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Abstract. Distributed algorithms have been playing an increasingly important role in many
applications such as machine learning, signal processing, and control. Significant research efforts
have been devoted to developing and analyzing new algorithms for various applications. In this
work, we provide a fresh perspective to understand, analyze, and design distributed optimization
algorithms. Through the lens of multirate feedback control, we show that a wide class of distributed
algorithms, including popular decentralized/federated schemes, can be viewed as discretizing a certain
continuous-time feedback control system, possibly with multiple sampling rates, such as decentralized
gradient descent, gradient tracking, and federated averaging. This key observation not only allows
us to develop a generic framework to analyze the convergence of the entire algorithm class, but, more
importantly, it also leads to an interesting way of designing new distributed algorithms. We develop
the theory behind our framework and provide examples to highlight how the framework can be used
in practice.
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1. Introduction. Distributed computation has played an important role in pop-
ular applications such as machine learning, signal processing, and wireless communi-
cations, partly due to the dramatically increased size of the models and the datasets.
In this paper, we consider a distributed system with N agents connected by a graph
\scrG = (V,E), each optimizing a smooth and possibility nonconvex local function fi(x).
The global optimization problem is formulated as [32]

(1.1) min
x\in RNdx

f(x) :=
1

N

N\sum 
i=1

fi(xi), s.t. xi = xj \forall (i, j)\in E,

where x\in RN\times dx stacks N local variables x := [x1; . . . ;xN ]; xi \in Rdx \forall i\in [N ].
This problem has received much attention in recent years; see [3, 13] for a few

recent surveys. Heterogeneous computational and communication resources in the dis-
tributed system create a number of different scenarios in distributed learning. Specifi-
cally, based on the application scenarios, we can roughly classify distributed optimiza-
tion algorithms into those that solve Decentralized Optimization (DO) problems, that
solve Federated Learning (FL) problems, and those that can achieve optimal resource
utilization (OPT). Some of the related works are discussed below.
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 653

(a) When solving the DO problems, the agents are typically modeled as nodes
on a communication graph, and the communication and computation resources are
equally important. So the algorithms alternatingly perform communication and com-
munication steps. For instance, the Decentralized Gradient Descent (DGD) algo-
rithm [20, 34] extends gradient descent (GD) to the decentralized setting, where
each agent performs one step of local gradient descent and local model average in
each round. Other related algorithms such as the Decentralized Linearized ADMM
(DLM) [17], the Decentralized Gradient Tracking (DGT) [35] and the in-Network
succEssive conveX approximaTion (NEXT) [4] all utilize this kind of alternating
update.

(b) The FL problems typically consider the setting that the clients are directly
connected to a parameter-server, and that the communication at the server is the
bottleneck of the system. The FL algorithms, such as the well-known FedAvg [1],
perform multiple local updates before one communication step. However, when the
data is heterogeneous among the agents, it is difficult for these algorithms to achieve
convergence [10, 15]. Recent algorithms such as the FedProx [14], SCAFFOLD [9],
and FedPD [36] have developed new techniques to improve upon FedAvg.

(c) There have been a number of recent algorithms which are designed to utilize
the minimum computation and/or communication resources, while computing high-
quality solutions. They typically perform multiple communication steps before one
local update. For example, in [26] a multistep gossip protocol is used to achieve
the optimal convergence rate in decentralized convex optimization; the xFilter [27]
is designed for decentralized nonconvex problems, and it implements the Chebyshev
filter on the communication graph, which requires multistep communication, and
achieves the optimal dependency on the graph spectrum.

Despite the proliferation of distributed algorithms, there are a few concerns
and challenges. First, for some hot applications, there are simply too many algo-
rithms available, so much so that it becomes difficult to track all the technical de-
tails. Is it possible to establish some general guidelines to understand the relations
between, and the fundamental principles of, those algorithms that provide similar
functionalities? Second, much of the recent research on this topic appears to be
increasingly focused on a specific setting (e.g., those mentioned in the previous para-
graph). However, an algorithm developed for FL may have already been rigorously
developed, analyzed, and tested for the DO setting; and vice versa. Since develop-
ing algorithms and performing analyses take significant time and effort, it is desir-
able to have some mechanisms in place to reduce the possibility of reinventing the
wheel.

1.1. Contribution of this work. We argue that there is a strong demand for
a framework of distributed optimization, which can help researchers and practition-
ers understand algorithm behaviors, predict algorithm performance, and streamline
algorithm design. This paper intends to provide such a framework, for a substantial
subclass of distributed algorithms, using tools from multirate feedback control sys-
tems. We will first show that a customized continuous-time feedback control system is
well suited to model some key components (such as local computation, interagent com-
munication) of distributed algorithms. We then show that when such a continuous-
time system is discretized properly (i.e., different parts of the system adopt different
sampling rates), it recovers a wide range of distributed optimization algorithms. Fi-
nally, we provide a generic convergence result that covers different feedback schemes
and discretization patterns. The major benefits of our proposed framework are listed
below.
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654 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

(1) One can easily establish connections between a few subclasses of distributed algo-
rithms that are developed for different settings. In some sense, they can be viewed as
applying different discretization schemes to certain continuous-time control systems.
(2) It helps predict the algorithm performance. On the one hand, once the continuous-
time control system and the desired discretization pattern are identified, and some
sufficient conditions set forth by our framework are satisfied, one can readily obtain
various system parameters as well as the convergence guarantees. On the other hand,
if we found that an existing distributed algorithm performs poorly, it is likely because
it does not fall into our framework (an example is provided to show such a case).
(3) It facilitates new algorithm design. Once the problem setting and the associated
requirement are determined, one can start with selecting the desired controllers and
feedback schemes for the continuous-time system, followed by finding the appropriate
discretization patterns. The performance of the new algorithm can be again readily
obtained from our framework (as discussed in the previous point).

Note that there are many existing works which analyze optimization algorithms
using control theory, but they mainly focus on some very special classes of algo-
rithms. For examples, [25] studies continuous-time gradient flow for convex problems;
[29, 32] study continuous-time first-order convex optimization algorithms; [8, 12, 19]
investigate the acceleration approaches including Nesterov and Heavy-ball momentum
methods for centralized problems in discrete time and interpret them as discrete-time
controllers; [19, 32] focus on the continuous-time system and ignore the impact of
the discretization; [6, 30, 31] investigate the connection between continuous-time sys-
tem and discretized gradient descent algorithm, but their approaches and analyses
do not generalize to other federated/decentralized algorithms. Further, to the best of
our knowledge, none of the above referred works provide insights about relationship
between subclasses of distributed algorithms (e.g., between DO and FL).
Notations and assumptions. We introduce some useful assumptions and notations.

First, let \otimes denote the Kronecker product. the incidence matrix A of a graph \scrG is
defined as follows: if edge e(i, j)\in E connects vertex i and j with i > j, then Aei = 1,
Aej =  - 1, and Aek = 0\forall k \not = i, j. Let us use \scrN i \subset [N ] to denote the neighbors for
agent i. For a symmetric matrix X, let us use \lambda (X) to denote its eigenvalues. Then
we can write the constraint of (1.1) in a more compact form:

min
x\in RNdx

f(x) :=
1

N

N\sum 
i=1

fi(xi), s.t. (A\otimes I) \cdot x= 0.

