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Abstract. “Benign overfitting”, the ability of certain algorithms to interpolate noisy training data and yet
perform well out-of-sample, has been a topic of considerable recent interest. We show, using a fixed
design setup, that an important class of predictors, kernel machines with translation-invariant kernels,
does not exhibit benign overfitting in fixed dimensions. In particular, the estimated predictor does
not converge to the ground truth with increasing sample size, for any non-zero regression function
and any (even adaptive) bandwidth selection. To prove these results, we give exact expressions for
the generalization error, and its decomposition in terms of an approximation error and an estimation
error that elicits a trade-off based on the selection of the kernel bandwidth. Our results apply to
commonly used translation-invariant kernels such as Gaussian, Laplace, and Cauchy.

1. Introduction. Recent empirical evidence has shown that certain algorithms, contrary to
classical learning theory, can interpolate noisy data, i.e., achieve zero training error, while still
generalizing well out-of-sample, that is, exhibiting low test error [2, 20,25]. This phenomenon
of “benign overfitting” (using the terminology of [1]) has been rigorously analyzed for certain
parametric methods such as linear regression, and random feature regression [1,3, 11,19], as
well as non-parametric methods such as kernel regression with singular kernels [4, 6, 8].

Many theoretical results in this direction assume a high-dimensional regime where the
data dimension d grows with the sample size n. However, it remains unclear whether this
phenomenon is common when the data dimension is fixed. In particular, it has been an open
question whether popular practical algorithms, such as kernel machines [10, 24], exhibit benign
overfitting.

Indeed, the work of [13] showed that interpolating kernel machines, also known as kernel
ridgeless regression, can be consistent in high dimension, i.e., can converge to an optimal
predictor given enough data. On the other hand, the work of Rakhlin and Zhai [22] showed
that for the specific case of Laplace kernel, kernel ridgeless regression is inconsistent in fixed
dimensions even with a data-adaptive bandwidth. This is significant as the kernel bandwidth
hyperparameter can have a large effect on the estimated predictor, and indeed can be set
adaptively in high dimensions to achieve consistency.

In this work, we show that this lack of benign overfitting in fixed dimension is in fact a
general property of a broad class of kernel machines. Specifically, we prove that consistency
does not hold for the widely used class of translation-invariant kernels, i.e., kernels that depend
only on the difference of the two inputs, under mild spectral conditions. Important examples
of such kernels include the Gaussian, Laplace, and Cauchy kernels.

Our counterexample uses a simple data model of the grid on the unit circle for d = 1, and,
in higher dimensions, a multidimensional torus, i.e., the product of unit circles, when d > 1.
For clarity, we outline the d = 1 case in the main body of the paper, and generalize to d > 1 in
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Appendix D.
To prove these results, we derive exact expressions for the generalization mean-squared-

error in terms of the Fourier series of the chosen kernel. These exact expressions elucidate the
trade-off between approximation and estimation errors when choosing the bandwidth parameter.
Our key insight is that while a small bandwidth reduces the estimation error, it worsens the
approximation error. Our exact expressions enable us to provide a constant lower bound on
the generalization error as the number of samples grows to infinity.

Related work. Several recent works have demonstrated the existence of benign interpolation
in high dimensions (e.g., when dimension is scales linearly with the number of samples). In
this setting, the generalization bounds for linear and random feature interpolation depend on
the rate of decay of eigenvalues [1, 11]. For example, [17] derives asymptotic risk curves in
high dimensions for linear ridge regression and featurized linear ridge regression. Similarly [18]
describes the asymptotic behavior of random feature regression, deriving double descent curves.
As these works showcase, interpolation is benign in these high dimensional settings, typically
proportional asymptotics. Another work considers the consistency of rotation-invariant kernels
in high-dimensions [9].

In contrast, we consider the case of fixed dimensions. We show that in fixed dimensions,
interpolation with kernel machines is inconsistent. We also strengthen our result by showing
that this conclusion holds regardless of an adaptive bandwidth selection, which is often necessary
to achieve consistency for high dimensional settings, e.g. [4, 6, 8, 13].

2. Problem setup.
Notation. We denote functions by lowercase letters a, sequences by uppercase letters A,

vectors by lowercase bold letters a, matrices by uppercase bold letters A. Sequences are indexed
using square-brackets, A[k] where k ∈ Z. For vectors, functions, sequences, 〈a, b〉 , 〈a, b〉 , 〈A,B〉
denote their Euclidean, L2, and `2(Z) inner products respectively, while ‖a‖ , ‖a‖ , ‖A‖ denote
corresponding induced norms, and ‖a‖1 , ‖a‖1 , ‖A‖1 denote their respective 1-norms. Like
the L1 norm, other norms or inner products will be pointed out explicitly. For a nonnegative
integer N , we denote the set {0, 1, . . . , N − 1} by [N ]. We use j to denote

√
−1, and an

overline, a, to denote elementwise complex conjugation. The asymptotic big-Oh notation
On(·),Ωn(·), on(·), ωn(·), have their usual meaning where the limit is with respect to n.

We use N ∈ N as a resolution hyperparameter (explicitly defined in Equation (3.1)). For a
sequence G ∈ `1(Z), and a fixed N, we define an N -hop subsequence G` ∈ `1(Z) as

G` = {G[mN + `]}m∈Z defined for ` ∈ {0, 1, . . . , N − 1} .(2.1)

Nonparametric regression. We consider a supervised learning problem in the fixed design
setting where we have n labeled samples (xi, yi) ∈ X × Y ⊆ Rd × R, with labels generated as,

yi = f∗(xi) + ξi, ξi
i.i.d.∼ Pξ, ∀ i ∈ [n] ,

for some unknown target function f∗. The noise distribution Pξ is centered with a finite variance
σ2 > 0. We assume this distribution is independent of the chosen data {xi} and target f∗.

For a sequence of datapoints Xn, the estimation task is to propose an estimator f̂n =
f̂n(Xn,y) : X → R, where y = (yi) ∈ Rn is the vector of all labels on these data. An estimator’s
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performance (or generalization error) is measured in terms of its mean squared error,

MSE

(
f̂n, f

∗
)
:=
∥∥∥f̂n − f∗

∥∥∥
2
=

∫

X

(
f̂n(x)− f∗(x)

)2
dx.

Weak consistency [10]. For a target function f∗, a sequence of estimators
{
f̂n

}
is said to

be weakly consistent if,

lim
n→∞

Eξ MSE

(
f̂n, f

∗
)
= 0.

In this paper we show that a certain sequence – kernel ridgeless regression estimators – is

weakly inconsistent, i.e., limn→∞ Eξ MSE

(
f̂n, f

∗
)
> 0. Note that weak inconsistency implies

inconsistency in the strong sense as well.
Kernel interpolation. (also known as kernel ridgeless regression) For an RKHS H, the kernel

interpolation estimator is given by,

f̂n = argmin
f∈H

‖f‖H subject to f(xi) = yi for i = {1, 2, . . . , n}.(2.2)

The name ridgeless is due to the fact that the solution is equivalent to the following kernel
ridge regression problem in the limit

f̂n = lim
λ→0+

(
argmin
f∈H

n∑

i=1

(f(xi)− yi)
2 + λ ‖f‖2H

)

︸ ︷︷ ︸
:=f̂n,λ

.(2.3)

Every RKHS is in one-to-one correspondence with a positive definite kernel function
K : X × X → R. Define the kernel matrix K = (k(xi, xj)) of pairwise evaluations of the kernel
on the training data. Due to the representer theorem [23], the solution to (2.2) lies in the span
of n basis functions K(xi, x) and can be written as

f̂n(x) =

n∑

i=1

α̂iK(xi, x), α̂ = (α̂i) ∈ Rn α̂ := K
−1y,(Kernel interpolation)

where y ∈ Rn is the vector of all labels. The above follows as a direct consequence of
f̂n,λ = K(·, X)(K+ λIn)

−1y, and that f̂n = limλ→0+ fn,λ. The matrix K is invertible because
the kernel is positive definite, otherwise interpolation in an RKHS is not always possible.
The (Riesz) representer of a given kernel K at a datum x? is an element of H, denoted by
K(x?, ·) : X → R. It is the evaluation functional of x? ∈ X , i.e., 〈f,K(x?, ·)〉H = f(x?) for all
f ∈ H. The basis functions above are thus the representers of the training data {x1, x2, . . . xn} .

We define the restriction operator Rn, and its adjoint, the extension operator R∗
n, as follows:

Rn : H → Rn Rnf := (f(xi)) ∈ Rn, ∀ f ∈ H(2.4)

R∗
n : Rn → H R∗

nα :=

n∑

i=1

αiK(xi, ·) ∈ H, ∀α = (αi) ∈ Rn(2.5)
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that evaluates the function on the data. Here, since L2
n
∼=Rn are isometric, we are abusing

notation in favour of simpler expressions. This gives us the following equations

y = Rnf
∗ + ξ, and f̂n = R∗

nK
−1y.

For an RKHS we have two data dependent operators, the integral operator and the empirical
operator, respectively given by,

TKf(x) =
∫

X
K(x, z)f(z) dz,(2.6)

T n
Kf(x) =

∑

z∈Xn

K(x, z)f(z).(2.7)

Eigenfunctions of TK that form a countable orthonormal basis of L2(X ) can be used to
provide an alternate representation for the H-norm via the identity,

〈f, g〉H =
∑

k∈Z

〈f, ϕk〉 〈g, ϕk〉
σk

‖f‖2H =
∑

k∈Z

〈f, ϕk〉2
σk

where (σk, ϕk) is an eigen-pair, i.e., TKϕk = σk · ϕk, with σk ∈ R+ and ϕk ∈ L2.
Fourier analysis:. We recall some useful quantities from Fourier analysis to be used later.

