
Efficient Hierarchical State Vector Simulation of
Quantum Circuits via Acyclic Graph Partitioning

Bo Fang∗§, M. Yusuf Özkaya†§, Ang Li∗, Ümit V. Çatalyürek†‡ Sriram Krishnamoorthy∗
∗ Pacific Northwest National Laboratory, Richland WA, USA {bo.fang, ang.li, sriram}@pnnl.gov

‡ Amazon Web Services, Seattle WA, USA
†Georgia Institute of Technology, School of Computational Science and Engineeering, Atlanta, GA, USA

Email: {myozka, umit}@gatech.edu

Abstract—Early but promising results in quantum computing
have been enabled by the concurrent development of quan-
tum algorithms, devices, and materials. Classical simulation
of quantum programs has enabled the design and analysis of
algorithms and implementation strategies targeting current and
anticipated quantum device architectures. In this paper, we
present a graph-based approach to achieving efficient quantum
circuit simulation. Our approach involves partitioning the graph
representation of a given quantum circuit into acyclic sub-
graphs/circuits that exhibit better data locality. Simulation of
each sub-circuit is organized hierarchically, with the iterative
construction and simulation of smaller state vectors, improving
overall performance. Also, this partitioning reduces the number
of passes through data, improving the total computation time.
We present three partitioning strategies and observe that acyclic
graph partitioning typically results in the best time-to-solution.
In contrast, other strategies reduce the partitioning time at the
expense of potentially increased simulation times. Experimental
evaluation demonstrates the effectiveness of our approach.

I. INTRODUCTION

In the last decades, the rapid progress witnessed in the field

of quantum computing involves solid improvement over the

quantum algorithms, systems, and materials. Driven by the

scaling complexity of the problems to solve, the quantum

systems would need to respond to the substantially increasing

depth of the operations and the expanding width of the qubit

registers. Although the state-of-the-art quantum computers

available to the public now feature 127 qubits [1], it is still sig-

nificantly less than the qubit capacity required by the quantum

algorithms. Considering the exascale supercomputers capable

of up to 1017 to 1018 floating-point operations per second

(FLOPS), Dalzell et al. [2] calculated that to reach the state of

“quantum supremacy” one needs 208 qubits with the Instanta-

neous Quantum Polynomial-time (IQP) circuits [3], 420 qubits

with Quantum Approximate Optimization Algorithm (QAOA)

circuits [4] and 98 photons with boson sampling circuits (linear

optical networks) [5]. A more common case suggests that there

needs to be more than 2000 qubits and the order of 1011

of gates with Shor’s algorithm [6] for a practical use. That

said, this gap would hinder the design, implementation, and

verification for the quantum algorithm and physical quantum

computing architecture co-design.

§
Both authors contributed equally.‡
This publication describes work performed at the Georgia Institute of

Technology and is not associated with Amazon.

Despite the substantial catch-up from the actual quantum

hardware effort, several aspects motivate the use of classical

systems to simulate the quantum circuit execution. First,

designing new quantum algorithms needs iterative studies

and trials, where software-based simulators would certainly

offer flexible and low-cost platforms. Second, current noisy

intermediate-scale quantum (NISQ) technologies usually have

a short coherence time, compromising the result correctness of

deep circuit execution. Third, publicly available quantum com-

puters (specifically with a large number of qubits, e.g., > 16)

are much less resourceful and usually reside in cloud services,

hence the access to those machines is limited. However,

as expected, a practical simulation would require a massive

memory capacity, thus shifting the quantum circuit simulation

to memory-bound and degrading the simulation efficiency.

Since the designated system typically features a large num-

ber of compute nodes with a hierarchical memory architecture

to run such simulations, it is essential for the state-vector sim-

ulator to exploit the data locality in a single node and minimize

the communication across different nodes for efficiency in

practice. What remains challenging, then, is for the simulator

to determine what portion of the computation should be

executed locally thus the resulting amount of communication

can be minimized. To achieve this, the quantum circuit needs

to be reorganized systematically.

To this end, we propose HiSVSIM that consists of i) graph-

based quantum circuit partition approaches that can exten-

sively exploit the hierarchical memory systems and maintain

the efficient communication across nodes, and ii) a state-vector

simulation framework to support executing the partitioned

circuit. The main workflow of HiSVSIM takes an input

quantum circuit that is further compiled to a directed acyclic

graph (DAG), partitions the circuit graph into a set of smaller

circuits (parts), and each smaller circuit is simulated with a

smaller state vector simulator that would fit into the faster

memory layer. Contrary to other “partitioning-based” meth-

ods [7], [8] that partition the circuit to execute different parts

on multiple real quantum devices (i.e., Quantum Processing

Units) in parallel, simulating quantum circuits on classical

computers follows a different model. Thus, the computation

of each subcircuit (part) occurs on all available resources.

The preservation of acyclicity during partitioning and in the

resulting quotient graph enables the utilization of the acyclicity

289

2022 IEEE International Conference on Cluster Computing (CLUSTER)

2168-9253/22/$31.00 ©2022 IEEE
DOI 10.1109/CLUSTER51413.2022.00041

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lu
st

er
 C

om
pu

tin
g

(C
LU

ST
ER

) |
 9

78
-1

-6
65

4-
98

56
-2

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CL
U

ST
ER

51
41

3.
20

22
.0

00
41

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

property across all components of the simulation framework

for better communication and locality patterns.

To the best of our knowledge, HiSVSIM is among the first

efforts to apply graph-based approaches on the quantum circuit

decomposition for efficient circuit simulation. Unlike other

quantum-circuit optimization techniques aiming at reducing

the gate counts (i.e., gate fusion), we focus on a global view of

the circuit execution and effectively utilize the memory hierar-

chy. Therefore, our approach is orthogonal and complementary

to existing approaches.

Our paper makes the following contributions:

� We design and implement a novel state-vector simulator:

HiSVSIM that uses acyclic graph partitioning approaches

to take advantage of the multiple memory hierarchy in the

modern HPC systems to efficiently simulate quantum circuits1.

� We investigate three graph-based strategies with

HiSVSIM’s part-based execution model and empirically de-

termine the performance benefits offered by each strategy.

� We demonstrate the performance benefits of HiSVSIM

on a large-scale computing system over the state-of-the-art

quantum simulator, and such improvement increases with the

scaling-up of the number of qubits by up to 3.9× with 2.1×
on average with dagP partitioning.

� We propose a multi-level HiSVSIM model that achieves

1.5× improvement over the single-level HiSVSIM (up to 5.7×
over the baseline vs. up to 3.9× with single-level).

II. BACKGROUND AND RELATED WORK

Here, we introduce the basics of quantum computing and

how the state vector simulation performs on the quantum state.

A. Quantum Computing Basics

A qubit is a block of quantum memory that consists of any

possible quantum superposition of quantum state |0〉 and |1〉
as in

|φ〉 = α0 |0〉+ α1 |1〉
where α0 and α1 are called the quantum amplitudes, such that

α2
0+α2

1 = 1. Upon measurement, the probability of the whole

quantum state collapsing to state 0 is equal to α2
0, and to state

1 is equal to α2
1.