For simplicity of notation, the Kronecker products are ignored in the subsequent
discussion, e.g., we use Ax in place of (A \otimes I) \cdot x. Define the averaging matrix

R := 11T

N and the average of xi's as \=x := 1T

N x = 1
N

\sum N
i=1 xi. Note, we have R2 = R.

The consensus error can be written as [x1  - \=x, . . . , xN  - \=x] = (I  - R)x, and we have
\nabla f(\=x) = 1

N

\sum N
i=1\nabla fi(\=x). The stationary solution of (1.1) is defined as follows.

Definition 1.1 (first-order stationary point). We define the first-order station-
ary solution and the \epsilon -stationary solution respectively, as

N\sum 
i=1

\nabla fi

\biggl( 
1

N

N\sum 
i=1

xi

\biggr) 
= 0, x - 11T

N
x= 0,(1.2a) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 1

N

N\sum 
i=1

\nabla fi

\biggl( 
1

N

N\sum 
i=1

xi

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

+

\bigm\| \bigm\| \bigm\| \bigm\| x - 11T

N
x

\bigm\| \bigm\| \bigm\| \bigm\| 2

\leq \epsilon .(1.2b)

We refer to the left-hand side (LHS) of (1.2b) as the stationarity gap of (1.1).
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 655

We will make the following assumptions on problem (1.1) throughout this paper:

A 1 (graph connectivity). The graph is fixed, and strongly connected at all time
t\in [0,\infty ), i.e., 0 is a simple eigenvalue of ATA, with corresponding eigenvector 1\surd 

N
.

This assumption can be extended to time-varying graphs (denoted as A(t)'s),
as they can be treated as subsampling on a strongly connected graph A =

\bigcup 
tA(t).

However, to stay focused on the main point of this paper (e.g., build connection of
different algorithms from the control perspective) and to reduce notation, we choose
to consider the simple static graph A(t) =A \forall t\in [0,\infty ) in this work.

Since the agents are connected by a fixed communication graph, we can further
define the averaging matrix of the communication graph as W := I  - ATdiag(w)A,
where w is a vector each of whose entries w[e(i, j)] is positive, and it corresponds to
the weight of edge e(i, j). It is easy to check that W has the following properties:

W =WT , 1TW = 1T , Wij \geq 0 \forall e(i, j)\in E.(1.3)

A 2 (Lipschitz gradient). The fi's have Lipschitz gradient with constant Lf :

\| \nabla fi(x) - \nabla fi(y)\| \leq Lf \| x - y\| \forall x, y \in Rdx ,\forall i\in [N ].

A 3 (lower bounded functions). Each fi is lower bounded as

fi(x)\geq f
i
> - \infty \forall x\in Rdx , \forall i\in [N ].

A 4 (coercive functions). Each fi approaches infinity as \| x\| approaches infinity:

fi(x)\rightarrow \infty as \| x\| \rightarrow \infty \forall i\in [N ].

A3 and A4 imply that there exists at least one globally optimal solution x \star for
problem (1.1). Let us denote the corresponding optimal objective as f \star := f(x \star ).

2. Continuous-time system. We present a continuous-time feedback control
system. We will provide a number of key properties of the controllers and the entire
system to ensure that the system converges to the set of first-order stationary points
with guaranteed speed. These properties will be instrumental when we subsequently
analyze discretized version of the system (hence, various distributed algorithms).

2.1. System description. To optimize problem (1.1), our approach is to design
a continuous-time feedback control system, such that the state variables belong to the
set of stationary points of the system if and only if they correspond to a stationary
solution of (1.1). Towards this end, define x\in RNdx as the main state variable of the
system; introduce the global consensus feedback loop (GCFL) and local computation
feedback loop (LCFL), where the former incorporates the dynamics from multiagent
interactions and pushes x to consensus, while the latter helps stabilize the system and
finds the stationary solution. Specifically, these loops are defined as below.
\bullet (The GCFL). Define an auxiliary state variable v := [v1; . . . ;vN ] \in RNdv , with
vi \in Rdv \forall i; define y := [x;v] \in RN(dx+dv); define a feedback controller Gg(\cdot ;A) :
RN(dx+dv) \rightarrow RN(dx+dv). Then the GCFL uses Gg(\cdot ;A) to operate on y to ensure the
agents remain coordinated, and their local control variables remain close to consensus.
\bullet (The LCFL). Define an auxiliary state variable z := [z1; . . . ; zN ] \in RNdz , with
zi \in Rdz \forall i; define a set of feedback controller G\ell (\cdot ;fi) :Rdx+dv+dz \rightarrow Rdx+dv+dz , one
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656 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

Fig. 1. The proposed continuous-time double-feedback system for modeling the decentralized
optimization problem (1.1). The system dynamics are given in (2.5).

for each agent i. Then each agent will use LCFL to operate on its local state variables
xi, zi and vi, to ensure that its local system can be stabilized.

The overall system is described in Figure 1. The detailed description of properties
of different controllers, as well as the notations used, will be given in the next sections.

To have a rough idea of how these loops can be mapped to a distributed algorithm,
let us consider the Proportional-Integral (PI) distributed optimization algorithm [5],
whose updates are

\.x= - kG\nabla f(x) - kP \cdot (I  - W ) \cdot x - kP kIv,

\.v= kP kI \cdot (I  - W )x.

The corresponding controllers are given by

Gg(x,v;A) :=

\biggl[ 
(I  - W ) \cdot x+ kIv
 - kI \cdot (I  - W ) \cdot x

\biggr] 
, G\ell (xi, vi, zi;fi) :=

\left[  \nabla fi(xi)
0
0

\right]  ,

with \eta \ell = kG and \eta g = kP . Note that auxiliary state variable z has not been used in
this algorithm.

Next, we describe in detail the properties of the two feedback loops.

2.2. Global consensus feedback loop. The GCFL performs interagent com-
munication based on the incidence matrix A, and it controls the consensus of the
global variable y := [x;v]. Specifically, at time t, define the output of the con-
troller as ug(t) = Gg(y(t);A), which can be further decomposed into two outputs
ug(t) := [ug,x(t);ug,v(t)], one to control the consensus of x, and the other for v. After
being multiplied by the control gain \eta g(t) > 0, the resulting signal will be combined
with the output of the LCFL, and be fed back to local controllers.

We require that the global controller Gg(\cdot ;A) to have the following properties.

P 1 (control signal direction). The output of the controller Gg aligns with the
direction that reduces the consensus error, that is,

\langle (I  - R) \cdot y,Gg(y;A)\rangle \geq Cg \cdot \| (I  - R) \cdot y\| 2 \forall y

for some constant Cg > 0. Further, the controller Gg satisfies

\langle 1,Gg(y;A)\rangle = 0 \forall y, which implies \langle 1, ug(t)\rangle = 0 \forall t.
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 657

P 2 (linear operator). The controller Gg is a linear operator of y, that is, we
have Gg(y;A) =WAy for some matrix WA \in RN(dx+dv) parameterized by A, and its
eigenvalues satisfy | \lambda (WA)| \in [0,1].