Definition 2.1 (Fourier basis). Let φk(x) = ejkx for k ∈ Z, which satisfy

〈φk, φ`〉 :=
∫ π

−π
φk(t)φ`(t)

dt

2π
=

1

2π

∫ π

−π
ej(k−`)t dt =

{
1 k = `

0 k 6= `
.

The normalization factor 1
2π comes from the uniform density on [−π, π). An important tool in

our analysis is the Fourier series representation of functions X 7→ R. In general, any integrable
function R → R periodic with period 2π, admits such a representation.

Definition 2.2 (Fourier Series). For f ∈ L1
[−π,π), let F be the Fourier series indexed by k ∈ Z,

f(t) =
∑

k∈Z
F [k]φk(t) =

∑

k∈Z
F [k]ejkt, ∀ t ∈ [−π, π)

F [k] = 〈f, φk〉 =
∫
f(t)φk(t)

dt

2π
=

1

2π

∫ π

−π
f(t)e−jkt dt, ∀ k ∈ Z .

Definition 2.3 (DFT Matrix). The normalized discrete Fourier transform (DFT) matrix is

U =
[
u0 · · · uN−1

]
, u` =

1√
N

[
1 e−j

2π
N
` . . . e−j

2π
N

(N−1)`
]>
, ` ∈ [N ].

Notice that UUH = UHU = I, where we use H to denote the conjugate transpose (hermitian)
of a matrix.

Proposition 2.4 (Parseval’s theorem). For a continuous function f : [−π, π) → R with
Fourier series F ,

1

2π

∫ π

−π
|f(t)|2 dt =

∑

k∈Z
|F [k]|2.
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3. Model. We now describe our setting and state our main result: kernel interpolation is
weakly inconsistent.

Data design (grid on the unit circle). We describe the case of d = 1 and focus on X = [−π, π),
viewed as the unit circle. An extension to d > 1 is deferred to Appendix D where we consider
[−π, π)d. We consider discrete, evenly-spaced grids indexed by a resolution hyperparameter
N ∈ N, given by

XN = {x0, . . . , xN−1} xi :=
2π

N
i− π ∀ i = 0, . . . , N − 1.(3.1)

We call N the resolution parameter of the grid on [−π, π), and assume N is even for
simplicity. Observe that Riemannian sums over the grid XN for integrable functions converge
to integrals on the continuum [−π, π). Alternatively, the empirical distribution on the grid
weakly converges to the uniform measure on the continuum. Note for d = 1, the total number
of samples n equals the resolution N.

For d > 1, we consider X = [−π, π)d, the product of d unit circles, and the respective grids,
along each dimension. Thus N is the number of samples per dimension, whereby the total
number of samples n = Nd.

Translation-invariant kernels. We consider (periodic) kernels parameterized by a positive
bandwidth parameter1 M ,

K(x, x′) = g
(
M(x− x′ mod [−π, π))

)
, x, x′ ∈ X

for some even function g : R → R, where we denote,

θ mod [−π, π) = ((θ + π) mod 2π)− π ∈ [−π, π) .(3.2)

We denote the RKHS corresponding to K by H. For ease of notation, when M = 1, we
refer to this as the base kernel and the base RKHS H0. Define G0, G : Z → C as the Fourier
series of g, i.e.,

g(M(θ mod [−π, π))) =
∑

k∈Z
G[k] exp(jkθ) , G[k] =

1

2π

∫ π

−π
g(Mθ) exp(−jkθ) dθ ,(3.3a)

g(θ mod [−π, π)) =
∑

k∈Z
G0[k] exp(jkθ) , G0[k] =

1

2π

∫ π

−π
g(θ) exp(−jkθ) dθ .(3.3b)

While usually the bandwidth scales the input, we note our analysis also holds for different
mechanisms that satisfy the kernel assumptions given later. For symmetric positive definite
kernels, g is an even function whereby we have that G is real. Furthermore g is real whereby,

G[−k] = G[k] > 0 ∀ k ∈ Z .

Proposition 3.1. u` and u` are eigenvectors of K = (K(xi, xj)) ∈ RN×N , with eigenvalue
λ` = N ‖G`‖1, i.e., Ku` = λ`u` and Ku` = λ`u`. Furthermore,

K =

N−1∑

`=0

λ`u`u
H

` , K
−1 =

N−1∑

`=0

1

λ`
u`u

H

` , K
−2 =

N−1∑

`=0

1

λ2`
u`u

H

` .

1In machine learning literature, the bandwidth may often be denoted as 1/M instead.
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Proposition 3.2. For any M > 0, the Fourier basis are eigenfunctions of the kernel integral
operator TK with eigenvalues G, i.e., we have,

TKφk = G[k] · φk .

The proofs to these propositions are provided in Appendix E.1.
For XN , we define the restriction operator RN , and its adjoint, the extension operator,

RN : H → RN , RNf =

(
f

(
2π

N
(i− 1)− π

))

i

∈ RN ,(3.4)

R∗
N : RN → H , R∗

Nα :=
N−1∑

i=0

αiK(xi, ·) ∈ H .(3.5)

We also use the notation

〈α,K(XN , ·)〉N :=
N−1∑

i=0

αiK(xi, ·)

to keep expressions simple. With this notation, the labels and the kernel interpolator can be
written as

f̂N = R∗
NK

−1y =
〈
K

−1y,K(XN , ·)
〉
N
.(3.6)

Definition 3.3 (Span of Riesz Representers). Functions in the range of R∗
N , and of T N

K , are
in the span of the representers {K(xi, ·)}Ni=1.

Target function. We assume the target function lies in the base RKHS H0, i.e., H with
M = 1, and has a norm ‖f∗‖H0

= OM,N (1). As the target function is defined on the unit circle,
it admits a Fourier series,

f∗ =
∑

k∈Z
V [k]φk .(3.7)

To keep derivations simple, we will assume, without loss of generality, that V [k] ∈ R for all k
(i.e. the target function is even). It is straightforward to extend this argument to all f∗. We can

decompose f∗ into an even and odd component (by f∗(x) = f∗(x)+f∗(−x)
2 + f∗(x)−f∗(−x)

2 ). The
even component will only have a cosine series (and hence real V [k]), and the odd component will
only have a sine series (imaginary V [k]). The argument for the case of targets with imaginary
V [k] is identical to that for targets with real V [k]. Even and odd functions are in orthogonal
subspaces of L2 and of H, whereby for general complex V [k], the errors we derive are the sum
of the errors of the even and odd components, and the arguments go through.
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Recall the definition of the restriction and extension operators in (3.4). Let PX be the
L2-projection operator onto the span of the representers, i.e.,

PXf := argmin
h∈H

{
‖f − h‖

∣∣∣∣ h =
N∑

i=1

αiK(xi, ·) for some (αi) ∈ RN
}

,(3.8a)

α∗ := (α∗
i ) such that PXf

∗ =
N∑

i=1

α∗
iK(xi, ·) ,(3.8b)

f∗⊥ := f∗ − PXf
∗,(3.8c)

where f∗⊥ is orthogonal to all functions in Span {K(xi, ·)} . An immediate identity using the
evaluation operator RN is,

RNPXf
∗ = Kα∗ and R∗

Nα
∗ = PXf

∗ .

We can decompose the target function as

f∗ = PXf
∗ + f∗⊥ =

N−1∑

i=0

α∗
iK(xi, ·) + f∗⊥ = 〈α∗,K(XN , ·)〉N + f∗⊥ .

Using this, the vector of labels, and the kernel interpolation estimator can be written as,

y = RNf
∗ + ξ = RNPXf

∗ +RNf
∗
⊥ + ξ = Kα∗ +RNf

∗
⊥ + ξ ,(3.9)

f̂N = R∗
NK

−1y = PXf
∗ +

〈
K

−1RNf
∗
⊥,K(XN , ·)

〉
N
+
〈
K

−1ξ,K(XN , ·)
〉
N
,(3.10)

where we have used the expression from Equation (3.6).

4. Main result: Inconsistency of kernel interpolation. Our main result holds under
certain assumptions on the translation-invariant kernels. Below, we assume M ′, i, i∗ are all non-
negative integers. Recall that G is the Fourier series of the kernel function, see Equation (3.3a).
Note G depends on M but G0, the Fourier series of the kernel corresponding to H0 - the base
RKHS, does not.

Assumption 1 (Integrability). We assume the kernel is integrable. In particular, the integral∫ π

−π
g(Mx) dx exists and is finite for all 0 < M <∞.

Assumption 2 (Spectral Tail). For all k ∈ Z≥0, there exists a constant C1 > 0 such that,

|G[M ′k + i]| ≤ C1|G[i]|
1 + k2

(4.1)

holds for all M ′ ≥M > 0 and for all i ≤M ′, except oM ′(M ′) many.

Assumption 3 (Spectral Head). There exist constants C2, C3 ∈ R+ and i∗ ∈ Z≥0 such that
for M ≥ C2, we have that for all 0 ≤M ′ < M , |G[i∗]| ≤ C3|G[i∗ +M ′]| and |G0[i

∗]| > 0.

To simplify analysis for many kernel functions, we give a sufficient condition that implies
Assumptions 1-3, and is easy to verify for many functions.
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Condition 1 (Monotonic Boundedness). There exist constants (independent of the bandwidth
M) c, C,C ′, C ′′ > 0, a constant c′(M) > 0 (that may depend on M), and a bounded, monoton-

ically decreasing function f : R≥0 → R with (i) 0 < f(x+k)
f(x) ≤ C′′

1+k2
for all x ∈ R≥0,k ∈ Z, and

(ii) f(1+x)
f(x) ≥ C ′ for 0 ≤ x ≤ 1, such that

cf( kM ) ≤ G[k]

c′(M)
≤ Cf( kM )

for all k ∈ Z≥0, M ∈ R+.

