPU vs DeepSparseGPU execution time comparison
using problem size < 16 GB

V. CONCLUSION AND FUTURE WORK

In this work, we introduced a tiling-based sparse solver
framework for heterogeneous architectures that aims to mini-
mize data transfer between host and device to achieve better
performance. We showed that our framework transfers sig-
nificantly less data between host and device. Our framework
also improves the execution time over the UM-based baseline
implementation using pinned memory. In our future work, we
will focus on improving the efficiency of data transfers in
DeepSparseGPU and optimizing the performance of sparse
matrix kernels. To this end, we plan to design and implement a
DAG partitioner that would help minimize the data movement
between CPU and GPU. We also plan to use 2D decomposition
of the SpMM operation, which would expose more parallelism
in the computation. We also plan to explore and experiment
with CUDA Graphs, which seems a good fit for our design.

ACKNOWLEDGMENT

This work was in part supported by the NSF under awards
CCF-1822932, OAC-1845208 and CCF-1919021, as well as
the US Department of Energy, Office of Science under the
award DE-SC0018083 (NUCLEI SciDAC-4 Collaboration).
This research used resources of the National Energy Research
Scientific Computing Center (NERSC), a U.S. Department
of Energy Office of Science User Facility operated under
Contract No. DE-AC02-05CH11231.

REFERENCES

[1] Md Afibuzzaman, Fazlay Rabbi, M Yusuf C)zkaya, Hasan Metin Aktulga,
and Umit V Catalyiirek. Deepsparse: A task-parallel framework for
sparsesolvers on deep memory architectures. In 2019 IEEE 26th
International Conference on High Performance Computing, Data, and
Analytics (HiPC), pages 373-382. IEEE, 2019.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



[4

[5

[10]

(11

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Hasan Metin Aktulga, Aydin Bulug, Samuel Williams, and Chao Yang.
Optimizing sparse matrix-multiple vectors multiplication for nuclear
configuration interaction calculations. In 2014 IEEE 28th International
Parallel and Distributed Processing Symposium, pages 1213-1222.
IEEE, 2014.

Edward Anderson, Zhaojun Bai, Christian Bischof, Susan Blackford,
James Demmel, Jack Dongarra, Jeremy Du Croz, Anne Greenbaum,
S Hammerling, Alan McKenney, et al. Lapack users’ guide, vol. 9.
Society for Industrial Mathematics, 39, 1999.

Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Implementing a
sparse matrix vector product for the sell-c/sell-c-o formats on nvidia
gpus. University of Tennessee, Tech. Rep. ut-eecs-14-727, 2014.
Hartwig Anzt, Stanimire Tomov, and Jack Dongarra. Accelerating the
lobpcg method on gpus using a blocked sparse matrix vector product. In
Proceedings of the Symposium on High Performance Computing, pages
75-82. Society for Computer Simulation International, 2015.

Nathan Bell and Michael Garland. Implementing sparse matrix-vector
multiplication on throughput-oriented processors. In Proceedings of the
conference on high performance computing networking, storage and
analysis, page 18. ACM, 2009.

Jee W Choi, Amik Singh, and Richard W Vuduc. Model-driven
autotuning of sparse matrix-vector multiply on gpus. In ACM sigplan
notices, volume 45, pages 115-126. ACM, 2010.

Christopher Daley, Hadia Ahmed, Samuel Williams, and Nicholas
Wright. A case study of porting hpgmg from cuda to openmp target
offload. In International Workshop on OpenMP, pages 37-51. Springer,
2020.

Joshua Hoke Davis, Christopher Daley, Swaroop Pophale, Thomas
Huber, Sunita Chandrasekaran, and Nicholas J Wright. Performance
assessment of openmp compilers targeting nvidia v100 gpus. arXiv
preprint arXiv:2010.09454, 2020.

Tim Davis, Yifan Hu, and Scott Kolodziej. The suitesparse matrix
collection. http://faculty.cse.tamu.edu/davis/suitesparse.html, 2018.
Sebastien Deldon, James Beyer, and Douglas Miles. OpenACC and
CUDA Unified Memory. In Cray User Group (CUG), May 2018.
Jose Monsalve Diaz, Swaroop Pophale, Kyle Friedline, Oscar Hernan-
dez, David E Bernholdt, and Sunita Chandrasekaran. Evaluating support
for openmp offload features. In Proceedings of the 47th International
Conference on Parallel Processing Companion, pages 1-10, 2018.

A Dziekonski, M Rewienski, Piotr Sypek, A Lamecki, and Michat
Mrozowski. Gpu-accelerated lobpcg method with inexact null-space
filtering for solving generalized eigenvalue problems in computational
electromagnetics analysis with higher-order fem. Communications in
Computational Physics, 22(4):997-1014, 2017.