Combining P1 and P2, we have \langle 1,WA\rangle = 0, which indicates R \cdot WA = 0 and the
eigenvectors of WA are orthogonal to the ones of R. Further, we have

\| (I  - R)y\| 2  - \| Gg(y;A)\| 2 = yT ((I  - R)2  - W 2
A)y

= yT
\bigl( 
I  - 2R+R - W 2

A

\bigr) 
y= yT (I  - (R+W 2

A))y.

Notice the eigenvectors of R and WA are orthogonal and all eigenvalues are in [0, 1],
so we have matrix I - (R+W 2

A)\succeq 0. Thus yT (I - (R+W 2
A))y\geq 0 and \| (I - R)y\| 2 \geq 

\| Gg(y;A)\| 2. Therefore, we have

(2.1) C2
g \| (I  - R) \cdot y\| 2 \leq \| Gg(y;A)\| 2 \leq \| (I  - R) \cdot y\| 2 and R \cdot WA = 0.

It is easy to check that both P1 and P2 hold in most of the existing consensus-
based algorithms. For example, when the communication graph is strongly connected,
we can choose Gg(y;A) = (I  - W ) \cdot y. It is easy to verify that Cg = 1  - \lambda 2(W ),
where \lambda 2(\cdot ) denotes the eigenvalue withe the second largest magnitude [3, 34].
As another example, consider the accelerated averaging algorithms [7], where we
have

Gg(y,A) =

\biggl[ 
I  - (c+ 1) \cdot W c \cdot I

 - I I

\biggr] \biggl[ 
x
v

\biggr] 
, with c :=

1 - 
\sqrt{} 
1 - \lambda 2(W )

1 +
\sqrt{} 

1 - \lambda 2(W )2
.

In this case, one can verify that Cg = 1 - \lambda 2(W )

1+
\surd 

1 - \lambda 2(W )2
\geq 1 - \lambda 2(W ).

By using P1, we can follow the general analysis of averaging systems [21], and
show that the GCFL will behave as expected , that is, if the system only performs
GCFL and shuts off the LCFL, then the consensus can be achieved. More precisely,
assuming that \eta \ell (t) = 0, \eta g(t) = 1, then under P1, the local state y converges to the
average of the initial states linearly:

(2.2) \| (I  - R) \cdot y(t)\| 2 \leq e - 2Cgt \| (I  - R) \cdot y(0)\| 2 .

For completeness we include the derivation in the supplemental material section C.1.1

2.3. The local computation feedback loop. The LCFL optimizes the lo-
cal function fi(\cdot )'s for each agent. At time t, the ith local controller takes the
local variables xi(t), vi(t), zi(t) as inputs and produces a local control signal. To
describe the system, let us denote the output of the local controllers as ui,\ell (t) =
G\ell (xi(t), vi(t), zi(t);fi) \forall i\in [N ]; further decompose it into three parts:

ui,\ell (t) := [ui,\ell ,x(t);ui,\ell ,v(t);ui,\ell ,z(t)].

Denote the concatenated local controller outputs as u\ell ,x(t) := [u1,\ell ,x(t); . . . ;uN,\ell ,x(t)],
and define u\ell ,v(t), u\ell ,z(t) similarly. Note that we have assumed that all the agents use
the same local controller G\ell (\cdot ; \cdot ), but they are parameterized by different fi's. After
multiplied by the control gain \eta \ell (t) > 0, the resulting signal will be combined with
the output of GCFL, and be fed back to the local controllers.

1Due to space limitation, less important results are relegated to the supplementary material; see
[37].
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658 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

The local controllers are designed to have the following properties:

P 3 (Lipschitz smoothness). The controller is Lipschitz continuous, that is,

\| G\ell (xi, vi, zi;fi) - G\ell (x
\prime 
i, v

\prime 
i, z

\prime 
i;fi)\| \leq L\| [xi;vi; zi] - [x\prime 

i;v
\prime 
i; z

\prime 
i]\| 

\forall i\in [N ], xi, x
\prime 
i \in Rdx , vi, v

\prime 
i \in Rdv , zi, z

\prime 
i \in Rdz .

P 4 (control signal direction and size). The local controllers are designed such
that there exist initial values xi(t0), vi(t0), and zi(t0) ensuring that the following
holds:

\langle \nabla fi(xi(t)), ui,\ell ,x(t)\rangle \geq \alpha (t) \cdot \| \nabla fi(xi(t))\| 2 \forall t\geq t0,

where \alpha (t)> 0 satisfies limt\rightarrow \infty 
\int t

t0
\alpha (\tau )d\tau \rightarrow \infty .

Further, for any given xi, vi, zi, the sizes of the control signals are upper bounded
by those of the local gradients. That is, for some positive constants Cx, Cv, and Cz:

\| ui,\ell ,x\| \leq Cx \| \nabla fi(xi)\| , \| ui,\ell ,v\| \leq Cv \| \nabla fi(xi)\| , \| ui,\ell ,z\| \leq Cz \| \nabla fi(xi)\| .

Let us comment on these properties. P3 is easy to verify for a given realization
of the local controllers; P4 abstracts the convergence property of the local optimizer.
This property implies that the update direction  - ui,\ell ,x(t) points to a direction that
decreases the local objective. Note that it is postulated that xi, vi and zi are initialized
properly, because in some of the cases, improper initial values lead to nonconvergence
of the local controllers (or, equivalently, the local algorithm). For example, for accel-
erated gradient descent method [2, 33], zi(t0) should be initialized as \nabla fi(xi(t0)).

By using P4, we can follow the general analysis of the gradient flow algorithms
(e.g., [22]), and show that the LCFL will behave as expected , in the sense that the
agents can properly optimize their local problems. More precisely, assume that \eta g(t) =
0, \eta \ell (t) = 1, that is, the system shuts off the GCFL. Assume that G\ell (\cdot ; \cdot ) satisfies P4,
then each local system produces xi(t)'s that satisfy

(2.3) min
\tau 

\| \nabla fi(xi(t+ \tau ))\| 2 \leq \gamma (\tau ) \cdot (fi(xi(t)) - f
i
),

where \{ \gamma (\tau )\} is a sequence of positive constants satisfying

\gamma (\tau ) =
1\int t

0
\alpha (\tau )d\tau 

\rightarrow 0 as \tau \rightarrow \infty .(2.4)

We include the proof of the above result in the online supplementary [37, sect. C.2].
To close this subsection, we note that the continuous-time system we have pre-

sented so far (cf. Figure 1) can be described using the following dynamics:

\.v(t) = - \eta g(t) \cdot ug,v(t) - \eta \ell (t) \cdot u\ell ,v(t),

\.x(t) = - \eta g(t) \cdot ug,x(t) - \eta \ell (t) \cdot u\ell ,x(t), \.z(t) = - \eta \ell (t) \cdot u\ell ,z(t).(2.5)

Additionally, throughout this paper, we will use ug and Gg, u\ell , and G\ell interchange-
ably.