A quantum (logic) gate represents an operation on the

quantum state, i.e., a (small) set of qubits. Fundamental

quantum mechanics principles state that every quantum gate is

required to be unitary, which means it can be represented by

a 2n × 2n unitary matrix U and UU† = 1n, where U † is the

conjugate transpose of U and 1n is the identity matrix of size

2n × 2n. For example, a basic quantum gate X is equivalent

to the classical logical NOT gate. X gate maps the quantum

state |0〉 to |1〉 and |1〉 to |0〉, and more generally on a quantum

state |φ〉:
X |φ〉 = (0 1

1 0)

(
α0

α1

)
=

(
α1

α0

)

1Accessible through: http://tda.gatech.edu/software/HiSVSIM/

where X = (0 1
1 0). Other common single-qubit gates include

Y =
(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
, H = 1√

2

(
1 1
1 −1

)
, and multi-qubit

gates such as CX, SWAP, etc.

B. State Vector Simulation

Given an initial quantum state – a complex-number vector

representing the n-qubit system, and a sequence of quantum

gates referred as a quantum circuit, the state vector simulation

conducts the process of applying each gate inside the quantum

circuit on the quantum state, to simulate how the quantum

operations modify the quantum state with the classical com-

puting. The state vector holds 2n elements, occupying a total

of 2n × 16 = 2n+4 bytes (i.e., a complex number requires

16 bytes) of memory on a classical computer. During the

simulation, applying a quantum gate on the quantum state is

equivalent to conducting a matrix multiplication of the gate

matrix on the corresponding positions of the qubit(s) on the

state vector (explained in Sec. III-A).

C. Related Work

There are several emerging quantum circuit simula-

tion systems focusing on state-vector simulation. Intel’s

qHiPSTER [9] is a specialized distributed quantum simulation

system that reaches to 42-qubits capacity through various

optimization techniques such as vectorization, multi-threading,

cache blocking and overlapping computation with communi-

cation. IQS [10], a recent work of Intel, is the most up-to-

date version of qHiPSTER and one of the few available open-

source simulators. IQS implements the distributed simulation

via careful qubit mapping, to reduce the global communi-

cation, yet it does not present a systematical approach to

arrange the local and global qubits, opposed to what we do in

HiSVSIM.

QX [11] is a quantum circuit simulation platform which

defines its own low-level language to implement quantum

operations. Similar to qHiPSTER, it exploits optimization

techniques such as instruction-level parallelism (e.g., SSE,

AVX and FMA instructions), multi-threading, etc. It also

leverages floating point operations reduction and swap-based

implementation to conduct the gate-specific optimizations.

Wu et al. [12] employ both lossless and lossy data compres-

sion techniques on quantum simulation to shrink the memory

footprint. During the simulation, certain blocks of data need

to be decompressed for update. It uses the special memory

channel residing in Intel Xeon Phi to efficiently store the

decompressed data.

QuEST [13] proposes MPI- and OpenMP-based distributed

parallel circuit simulation. Alternatively, it leverages the mas-

sive parallelism of GPUs to simulate circuits that fit in a single

GPU memory. It takes a rather circuit-agnostic approach to

partition the state vector into different MPI ranks, which is

close to IQS’s strategy.

Doi et al. [14] propose a cache-blocking technique with

MPI for Qiskit’s state vector simulator Aer. The proposed

approaches optimise the quantum circuit itself to improve

locality. Häner et al. [15] reduce the global communication

290

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

for the quantum supremacy circuit by swapping the gates into

local state vector simulation. It conducts a closer examination

on the quantum supremacy circuit and identifies the gates that

do not need to communicate between compute nodes.

There are several GPU-based simulators: NVIDIA recently

released cuQuantum SDK [16] that provides several tools

to simulate quantum circuits on GPUs for high-performance

circuit simulation. SV-Sim [17] is a PGAS-based state vector

simulator that simulates a quantum circuit in single/multi-

CPU/GPU settings for both single and multi node architec-

tures. and HyQuas [18]. The state-of-the-art, HyQuas, parti-

tions the gates in a greedy fashion, which contain no more than

a given number of active qubits. HyQuas can switch between

different simulation methods for different chunks of a quantum

circuit in order to improve performance.

HiSVSIM differs from these work mainly in that it takes a

more general and systematic approach, i.e., the acyclic graph

partitioning that determines which qubits and gates can be

gathered for faster simulation. This reduces the communication

by allowing each node to execute the subset of the gates (i.e.,

gates of current part) on only the local inner state vector.

Moreover, our acyclic graph partitioning technique is or-

thogonal to most of the optimization techniques (e.g., gate

fusion, AVX, floating point reduction, etc.) implemented in

above simulators. Hence, our strategies to optimize the circuit

simulation can complete the above techniques and contribute

to the overall simulation efficiency. Our approach can be

used as an encapsulating layer around another off-the-shelf

CPU/GPU-based simulator and benefit from their specific

optimizations as well (Further details in Sec VI). Suggested

by [7], smaller-scale quantum computers can be used to

execute a portion of the circuit/qubits in parallel, and our

proposed graph partitioning approach may work for both the

actual quantum circuit execution and simulation.

III. HISVSIM: HIERARCHICAL QUANTUM SIMULATION

In this section, we first introduce an analysis on the main

computational pattern of the state-vector (SV) based quantum

circuit simulation to lay out the need for the hierarchical

simulation strategy. This motivates the graph-based circuit

partitioning approach that can systematically generate sub-

circuits to efficiently access the hierarchical memory archi-

tecture. Then, we describe our design and implementation of

the hierarchical simulation framework.

A. SV-based Computational Pattern

As discussed in Sec. II, the main computation performed by

the state-vector simulation is a sequence of “scoped” matrix

multiplications: for each gate inside the quantum circuit, the

simulator needs to pick up the amplitude values stored in

the corresponding positions of the quantum state, to form a

small vector that is multiplied by the gate’s matrix. After

the multiplication, the elements of the resulting vector are

stored back to where they are extracted from in the state.

Fig. 1 illustrates the process of applying H gate on qubits 0

(Fig. 1a) and 1 (Fig. 1b) in a 3-qubit quantum system. In

a000
0 byte

16

32

48

64

80

96

112

128

a001
a010
a011
a100
a101
a110
a111

(a) H gate on qubit 0

a000
16

32

48

64

80

96

112

128

a001
a010
a011
a100
a101
a110
a111

0 byte

(b) H gate on qubit 1

Fig. 1: Applying an H gate on qubits 0 and 1 of a 3-qubit

quantum system (a000, a001, ...a111, little-endian).

both examples, the total simulation of the gate involves 4

independent matrix-vector multiplications. Each matrix-vector

multiplication involves the 2 × 2 H-gate matrix and a two-

element vector extracted from the 8-element state vector,

where each element is 16 bytes in size. In general, for applying

a single qubit gate such as H , the total number of matrix

multiplications needed is 2(n−1). One matrix multiplication

requires 4 complex × operations and 2 complex + operations.

In addition, multiplying two complex numbers takes 4 FP ×
and 2 FP +, thus the total number of FLOPS are 28 for

one matrix multiplication. Since the data transferred between

DRAM and cache is 64 bytes (16 · 2 · 2) per one matrix

multiplication, the operational intensity [19] is 7
16 , indicating

that the entire computation is constrained more by the data

movement (i.e., memory bound) [19].