The proof of the following propositions are provided in Appendix E.

Proposition 4.1. If the Fourier series coefficients G[i] satisfy Condition 1 (Monotonic Bound-
edness), then the kernel satisfies Assumptions 1-3.

Proposition 4.2. The Gaussian G[k] = exp(− k2

M2 ), Laplacian G[k] = 1

1+ k2

M2

, and Cauchy

G[k] = exp(− |k|
M ) kernels (wrapped on the circle) satisfy Condition 1 (Monotonic Boundedness).

We comment on each of the Assumptions 1-3 below.

Remark 1 (Note on Assumption 1). A sufficient condition for our result is |G[k]| <∞ for
all k ∈ Z. Assumption 1 implies this inequality by the definition of the Fourier coefficients.

Remark 2 (Square-integrable derivative =⇒ Assumption 2). Combined with Assumption 1,
the exchange formula [14] for Sobolev spaces implies Assumption 2 is equivalent to the kernel
and its first derivative being L2-integrable (for fixed bandwidth). Therefore, this assumption can
be viewed as a condition on the smoothness of the kernel.

Remark 3 (Interpretation of Assumption 3). Intuitively, Assumption 3 enforces flatness in the
frequency domain, or equivalently, sharpness in the X -domain. A larger bandwidth M leads to
a longer sequence of similar coefficients G[k] for k ∈ {i∗, . . . , i∗ +M}, giving a sharper kernel
in the X -domain.

We present the main results in the following theorems. Recall that H0 is the base RKHS.

Theorem 4.3 (Inconsistency for all functions when G is monotonically bounded). Consider a
fixed non-zero regression function f∗ that (i) has square-integrable zeroth and first derivatives,
and (ii) can be expressed as a convergent Fourier series. Then, interpolation with a real-valued
translation-invariant kernel satisfying Condition 1 is inconsistent for f∗, for any bandwidth,
even if chosen adaptively.

Recall the definition of the base RKHS H0, above equation (3.3), corresponding to the
kernel with bandwidth M = 1.

Theorem 4.4 (Inconsistency for all Bandwidths). For any translation-invariant kernel sat-
isfying Assumptions 1-3, there exists a function with constant H0-norm for which kernel
interpolation is inconsistent for any bandwidth, even adaptive to the data set.

Theorem 4.5 (Inconsistency for all Functions (M < N)). For any translation-invariant
kernel satisfying Assumptions 1-2, with any (even data-adaptive) bandwidth M ≤ N , kernel

8



interpolation is inconsistent for all targets that can be expressed as convergent Fourier series.
In particular, kernel interpolation with a fixed bandwidth is inconsistent for all such targets.

To prove these results we apply Fourier analysis to compute an exact expression for the MSE
of kernel interpolation. We decompose the MSE for a target function into three components
- (i) an approximation error, measuring how close the target function is to the span of the
representers, (ii) a noiseless estimation error, measuring the error in the absence of noise, and
(iii) a noisy estimation error, measuring the average error if the target function is 0.

We then apply Parseval’s Theorem, which relates these errors terms to the Fourier series of
the target function, and of the kernel. Proving that the MSE is bounded away from 0 will rely
on our assumptions on the tail and the head of the kernel spectrum.

5. Decomposition of the mean squared error. We now derive an exact expression for the
MSE as a sum of three error terms: the approximation error, the noise-free estimation error,
and the noisy estimation error. This useful expression will allow us to prove the main theorems
of the previous section. Recall the definition of f∗⊥,α

∗, PXf∗ from Equation (3.8).

Lemma 5.1 (MSE Decomposition). For any square integrable target function f∗, the kernel
interpolation f̂N estimator satisfies,

Eξ MSE

(
f̂N , f

∗
)
= ‖f∗ − PXf

∗‖2︸ ︷︷ ︸
Approximation Error

+
∥∥〈K−1RN {f∗ − PXf

∗} ,K(XN , ·)
〉
N

∥∥2
︸ ︷︷ ︸

Noise-free Estimation Error

+ Eξ

∥∥〈K−1ξ,K(XN , ·)
〉
N

∥∥2
︸ ︷︷ ︸
Averaged Noisy Estimation Error

.

Proof. Since PXf
∗ − f̂N ∈ Span {K(xi, ·)}, the Pythagorean theorem for the triangle{

f∗, PXf∗, f̂N
}

, yields,

MSE

(
f̂N , f

∗
)
=
∥∥∥f∗ − f̂N

∥∥∥
2
= ‖f∗ − PXf

∗‖2︸ ︷︷ ︸
Approximation Error

+
∥∥∥PXf∗ − f̂N

∥∥∥
2

︸ ︷︷ ︸
Estimation Error

.

Notice that the estimation error above is random, due to the randomness in ξ, which affects
f̂N . Using Equation (3.10), we can further decompose the average estimation error into two
error terms,

Eξ

∥∥∥PXf∗ − f̂N

∥∥∥
2

︸ ︷︷ ︸
Estimation Error

= Eξ

∥∥〈K−1RNf
∗
⊥,K(XN , ·)

〉
N
+
〈
K

−1ξ,K(XN , ·)
〉
N

∥∥2 ,

=
∥∥〈K−1RNf

∗
⊥,K(XN , ·)

〉
N

∥∥2
︸ ︷︷ ︸

Noise-free Estimation Error

+Eξ

∥∥〈K−1ξ,K(XN , ·)
〉
N

∥∥2
︸ ︷︷ ︸

Noisy Estimation Error

.

where the cross term cancels out since the noise is centered. This concludes the proof.

Computing each of these terms individually, we derive the following expression for the unit
circle. Recall the definition of the N -hop subsequences from Equation (2.1).

9



Lemma 5.2. For a target function f∗ =
∑

k∈Z V [k]φk, we have
(a) Approximation error:

Eapx := ‖f∗ − PXf
∗‖2 =

(
N−1∑

i=0

‖Vi‖2 −
〈Gi, Vi〉2

‖Gi‖2

)
=

N−1∑

i=0

Eapx
i .

(b) Noise-free estimation error:

E free :=
∥∥〈K−1RNf

∗
⊥,K(XN , ·)

〉
N

∥∥2 =
N−1∑

i=0

1

N

( 〈Vi,1〉
〈Gi,1〉

− 〈Gi, Vi〉
‖Gi‖2

)2

‖Gi‖2 =
N−1∑

i=0

E free
i .

(c) Averaged noisy estimation error:

Enoisy := Eξ

∥∥〈K−1ξ,K(XN , ·)
〉
N

∥∥2 =
N−1∑

i=0

σ2

N

( ‖Gi‖
‖Gi‖1

)2

=

N−1∑

i=0

Enoisy
i .

Together, this yields that the MSE for the function f∗ is,

Eξ MSE

(
f̂N , f

∗
)
=

N−1∑

i=0

Ei =
N−1∑

i=0

Eapx
i + E free

i + Enoisy
i ,(5.2)

Ei := ‖Vi‖2 −
〈Gi, Vi〉2

‖Gi‖2
+

1

N

( 〈Vi,1〉
〈Gi,1〉

− 〈Gi, Vi〉
‖Gi‖2

)2

‖Gi‖2 +
σ2

N

( ‖Gi‖
‖Gi‖1

)2

.(5.3)

Appendices B.1, B.2, and B.3 provide proofs for Lemma 5.2 (a), (b), and (c) respectively.

6. Numerical experiments. We present experimental results that corroborate our theory.
We visualize the effect of kernel bandwidth and regularization on the predictor and test error.

Effect of bandwidth on predictor. We visualize the effect of bandwidth on kernel interpolator
with the Laplace kernel in one dimension (Figure 6.1a). On the y-axis we show the predicted
values of our estimator (in blue) and the target function f∗(x) = cos(x) (in orange) with noise
level σ2 = 1. We notice that for small bandwidth (see M = 2 plot) kernel interpolation resem-
bles piecewise linear interpolation. Meanwhile, interpolation with high bandwidth converges
pointwise (except on a set of measure 0) to the 0 function (see M = 200 plot). Choosing an
intermediate bandwidth does not recover the target function either (M = 20).

Effect of bandwidth on error. We also plot the effect of bandwidth on the exact expected
error predicted by our theory (Figure 6.1b). In this experiment, we study the predicted error
of our theory using Laplace kernel interpolation with a noise level σ2 = 1 on a target function
f∗(x) = cos(x). We plot the approximation and noisy estimation errors. We omit the noise-free
estimation error as this is typically correlated with approximation error. Our theory predicts
that the optimal bandwidth is roughly M/N = 1, exactly the point we use to split the cases
in the proofs of the main theorems. Interestingly, our theory predicts a trade-off between the
approximation error and the error due to noise (noisy estimation error). Larger bandwidths M
allow you to fit noise benignly, at the cost of increased approximation error. Smaller bandwidths
allow you to approximate well, but suffer in estimation error.
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(a) Effect of kernel bandwidth M on predictor

f̂N,M . Here resolution is N = 10, noise variance is
σ2 = 0.25, and target function is f∗(x) = cos(x).
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(b) Effect of kernel bandwidth on average test error

MSE

(
f̂N,M , f

∗

)
(in green). See (Lemma 5.2). for

a detailed definition of each error term in the error
decomposition. Here resolutionN = 20, noise vari-
ance σ2 = 1, and target function is f∗ = cos(x).

Figure 6.1: Effect of kernel bandwidth on (6.1a) predictor and (6.1b) test error.