2.4. Convergence properties. We proceed to analyze the convergence of the
continuous-time system. Towards this end, we define an energy-like function:

\scrE (t) := f(\=x(t)) - f \star +
1

2
\| (I  - R) \cdot y(t)\| 2 .(2.6)
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 659

Note that \scrE (t)\geq 0 for all t\geq 0. It follows that its derivative can be expressed as

\.\scrE (t) = - 
\biggl\langle 
\nabla f(\=x(t), \eta \ell (t) \cdot 

1T

N
u\ell ,x(t)

\biggr\rangle 
+ \langle (I  - R) \cdot y(t), \eta g(t)ug(t) + \eta \ell (t)u\ell ,y(t)\rangle .

(2.7)

In the following, we study the convergence of \scrE (t) and characterize the set of stationary
points that the states satisfy \.\scrE (t) = 0. We do not attempt to analyze the stronger
property of stability , not only because such a kind of analysis can be challenging due
to the nonconvexity of the local functions fi(\cdot )'s, but more importantly, analyzing the
convergence of \scrE (t) is already sufficient for us to understand the convergence of the
state variable x to the set of stationary solutions of problem (1.1), as we will show
shortly.

To proceed, we require that the system satisfies the following property.

P 5 (energy function reduction). The derivative of the energy function, \.\scrE (\cdot ) as
expressed in (2.7), satisfies the following:

 - 
\int t

0

\biggl( \biggl\langle 
\nabla f(\=x(\tau ), \eta \ell (\tau ) \cdot 

1T

N
u\ell ,x(\tau )

\biggr\rangle 
+ \langle (I  - R) \cdot y(\tau ), \eta g(\tau )ug(\tau ) + \eta \ell (\tau )u\ell ,y(\tau )\rangle 

\biggr) 
d\tau 

\leq  - 
\int t

0

\Biggl( 
\gamma 1(\tau ) \cdot 

\bigm\| \bigm\| \bigm\| \bigm\| \nabla f(\=x(\tau ))

\bigm\| \bigm\| \bigm\| \bigm\| 2

+ \gamma 2(\tau ) \cdot \| (I  - R) \cdot y(\tau )\| 2
\Biggr) 
d\tau ,

(2.8)

where \gamma 1(\tau ), \gamma 2(\tau )> 0 are some time-dependent coefficients.

P5 is a property about the entire continuous-time system. Although one could
show that by using P1--P4, and by selecting \eta g(t) and \eta \ell (t) appropriately, this property
can be satisfied with some specific \gamma 1(\tau ) and \gamma 2(\tau ) (cf. Corollary 2.2.), here we still
list it as an independent property, because at this point we want to keep the choice
of \gamma 1(\tau ), \gamma 2(\tau ) general; please see section 2.5 for a more detailed discussion.

Next, we will show that under P5, the continuous-time system will converge to
the set of stationary points, and that x will converge to the set of stationary solutions
of problem (1.1).

Theorem 2.1. Suppose P5 holds true. Then we have the following results:
(1) Further, suppose that P1, P2, and P4 hold, then \.\scrE = 0 implies that the corre-
sponding state variable xs is bounded, and the following holds:

\.xs = 0, \.vs = 0, \.zs = 0, ug = 0, u\ell = 0.(2.9)

Additionally, let us define the set S as below:

S := \{ v,z | \eta \ell u\ell ,v + \eta gug,v = 0, u\ell ,z = 0, \eta \ell u\ell ,x + \eta gug,x = 0\} .

If we assume that S is compact for any state variable x that satisfies the stationarity
condition (1.2a), then the auxiliary state variables \{ v(t)\} and \{ z(t)\} are also bounded.
(2) The control system asymptotically converges to the set of stationary points, in
that x(t) is bounded \forall t\in [0,\infty ), and \.\scrE \rightarrow 0. Further, the stationary gap (1.2b) can be
upper bounded by the following:

min
t

\biggl\{ 
\| \nabla f(\=x(t))\| 2 + \| (I  - R) \cdot y(t)\| 2

\biggr\} 
=\scrO 

\Biggl( 
max

\Biggl\{ 
1\int T

0
\gamma 1(\tau )d\tau 

,
1\int T

0
\gamma 2(\tau )d\tau 

\Biggr\} \Biggr) 
.

(2.10)
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660 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

Proof. To show part (1), consider a set of states xs,vs,zs in which \.\scrE (xs,vs) = 0.
P5 implies that \nabla f(\=xs) = 0, and P4 implies \| u\ell \| \leq (Cx + Cv + Cz)\| \nabla f(\=xs)\| = 0.
Similarly, with P1 and P2 we have that \langle ug, (I  - R)ys\rangle = 0 and 1Tug = 0 so ug = 0.
Therefore \.xs = 0, \.vs = 0, \.zs = 0. Combining \nabla f(\=xs) = 0 and A4 implies that xs is
bounded. Note that the value of v(t),z(t) may not be bounded, even if the system
converges to a stationary solution. Using the compactness assumption on the set S,
it is easy to show that v(t),z(t) are also bounded.

To show part (2), we can integrate \.\scrE (t) from t= 0 to T to obtain\int T

0

\gamma 2(t)\| (I  - R) \cdot y(t)\| 2 dt+
\int T

0

\gamma 1(t)\| \nabla f(\=x(t))\| 2 dt\leq \scrE (0) - \scrE (T ),

divide both sides by
\int T

0
\gamma 1(t)dt or

\int T

0
\gamma 2(t)dt, we obtain (2.10). By P5 we know\int t

0
\.\scrE (\tau )d\tau \leq 0 \forall t, but since \scrE (t)\geq 0, it follows that limt\rightarrow \infty \.\scrE (t) = 0.

Note that without the compactness assumption, v and z can be unbounded. As
an example, FedYogi uses AdaGrad for LCFL [24] where v(t) accumulates the norm
of the gradients and does not satisfy the compactness assumption, so limt\rightarrow \infty v(t)\rightarrow 
\infty . Although such unboundedness does not affect the convergence of the main state
variable in part (2), from the control perspective it is still desirable to have a sufficient
condition to guarantee the boundedness of all state variables.

Part (2) of the above result indicates that if P5 is satisfied, not only will the system
asymptotically converge to the set of stationary points, but more importantly, we can
use \{ \gamma 1(t), \gamma 2(t)\} to characterize the rate in which the stationary gap of problem (1.1)
shrinks. This result, although rather simple, will serve as the basis for our subsequent
system discretization analysis.

2.5. Summary. So far, we have completed the setup of the continuous-time
feedback control system, by specifying the state variables, the feedback loops, and
by introducing a few desired properties of the local controllers and the entire system.
In particular, we show that property P5 is instrumental in ensuring that the system
converges to the set of stationary points. However, there are two key questions that
remain answered:
(i) How to ensure property P5 for a given continuous-time feedback control system?
(ii) How to map the continuous-time system to a distributed optimization algorithm,
and to transfer the convergence guarantees of the former to the latter?

There are two different ways to answer question (i). First, for a generic system
that satisfies properties P1--P4, we can show that when the control gains \eta g(t), \eta \ell (t)
are selected appropriately, then P5 will be satisfied; see Corollary 2.2 below.