Efficient quantum circuit simulation requires optimizing

data locality in performing the matrix multiplication opera-

tions. One observation on the computational pattern suggests

that this task follows a relatively cache-friendly pattern: a

pattern shown in Fig. 1a conducts sequential memory accesses

(i.e., step size s = 1); the pattern shown in Fig. 1b (i.e.,

s = 2) would exhibit a similar cache efficiency as the Fig. 1a

since a step size of 2 would allow the access to the vector’s

elements to remain in the same cache line (typically 64 bytes

for modern CPUs). In fact, the step size s for picking up the

two elements of the vector is determined by the position i of

the target qubit2, i.e., qi, accessed by the quantum gate can be

computed as s = 2i.
However, as the number of qubits needed by the quantum

circuit scales up, the working set size of the simulation task

would inevitably exceed the cache size. For a modern CPU

usually featuring a L3 cache (e.g., 32MB) shared by all cores,

a L2 cache (e.g., 1MB) per core and a L1 cache (e.g.. 64KB)

per core, the performance of the circuit simulation on more

than 21 qubits (i.e., 221 ·16 = 32MB) would be degraded by

the capacity cache misses on L3 cache.

B. Hierarchical Circuit Simulation

To address the above challenge and improve the perfor-

mance of quantum circuit simulation, HiSVSIM implements

2It is the case for the single-qubit gate. For multi-qubit gates such as multi-
control gates, the implementation relies on the gate decomposition to convert
it to the single-qubit case with a proper offset.

291

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

the hierarchical simulation framework that executes the input

circuit as a sequence of sub-circuits (i.e. parts), each of

which contains a portion of the original gates. Therefore,

executing the gates inside each part would only occupy a

smaller working set size in the memory, which presents a better

locality compared to the non-hierarchical scenario.

HiSVSIM makes the following design choices: a) HiSVSIM

considers the dynamic execution of the gates in a quantum

circuit as a DAG, and converts the circuit partitioning problem

into a (acyclic) graph partitioning problem (Section IV);

b) HiSVSIM ensures the correctness of the proposed part-

based simulation via the novel Gather-Execute-Scatter model

(Section III-C); c) HiSVSIM enforces a consistent layout for

qubit organization across multiple levels in the hierarchy and

remaps the qubits in a part to the lower level simulation.

C. HiSVSIM Framework Overview

Fig. 2a illustrates the overview of HiSVSIM framework.

Given a quantum circuit that is comprised of a sequence

of gates applied to n qubits, HiSVSIM uses the circuit

partition module to parse the circuit and generate several

parts/subcircuits of the circuit. Each of the resulting parts

of the circuit would impact a smaller number of qubits

than the original circuit, enabling the hierarchical simulation

that the new instances of the state-vector simulator can be

launched over the parts of the circuit. During the simulation,

the amplitudes in the corresponding positions of the states

with greater strides (i.e., handled by the “outer” state vector

simulator) are gathered into the low-level quantum states (i.e.,

handled by the “inner” state vector simulators), and after the

execution of the gates inside that part, the result amplitudes

are scattered back to their original positions in the outer state

vector for the next round of gather-execute-scatter operations.

For example, to partition the circuit shown in Fig. 2a

(Fig. 2b depicts the circuit’s DAG), one partition strategy is to

divide the circuit into three parts: part 0 (left), part 1 (right)

and part 2 (bottom-middle), where each part contains 2 qubits

in the working set. This way, both the gate dependencies and

the qubit dependencies are preserved. While the simulation

still sweeps through the entire “outer” state vector, the actual

operation occurs on 4-element state vectors. In general, such

cache-resident inner state-vectors can reduce accesses to data

that resides in DRAM from the outer state vector, reducing

overall memory access costs.

The workload distribution for the algorithm is as follows:

First, the DAG is generated and partitioned. Second, the

partitioning information is used to decide the computation

of parts sequentially (i.e., workload in different parts are not

computed in separate processing elements). For a part at hand,

a subset of the elements in the original state vector (i.e.

outer state vector) is designated, and gathered to “inner state

vector”s. These are disjoint and collectively exhaustive over

the whole state vector. Within the part, all gates belonging to

that part are computed against the inner state vector. After the

computation of a part, the results are scattered back to the

“outer state vector”. And the distinct state vectors for the next

part is loaded into the inner state vector for computation.

Algorithm 1 describes how the quantum states get gathered

and scattered between the outer and inner state vectors, using

the example circuit shown in Fig. 2. To execute the first part

(i.e., p = P0), an inner state vector in_sv is created based

on the qubits residing in P0 (i.e., [S01, S02, ...S0i] as shown

in Fig. 2a). Given S01 = q1 and S02 = q0 , the qubits that

do not participate in any gates in P0 are q2 and q3. For all

combinations of bit values of q2 and q3, HiSVSIM moves

the data addressed by [q3, q2, q1, q0] from out_sv to the

corresponding [q1, q0] positions in in_sv. This process is

referred as Gather. The Scatter process sends the states back to

out_sv after the execution of the gates through in_sv. On

completion of 2t Gather-Execute-Scatter processes (assuming

t equals to the number of qubits not residing in the current

part), out_sv is ready for the next part.

Algorithm 1: The algorithm to execute a circuit given

an acyclic partitioning.

Input : out sv = state vector(num count),
Partitions = an acyclic partitioning of gates

1 for p in Partitions do
2 Get gate_list from p
3 w = working set size � inner qubit count
4 in sv = state vector(w) � initialize with size w

� e.g., binary permutations of 2 qubits =
{(0,0),(0,1),(1,0),(1,1)}

5 for each binary permutation of (qn−1, . . . , qw) do
� Gather

6 for each binary permutation of (Sp1, . . . , Spw) do
7 in sv[Sp1, . . . , Spw] ←out sv[qn−1, . . . , qw,

Sp1, . . . , Spw]

8 executeSimulation(in sv, gate_list)
� Scatter

9 for each binary permutation of (Sp1, Spw) do
10 out sv[qn−1, . . . , qw, Sp1, . . . , Spw]

←in sv[Sp1, . . . , Spw]

D. Multi-node Design

For circuits that require a large number of qubits, a single

compute node will not be able to hold the entire quantum

state vector in memory. HiSVSIM extends our hierarchical

simulation design to develop a multi-node MPI-based hier-

archical simulation for distributed-memory quantum circuit

simulations. The first task to achieve this is to distribute the

quantum states from the state vector across all MPI ranks to

ensure that each MPI rank can execute all the gates inside a

part locally. Since different parts may contain different qubits,

to switch between parts, each MPI rank needs to gather the

states residing in the remote MPI ranks to form new local

states, which triggers a global communication across MPI

ranks.

Specifically, assuming an n-qubit quantum system,

HiSVSIM identifies the qubits as two sets: the number of

p process (or MPI rank) qubits and the number of l local

qubits, where n = p + l. Note that this design requires the

292

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

H

H

H

H

H

RX
(pi/2)

H

RX
(pi/2)

H

H

1 3

q 0

q 1

q 2

q 3

c4

A quantum circuit on n qubits

Circuit
Partition

Part 0
gates on qubits
 [S01,S02,...S0i]

Outer State Vector
for n qubits

Inner State Vector
for i qubits

1

2

Different sets of gates and
qubits in each part of total m parts

m parts are executed by the gather-
execute-scatter model in sequence

Gather

Scatter

Inner State Vector
for j qubits

Part 1
gates on qubits
 [S11,S12,...S1j]

Part m
gates on qubits

 [Sm1,Sm2,...Smk]
Inner State Vector

for k qubits
m

(a) HiSVSIM workflow overview. The input circuit is converted into multiple parts via the
partition module, and the resultant parts of the original circuit to create smaller inner state
vector instances. For each of them, the gather-execute-scatter model is applied against the
outer state vector that is created for the input circuit.

q1 q0

h

q1

h

q0

cx

q1
q0

h rxq0
q1

exit h
q0

q1

exit

q1

q3 q2

h

q3

h

q2

cx

q3
q2

h
rxq2 q3

exit

h

q2 q3

exit

q3

cx
q1 q2

(b) The DAG representation of the example
circuit shown in Fig. 2a. The dotted lines
illustrate the desirable partitions of the graph.