Effect of regularization. Standard kernel ridge regression (KRR) will prevent interpolation
and enable consistent estimation of the target function. However, one can perform interpolation
with a modified kernel that mimics regularization to improve generalization while continuing to
interpolate. For example, we modify the laplace kernel K on the unit circle to create a new kernel
K̃(x, x′) = K(x, x′)+λK(M(x−x′)) for M = 50 and regularization parameter λ = 1. We com-
pare this modified kernel to Laplace KRR with regularization parameters λ ∈ {0, 1} in Figure 6.2.

−3 −2 −1 0 1 2 3

x

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

y

λ=0.0

λ=1.0

modified

Figure 6.2: Modified kernel to mimic regulariza-
tion (for f∗(x) = cos(x)).

Benefits of Regularization. Our results
show that positive regularization allows one
to decrease the noisy estimation error at the
expense of additional approximation error.
Moreover, the faster the decay of the target
function’s Fourier coefficients, the less regu-
larization worsens the approximation error.
To understand this, we note that adding pos-
itive regularization, in effect, adds a Dirac
δ-function to the kernel at the origin. In the
Fourier domain, this is equivalent to adding an
infinitesimal to all of the Fourier coefficients.
To understand how this may help generaliza-
tion, consider adding a small quantity ∆ > 0
to each of the first 1/∆ Fourier coefficients.
We analyze our MSE expression in Lemma
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5.2. For a fixed function, adding this ∆ will have a vanishing effect on the approximation
error as ∆ → 0. However, adding this ∆ will decrease the noisy estimation error by extending
the tail of G, making the ratio ‖Gi‖/‖Gi‖1 smaller. We show how a similar modification to
the Laplace kernel will cause the interpolated solution to resemble the regularized solution in
Figure 6.2.

7. Discussion and Outlook. Following the connection of wide neural networks to kernel
methods [12], the theory of kernel methods has seen a renewed interest as a tool to better
understand deep neural networks [5]. Kernel methods, being analytically more tractable than
neural networks, can yield significant insights about the behavior of deep networks. However
several questions remain unanswered about the behavior of kernel methods themselves.

In this paper, we investigated the consistency of kernel methods in fixed dimensions. We
showed that kernel interpolation, or kernel ridgeless regression, is inconsistent in fixed dimension
even with adaptive bandwidth. This provides a generalization of the main result in [22], which
considered the special case of the Laplace kernel, to a broad class of translation-invariant
kernels including the Gaussian, Lapalce, and Cauchy kernels.

Our work suggests that infinitely-wide neural networks are inconsistent in fixed dimensions,
as these networks are equivalent to kernel machines [12]. It is an interesting direction for future
work if feature learning in finite-width networks [21] can enable consistency.

Further, while our result may be perceived as a negative result about kernel methods, it still
leaves open the possibility of bounded inconsistency under interpolation, also called tempered
overfitting in [15]. It remains unclear when interpolation may be an acceptable solution concept.
In any case, consistency can be enabled using appropriate regularization.

The Role of Data Dimension. When the dimension of the inputs scales with the number of
samples, kernel ridgeless regression can generalize [13]. Our results provide additional evidence
that high dimensions can dissipate the error due to noise. In particular, under our assumptions
on the kernel, for the expression of the noisy estimation error (Lemma D.3(c)), the constants
decay exponentially with dimension. This dependence was also observed in [22] for the Laplace
kernel. As an additional effect, for target functions with norm that is invariant to dimension
(before scaling by (2π)−d), the 0-estimator has approximation error that vanishes exponentially
with dimension. Further, to counteract the error due to noise, the bandwidth should be
much larger than the data resolution in each dimension, i.e., M > N . However, when the
dimensions grow with the number of samples, say d = ω(log n), the resolution N = n1/d = O(1)
in each dimension is approximately constant, and therefore the bandwidth does not need to
increase with d, n to satisfy M > N . As increasing the bandwidth in general will worsen the
approximation error, the constancy of the bandwidth is a form of the blessing of dimensionality.
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Appendices

Appendix A. Proof of main result (d = 1).
We prove the main results. The proof strategy is to obtain an Ω(1) lower bound on

Eξ MSE

(
f̂N , f

∗
)
. Equation (5.2) expressed this quantity as a sum of N non-negative quantities.

We show that at least Ω(N) of these quantities, Ei, are Ω(1/N).
Proof of Theorem 4.4. When M > N , we show that the approximation error is large in the

base RKHS H0. On the other hand, when M ≤ N we show that the averaged noisy estimation
error has a constant lower bound.

Case 1, M ≤ N . In this case we show that the noisy estimation error is bounded away

from 0. Define, ∆i := ‖Gi‖1 − |G[i]| =
∑

m 6=0

|G[mN + i]| ≥ 0. Assumption 2 says that for all

but o(N) terms corresponding to i ∈ [N ], we have,

∆i =
∑

m 6=0

|G[mN + i]| ≤ C1 |G[i]|
∑

m 6=0

1

1 +m2
≤ 4C1 |G[i]| .(A.1)

For such an i, we can lower bound the noisy estimation error term Enoisy
i as,

Enoisy
i =

σ2

N

‖Gi‖2

‖Gi‖21
=
σ2

N

‖Gi‖2

(|G[i]|+∆i)
2 ≥ σ2

N

|G[i]|2

2 |G[i]|2 + 2 |∆i|2
≥ σ2

2N(1 + 4C1)

Enoisy =
N∑

i=1

Enoisy
i = Ω(σ2),

since there are Ω(N) such indices i ∈ [N ] for which Equation (A.1) holds.
Case 2, M > N . In this case we show the approximation error will be bounded from 0. Since

M > N , by Assumption 3, there exists a fixed integer i∗, such that |G[i∗]| ≤ C3 |G[N + i∗]|.
Now let f∗(x) =

√
2 cos(i∗x) be the (real-valued) function with Fourier coefficients V [i∗] =

V [−i∗] = 1√
2
, and V [k] = 0 for |k| 6= i∗. Using this, we can lower bound the approximation

error as,

Eapx ≥ Eapx
i∗ ≥ V [i∗]2

(
1−

1
2 |G[i∗]|

2

∑
m∈Z |G[mN + i∗]|2

)
≥ 1

2

(
1−

1
2 |G[i∗]|

2

|G[N + i∗]|2 + |G[i∗]|2

)

≥ 1 + 2C2
3

2 + 2C2
3

= Ω(1) .

The fact that G0[i
∗] > 0 from the Assumption 3, also allows us to conclude that,

‖f∗‖2H0
=

|V [i∗]|2
G0[i∗]

+
|V [−i∗]|2
G0[−i∗]

<∞.
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Proof of Theorem 4.5. This follows from the proof of Theorem 4.4. We showed that for
M ≤ N (Case 1 above), the noisy estimation error Enoisy satisfies Enoisy = Ω(σ2). Since Enoisy

does not involve the target function f∗, the statement of Theorem 4.5 follows.

Proof of Theorem 4.3. For M ≤ N , we know from Case 1 in the proof of Theorem 4.4 that
Enoisy = Ω(1). For M > N, we will show that Eapx = Ω(1) which sufficies to prove the claim.

Note we have G[k] = G[−k]. We start by the monotonic boundedness of G, we have

|G[i]|2
‖Gi‖2

=
|G[i]|2

|G[i]|2 +
∑

k∈Z∗ |G[i+ kN ]|2
≤ 1

1 + υ

for |i| < N/2, where υ = C2(C ′′)2/c2 > 0.
Now consider f∗ =

∑
k∈Z V [k]φk, and suppose ‖f∗‖2 =

∑
k∈Z |V [k]|2 = 1. As f∗ has square-

integrable zeroth and first derivatives, its Fourier series coefficients have decay |V [i]| ≤ B/(1+i2)
for all i, for a sufficiently large constant B. This implies for all N > 0,

∑

|i|>N/2
|V [i]| < 4B

N
, and(A.2)

∑

|i|<N/2
|V [i]|2 ≥ 1− 48B2

N3
.(A.3)

One can show by contradiction (to equation (A.3)) – for some ε ∈ [0, 12 ] there exists a subset
Sε ⊂ {i : |i| < N/2} such that |Sε| = Ω(N2ε) and |V [i]| ≥ Ω(N−ε) for all i ∈ Sε. For any such
ε, consider the following set of inequalities for i ∈ Sε,

Eapx
i = ‖Vi‖2 −

〈Gi, Vi〉2

‖Gi‖2

≥ ‖Vi‖2 −
|G[i]|2
‖Gi‖2

(
∑

k∈Z
|V [i+ kN ]|

)2

≥ ‖Vi‖2 −
1

1 + υ

(
∑

k∈Z
|V [i+ kN ]|

)2

≥ |V [i]|2 − 1

1 + υ

(
∑

k∈Z
|V [i+ kN ]|

)2

= |V [i]|2 − 1

1 + υ

(
|V [i]|+

∑

k∈Z∗
|V [i+ kN ]|

)2

≥ |V [i]|2 − 1

1 + υ

(
|V [i]|+ 4B

N

)2

= |V [i]|2
(
1− 1

1 + υ

(
1 +

4B

N |V [i]|

)2
)

≥ Ω(N−2ε)

(
1−

(
1 + 4B ·O(N ε−1)

)2

1 + υ

)

Since ε− 1 < 0 due to the range of ε, the term in the inner parenthesis always approaches 1
for large enough N. Hence we have,

Eapx =

N∑

i=1

Eapx
i ≥

N∑

i∈Sε
i>0

Eapx
i +

N∑

i∈Sε
i<0

Eapx
N−i ≥ Ω(N−2ε) · |Sε| = Ω(1).(A.4)

This proves the claim.
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Appendix B. Decomposition of MSE: Proof of Lemma 5.2. Appendices B.1, B.2, and
B.3 provide proofs for Lemma 5.2 (a), (b), and (c) respectively. Recall that PX is the L2

projection operator onto span ({K(xi, ·)})
B.1. Approximation error: Proof of Lemma 5.2(a). The proof proceeds by applying the

Pythagorean theorem to the triangle {0, f∗, PXf∗} in L2
µ. The following lemma gives exact

expressions for projection of the target function and its norm.