Corollary 2.2. Suppose that P1, P3, and P4 are satisfied. By choosing \eta g(t) =
1, \eta \ell (t) =\scrO (1/

\surd 
T )), P5 holds true with \gamma 1(t) =\scrO (\eta \ell (t)), \gamma 2(t) =\scrO (1) Further,

min
t

\Bigl\{ 
\| \nabla f(\=x(t))\| 2 + \| (I  - R) \cdot y(t)\| 2

\Bigr\} 
=\scrO 

\Biggl( 
1\int T

0
\eta \ell (\tau )d\tau 

\Biggr) 
=\scrO 

\biggl( 
1\surd 
T

\biggr) 
.

The proof of the above result follows the steps used in analyzing distributed gradient
flow algorithm [30]; see the online supplementary material [37, sect C.3].

The second answer to question (i) is that one can also verify P5 in a case-by-
case manner for individual systems. In this way, it is possible that one can obtain
larger gains \eta \ell (t), \eta g(t), hence larger coefficients \gamma 1(t) and \gamma 2(t) to further improve the
convergence rate estimate. In fact, verifying property P5 and computing the corre-
sponding coefficients is a key step in our proposed analysis framework for distributed
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 661

Fig. 2. Discretized system using ZOH on both the GCFL and LCFL control loops with possibly
different sampling times \tau g , \tau \ell . The system dynamics are given in (3.1)--(3.4).

Fig. 3. The discretization block that has a switch and a ZOH.

algorithms. Shortly in section 4.1, we will provide an example to showcase how to ver-
ify that the continuous-time system which corresponds to the DGT algorithm satisfies
P5 with \gamma 1(t) =\scrO (1) and \gamma 2(t) =\scrO (1), leading to a convergence rate of \scrO (1/T ).

On the other hand, the answer to question (ii) is more involved, so this question
will be addressed in the main technical part of this work to be presented shortly.
Generally speaking, one needs to discretize the continuous-time system properly to
map the system to a particular distributed algorithm. Further, one needs to utilize all
the properties P1--P5, and carefully select the discretization intervals to ensure that
the resulting discretized systems perform appropriately.

3. System discretization. In this section, we discuss how to use system dis-
cretization to map the continuous-time system introduced in the previous section to
distributed algorithms.

3.1. Modeling the discretization. Typically, a continuous-time system is dis-
cretized by using a switch that samples the input with sample time \tau , followed by
a zeroth-order hold (ZOH) that keeps the signal constant between the consecutive
sampling instances [11]; see Figure 3.

Now let us use ZOH to discretize the continuous-time system depicted in Figure 1.
We will place the ZOH before the variables enter the controllers, i.e., at points A and
B in Figure 2. Note that, the original continuous-time system can be discretized in
many different ways, by customizing the sampling rates for the discretization blocks.
Each of these discretization scheme will correspond to a multirate control system,
in which different parts of the system run on different sampling rates. To describe
such kinds of multirate system, let us define the sampling intervals for the GCFL and
LCFL as \tau g and \tau \ell , respectively. Then we can consider the following five cases:

\bullet Case I. \tau g > 0, \tau \ell = 0. The GCFL is discretized while the LCFL is not.
\bullet Case II. \tau g = 0, \tau \ell > 0. The GCFL remains continuous while the LCFL is

not.
\bullet Case III. \tau g = \tau \ell > 0. The GCFL and LCFL are discretized with the same

rate.
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662 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

\bullet Case IV. \tau g > \tau \ell > 0. Both the GCFL and LCFL are discretized, while the
local computation loop is updated more frequently.

\bullet Case V. \tau \ell > \tau g > 0, both GCFL and LCFL are discretized, while the global
communication loop is updated more frequently.

We note that the systems in cases I and II are sampled data systems which
has both continuous-time part and discretized part, while systems in cases IV, V
are multirate discrete-time systems. Further, the entire system in case III oper-
ates on the same sampling rate. For simplicity, we refer to both the sampled data
system and fully discretized system as the discretized system in the rest of this
paper.

3.2. Distributed algorithms as multirate discretized systems. In this
section, we make the connection between subclasses of distributed algorithms and
different discretization patterns. For convenience, let tk denote the times at which
the inputs of the ZOHs get sampled by both the global and local controllers.

Case I. (\tau g > 0, \tau \ell = 0). The system can be described as follows:

\.v(t) = - \eta g(t) \cdot ug,v(tk) - \eta \ell (t) \cdot u\ell ,v(t),

\.x(t) = - \eta g(t) \cdot ug,x(tk) - \eta \ell (t) \cdot u\ell ,x(t), \.z(t) = - \eta \ell (t) \cdot u\ell ,z(t).
(3.1)

Due to the use of ZOH, during an interval [tk, tk + \tau g), the control signals ug,v

and ug,x are fixed. By P4, it follows that the dynamic system finds a station-
ary point of the local problem satisfying \.xi = 0 \forall i, that is, \eta \ell (t) \cdot u\ell ,x(t)+\eta g(t) \cdot 
ug,x(tk)=0. This is the stationary solution of the following perturbed problem for each
agent:

min
xi

\widetilde fi(xi) := fi(xi) +
\eta g(t)

\eta l(t)
\langle ui,g,x(tk), xi\rangle .(3.2)

Using (2.3), it follows that the above problem is optimized to satisfy

min
t\in [tk,tk+\tau g ]

\bigm\| \bigm\| \bigm\| \nabla \widetilde fi(xi(t))
\bigm\| \bigm\| \bigm\| 2

\leq \gamma (\tau g) \cdot 
\Bigl( \widetilde fi(xi(tk)) - \widetilde fi(xi(tk + \tau g)

\Bigr) 
,

with \gamma (\tau g) =
1\int \tau g

0 \alpha (t)dt
. That is, we obtain a \gamma (\tau g)-stationary solution for the local

problem (3.2). This system has the same form as the distributed algorithms that re-
quire solving some local problems to a given accuracy, before any local communication
steps take place; see, for example, FedProx [14], FedPD [36], and NEXT [4].

Case II (\tau g = 0, \tau \ell > 0). The system can be described as follows:

\.v(t) = - \eta g(t) \cdot ug,v(t) - \eta \ell (t) \cdot u\ell ,v(tk),

\.x(t) = - \eta g(t) \cdot ug,x(t) - \eta \ell (t) \cdot u\ell ,x(tk), \.z(t) = - \eta \ell (t) \cdot u\ell ,z(tk).
(3.3)

During [tk, tk + \tau \ell ) the control signals u\ell ,x(t), u\ell ,v(t), u\ell ,z(t) are fixed. By P1, the
system finds a solution \.y= 0, which implies that  - \eta g(t) \cdot ug,x(t) - \eta \ell (t) \cdot u\ell ,x(tk) = 0.
By (2.2), in [tk, tk + \tau \ell ), the system optimizes the following network problem:

min
y

g(y) := \| (I  - R) \cdot y+ (\eta \ell (t)/\eta g(t)) \cdot u\ell ,y(tk)\| 2 ,

and obtain a solution that satisfies \| \nabla g(y(tk + \tau \ell ))\| 2 \leq e - 2Cg\tau \ell g(y(tk)). This sys-
tem is related to those algorithms that achieve the optimal communication com-
plexity [26, 27]. In these algorithms, it is often the case that some networked
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 663

Table 1
Summary of discretization settings, and the corresponding distributed algorithms.