Fig. 2: The main HiSVSIM workflow to partition the input circuit and perform part-based quantum circuit simulation.

number of MPI ranks to be a power of two3. For example, a

4-qubit quantum state vector simulated by 4 MPI ranks (i.e.,

p = 2 and l = 2) would be addressed as [a3, a2, | a1, a0].
The 4 MPI ranks are addressed by the most significant bits

(a3, a2), with the local quantum state elements of each MPI

rank addressed by (a1, a0). Fig. 3a illustrates the MPI-based

layout of the quantum states for the scenario when part P0

of the example circuit (shown in Fig. 2a) is executed by

HiSVSIM. After P0 has been executed, HiSVSIM uses the

new local and process qubits designated for the next part to

determine the state to be gathered for each MPI rank. The

examples shown in Fig. 3b and Fig. 3c illustrate the MPI

messages received by rank 0 and rank 1, respectively, and

the amplitude values and locations in the send/receive buffers

after P0. Fig. 3d shows the final amplitude distribution across

all MPI ranks for the new part (P1) to be executed, where the

process qubits are (a1, a0) and the local qubits are (a3, a2).
Our MPI-based implementation to distribute and gather

qubits in the multi-node scenarios offers a general interface

for other simulators to use as a library.

IV. QUANTUM CIRCUIT PARTITIONING

The memory requirement for a given number of qubits is

exponential and each iteration of the simulation starts and

ends with memory read/writes between the inner and outer

state vectors (Alg. 1). Thus, an intuitive partitioning approach

would be to minimize the number of parts, i.e., minimizing

the number of bulk read/writes (or MPI communications) of

this exponential amount of data. Hence, the objective of the

partitioning is to create the smallest number of parts while

keeping the number of qubits of each part under a limit.

If there are cyclic dependencies between parts (i.e., parts

require computation of gates from each other), then it would

require multiple data transfers to synchronize. The simulation

framework is designed in a way that assumes each part can be

loaded and processed without depending on any external signal

during its computation. Thus, it requires the use of acyclic

3This constraint can be relaxed with virtual ranks and mapping multiple
virtual ranks to MPI ranks, we do not address this issue in this work.

graph partitioning algorithms which guarantee that there is no

circular or cross-dependencies among parts. Almost all off-

the-shelf graph partitioners are undirected graph partitioners

and hence, are not applicable in this context. In summary, a

circuit should be partitioned in a way that allows each part

to be loaded into the inner state vectors for computation only

once, after all of its dependencies are met. That is, it should be

partitioned in an acyclic manner and the resulting part-graph

should be run in a topological order.

A. Model

We consider a directed acyclic graph (DAG) G = (V,E),
where the vertices in set V = {v1, . . . , vn} represent compu-

tational gates, and edges represent the qubits needed for the

computational gates. Given vi ∈ V , predi = {vj | (vj , vi) ∈
E} is the set of predecessors of gate vi in the graph, and

succi = {vj | (vi, vj) ∈ E} is the set of successors of gate vi.
We create artificial computational gates for initialization and

destruction of the qubits, i.e., for each qubit, there is an entry
and an exit gate that does not represent any computation. Entry
gates have no predecessor and one successor that is the first

computational gate the corresponding qubit enters. And, exit
gates have no successors and one predecessor.

For each computational gate, the total incoming edge weight

is equal to the outgoing edge weight, which is the number of

qubits involved in the computation of this gate. No qubit is

input to multiple gates at the same time. Thus, it is possible

to trace each qubit through the edges between gate vertices.

The gates are naturally in a topological execution order where

they can be executed only after all of their predecessors

are executed, i.e., the edges represent the qubit dependency
between the gates.

The Circuit Partition (Fig. 2a) accepts a DAG representation

of the circuit, and a maximum working set size Lm that

is common for all parts as input. It solves the acyclic k-

way partitioning problem P = {V1, . . . , Vk} of the DAG

G = (V,E): the set of vertices V is divided into k nonempty,

pairwise disjoint, and collectively exhaustive parts satisfying

three conditions: i) The working set size of individual parts

293

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

a0000
a0001
a0010
a0011

a0100
a0101
a0110
a0111

a1000
a1001
a1010
a1011

a1100
a1101
a1110
a1111

Rank 0
P(0,0)

Rank 1
P(0,1)

Rank 2
P(1,0)

Rank 3
P(1,1)

l(0,0)
l(0,1)
l(1,0)
l(1,1)

(a) The initial state distribution across 4 MPI ranks.

a0000
a0001
a0010
a0011

a0100
a0101
a0110
a0111

a1000
a1001
a1010
a1011

a1100
a1101
a1110
a1111

Rank 0
P(0,0)

Rank 1
P(0,1)

Rank 2
P(1,0)

Rank 3
P(1,1)

l(0,0)
l(0,1)
l(1,0)
l(1,1)

(b) Data gathered by rank 0 switching from Part 0 to Part 1.

0000
a0001
a0010
a0011

a0100
a0101
a0110
a0111

a1000
a1001

a1011

a1100
a1101
a1110
a1111

Rank 0
P(0,0)

Rank 1
P(0,1)

Rank 2
P(1,0)

Rank 3
P(1,1)

l(0,0)
l(0,1)
l(1,0)
l(1,1)

a1010010

(c) Data gathered by rank 1 switching from Part 0 to Part 1.

a0000
a0100
a1000
a1100

a0001
a0101
a1001
a1101

a0010
a0110
a1010
a1110

a0011
a0111
a1011
a1111

Rank 0
P(0,0)

Rank 1
P(0,1)

Rank 2
P(1,0)

Rank 3
P(1,1)

l(0,0)
l(0,1)
l(1,0)
l(1,1)

(d) Final distribution of the state vector amplitudes after across-rank
communication.

Fig. 3: The examples of MPI messages across MPI ranks to gather and update local state vector of rank 0 and 1.

do not exceed Lm. ii) The partition is acyclic. There is a

path between Vi and Vj (Vi � Vj) if and only if there is a

path between a vertex vi ∈ Vi and a vertex vj ∈ Vj . The

acyclic condition means that given any two parts Vi and Vj ,

we cannot have Vi � Vj and Vj � Vi. A part-graph of

G is a graph where the nodes represent the parts in G (i.e.,

all nodes in the same part are contracted to a single node)

and the edges represent the cumulative edges between parts

of G. iii) The number of parts k is minimized. Similar to

the graph partitioning problem, the acyclic DAG partitioning

is an NP-Hard problem and there is no k-approximation for

k > 2 [20]. Thus, all feasible algorithms that solve this

problem are heuristics. The output of partitioning is a part

assignment for each node (gate). After partitioning, gates are

collected according to their parts and executed with respect to

the original order among those in the same part.

The working set size, L(Vi) of a part i, is the number of

qubits needed for all gates in that part. That is, if gate A needs

q0 and q1 and gate B needs q0 and q2, these two gates require

3 qubits in total. If Vi = {A,B}, then L(Vi) = 3. We can

imagine edges having labels in the computational gate graph.

Each entry qubit emits an edge with the label of qubit they are

initializing, and each gate these qubits participate in, they are

represented by a single in-edge and a single out-edge. Since

a qubit cannot be passed to two different gates at the same

time (i.e., gates have a time order), the incoming edges of a

gate/part are always unique.