Lemma B.1 (Projection). For f∗ =
∑

k∈Z V [k]φk

PXf
∗ =

N−1∑

`=0

〈V`, G`〉
‖G`‖2

∑

m∈Z
G[mN + `]φmN+`, and ‖PXf∗‖2 =

N−1∑

`=0

|〈V`, G`〉|2

‖G`‖2

We get,

‖f∗ − PXf
∗‖2 = ‖f∗‖2 − ‖PXf∗‖2 = ‖V ‖2 −

N−1∑

`=0

〈V`, G`〉2

‖G`‖2

Proof of Lemma B.1. Note that Lemma E.5 shows that
{

ψ`

‖ψ`‖

}N−1

`=0
is an orthonormal basis

for Span{K(x`, ·)}. Consequently, we have

PXf
∗ =

N−1∑

`=0

〈
f∗,

ψ`
‖ψ`‖

〉
ψ`
‖ψ`‖

, and ‖PXf∗‖2 =
N−1∑

`=0

〈
f∗,

ψ`
‖ψ`‖

〉2

We compute these projections below. For ` ∈ [N ],

√
‖G`‖1 〈f∗, ψ`〉 =

〈
∑

k∈Z
V [k]φk,

∑

m∈Z
G[mN + `]φmN+`

〉

=
∑

m,k∈Z
G[mN + `]V [k]1{k=mN+`}

=
∑

m∈Z
G[mN + `]V [mN + `] = 〈V`, G`〉

Thus, we get that,

〈
f∗,

ψ`
‖ψ`‖

〉
ψ`
‖ψ`‖

=
〈V`, G`〉
‖G`‖2

∑

m∈Z
G[mN + `]φmN+`

The claims follow immediately.

B.2. Noise-free estimation error: Proof of Lemma 5.2(b). Let E be the fourier series
of
〈
K

−1RN {f∗ − PXf
∗} ,K(XN , ·)

〉
. From Lemma E.3 we have,

E[k] =
√
NRN {f∗ − PXf

∗}>K
−1uk mod N ·G[k]
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By Parseval’s theorem (Proposition 2.4), we conclude,

1

2π

∫ π

−π

(〈
K−1RN {f∗ − PXf

∗} ,K(XN , t)
〉
N

)2
dt =

∑

k∈Z
|E[k]|2

First, we show that

RN {f∗ − PXf
∗}>K−1u` =

( 〈Vi,1〉
〈Gi,1〉

− 〈G`, V`〉
‖G`‖2

)

From Proposition 3.1 we have K
−1u` = u` · 1

N‖G`‖1
. Thus by Lemma B.1, we can write

PXf
∗ on the data as

PXf
∗(xi) =

N−1∑

`=0

〈G`, V`〉
‖G`‖2

∑

m∈Z
G[mN + `]φmN+`(xi) =

N−1∑

`=0

〈G`, V`〉
‖G`‖2

‖G`‖1 u`i

f∗(xi) =
∑

k∈Z
V [k]φk(xi) =

N−1∑

`=0

〈Vi,1〉u`i

We thus have

RN {f∗ − PXf
∗}>K

−1u` =

N−1∑

i,`′=0

(
〈V`′ ,1〉 −

〈G`′ , V`′〉
‖G`′‖2

‖G`′‖1
)

u`′iu`i
N ‖G`‖1

=
1

N

( 〈V`,1〉
〈G`,1〉

− 〈V`, G`〉
‖G`‖2

)

This gives,

∑

k∈Z
|E[k]|2 = 1

N

N−1∑

`=0

( 〈V`,1〉
〈G`,1〉

− 〈V`, G`〉
‖G`‖2

)2

‖G`‖2 .

B.3. Noisy estimation error: Proof of Lemma 5.2(c). We derive this by an application
of Parseval’s theorem. Define the Fourier series,

〈
K

−1ξ,K(XN , t)
〉
N

=
∑

k∈Z
Ẽ[k]ejkt

By Proposition 2.4 (Parseval’s theorem), we have,

Eξ

[
1

2π

∫ π

−π
|
〈
K

−1ξ,K(XN , t)
〉
N
|2 dt

]
=
∑

k∈Z
Eξ |Ẽ[k]|2 =

N−1∑

i=0

∑

m∈Z
Eξ

∣∣∣Ẽ[mN + i]
∣∣∣
2

(a)
=

N−1∑

i=0

∑

m∈Z
|G[mN + i]|2 Eξ

∣∣∣ξ>K−1ui

∣∣∣
2
·N (b)

= σ2
N−1∑

i=0

‖Gi‖2
(
uH

i K
−2ui

)
·N

(c)
= σ2

N−1∑

i=0

‖Gi‖2
1

N2 ‖Gi‖21
N = σ2

N−1∑

i=0

‖Gi‖2

N ‖Gi‖21
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where we have used Lemma E.3 in (a), and Lemma E.2 in (b), and Proposition 3.1 in (c).

Appendix C. Main Results for d > 1.
We can perform a similar analysis for d > 1. To generalize the main results, we also

generalize Assumptions 1-3 for the kernel to Assumptions 4-6 for dimensions greater than one,
as well as the monotonicity condition (Condition 2). Under these assumptions, we show the
main results hold.

Theorem C.1 (Inconsistency for all Functions (when G is monotonically bounded)). Consider
a fixed non-zero regression function f∗ (i) in the Sobolev space of order d

2 + 1 (i.e. whose

derivatives of orders α ∈ Zd≥0 for ‖α‖1 ≤ d
2 + 1 are square-integrable) and (ii) that can be

expressed as a convergent Fourier series. Then, interpolation with a real-valued translation-
invariant kernel satisfying Condition 2 is inconsistent for f∗, for any bandwidth, even if chosen
adaptively.

See [14] for a definition of an order α derivative.

Theorem C.2 (Inconsistency for all Bandwidths). For any translation-invariant kernel sat-
isfying Assumptions 4-6, there exists a function with constant H0-norm for which kernel
interpolation will be inconsistent for any bandwidth, even adaptive to the data set.

Theorem C.3 (Inconsistency for all Functions). For any translation-invariant kernel satisfying
Assumptions 4-5, with a bandwidth M ≤ N , kernel interpolation will be inconsistent for all target
functions that can be expressed as convergent Fourier series. In particular, kernel interpolation
with any fixed bandwidth will be inconsistent for all such functions.

Further, these results hold for the Gaussian, Laplace, and Cauchy kernels.

Proposition C.4. The Gaussian G[k] = exp(−‖k‖2
M2 ), Laplace G[k] =

(
1 + ‖k‖2

M2

)− d+1

2

, and

Cauchy G[k] = exp(−‖k‖
M ) kernels (wrapped on the unit circle) satisfy Condition 2.
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Supplementary materials:

On the Inconsistency of Kernel Ridgeless Regression in Fixed Dimensions

Appendix D. Extending proofs to higher dimensions. Proofs missing from this section
are provided in the supplementary materials.

Notation. In this section d ≥ 1 and n = Nd. By [N ]d we denote the d-fold Cartesian product
of [N ] := {0, 1, . . . , N − 1}. For vectors p, q, we write p ≤ q to indicate a coordinate-wise
inequality, i.e., for all coordinates i, we have pi ≤ qi. Similarly, p � q indicates p ≤ q is
violated, i.e., there exists a coordinate i for which pi > qi. We similarly define p ≥ q and
p � q. We also denote 0 and 1 to be the vectors of all 0’s and all 1’s respectively in a dimension
compatible with the expression. For a scalar C, the expression p ≤ C means p ≤ C · 1, and
similarly p ≥ C,p � C,p � C.

We consider sequences indexed by Zd, and for such sequences we extend the definition of
N− hop subsequences from Equation (2.1) in the following manner. For a fixed N ∈ N, and a
sequence G ∈ `1(Zd), and for ` ∈ [N ]d, let

G` ∈ `1(Zd) G`[m] = G[mN + `], ∀m ∈ Zd

be the N -hop subsequence with entries given as above. For k ∈ Zd, and x ∈ Rd

k mod N := (k1 (mod N), k2 (mod N), . . . , kd (mod N)) ∈ [N ]d
(D.1)

x mod [−π, π) := (x1 (mod [−π, π)), x2 (mod [−π, π)), . . . , xd (mod [−π, π))) ∈ [−π, π)d
(D.2)

where we remind the reader of notation from Equation (3.2). We denote by [−π, π)d the
Cartesian product of d unit circles [−π, π) along each dimension. We refer to this as the unit
torus.

Definition D.1 (Fourier basis). For k ∈ Zd and x ∈ [−π, π)d, define φk(x) := exp (j 〈k,x〉) =∏d
i=1 exp(jkixi). This basis satisfies 〈φk, φ`〉 = 1

(2π)d

∫
[−π,π)d exp(j 〈k − `,x〉) dx = 1{k=`}.