Case \tau \ell , \tau \bfg Comm. Comp. Related algorithm

I \tau g > 0, \tau \ell = 0 slow continuous NEXT [4], FedProx [14], NIDS [16]
II \tau g = 0, \tau \ell > 0 continuous slow MSDA [26], xFilter [27],AGD [33]

III \tau g = \tau \ell > 0 same rate DGD [34], DGT [35]

IV \tau g > \tau \ell > 0 slow fast Local GD [10], Scaffold [9]
V \tau \ell > \tau g > 0 fast slow Same as case II

problems are solved (to sufficient accuracies) between two local optimization
steps.

Case III (\tau g = \tau \ell > 0). The system is discretized with a single sampling in-
terval. Once sampled at tk, the controllers' inputs remain to be x(tk),v(tk),z(tk)
during the sampling interval, the output of the controllers are also kept constant
ug(t) = ug(tk), u\ell (t) = u\ell (tk)\forall t \in [tk, tk + \tau g). So the system update can be written
as

x(tk+1) = x(tk) - \eta \prime \ell (tk) \cdot u\ell ,x(tk) - \eta \prime g(tk) \cdot ug,x(tk),

v(tk+1) = v(tk) - \eta \prime \ell (tk) \cdot u\ell ,v(tk) - \eta \prime g(tk) \cdot ug,v(tk),(3.4)

z(tk+1) = z(tk) - \eta \prime g(tk) \cdot u\ell ,z(tk),

where \eta \prime \ell (tk) =
\int tk+\tau g
tk

\eta \ell (t)dt, \eta 
\prime 
g(tk) =

\int tk+\tau g
tk

\eta g(t)dt. The above updates are equiv-
alent to many existing decentralized optimization algorithms, such as DGD, DLM,
which perform one step local update, followed by one step of communication.

Case IV (\tau g > \tau \ell > 0). We assume that \tau g = Q \cdot \tau \ell , which means that each
agent performs Q steps of local computation between every two communication
steps. This update strategy is related to the class of (horizontal) federated learning
algorithms [1].

Case V (\tau \ell > \tau g > 0). We assume that \tau \ell =K \cdot \tau g, and that the agents perform
K steps of communication between two local computation steps. Although K can
be arbitrary, in practice it is typically chosen large enough so that certain network
problems are solved approximately; therefore, in practice this case is closely related
to case II.

We summarize the above discussion in Table 1, and provide some example algo-
rithms for each case. In section 4.1, we will specify the controllers for these algorithms
so that we can precisely map them to a discretization setting. It is important to note
that the connection identified here is useful in helping predict algorithm performance,
as well as facilitating new algorithm design; see the related discussions in section
1.1, points (2) and (3). However, these benefits can be realized only if there is a
systematic way of transferring the theoretical results from the continuous-time sys-
tem to different discretization settings. This will be discussed in detail in the next
subsection.

3.3. Convergence of discretized systems. Next, we leverage the convergence
results of the continuous-time system to analyze distributed algorithms. The key
challenge is to properly deal with the potential instability introduced by discretization.
The proof of this subsection is relegated to Appendix A.1, A.2, and A.3.
Discretized communication (\tau g > 0, \tau \ell = 0, case I). Recall that the system dynamics
are given in (3.1). Let us first show how the sampling error affects \.\scrE .
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664 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

Lemma 3.1 ( \.\scrE in case I). Suppose the GCFL and LCFL satisfy P1--P5, and
consider the discretized system with \tau \ell = 0, \tau g > 0. Then we have the following:

(3.5)

\int t

0

\.\scrE (\tau )d\tau \leq 
\int t

0

 - (\gamma 1(\tau ) - C11)\underbrace{}  \underbrace{}  
:=\^\gamma 1(\tau )

\cdot \| \nabla f(\=x(\tau ))\| 2 d\tau 

+

\int t

0

 - 
\biggl( 
\gamma 2(\tau )

2
 - C11

\biggr) 
\underbrace{}  \underbrace{}  

:=\^\gamma 2(\tau )

\cdot \| (I  - R) \cdot y(\tau )\| 2 d\tau ,

where C11 :=
q2\mathrm{m}\mathrm{a}\mathrm{x}

2\gamma 2(\tau )
and qmax := exp

\biggl\{ \surd 
2\tau g \cdot 

\biggl( \sqrt{} 
C2

x +C2
v\eta \ell (t) \cdot 

\Bigl( 
1 +

Lf

N

\Bigr) 2
\biggr) \biggr\} 

 - 1.

The lemma shows that discretizing the communication with sufficiently small \tau g
leads to a small qmax, which preserves the desired descent property.
Discretized computation (\tau \ell > 0, \tau g = 0, case II). Recall that the system dynamics can
be expressed in (3.3). We have the following result.

Lemma 3.2 ( \.\scrE in case II). Suppose the GCFL and LCFL satisfy P1--P5, and
consider the discretized system with \tau g = 0, \tau \ell > 0. Then we have the following:

(3.6)

\int t

0

\.\scrE (\tau )d\tau \leq 
\int t

0

 - 
\biggl( 
\gamma 1(\tau )

2
 - C21

\biggr) 
\underbrace{}  \underbrace{}  

:=\^\gamma 1(\tau )

\cdot \| \nabla f(\=x(\tau ))\| 2 d\tau 

+

\int t

0

 - 
\biggl( 
\gamma 2(\tau )

2
 - C22

\biggr) 
\underbrace{}  \underbrace{}  

:=\^\gamma 2(\tau )

\cdot \| (I  - R) \cdot y(\tau )\| 2 d\tau ,

where we have defined

C21 :=
4L2CfC

2
\ell \eta 

2
\ell (\tau )

2(1 - 2L2C2
\ell ) \cdot min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 

,C22 :=
L2\eta 2\ell (\tau ) \cdot 

\Bigl( \Bigl( 
1 - Cy

C2
y

\Bigr) 
+ 4L2

fCfC
2
\ell 

\Bigr) 
2(1 - 2L2C2

\ell ) \cdot min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 
,

Cf :=C2
x +C2

v +C2
z , Cy = e - Cg\tau \ell \eta g(\tau ), C\ell :=

\tau \ell \eta \ell (\tau )

min\{ 2Cg\eta g(\tau ),1\} 
.

Note that the requirements on \^\gamma 1(\tau )> 0, \^\gamma 2(\tau )> 0 result in the constraint on \tau \ell ,
which will be discussed at the end of this section.
Two-sided discretization (\tau \ell > 0, \tau g > 0, cases III--V). We then analyze the more
challenging cases where both the communication and the computation are discretized.
Note that case III with \tau \ell = \tau g > 0 can be merged into case IV, with Q= 1.