B. Proposed Partitioning Methods

We propose three partitioning approaches:

1) Natural Topological Order Cutoff (Nat): Nat follows

the execution order of the gates in the original circuit, and

computes the working set size. When the working set size

exceeds the limit Lm, the gates before the limit is exceeded

are assigned as one part. Then, working set size is reset and

this process is repeated for the remaining gates. Natural or-

dering is deterministic and falls short when the order contains

alternating operations for larger number of qubits than Lm.

2) DFS Topological Order Cutoff (DFS): DFS remedies

this problem by testing several random DFS topological orders

of the gates instead of the deterministic natural topological

order, and picks the one that yields the smallest number of

parts. The part assignment follows the same procedure.

3) Acylic-partitioning-based Partitioning (dagP): We pro-

pose a novel acyclic DAG-partitioning-based heuristic by

extending and modifying a recent open-source, state-of-the-art

acyclic DAG partitioner [21], [22]. It presents an acyclic DAG

partitioning algorithm that consists of an acyclic agglomerative

clustering, recursive-bisection-based initial partitioning, and

refinement phases. Given a DAG and k, their algorithm

recursively divides the DAG, until the desired k is achieved,

while minimizing the edge cut (total weight of edges that

connect nodes from different parts) as the objective. Using a

black-box partitioner for our problem definition is not trivial.

There are major changes to the partitioning objective, criteria,

and greedy approaches as well as some minor changes in order

to preserve/improve the performance of a partitioner. Without

these modifications, the partitioners may not ever find a valid

partitioning abiding the required constraints. We replaced the

edge cut objective with minimizing the number of parts, while

ensuring each part’s working set size is under given limit. We

modified related computations in all phases of the partitioning.

We added a final merging phase that is not present in the

original algorithm. We used the authors’ suggested parameter

values except for the imbalance ratio (i.e., ε ≤ 1.5) since the

weight balance of the parts is not critical. We refer the readers

to the corresponding article for further details on the original

algorithm and only briefly discuss our major modifications.

The original algorithm requires the final number of parts, k,

as an input parameter. Our problem, on the other hand, requires

the algorithm to discover the necessary (minimum) number of

parts [22]. Our algorithm starts by computing the working set

294

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

size of the graph L(G) (it is the total number of qubits, i.e.,

number of entry nodes). If it is greater than Lm, the graph

is partitioned into two roughly balanced subgraphs (in terms

of the number of nodes). The recursive bisection operation

dives into the subgraphs and partitions them until each one’s

working set size is less than or equal to Lm. If the working

set size of a subgraph is less than or equal to Lm, then the

partitioner stops and returns. At the end of recursive bisection,

we run a merge phase in which a clustering algorithm is

applied on the global view of the graph via the part-graph
to merge existing parts until there is no more possible valid

mergers, i.e., the merger does not create cycles in the part-
graph and does not violate the L ≤ Lm criterion.

The runtime performance of the partitioner significantly

depends on how efficiently one can compute updates when

a vertex is moved from one part to another. The edge cut,

objective of the former problem variation [20], [21], can be

efficiently updated. Our dagP algorithm takes advantage of

the following information to compute working set size at

each phase efficiently. Since the computational gate graph of

quantum circuit simulation has the property where the number

of inputs of a gate is equal to that of outputs and all of them

represent unique qubits, one only needs to count the in-edges

to a part, and the number of entry nodes within the part.

One question that may arise is whether the circuits with

higher number of entanglements with many qubits compli-

cates the partitioning. The partitioner considers the circuits as

DAGs where the edges contain all dependency information

and HiSVSIM makes no assumptions on the properties of

the circuits. Larger entanglements are just nodes with higher

degrees. This may deteriorate the performance for the greedy

localized approaches such as Nat and DFS for finding the

best valid partitions. The goal of dagP approach is to find the

best partitioning using a global view of the computation DAG,

which overcomes this deficiency of the former two approaches.

Both Nat and DFS methods have a localized view of the

gates at hand whereas dagP benefits from a broader view

of the whole circuit graph. Compared to the runtime of the

quantum circuits, all three have negligible computation times

(up to milliseconds).

Figure 4 shows a toy example for partitioning with Nat
and dagP approaches, respectively. Top-left and top-right

subgraphs show the respective part-graphs. DFS approach

can return any number of parts between these two examples

depending on the random DFS topological orders at hand.

Multi-level partitioning. The acyclic DAG partitioning

with recursive bisection presents an opportunity to prepare

partitions for varying Lm’s at different scales, and thus, can

be better exploited for the multi-node design (Sec. III-D),

i.e., inter-node data distribution and intra-node cache locality

optimization. The partitioning is run on the original circuit

graph with the first-level limit to break it down into a number

of parts, then, each one is recursively partitioned further using

the second-level limit.

The Lm’s are decided with the system configuration in

mind. The first-level partitioning uses a Lm = l for the local

Fig. 4: A toy example partititoning of bv graph with 6 qubits

with qubit limit 4 using Nat (left) and dagP approach (right).

state vector (Sec. III-D), while the second-level partitioning

uses a size that keeps the size of the second-level inner state

vector under the LLC cache size. When the number of qubits

in a part is less than Lm, we add the qubits from the higher

level part to exploit spatial locality.

V. EXPERIMENTAL EVALUATION

Table I lists the 13 benchmark quantum circuits, from

QASMBench suite [23], used in this paper. Circuits cover

a variety of application domains that represent the essential

areas in quantum computing. Note that we explore two sets of

qubit and gate configurations for the bv, cc, and ising circuits

to investigate how much more efficiency our HiSVSIM could

bring to the same quantum algorithms in different scales.

We ran our experiments on a workstation (Intel Cascade

Lake, 448 CPU cores, 8 sockets, 8 NUMA nodes, 6TB mem-

ory) and the Frontera [24] supercomputing cluster at TACC

(each node in the cluster features dual Intel Xeon Platinum

8280 with 2.7GHz clock rate, 56 cores, 192GB DRAM and the

InfiniBand HDR-100 network). For each circuit, we examine

the performance of the simulation with three partitioning

strategies (Nat, DFS, and dagP) and compare the results

with the baseline simulation results using Intel’s IQS [10].

We translate the OpenQASM gates into IQS gates to ensure

that HiSVSIM and IQS execute identical circuits.

A. Single node experiments

On the single machine scenario, we configure the

HiSVSIM with varying number of OpenMP threads (i.e.,

2, 4, 8, 16, 32, 64, 128), and HiSVSIM exhibits a close-to-

linear speedup in this strong scaling case. Table II shows

the breakdown of the memory usage (profiled with vTune
Profiler [25]) with a single thread for each partitioning strategy

to indicate why dagP offers the most efficient simulation.

Among three strategies, dagP always leads to the lowest

DRAM stalled time, which reflects the more efficient cache

access pattern. For the example circuits presented in Table II,

295

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Benchmark description.

Circuit Description qubits gates Mem.
cat state [27] Coherent superposition 30 60 16 GB
bv [28] Bernstein-Vazirani algorithm 30 102 16 GB
qaoa [4] Quantum approx. optimization 30 1,380 16 GB
cc [29] Counterfeit coin finding 30 149 16 GB
ising [30] Quantum simulation for ising model 30 354 16 GB
qft [23] Quantum Fourier transform 30 2,235 16 GB
qnn [23] Quantum neural network 31 164 32 GB
grover [31] Grover’s algorithm 31 207 32 GB
qpe [32] Quantum phase estimation 31 5,731 32 GB

bv35 [28] Bernstein-Vazirani algorithm 35 119 512 GB
ising35 [30] Quantum simulation for ising model 35 414 512 GB
cc36 [29] Counterfeit coin finding 36 106 1 TB
adder37 [33] Quantum Ripple-Carry adder 37 154 2 TB

TABLE II: Memory access breakdown.