A target function defined on the unit torus admits a Fourier series,

f∗ =
∑

k∈Zd

V [k]φk V [k] = 〈f∗, φk〉 .(D.3)

Definition D.2 (DFT Matrix d > 1). The normalized DFT matrix in d > 1 is

Ud =
[
u0 · · · u(N−1)1

]
∈ CN

d×Nd

, u`,p := N−d/2 exp

(
−j 2π

N
〈`,p〉

)
, `,p ∈ [N ]d

Data distribution. For d > 1, the continuous distribution is µ = Uniform([−π, π)d) and the
discrete distribution over x ∈ [−π, π)d, with n = Nd samples, to be

µn(x) :=
1

Nd

∑

`∈[N ]d

δ(x− x`), (x`)i =
2π

N
`i − π, ∀ ` ∈ [N ]d, and ∀ i ∈ [N ].
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The n = Nd samples {x`} are indexed by elements of [N ]d, where x` ∈ [−π, π)d and has
coordinates given by the expression above. Note again that µn weakly converges to µ. In the
rest of this section we use

〈α,K(Xn, ·)〉n :=
∑

p∈[N ]d

αpK(xp, ·)

to keep the notation simple.
Translation-invariant kernels. As in d = 1, we can define translation-invariant kernels with

the following property,

K(x,x′) = g
(
M(x− x′ mod [−π, π))

)
, x,x′ ∈ [−π, π)d

for some even function g : Rd → R (see Definition (D.1)).
Define G0, G : Zd → C as the Fourier series, i.e.

g(M(θ mod [−π, π))) =
∑

k∈Zd

G[k] exp(j 〈k,θ〉)(D.4a)

G[k] =
1

(2π)d

∫

[−π,π)d
g(Mθ) exp(−j 〈k,θ〉) dθ(D.4b)

Note that while usually the bandwidth scales the input (as detailed here), our analysis also
holds for different mechanisms.

As in d = 1, for positive definite kernels, g is an even function whereby we have,

G[k] = G[−k] ≥ 0 ∀k ∈ Zd

D.1. MSE Decomposition. We start with a result analogous to Lemma 5.1, when d > 1.

Lemma D.3 (Decomposition of MSE for d > 1). For a target function f∗ =
∑

k∈Zd V [k]φk,
(a) Approximation error:

Eapx := ‖f∗ − PXf
∗‖2 =

∑

p∈[N ]d

‖Vp‖2 −
〈Gp, Vp〉2

‖Gp‖2
=

∑

p∈[N ]d

Eapx
p

(b) Noise-free estimation error:

E free :=
∥∥〈K−1Rn {f∗ − PXf

∗} ,K(Xn, ·)
〉
n

∥∥2 =
∑

p∈[N ]d

‖Gp‖2
Nd

(
〈Vp,1〉
〈Gp,1〉

− 〈Gp, Vp〉
‖Gp‖2

)2

=
∑

p∈[N ]d

E free
p

(c) Averaged noisy estimation error:

Enoisy := Eξ

∥∥〈K−1ξ,K(Xn, ·)
〉
n

∥∥2 =
∑

p∈[N ]d

σ2

Nd

( ‖Gp‖
‖Gp‖1

)2

=
∑

p∈[N ]d

Enoisy
p
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Together, this yields that the MSE for this function is,

Eξ MSE

(
f̂N , f

∗
)
=

∑

p∈[N ]d

Ep =
∑

p∈[N ]d

Eapx
p + E free

p + Enoisy
p(D.5)

Ep := ‖Vp‖2 −
〈Gp, Vp〉2

‖Gp‖2
+

‖Gp‖2
Nd

(
〈Vp,1〉
〈Gp,1〉

− 〈Gp, Vp〉
‖Gp‖2

)2

+
σ2

Nd

( ‖Gp‖
‖Gp‖1

)2

(D.6)

The derivation for d > 1 is similar to the d = 1 case. Appendix F.1, Appendix F.2, and
Appendix F.3 in the supplementary materials provide proofs for Lemma D.3 Item (a), Item (b),
and Item (c) respectively.

D.2. Spectral Assumptions. We assume spectral conditions for kernels in d > 1 that are
analogous to those in d = 1.

Assumption 4 (Integrability). We assume the kernel is integrable. In particular, the integral∫
[−π,π)d g(Mx) dx exists and is finite for all 0 < M <∞.

Assumption 5 (Spectral Tail). For all k ∈ Zd≥0, there exists a dimension-dependent constant
C1,d > 0 such that,

|G[kM ′ + p]| ≤ C1,d|G[p]|
(
1 + ‖k‖2

)− d+1

2(D.7)

holds for all M ′ ≥M and for all 0 ≤ p ≤M ′, except oM ′((M ′)d) many.

Assumption 6 (Spectral Head). There exist dimension-dependent constants C2,d, C3,d ∈ R+,
p∗ ∈ Z≥0, and 0 ≤ m∗ ≤ 1 with m∗ 6= 0, such that for M ≥ C2,d, we have that for all M ′ ≤M ,
|G[p∗]| ≤ C3,d|G[p∗ +M ′m∗]| and |G0[p

∗]| > 0.

We give a condition that implies all three of these assumptions:

Condition 2 (Monotonic Boundedness (d > 1)). There exist constants (that are independent
of the bandwidth M) cd, Cd, C

′
d, C

′′
d > 0, a constant c′d(M) (that may depend on M) and a

monotonically decreasing function f(‖x‖) with (i) 0 < f(‖x+k‖)
f(‖x‖) ≤ C ′′

d

(
1 + ‖k‖2

)− d+1

2 for all

x ∈ Rd≥0,k ∈ Zd≥0, and (ii) f(‖ei+x‖)
f(‖x‖) ≥ C ′

d for 0 ≤ x ≤ 1 and standard basis vectors ei for

i ∈ [d], such that cdf(‖k‖/M) ≤ G[k]/c′d(M) ≤ Cdf(‖k‖/M) for all k ∈ Zd≥0.

With the assumptions defined, we can prove the main results for d > 1.

D.3. Proof of Theorem C.2. When M ≤ N we show that the averaged noisy estimation
error is large. On the other hand, when M > N , we show that the approximation error is large
for a cosine function in the base RKHS H0.

Case 1, M > N . In this case we show the approximation error is bounded away from
0. Since M > N , by Assumption 6, there exists a vector p∗ of constant integers, and an
0 ≤ m∗ ≤ 1 with m∗ 6= 0, such that |G[p∗]| ≤ C3,d |G[m∗N + p∗]|. Now let f∗ be the

(real-valued) function with Fourier coefficients V [p∗] = V [−p∗] =
√

(2π)d−1

2 , and V [k] = 0 for
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|k| 6= i∗. Using this, we can lower bound the approximation error as,

Eapx
p∗ ≥ 2V [p∗]2

(2π)d

(
1− |G[p∗]|2

∑
m∈Zd |G[mN + p∗]|2

)
≥ 1

2π

(
1− |G[p∗]|2

|G[m∗N + p∗]|2 + |G[p∗]|2

)

≥ 1

2π(1 + C3,d)

Case 2, M ≤ N . In this case we show that the noisy estimation error is bounded away from

0. Define, ∆p := ‖Gp‖1 − |G[p]| =
∑

m 6=0

|G[mN + p]| ≥ 0. Assumption 5 says that for all but

o(Nd) terms p ∈ [N ]d, we have,

∆p =
∑

m 6=0

|G[mN + p]| ≤ C1,d |G[p]|
∑

m 6=0

(
1 + ‖m‖2

)− d+1

2 ≤ C1,d |G[p]|(D.8)

For such an p, we can lower bound the noisy estimation error term Enoisy
p as,

Enoisy
p =

σ2

Nd

‖Gp‖2

‖Gp‖21
=

σ2

Nd

‖Gp‖2

(|G[p]|+∆p)
2 ≥ σ2

Nd

|G[p]|2

2 |G[p]|2 + 2 |∆p|2
≥ σ2

2Nd(1 + C1,d)

Enoisy = Ω(σ2),

since there are Ω(Nd) such p ∈ [N ]d for which equation (D.8) holds.

Proof of Theorem C.3. As in the d = 1 case, Theorem C.3 follows from the proof of
Theorem C.2. We showed that for M ≤ N (Case 2 above), the noisy estimation error Enoisy

satisfies Enoisy = Ω(σ2). Since Enoisy is independent of the target function f∗, the statement of
Theorem 4.5 follows.

Proof of Theorem C.1. We showed that for M ≤ N (Case 2 above), the noisy estimation
error Enoisy satisfies Enoisy = Ω(σ2) for all functions. We start by the monotonic boundedness
of G, we have

|G[p]|2
‖Gp‖2

=
|G[p]|2

|G[p]|2 +
∑

k∈(Z∗)d |G[p+ kN ]|2
≤ 1

1 + υd

for ‖p‖∞ < N/2, where υd = C2
d(C

′′
d )

2/c2d > 0.
Now consider f∗ =

∑
k∈Zd V [k]φk, and suppose ‖f∗‖2 =

∑
k∈Zd |V [k]|2 = 1. By the

smoothness condition on the target function f∗, it has Fourier series coefficients that decay as

|V [k]| ≤ Bd(1 + ‖k‖2)− d+1

2 for all k ∈ Zd, for a sufficiently large constant Bd. Using this we
get the inequalities,

∑

‖p‖>N/2
|V [p]| ≤ C̃d

∫ ∞

N/2

rd−1

(1 + r2)(d+1)/2
dr = O(

1

N
)

∑

‖p‖<N/2
|V [p]|2 ≥ 1− Ĉd

∫ ∞

N/2

rd−1

(1 + r2)d+1
dr = 1−O(N−d−2)
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where we have used Wolfram Alpha to obtain order bounds. The integral involves the special
function 2F1, also known as, the hypergeometric function. The rest of the proof proceeds in a
similar manner as the d = 1 case. The only difference is that the range of ε is now ε ∈ [0, d2 ].

D.4. Special cases of kernels for d > 1.