Lemma 3.3 ( \.\scrE in cases III--IV). Suppose the GCFL and LCFL satisfy properties
P1--P5, and consider the discretized system with \tau g =Q \cdot \tau \ell . Then we have

(3.7)

\int t

0

\.\scrE (\tau )d\tau \leq 
\int t

0

 - 
\biggl( 
\gamma 1(\tau )

2
 - C41(\tau )

\biggr) 
\underbrace{}  \underbrace{}  

:=\^\gamma 1(\tau )

\cdot \| \nabla f(\=x(\tau ))\| 2 d\tau 

+

\int t

0

 - 
\biggl( 
\gamma 2(\tau )

2
 - C42(\tau )

\biggr) 
\underbrace{}  \underbrace{}  

:=\^\gamma 2(\tau )

\cdot \| (I  - R) \cdot y(\tau )\| 2 d\tau ,
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 665

where the constants C41(\tau ) and C42(\tau ) are defined as

C41 :=
L2\eta 2\ell (\tau ) \cdot 

\Bigl( 
C45 \cdot (1 +L2

fC47 +C45) +C46L
2
f

\Bigr) 
2min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 

+
Cg\eta 

2
g(\tau ) \cdot (C43 +L2

fC47)

2\gamma 2(\tau )
,

C42 :=
L2\eta 2\ell (\tau ) \cdot (C46 +C45C47)

2min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 
+

Cg\eta 
2
g(\tau )C47

2\gamma 2(\tau )
, C47 :=Q2C2

44 \cdot (C2
x +C2

v ),

C43 :=
4\tau 2g \eta 

2
g(t)

1 - 4\tau 2g \eta 
2
g(\tau )

, C44 :=
2\tau 2\ell \tau 

2
\ell (\tau )

1 - 4\tau 2g \eta 
2
g(\tau )

,

C45 :=
4\tau 2\ell \eta 

2
g(\tau )

1 - 4L2\tau 2\ell \eta 
2
\ell (\tau )

, C46 :=
8L2Cf\tau 

2
\ell \eta 

2
\ell (\tau )

1 - 4L2\tau 2\ell \eta 
2
\ell (\tau )

.

Furthermore, we can check that when \tau g = 0 and \tau \ell = 0, then C41(\tau ), C42(\tau ) are
both zero. Additionally, \^\gamma 1(\tau ) > 0, \^\gamma 2(\tau ) > 0 determine the upper bounds for \tau g, \tau \ell ,
as well as the choice of the stepsizes of the discretized algorithms.

Finally, we note that for case V, a similar result with different \^\gamma 1(\tau ), \^\gamma 2(\tau ) can be
proved using the same technique as Lemmas 3.2 and 3.3. Since the utility of case V
can be covered mostly by that of case II (cf. Table 1), and due to the space limitation,
we will not discuss this case in detail here.

By using the above results, it is easy to obtain the following convergence charac-
terization. The proof is straightforward and follows that of Theorem 2.1.

Theorem 3.4 (convergence of the discretized systems). Suppose the GCFL and
LCFL satisfy properties P1--P5, and consider the discretized system with \tau \ell \geq 0, \tau g \geq 0.
Then the convergence of the discretized system can be characterized as

min
t

\Biggl\{ 
\| \nabla f(\=x(t))\| 2 + \| (I  - R) \cdot y(t)\| 2

\Biggr\} 
=\scrO 

\Biggl( 
max

\Biggl\{ 
1\int T

0
\^\gamma 1(\tau )d\tau 

,
1\int T

0
\^\gamma 2(\tau )d\tau 

\Biggr\} \Biggr) 
,

where \^\gamma 1(\tau )> 0 and \^\gamma 2(\tau )> 0 depend on \gamma 1(\tau ), \gamma 2(\tau ),N,Cg,L and \eta \ell , \eta g, \tau \ell , \tau g,K,Q,
and their choices are specified in Lemmas 3.1, 3.2, and 3.3.

This result indicates that as long as \^\gamma 1(\tau ) > 0 and \^\gamma 2(\tau ) > 0, the discretized
system preserves the convergence rate of the continuous-time system, but it slows
down by a factor max\{ \gamma 1(\tau )/\^\gamma 1(\tau ), \gamma 2(\tau )\^\gamma 2(\tau )\} . Further, the condition that \^\gamma 1(\tau ) >
0, \^\gamma 2(\tau ) > 0 give a way to decide the maximum sampling intervals and the choice
of the hyperparameters (e.g., stepsize, the number of communication steps and local
update steps K,Q) for different algorithms, as we explain below.

Let us consider case I first. By Lemma 3.1,

min\{ \gamma 2,2\gamma 1\} \geq 
q2max

\gamma 2
, with qmax = e

\surd 
2\tau g\cdot 

\biggl( \surd 
C2

x+C2
v\eta \ell (t)\cdot 

\Bigl( 
1+

Lf
N

\Bigr) 2
\biggr) 
 - 1.

It follows that \tau g \leq ln(min\{ \gamma 2(t),
\surd 

2\gamma 1(t)\cdot \gamma 2(t)\} +1)
\surd 
2
\surd 
Cx+Cv\eta \ell (t)\cdot 

\Bigl( 
Lf
N +1

\Bigr) 2 . Note that all the variables on the

right-hand side (RHS) can be determined from the continuous-time system. This
indicates that by having a convergent continuous-time system, the maximum sampling
interval of the GCFL can be determined. Similarly, for case II, by Lemma 3.2, \gamma 1(t)\geq 
2C21, \gamma 2(t)\geq 2C22, which implies:

\tau \ell \leq min

\left\{   \~\gamma 1(t)\sqrt{} 
2(\~\gamma 2

1(t) + 4Cf )L\eta 2\ell (t)
,
log

\Bigl( 
\~\gamma 2(t)+2L\eta \ell (t)

2L\eta \ell (t)

\Bigr) 
Cg\eta g(t)

\right\}   ,
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666 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

where \~\gamma 2
1(t) := min\{ N\gamma 2

1(t), \gamma 1(t) \cdot \gamma 2(t)\} , \~\gamma 2
2(t) := min\{ \gamma 2

2(t),N\gamma 1(t) \cdot \gamma 2(t)\} . All the
variables on the RHS can be determined from the continuous-time system, so the
maximum sampling interval of the LCFL can be determined.

For cases III--IV, it requires 2C41 \leq \gamma 1(t),2C42 \leq \gamma 2(t) and \{ C4i\} 6i=3 to be positive.
It may be difficult to obtain the exact bound for \tau g, \tau \ell , and Q, but we can derive
an approximate bound on these parameters. For \{ C4i\} 6i=3 to be positive, it requires
\tau \ell \leq 1

2L\eta \ell (t)
, \tau g \leq 1

2\eta g(t)
. Set \tau \ell =

c
2L\eta \ell (t)

, \tau g =
c

2\eta g(t)
for some c < 1. By choosing

(3.8) c2 <min

\biggl\{ 
1

4
,min\{ \~\gamma 2

1(t), \~\gamma 
2
2(t)

\biggr\} 
\cdot min

\biggl\{ 
1

L2\eta \ell (t)2 \cdot (1 +L2
f )

,
1

Cg\eta 2g(t)

\biggr\} 
,

we have C41 =\scrO (\gamma 1(t)),C42 =\scrO (\gamma 2(t)). In addition, Q= \tau g/\tau \ell \approx 2L\eta \ell (t)
\eta g(t)

.