Circuit Strategy % of clockticks (%)Memory/
Pipeline slots

Execution
time (s)L1 L2 L3 DRAM

Nat 6.1 4.0 4.4 19.8 35.7 209.7
bv DFS 2.3 3.1 3.8 16.6 26.1 172.8

dagP 2.9 6.5 2.0 4.3 20.9 163.2

Nat 7.0 2.7 4.4 11.2 20.2 613.5
ising DFS 1.5 1.2 1.9 5.8 6.6 455.6

dagP 1.3 1.2 2.1 5.5 7.5 454.1

35.7% and 20.2% of pipeline slots are for memory loads and

stores in Nat partitioning on bv and ising respectively, which

far outweighs the DFS and dagP. In particular, DFS and

dagP on ising produce similarly partitioned circuits, hence the

memory access patterns are comparable. Similar trends can be

observed in all circuits but qpe (where Nat outperforms DFS
and dagP). For brevity, we omit the rest of the results.

The limitation of proposed partitioning approaches (dagP,

Nat, DFS) is that they are heuristics. To evaluate the qual-

ity of the dagP, we implemented a novel integer linear

programming (ILP)-based optimal solution to our modified

acyclic DAG partitioning problem [26]. The ILP solution

takes minutes for even the smaller circuits compared to the

microseconds of the dagP heuristic since the problem is NP-

Hard. However, out of 52 combinations (13 inputs, 4 qubit

limits), dagP finds the optimal number of parts for 48 cases.

And, it only differs by 1 or 2 for the remaining 4, which shows

the effectiveness of our proposed approach in practice.

B. Multiple node experiments against IQS

In this section, we increase the number of nodes from 16

to 256, on Frontera system. The circuits are configured as two

groups: one MPI rank runs on each node for circuits that have

less than 32 qubits, and 2 and 4 MPI ranks on a node (i.e.,

512 and 1024 MPI ranks on 256 nodes in total) for circuits

with 35-37 qubits. (MPI ranks are also referred as Cores in

the figures). Figure 5 shows the simulation performance of

HiSVSIM compared to IQS for each circuit. The comparison

results are presented as the improvement factor (referred as

factor below) normalized over the simulation performance of

IQS using the same resources. Any value above 1 means the

specific approach improves the total runtime over IQS.

Overall, HiSVSIM outperforms the IQS for all the circuits

via dagP strategy on various numbers of MPI ranks, where

Fig. 5: The improvement factor over Intel IQS of our partition

strategies for different MPI ranks.

the improvement factor for the maximum end-to-end execution

time ranges from 1.15× (qpe on 128 MPI ranks) to 3.87×
(adder on 1024 MPI ranks), with a geometric mean of 1.7×
across all the MPI rank configurations. The right subfigures in

Fig. 5 show circuits with larger number of qubits, evaluated

on 512 and 1024 cores. As the number of qubits and the

computational resources increase, our algorithms scale better

compared to IQS baseline. bv, ising, and cc graphs with 30

qubits have improvement factors up to 1.7×, 1.9×, and 2×
whereas bv35 has up to 2.7×, ising35 has up to 2.5×, and cc36

has up to 3.2×. This demonstrates the benefit of introducing

acyclic circuit partitioning and hierarchical simulation.

Comparing across three partitioning strategies, dagP con-

sistently results in fastest simulation time for all the circuits

but qpe. Take the 256 MPI ranks cases for example, the dagP
offers 29% and 30% higher improvement factors over Nat and

DFS on average. In addition, at the 128 and 256 MPI ranks

configurations, the improvement factors obtained with Nat
and DFS partitioning show a decreasing trend (7 of 10 circuits)

compared to their 32 and 64 ranks configurations, while dagP
exhibits the opposite trend indicating that dagP partitioning

provides a consistent improvement over the baseline simulator.

In summary, dagP partitioning offers a mean of 2.1×
improvement over the baseline IQS simulation results across

all 13 circuits when largest number of MPI ranks applied (i.e.

256 and 1024 for the corresponding circuits). We demonstrate

that the simulation for the circuits with a larger number of

qubits (≥ 35) have more prominent improvement factors

(from 2.5× to 3.9× with the average 3.0×). This shows the

effectiveness of dagP partitioning approach over the baseline

and the other two partitioning strategies.

296

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

bv

Cores

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

cat_state

Cores

0

1

2

3

4

5

6

7

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

cc

Cores

0

2

4

6

8

10

12

14

16

18

20

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

grover

Cores

0

2

4

6

8

10

12

14

16

18

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

ising

Cores

0

10

20

30

40

50

60

70

80

R
u
n
ti
m
e
(s
)

64 128 256

Intel
Nat
DFS
dagP

Algorithm

qaoa

0
10
20
30
40
50
60
70
80
90

100
110

R
u
n
ti
m
e
(s
)

64 128 256

qft
0

5

10

15

20

25

30

35

40

R
u
n
ti
m
e
(s
)

64 128 256

qnn
0

500

100

200

300

400

600

R
u
n
ti
m
e
(s
)

63 518 146

qpe
0
2
4
6
8

10
12
14
16
18
20
22
24

R
u
n
ti
m
e
(s
)

512 1024

bv35
0

5

10

15

20

25

30

35

40

45

R
u
n
ti
m
e
(s
)

512 1024

cc36
0

10

20

30

40

50

60

70

80

90

100

R
u
n
ti
m
e
(s
)

512 1024

ising35
0

20

40

60

80

100

120

140

160

R
u
n
ti
m
e
(s
)

512 1024

adder37

Fig. 6: Runtime of the input circuits.

Fig. 7: Average communication time of the three partitioning variants of HiSVSIM and IQS for all input circuits.

C. Strong scaling

In the strong scaling case4, Fig. 6 shows the maximum

end-to-end simulation time for each circuit partitioned with

Nat, DFS, and dagP strategies and the IQS for varying

number of MPI ranks. (Due to the limited space, we omit

the results for 16 and 32 MPI ranks while the trend is consis-

tent). Since HiSVSIM allows computation and communication

overlapping, i.e. each rank can continue computation as long

as it receives data from other ranks), we report the average

MPI communication time across all the ranks per circuit for

HiSVSIM. We leverage remora [34] to obtain the timing

details for the computation and MPI calls of IQS. The minimal

overhead of profiling with remora is remedied by applying the

communication/computation ratio to the end-to-end execution

time obtained without remora present.

4The weak scaling is not considered due to the uniqueness of the quantum
circuits: when varying the number of qubits in a circuit, the computation
complexity changes non-linearly, and so does the memory footprint and
associated data movement complexity.

We make the following observations: (I) HiSVSIM shows a

close-to-linear speedup for all the partitioning strategies; (II)

For HiSVSIM, both the average computation and communi-

cation ratios of the simulation times show the overall close-

to-linear scaling effect across all the configuration cases and

circuits; (III) HiSVSIM consistently offers a faster simulation

in the computation portion than the IQS across all circuits.

Note that with HiSVSIM, the average computation time is

observed similar across different partition strategies.