Proof of Proposition C.4.
Gaussian kernel. For the wrapped Gaussian kernel, we have

G[k] = exp
(
−‖k‖2/M2

)

Therefore, the monotonicity is satisfied with f(‖x‖) = exp(−‖x‖2).
Laplace kernel. For the wrapped Laplace kernel, we have

G[k] =

(
1 +

‖k‖2
M2

)− d+1

2

(See [22] for a derivation). Therefore, the monotonicity is satisfied with

f(‖x‖) =
(
1 + ‖x‖2

)− d+1

2 .
Cauchy kernel. For the wrapped Cauchy kernel, we have (from [7]),

G[k] = exp(−‖k‖/M)

Therefore, the monotonicity is satisfied with f(‖x‖) = exp(−‖x‖).
Lemma D.4. For β = (βp) ∈ CN

d

, the Fourier series of the function 〈β,K(Xn, ·)〉n is,

B[k] = Nd/2β>uk mod N ·G[k], k ∈ Zd

The proof for this lemma is provided in Appendix F.4 in the supplementary materials.

Appendix E. Miscellaneous results.
The proof of the following for d > 1 is provided in Appendix D.4.

Proof of Proposition 4.2 (d=1). We state what it means for a kernel to be wrapped on the
unit circle [16]. This means that the wrapped kernel evaluation at t ∈ [−π, π) has contributions
from the Euclidean kernel at t+ 2πk for all k ∈ Z. In particular,

Definition E.1 (Wrapper kernel). A kernel g̃ : R → R+ can be wrapped to define a wrapped
kernel g : [−π, π) → R+ given by:

g(t) =
∑

k∈Z
g̃(t+ 2πk)

It is a fact that the Fourier series coefficients of the wrapped on the unit circle are equal to the
Fourier transform at integer values on the real line, i.e.,

G[k] =

∫
g̃(t) exp(−jkt) dt ∀ k ∈ Z.

Using this, we derive the proposition for the given kernels [16].
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Gaussian kernel. The wrapped Gaussian kernel satisfies G[k] = e−k
2/4M2

. Therefore, f(x) =
e−x

2

clearly satisfies the monotonicity condition.

Laplace kernel. For the wrapped Laplace kernel, G[k] =
1

M2 + k2
. Thus, the Laplace kernel

satisfies Condition 1 with f(x) = 1
1+x2

.
Cauchy kernel. For the Cauchy kernel, G[k] = exp(−|k|/M). Therefore, Condition 1 is

satisfied with f(x) = exp(−|x|).

Proof of Proposition 4.1. We first show boundedness. As f(0) <∞, we have f(k) < f(0)
1+k2

for all k ∈ R+. Therefore,
∑

k∈Z |G[k]| ≤ C
∫
k f(k) <∞. Then, K(x, x′) ≤

∑
k |G[k]| <∞.

For the tail assumption, we have for M ′ > M ,

G[M ′k + i]

G[i]
≤ C ′′C

c

f((i+ k)/M)

f(i/M)

C ′′C
c

1

1 + k2
.

For the head assumption, we have for M ′ ≤M ,

0 <
G[i]

G[i+M ′]
≤ c

C ′′C
f(i/M)

f((i+M ′)/M)
≤ c

C ′′CC ′ .

These prove the proposition.

E.1. Intermediate Lemmas.

Lemma E.2. Let ξ be a random vector with E ξξH = σ2I, then for u ∈ CN , Eξ |ξH
K

−1u|2 =
σ2 · uH

K
−2u

Proof. Eξ |ξH
K

−1u|2 = Eξ u
H
K

−1ξξH
K

−1u = σ2uH
K

−2u.

Lemma E.3. For β ∈ CN , let B be the Fourier series of the function 〈β,K(XN , ·)〉N . Then,

B[k] =
√
Nβ>uk mod N ·G[k], k ∈ Z

Proof. Use the Fourier series definition to get,

N∑

i=1

βi
1

2π

∫ π

−π
K(xi, t) dt =

N∑

i=1

βi
1

2π

∫ π

−π
g(M(xi − t) mod [−π, π)) dt

=

N∑

i=1

βi
1

2π

∫ π

−π
g(Mτ)e−jkτe−jkxi dτ =

√
Nβ>uk mod NG[k]

since e−jkxi = e−j
2π
N
ki = e−j

2π
N

(k mod N)i =
√
Nuk mod N . This concludes the proof.

Eigenfunctions of TK , T N
K and eigenvectors of K.

Proof of Proposition 3.1. It suffices to show the eigenvector equation for the unnormalized
version of u`. We start by noting that

Kim′ = g(M(xm′ − xi)) =
∑

m∈Z
G[m]ejm(xm′−xi) =

∑

m∈Z
G[m]ej

2π
N
m(m′−i).

24



Using this, we have

(Ku`)i =

N−1∑

m′=0

Kim′e−j
2π
N
m′` =

∑

m′

∑

m∈Z
G[m]ej

2π
N
m(m′−i)e−j

2π
N
m′`

=
∑

m∈Z
G[m]e−j

2π
N
mi

N−1∑

m′=0

ej
2π
N

(m−`)m′

= N
∑

m∈Z
G[mN + `]e−j

2π
N

(mN+`)i

= Ne−j
2π
N
`i
∑

m∈Z
G[mN + `]e−j2πmi = e−j

2π
N
`iN

∑

m∈Z
G[mN + `] = e−j

2π
N
`i ·N ‖G`‖1

This proves Ku` = N ‖G`‖1 u`. The rest follows from standard results on linear algebra.

Proof of Proposition 3.2. Observe that

TK {φk} (x) =
1

2π

∫ π

−π
K(x, x′)φk(x

′) dx′ =
1

2π

∫ π

−π
g(M(x′ − x mod [−π, π)))ejkx′ dx′

= ejkx · 1

2π

∫ π

−π
g(Mu)e−jku du = G[k]φ(x)

This proves the claim.

The following lemma relates the eigenfunctions of the empirical covariance operator defined
in equation (2.7) to the eigenvectors of the kernel matrix.

Lemma E.4 (Eigenfunctions of T n
K). Let (λ, ψ) be an eigenvalue-eigenfunction pair of T n

K .
Assume K is invertible. Then for λ > 0, a unit-norm eigenfunction ψ satisfies,

ψ =
n∑

i=1

ei√
nλ
,K(xi, ·),(E.2)

where e = (ei) ∈ Cn is a unit-norm eigenvector of K satisfying, Ke = nλe.

We apply the above lemma to the setting described in Section 3. The proof is provided in
Appendix F.4 in the supplementary materials.

Lemma E.5 (Eigenfunctions of T N
K ). The eigenfunctions for T N

K are,

ψ` =
1√

‖G`‖1

∑

m∈Z
G[mN + `]φmN+`, ` ∈ [N ].

They satisfy, T N
K ψ` = ‖G`‖1 ψ`, and their norms satisfy ‖ψ`‖H = 1, and ‖ψ`‖ = 1√

‖G`‖1
‖G`‖ .

Furthermore, ψ` are orthogonal in L2, i.e., 〈ψ`, ψk〉 = 0 for k 6= `.

Proof of Lemma E.5. By Lemma E.4, we have

ψ` =

〈
u`√

N ‖G`‖1
,K(XN , ·)

〉

N

=

〈
u`√

N ‖G`‖1
,K(XN , ·)

〉

N
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Then using Lemma E.3 we have a Fourier series expansion of the form

ψ` =
∑

k∈Z

√
N

uH

`√
N ‖G`‖1

uk mod NG[k]φk =
1√

‖G`‖1

∑

k∈Z
uH

` uk mod NG[k]φk

=
1√

‖G`‖1

∑

m∈Z
G[mN + `]φmN+`

To see the orthogonality, suppose k, ` ∈ {0, 1, . . . , N − 1} and k 6= `. Then

〈ψ`, ψk〉 =
1√

‖G`‖1 ‖Gk‖1

∑

m,m′∈Z
G[mN + `]G[m′N + k] 〈φmN+`, φm′N+k〉 = 0

For L2 norm, substitute k = ` above to get,

〈ψ`, ψ`〉 =
1

‖G`‖1

∑

m,m′∈Z
G[mN + `]G[m′N + `] 〈φmN+`, φm′N+`〉 =

1

‖G`‖1
‖G`‖2

This proves the claim.

Appendix F. Proofs to technical lemmas.

Proposition F.1 (Parseval’s theorem in high dimensions). For a function f : [−π, π)d → R
with Fourier series coefficients F [k] for k ∈ Zd, we have

∑

k∈Zd

|F [k]|2 = 1

(2π)d

∫

[−π,π)d
|f(t)|2 dt.

Eigenfunctions of TK , T n
K and eigenvectors of K for d > 1. The proofs of the following two

statements are provided in Appendix F.4.

Proposition F.2. Proposition 3.1 holds with u` from Definition D.2 and K = (K(xp,xp′)) ∈
RN

d×Nd

, with eigenvalue λ` = Nd ‖G`‖1, i.e., Ku` = λ`u`.

Lemma F.3 (Eigenfunctions of T N,d
K ). The eigenfunctions for the empirical operator T N,d

K

are,

ψ` =
1√

‖G`‖1

∑

m∈Zd

G[mN + `]φmN+`, ` ∈ [N ]d.

They satisfy, T N,d
K {ψ`} = ‖G`‖1 ψ`, and their norms satisfy ‖ψ`‖H = 1, as well as ‖ψ`‖ =

1√
‖G`‖1

‖G`‖ . Furthermore, ψ` are orthogonal in L2, i.e., 〈ψ`, ψk〉 = 0 for k 6= `.

F.1. Approximation error: Proof of Lemma D.3(a). Once again, the proof proceeds by
applying the Pythagorean theorem to the triangle {0, f∗, PXf∗} in L2. The following lemma
gives exact expressions for projection of the target function and its norm.