Michael Garland. Sparse matrix computations on manycore gpu’s. In
Proceedings of the 45th annual Design Automation Conference, pages
2-6. ACM, 2008.

Changwan Hong, Aravind Sukumaran-Rajam, Bortik Bandyopadhyay,
Jinsung Kim, Siireyya Emre Kurt, Israt Nisa, Shivani Sabhlok, Umit V
Catalyiirek, Srinivasan Parthasarathy, and P Sadayappan. Efficient
sparse-matrix multi-vector product on gpus. In Proceedings of the 27th
International Symposium on High-Performance Parallel and Distributed
Computing, pages 66-79. ACM, 2018.

Jeremy Kepner, David Bade, Aydin Bulug, John Gilbert, Timothy
Mattson, and Henning Meyerhenke. Graphs, matrices, and the graphblas:
Seven good reasons. arXiv preprint arXiv:1504.01039, 2015.
Youngsok Kim, Jaewon Lee, Donggyu Kim, and Jangwoo Kim.
Scalegpu: Gpu architecture for memory-unaware gpu programming.
IEEE Computer Architecture Letters, 13(2):101-104, 2013.

Marcin Knap and Pawet Czarnul. Performance evaluation of unified
memory with prefetching and oversubscription for selected parallel
cuda applications on nvidia pascal and volta gpus. The Journal of
Supercomputing, pages 1-21, 2019.

Andrew V Knyazev. Toward the optimal preconditioned eigensolver:
Locally optimal block preconditioned conjugate gradient method. SIAM
Jjournal on scientific computing, 23(2):517-541, 2001.

Andrew V Knyazev, Merico E Argentati, Ilya Lashuk, and Evgueni E
Ovtchinnikov. Block locally optimal preconditioned eigenvalue xolvers
(blopex) in hypre and petsc. SIAM Journal on Scientific Computing,
29(5):2224-2239, 2007.

V. G. Vergara Larrea, R. Budiardja, R. Gayatri, C. Daley, O. Hernandez,
and W. Joubert. Experiences porting mini-applications to OpenACC and
OpenMP on heterogeneous systems. In Cray User Group (CUG), May
2019.

155

[22]

[23]

[24
[25

[26]

[27]

[28
[29

[30

[31

[32]

Chuck L Lawson, Richard J. Hanson, David R Kincaid, and Fred T.
Krogh. Basic linear algebra subprograms for fortran usage. ACM
Transactions on Mathematical Software (TOMS), 5(3):308-323, 1979.
Pieter Maris, H Metin Aktulga, Mark A Caprio, Umit V Catalyiirek,
Esmond G Ng, Dossay Oryspayev, Hugh Potter, Erik Saule, Masha
Sosonkina, James P Vary, et al. Large-scale ab initio configuration in-
teraction calculations for light nuclei. In Journal of Physics: Conference
Series, volume 403, page 012019. IOP Publishing, 2012.

Cori-gpu system configuration. https://docs-dev.nersc.gov/cgpu/.
Nvlink-4 bandwidth. https://resources.nvidia.com/en-us- grace-cpu/
nvidia-grace-hopper.

Gloria Ortega, Francisco Vazquez, Inmaculada Garcia, and Ester M
Garzoén. Fastspmm: An efficient library for sparse matrix matrix product
on gpus. The Computer Journal, 57(7):968-979, 2014.

Fazlay Rabbi, Christopher S Daley, Hasan Metin Aktulga, and Nicholas J
Wright. Evaluation of directive-based gpu programming models on
a block eigensolver with consideration of large sparse matrices. In
International Workshop on Accelerator Programming Using Directives,
pages 66-88. Springer, 2019.

Top500 supercomputers. http://www:top500:org.

Samuel Williams, Andrew Waterman, and David Patterson. Roofline:
An insightful visual performance model for floating-point programs and
multicore architectures. Technical report, Lawrence Berkeley National
Lab.(LBNL), Berkeley, CA (United States), 2009.

Carl Yang, Aydin Bulug, and John D Owens. Design principles for
sparse matrix multiplication on the gpu. In European Conference on
Parallel Processing, pages 672—-687. Springer, 2018.

Xintian Yang, Srinivasan Parthasarathy, and Ponnuswamy Sadayappan.
Fast sparse matrix-vector multiplication on gpus: implications for graph
mining. Proceedings of the VLDB Endowment, 4(4):231-242, 2011.
Tianhao Zheng, David Nellans, Arslan Zulfigar, Mark Stephenson, and
Stephen W Keckler. Towards high performance paged memory for gpus.
In 2016 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pages 345-357. IEEE, 2016.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 03:17:50 UTC from IEEE Xplore. Restrictions apply.