MPI communication benefit demonstration. Fig. 7 shows

the per-circuit average communication time for the three

strategies and IQS, and Fig. 8 provides an overall summary. As

seen in the figures, dagP achieves the fastest communication

time across all the cases, and IQS spends relatively longer

communication time for all the circuits, especially for the

circuits that contain a larger qubit count. Fig. 8 shows that

dagP leads to the lowest geometric mean of the average

communication ratio compared to Nat, DFS and IQS cases

for all number of cores tested, and the DFS outperforms the

IQS except for 256 MPI ranks. The trend of the lines through

297

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Geometric mean of average communication ratio of

the three partitioning variants and IQS for all circuits.

(a) total runtime

(b) avg. communication time

Fig. 9: Performance profile of time metrics comparison for

IQS and three HiSVSIM partitioning methods.

increasing number of cores show that dagP has the best

scaling of average communication ratio as well.

Next, for an overall comparison of our algorithm variations,

we use performance profiles. A performance profile shows the

ratio (ρ) of all input instances where an algorithm performed

within a factor (θ) of the best performing algorithm [35].

Here, an instance is a unique test case, e.g., a pair of an

input and a number of cores used. Figures 9a and 9b show

performance profiles of the three partitioning approaches and

IQS baseline for the total runtime and average communication

time, respectively. For instance, in Fig. 9a, dagP performs the

best 65% of the time while DFS and Nat perform the best

approximately 18% and 25% of the time. It also shows dagP
performs within 1.3× the best total runtime for all instances.

In addition, we see that the best result for the IQS is only at

1.2× the best total runtime. Similarly, in Fig. 9b, we see that

dagP has the lowest communication time for 75% of the input

instances. And, for roughly 40% of the instances, the other two

variants cannot reach an average communication time that is

even within 2.0× the communication time of dagP approach.

R
u
n
ti
m
e
(s
)

adder37 qaoa qft qnn qpe

0

5

10

15

20

25

0

2

4

6

8

10

12

0

2

4

6

8

10

12

14

0

1

2

3

4

5

6

0
10
20
30
40
50
60
70
80
90

100
110

SingleLevel
MultiLevel

Algorithm

Fig. 10: Runtime for the single-level with the best performance

and the multi-level.

D. Multi-level partitioning

Finally, we demonstrate the efficiency gained via exploiting

multi-level memory hierarchy in the multi-node system: The

first level partition that uses the main memory of a node to hold

the local state vector and communicates with other nodes to

update the local state vector after finishing a part, and a second

level partition that further partitions the qubits contributing to

the local state vector into new parts, and executes the gates of

each new part to improve cache locality.

In some circuits a natural, intuitive partitioning of the gates

contains less unique qubits than the limits for first-level and

second-level partitioning in each part. In this case, the second-

level partitioning returns the identical part to the first-level

part at hand. Thus, we evaluate the multi-level partitioning on

the circuits that contain different sets of parts. For all circuits

that are not shown in the figure, the single- and multi-level

HiSVSIM uses the identical partitioning.

Figure 10 shows the execution times of HiSVSIM for the

single-level (i.e., the results shown in Fig. 6) and multi-level

partition with the 256 MPI ranks for qaoa, qft, qnn, and qpe

and 1024 MPI ranks for adder. While the single-level partition

results collected represent the most advanced cases by far, the

multi-level partition strategy offers a further improvement over

the prior “best” cases except for qnn which is 0.1s slower. The

simulation time goes from 24.4s to 16.7s (adder), 14s to 12.7s

(qft), 11.8s to 11.3s (qaoa) and 103s to 84s (qpe), with the

average of 15.8% reduction. This translates to up to 5.67×
improvement over IQS, and 1.47× over our best single level

variant.

VI. GPU EXTRAPOLATION

As mentioned earlier, our acyclic graph partitioning enables

the optimization space to balance between the local computa-

tion and remote communication. To demonstrate the possible

use of our approach with other simulators, we take the state-of-

the-art GPU-based quantum circuit simulator - HyQuas [18]

and present a hybrid approach: using HiSVSIM for circuit

partitioning and communication and using HyQuas kernel for

the computation on GPUs and compare it with the simulation

time of using HyQuas on multi-GPU nodes.

We use 4 GPU nodes in our cluster to run the qaoa 28

circuit (taken from the HyQuas repo) with HyQuas. Each

node has an NVIDIA V100-PCIE-16GB GPU. Nodes connect

298

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

TABLE III: QAOA Partitioning breakdown and runtimes on

GPUs. qubits: the number of qubits in each part.

Strategy parts qubits gates total gates time (ms) total (ms)

dagP 2 P0 22 747
= 1652

146.1 329.8
P1 24 905 183.7

DFS 3
P0 24 536

= 1652
110.8

337.7P1 24 637 129.7
P2 20 479 97.1

Nat 6

P0 24 24

= 1652

11.9

365.9

P1 24 474 97.7
P2 24 260 64.3
P3 24 305 65.9
P4 24 307 65.8
P5 17 282 60.1

via the InfiniBand hardware. We take the following steps to

ensure that the computation to be conducted on GPUs carries

the same amount of work as computed by HiSVSIM: (i) We

partition the qaoa 28 circuit into parts and remap the qubits in

each part to model the reordering inside the local state vector.

This step ensures the global qubit index is converted to the

local slot index. (ii) After remapping, we modify the total

qubit number in each part file to fit in the computation model

of HiSVSIM. For example, in four nodes case, to execute

a 28 qubit circuit, HiSVSIM organizes the total qubits as

26 local qubits and 2 MPI process qubits (as described in

Sec III-D, log(4) = 2). Each part of the original circuit needs

to meet the 26 qubits requirement; (iii) we execute the gathered

sections of parts (inner state vector) with single-GPU HyQuas

on each node. We replace the local computation component of

HiSVSIM (with HyQuas on inner state vector) and leave the

rest of HiSVSIM unchanged. This way, the cross-node data

redistribution stays the same. Since the whole quantum state

fits in the memory of available GPUs, there is no additional

CPU/GPU communication.

The original qaoa 28 circuit is partitioned with dagP,

DFS and Nat as shown in Table III. Different strategies

generate different number of parts. The total number of gates

matches with the original qaoa 28 circuit in the HyQuas paper.

Table III shows the execution time of each part executed with

single-GPU HyQuas on one V100 GPU per node. One can

observe that the total execution time on GPU for different

strategies is close to each other, which is similar to the

HiSVSIM multi-node CPU cases.

Table IV shows the end-to-end performance estimate on this

hybrid approach - using HiSVSIM for partitioning and com-

munication and HyQuas for computation. The result shows

that the hybrid approach with dagP outperforms original

HyQuas, indicating that the acyclic partitioning could accel-

erate data communication for a highly-optimized GPU-based

simulator like HyQuas. Also, among the three strategies, dagP
outperforms Nat and DFS, which shows promise for future

HiSVSIM-dagP GPU implementation.

VII. CONCLUSION

We present a novel multi-level, distributed hierarchical state

vector simulator HiSVSIM that employs graph partitioning al-

gorithms for efficient circuit simulation. The graph partitioning

TABLE IV: Estimated QAOA circuit simulation times com-

bining HiSVSIM and HyQuas.

Strategy Communication (s) Computation (s) Total time (s)
dagP 0.5 0.33 0.83
DFS 1.0 0.34 1.34
Nat 2.4 0.37 2.77

HyQuas [18] - - 1.47

algorithm includes the acyclic-partitioning-based computation

ordering approach. We evaluate the efficiency of HiSVSIM

with various well-known and representative quantum circuits

on Frontera supercomputer with up to 256 nodes and 1024

cores and GPU computation with Nvidia V100. The results

show that HiSVSIM, both multi-level and single-level, scales

well and achieves a significant improvement over the state-

of-the-art open-source distributed quantum circuit simulation

systems. The proposed graph-based approach can be useful for

other accelerator-based (i.e., GPUs) quantum simulators and

real quantum computing platforms.