Lemma F.4 (Projection). For f∗ =
∑

k∈Zd V [k]φk

PXf
∗ =

∑

`∈[N ]d

〈G`, V`〉
‖G`‖2

∑

m∈Zd

G[mN + `]φmN+`, and ‖PXf∗‖2 =
∑

`∈[N ]d

〈G`, V`〉2

‖G`‖2
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We get,

‖f∗ − PXf
∗‖2 = ‖f∗‖2 − ‖PXf∗‖2 = ‖V ‖2 −

∑

`∈[N ]d

〈G`, V`〉2

‖G`‖2

Proof of Lemma F.4. Note that Lemma F.3 shows that
{

ψ`

‖ψ`‖

}
`∈[N ]d

is an orthonormal

basis for Span{K(x`, ·)}. Consequently, we have

PXf
∗ =

∑

`∈[N ]d

〈
f∗,

ψ`

‖ψ`‖

〉
ψ`

‖ψ`‖
, and ‖PXf∗‖2 =

∑

`∈[N ]d

〈
f∗,

ψ`

‖ψ`‖

〉2

We compute these projections. For ` ∈ [N ]d,

〈f∗, ψ`〉 =
1√

‖G`‖1

〈
∑

k∈Zd

V [k]φk,
∑

m∈Zd

G[mN + `]φmN+`

〉

=
1√

‖G`‖1

∑

m,k∈Zd

G[mN + `]V [k] 〈φk, φmN+`〉

=
1√

‖G`‖1

∑

m∈Zd

G[mN + `]V [mN + `] =
〈G`, V`〉√
‖G`‖1

Thus, we get that,

〈
f∗,

ψ`

‖ψ`‖

〉
ψ`

‖ψ`‖
=

〈G`, V`〉
‖G`‖2

∑

m∈Zd

G[mN + `]φmN+`

The claims follow immediately.

F.2. Noise-free estimation error: Proof of Lemma D.3(b). Let F be the fourier series
of
〈
K

−1Rn {f∗ − PXf
∗} ,K(Xn, ·)

〉
n
. From Lemma D.4 we have,

F [k] =
√
NdRn {f∗ − PXf

∗}>K
−1uk mod Nd ·G[k]

By Parseval’s theorem (Proposition F.1), we conclude,

1

(2π)d

∫

[−π,π)

(〈
K−1Rn {f∗ − PXf

∗} ,K(Xn, t)
〉
n

)2
dt =

∑

k∈Zd

|F [k]|2

We will show that

Rn {f∗ − PXf
∗}>K−1u` =

( 〈V`,1〉
〈G`,1〉

− 〈G`, V`〉
‖G`‖2

)
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We have K
−1u` = u` · 1

Nd‖G`‖1
. By Lemma B.1, we can write PXf

∗ on the data as

PXf
∗(xp) =

∑

`∈[N ]d

〈G`, V`〉
‖G`‖2

∑

m∈Zd

G[mN + `]φmN+`(xp) =
∑

`∈[N ]d

〈G`, V`〉
‖G`‖2

‖G`‖1 u`p

f∗(xp) =
∑

k∈Zd

V [k]φk(xp) =
∑

`∈[N ]d

〈V`,1〉u`p

We thus have

Rn {f∗ − PXf
∗}>K

−1u` =
∑

p,`′∈[N ]d

(
〈V`′ ,1〉 −

〈G`′ , V`′〉
‖G`′‖2

‖G`′‖1
)

u`′iu`i
Nd ‖G`‖1

=
1

Nd

(〈V`,1〉
‖G`‖1

− 〈V`, G`〉
‖G`‖2

)

This gives,

∑

k∈Zd

|F [k]|2 = 1

Nd

∑

`∈[N ]d

( 〈V`,1〉
〈G`,1〉

− 〈V`, G`〉
‖G`‖2

)2

‖G`‖2 .

F.3. Noisy estimation error: Proof of Lemma D.3(c). Similar to d = 1, we derive this
by an application of Parseval’s theorem.

Define the Fourier series,
〈
K

−1ξ,K(Xn, t)
〉
n
=
∑

k∈Zd

E[k] exp (j 〈k, t〉)

By Proposition F.1 (Parseval’s theorem), we have,

Eξ

[
1

(2π)d

∫

[−π,π)
|
〈
K

−1ξ,K(Xn, t)
〉
n
|2 dt

]
=
∑

k∈Zd

Eξ |E[k]|2 =
∑

p∈[N ]d

∑

m∈Zd

Eξ |E[mN + p]|2

=
∑

p∈[N ]d

∑

m∈Zd

|G[mN + p]|2 Eξ

∣∣∣ξ>K−1ui

∣∣∣
2
·Nd = σ2

∑

p∈[N ]d

‖Gp‖2
(
uH

pK
−2up

)
·Nd

= σ2
∑

p∈[N ]d

‖Gp‖2
1

N2d ‖Gp‖21
Nd = σ2

∑

p∈[N ]

‖Gp‖2

Nd ‖Gp‖21

where we have used Lemma D.4 in the second, and Lemma E.2 in the third, and Proposition F.2
in the last line.

F.4. Additional Proofs.

Proof of Lemma E.4. We will first show that ψ can be written as a linear combination of
the n representers {K(xi, ·)}.

ψ =

n−1∑

i=0

βiK(xi, ·)(F.2)
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Let ψ ∈ H be an eigenfunction of T n
K with eigenvalue λ. Then by definition of T n

K we have,

(F.3) λψ = T n
K(ψ) =

1

n

n∑

i=1

〈K(xi, ·), ψ〉HK(xi, ·) =
1

n

n∑

i=1

ψ(xi)K(xi, ·)

where the last equality holds due to the reproducing property of the kernel. Define βi =
ψ(xi)
nλ

to show (F.2). Next, rewriting the equation for an eigenfunction ψ, expressed as (F.2), we get

(F.4) T n
K

(
n∑

i=1

βiK(xi, ·)
)

= λ
n∑

i=1

βiK(xi, ·).

By definition of T n
K however we get,

T n
K

(
n∑

i=0

βiK(xi, ·)
)

=
1

n

n∑

i,j=1

βi〈K(xj , ·),K(xi, ·)〉HK(xj , ·) =
1

n

n∑

j=1

(Kβ)jK(xj , ·)(F.5)

Evaluating functions on the RHS of equations (F.2) and (F.5) at x` yields,

1

n
·
n∑

i=1

n∑

j=1

βiK(xi, xj)K(xj , xl) = λ

n∑

i=1

βiK(xi, xl) for all ` ∈ {0, 1, . . . , n− 1}

Compactly these n equations can be written as:

K
2β = nλKβ =⇒ Kβ = nλβ

since K is inverible. Thus β is a scaled eigenvector of K. It remains to determine the scale of
β that defines ψ.

Now, the norm of ψ can be simplified as

‖ψ‖2H =

〈
n∑

i=1

βiK(xi, ·),
n∑

j=1

βjK(xj , ·)
〉

H

=

n∑

i,j=1

βiβj 〈K(xi, ·),K(xj , ·)〉H

= βH
Kβ = nλ ‖β‖2 .

Since ψ is unit norm, we have ‖β‖ = 1√
nλ

. This concludes the proof.

Proof of Lemma D.4. Use the Fourier series definition to get,

∑

p∈[N ]d

βp
1

(2π)d

∫

[−π,π)
g(M(t− xp mod [−π, π))) exp (−j 〈k, t〉) dt

=
∑

p∈[N ]d

βp
(2π)d

∫

[−π,π)
g(Mτ ) exp (−j 〈k, τ 〉) exp (−j 〈k,xp〉) dτ = N

d/2β>uk mod NG[k]

This concludes the proof.
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Proof of Proposition F.2. It suffices to show the eigenvector equation for the unnormalized
version of u`. We start by noting that

Kpm′ = g(M(xm′ − xp)) =
∑

m∈Zd

G[m]ej〈m,xm′−xp〉) =
∑

m∈Zd

G[m]ej
2π
N

〈m,m′−p〉.

Using this, we have

(Ku`)q =
∑

p∈[N ]d

Kq,pu`p =
∑

p

∑

m′∈Zd

G[m′] exp

(
j
2π

N

〈
m′,p− q

〉)
exp

(−j2π
N

〈p, `〉
)

=
∑

m′∈Zd

G[m′]e−j
2π
N

〈m′,q〉 ∑

p∈[N ]d

ej
2π
N

〈(m′−`),p〉 = Nd
∑

m∈Zd

G[mN + `]e−j
2π
N

〈mN+`,q〉

= e−j
2π
N

〈`,q〉Nd
∑

m∈Zd

G[mN + `] = e−j
2π
N

〈`,q〉Ndλ`

This proves Ku` = Nd ‖G`‖1 u`. The rest follows from standard results on linear algebra.

Proof of Lemma F.3. By Lemma E.4, we have

ψ` =

〈
u`√

Nd ‖G`‖1
,K(Xn, ·)

〉

n

=

〈
u`√

Nd ‖G`‖1
,K(Xn, ·)

〉

n

Then using Lemma D.4 we have a Fourier series expansion of the form

ψ` =
∑

k∈Zd

√
Nd

uH

`√
Nd ‖G`‖1

uk mod NG[k]φk =
1√

‖G`‖1

∑

k∈Zd

uH

` uk mod NG[k]φk

=
1√

‖G`‖1

∑

m∈Zd

G[mN + `]φmN+`

To see the orthogonality, suppose k, ` ∈ [N ]d and k 6= `. Then

〈ψ`, ψk〉 =
1√

‖G`‖1 ‖Gk‖1

∑

m,m′∈Zd

G[mN + `]G[m′N + k] 〈φmN+`, φm′N+k〉 = 0

For L2 norm, substitute k = ` above to get,

〈ψ`, ψ`〉 =
1

‖G`‖1

∑

m,m′∈Zd

G[mN + `]G[m′N + `] 〈φmN+`, φm′N+`〉 =
1

‖G`‖1
‖G`‖2

This proves the claim.
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