ACKNOWLEDGEMENT

This material is based upon work partially supported by

the U.S. Department of Energy, Office of Science, National

Quantum Information Science Research Centers, Quantum

Science Center. This work is also supported by NSF grant

CCF-1919021. The Pacific Northwest National Laboratory is

operated by Battelle for the U.S. Department of Energy under

Contract DE-AC05-76RL01830.

REFERENCES

[1] IBM, “IBM unveils breakthrough 127-qubit quantum processor,”
11 2021. [Online]. Available: https://research.ibm.com/blog/
127-qubit-quantum-processor-eagle

[2] A. M. Dalzell, A. W. Harrow, D. E. Koh, and R. L. La Placa, “How many
qubits are needed for quantum computational supremacy?” Quantum,
vol. 4, p. 264, May 2020.

[3] D. Shepherd and M. J. Bremner, “Temporally unstructured quantum
computation,” Royal Society, 2009.

[4] E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” ArXiv, Tech. Rep. arXiv:1411.4028, 2014.

[5] S. Aaronson and A. Arkhipov, “The computational complexity of linear
optics,” in Proc. STOC. ACM, 2011, p. 333–342.

[6] M. Roetteler, M. Naehrig, K. M. Svore, and K. Lauter, “Quantum
resource estimates for computing elliptic curve discrete logarithms,” in
Advances in Cryptology – ASIACRYPT. Springer, 2017, pp. 241–270.

[7] W. Tang, T. Tomesh, M. Suchara, J. Larson, and M. Martonosi, “CutQC:
using small quantum computers for large quantum circuit evaluations,”
in Proc. ASPLOS. ACM, 2021, pp. 473–486.

[8] J. M. Baker, C. Duckering, A. Hoover, and F. T. Chong, “Time-sliced
quantum circuit partitioning for modular architectures,” in Proceedings
of the 17th ACM International Conference on Computing Frontiers,
2020, pp. 98–107.

[9] M. Smelyanskiy, N. P. D. Sawaya, and A. Aspuru-Guzik, “qHiPSTER:
The quantum high performance software testing environment,” 2016.
[Online]. Available: https://arxiv.org/abs/1601.07195

[10] G. G. Guerreschi, J. Hogaboam, F. Baruffa, and N. P. D. Sawaya,
“Intel quantum simulator: a cloud-ready high-performance simulator of
quantum circuits,” Quantum Science and Technology, 2020.

[11] N. Khammassi, I. Ashraf, X. Fu, C. Almudever, and K. Bertels, “QX:
A high-performance quantum computer simulation platform,” in Proc.
DATE, 2017, pp. 464–469.

[12] X.-C. Wu, S. Di, E. M. Dasgupta, F. Cappello, H. Finkel, Y. Alexeev,
and F. T. Chong, “Full-state quantum circuit simulation by using data
compression,” in Prof. of SC’19, 2019, pp. 1–24.

299

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

[13] T. Jones, A. Brown, I. Bush, and S. C. Benjamin, “QuEST and High
Performance Simulation of Quantum Computers,” Scientific Reports,
vol. 9, no. 1, p. 10736, 2019.

[14] J. Doi and H. Horii, “Cache blocking technique to large scale quantum
computing simulation on supercomputers,” in IEEE International Con-
ference on Quantum Computing and Engineering, 2020, pp. 212–222.

[15] T. Häner and D. S. Steiger, “0.5 petabyte simulation of a 45-qubit
quantum circuit,” in Proceedings of SC ’17, 2017.

[16] NVIDIA, “Nvidia sets world record for quantum computing simulation
with cuquantum running on dgx superpod,” 9 2021. [Online]. Available:
https://blogs.nvidia.com/blog/2021/11/09/cuquantum-world-record/

[17] A. Li, B. Fang, C. Granade, G. Prawiroatmodjo, B. Heim, M. Roetteler,
and S. Krishnamoorthy, “SV-Sim: Scalable pgas-based state vector
simulation of quantum circuits,” in Proc. SC’21, 2021.

[18] C. Zhang, Z. Song, H. Wang, K. Rong, and J. Zhai, “HyQuas: hybrid
partitioner based quantum circuit simulation system on GPU,” in Pro-
ceedings of the ACM ICS, 2021, pp. 443–454.

[19] S. Williams, A. Waterman, and D. Patterson, “Roofline: An insightful
visual performance model for multicore architectures,” Commun. ACM,
vol. 52, no. 4, p. 65–76, Apr. 2009.

[20] O. Moreira, M. Popp, and C. Schulz, “Graph partitioning with acyclicity
constraints,” arXiv preprint arXiv:1704.00705, 2017.

[21] J. Herrmann, M. Y. Özkaya, B. Uçar, K. Kaya, and U. V. Çatalyürek,
“Multilevel algorithms for acyclic partitioning of directed acyclic
graphs,” SIAM Journal on Scientific Computing (SISC), 2019.

[22] M. Y. Özkaya, A. Benoit, and U. V. Çatalyürek, “Improving locality-
aware scheduling with acyclic directed graph partitioning,” in Proc.
of the 13th International Conf. on Parallel Processing and Applied
Mathematics (PPAM). Springer, Sep 2019, pp. 211–223.

[23] A. Li, S. Stein, S. Krishnamoorthy, and J. Ang, “Qasmbench: A
low-level qasm benchmark suite for nisq evaluation and simulation,”
2020. [Online]. Available: https://arxiv.org/abs/2005.13018

[24] D. Stanzione, J. West, R. T. Evans, T. Minyard, O. Ghattas, and D. K.
Panda, “Frontera: The evolution of leadership computing at the national
science foundation,” in PEARC, 2020, p. 106–111.

[25] Intel, “Intel VTune Profiler,” https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html, 2020, online.

[26] M. Y. Özkaya and U. V. Çatalyürek, “A Simple and Elegant Mathe-
matical Formulation for the Acyclic DAG Partitioning Problem,” arXiv
preprint arXiv:2207.13638, 2022.

[27] J. R. Gribbin, In search of Schrodinger’s cat : the startling world of
quantum physics explained. Wildwood House London, 1984.

[28] E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on Computing, vol. 26, no. 5, pp. 1411–1473, 1997.

[29] K. Iwama, H. Nishimura, R. Raymond, and J. Teruyama, “Quantum
counterfeit coin problems,” Theoretical Computer Science, 2012.

[30] T. D. Schultz, D. C. Mattis, and E. H. Lieb, “Two-dimensional ising
model as a soluble problem of many fermions,” Rev. Mod. Phys., 1964.

[31] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in Proc. STOC. New York, NY, USA: Association for
Computing Machinery, 1996.

[32] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum
Information, 10th ed. USA: Cambridge University Press, 2011.

[33] S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, “A new
quantum ripple-carry addition circuit,” arXiv:quant-ph/0410184, 2004.

[34] C. Rosales, A. Gómez-Iglesias, and A. Predoehl, “Remora: A resource
monitoring tool for everyone,” in Proc. HUST, 2015.

[35] E. D. Dolan and J. J. Moré, “Benchmarking optimization software with
performance profiles,” Mathematical programming, vol. 91, no. 2, pp.
201–213, 2002.

300

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on November 13,2023 at 04:03:06 UTC from IEEE Xplore. Restrictions apply.