4. Application of the framework. In this section, we discuss some applica-
tions of the proposed framework. We first show that by properly choosing the con-
trollers and the discretization scheme, the multirate feedback control system can be
specialized to a number of popular distributed algorithms. Due to space limitations,
we relegate the discussion of some additional algorithms to Appendix B. Second, we
show how the proposed framework can help identify the relationship between different
algorithms. Finally, we use DGT as an example to show how the framework can be
used to streamline the convergence analysis of a series of algorithms, as well as to
facilitate the development of new ones.

4.1. A new interpretation of distributed algorithms. In this part, we map
some popular distributed algorithms to the discretized multirate systems, with spe-
cific GCFL and LCFL, and specific discretization setting. These mappings together
provides a new perspective for understanding distributed algorithms.

Let us begin with mapping the decentralized optimization algorithms.
DGT [35]. The updates are given by

x(k+ 1) =Wx(k) - cv(k), v(k+ 1) =Wv(k) +\nabla f(x(k+ 1)) - \nabla f(x(k)),(4.1)

where c > 0 is the stepsize. It corresponds to the discretization case III with the
following continuous-time controllers:

ug,x = (I  - W ) \cdot x, ug,v = (I  - W ) \cdot v,(4.2)

u\ell ,x = cv, u\ell ,v = - \nabla f(x) +\nabla f(z), u\ell ,z = z - x.

NEXT [4]. The updates of NEXT in discrete time are

x(k+ 1/2) = argminx \~f(x;x(k)) + \langle Nv(k) - \nabla f(x(k)),x - x(k)\rangle ,
x(k+ 1) =W (x(k) + \alpha \cdot (x(k+ 1/2) - x(k))) ,

v(k+ 1) =Wv(k) +\nabla f(x(k+ 1)) - z(k), z(k+ 1) =\nabla f(x(k+ 1)),

where \~f is some surrogate function; k indicates the iteration index; \alpha > 0 and
c > 0 are some stepsize parameters. By using the common choice that \~f(x;x(k)) =
\langle \nabla f(x(k)),x - x(k)\rangle + \eta 

2 \| x - x(k)\| 2 (where \eta > 0 are some constant), the algorithm
can be simplify as follows:

x(k+ 1) =Wx(k) - N\alpha /\eta \cdot v(k), z(k+ 1) = x(k+ 1),

v(k+ 1) =Wv(k) +\nabla f(x(k+ 1)) - \nabla f(z(k)).
(4.3)
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 667

Here, x is the optimization variable, v tracks the average of the gradients, z records
the one-step-behind state of x. It corresponds to case III, with the continuous-time
controllers given by

(4.4) Gg(x,v;A) :=

\biggl[ 
(I  - W ) \cdot x
(I  - W ) \cdot v

\biggr] 
, G\ell (xi, vi, zi;fi) :=

\left[  vi
\nabla fi(zi) - \nabla fi(xi)

zi  - xi

\right]  .

Next, we discuss two popular federated learning algorithms. In this class of
algorithms, the agents are connected with a central server which performs averaging.
So the communication graph is a fully connected graph, with the weight matrix being
the averaging matrix, i.e., W =R, WA = I  - R.
FedAvg [1]. The updates are given by (where GD is used for the local steps)

x(k+ 1) =

\Biggl\{ 
Rx(k) - \eta \nabla f(x(k)), kmodQ= 0,

x(k) - \eta \nabla f(x(k)), kmodQ \not = 0.

This algorithm has the following continuous-time controller:

ug,x =
\infty \sum 
k=0

\delta (t - k\tau g) \cdot (I  - R) \cdot x(t),(4.5)

where \delta (t) denotes the Dirac delta function. It is interesting to note that FedAvg
cannot be mapped to a continuous-time double-feedback system, as it does not have
a persistent GCFL (it is only activated when t = k\tau g; see (4.5)). This partially
explains why the FedAvg algorithm requires additional assumptions for convergence.
Scaffold [9]. The updates are given by (where k0 := k - (kmodK))

x(k+ 1) =

\Biggl\{ 
x(k) - \eta 1 \cdot (\nabla f(x(k)) - z(k) + v(k0)) - \eta 2 \cdot (x(k) - w(k)), (kmodQ) = 0,

x(k) - \eta 1 \cdot (\nabla f(x(k)) - z(k) + v(k0)), (kmodQ) \not = 0,

v(k+ 1) =

\Biggl\{ 
v(k) - R \cdot (v(k) + 1

Q\eta 1
\cdot (w(k) - x(k))), kmodQ= 0

v(k), kmodQ \not = 0,

w(k+ 1) =

\Biggl\{ 
Rx(k), kmodQ= 0,

w(k), kmodQ \not = 0,

z(k+ 1) = z(k) - 1

Q
v(k) - 1

Q\eta 1
\cdot (x(k+ 1) - x(k)).

So it uses the discretization case IV. Observe that w tracks Rx, so in continuous-time
we have x - w = (I  - R) \cdot x+ (Rx - w) = (I  - R) \cdot x+R \.x. Then we can replace w
by R \cdot (x - \.x), and obtain the continuous-time controller as follows:

ug,x = \eta 2 \cdot (I  - R) \cdot x+ \eta 1v+ \eta 2R \.x, ug,v = - (I  - R) \cdot (v+ \.x/\eta 1),

u\ell ,x =\nabla f(x) - z, u\ell ,v = v+ \.x/\eta 1, u\ell ,z = v+ \.x/\eta 1.
(4.6)

Finally, we discuss a one rate optimal algorithm.
xFilter [27]. The updates are given by (where k0 := k - (kmodK)):

x(k+ 1) = \eta 1 \cdot ((1 - \eta 2)I  - \eta 2 \cdot (I  - W )) \cdot x(k) + (1 - \eta 1) \cdot x(k - 1) + \eta 1\eta 2v(k0)

= x(k) - \eta 1\eta 2 \cdot (2I  - W )x(k) - (1 - \eta 1) \cdot (x(k) - x(k - 1)) + \eta 1\eta 2v(k0),
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668 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

v(k+ 1) =

\Biggl\{ 
v(k) + (w1(k) - w2(k)) - (I  - W ) \cdot x(k), kmodK = 0,

v(k), kmodK \not = 0,

w1(k+ 1) =

\Biggl\{ 
x(k) - \eta 3\nabla f(x(k)), kmodK = 0,

w1(k), k mod K \not = 0,

w2(k+ 1) =

\Biggl\{ 
w1(k), kmodK = 0,

w2(k), kmodK \not = 0,

This algorithm uses the discretization case V. We can see w2 tracks w1, and w1 tracks
x - \eta 3\nabla f(x). Therefore, in continuous-time we have w1  - w2 = \.x - \eta 3 \cdot \.\nabla f(x), with
the following continuous-time system:

\.x= - \eta 1\eta 2 \cdot (2I  - W ) \cdot x+ \eta 1\eta 2v - (1 - \eta 1) \cdot \.x,
\.v= \.x - \eta 3 \.\nabla f(x) - (I  - W ) \cdot x.

(4.7)

Integrating over time, and use the initialization that v(0) = x(0)  - \eta 3\nabla f(x(0)), we
have the following expression for v(t):

v(t) =

\int t

0

( \.x(\tau ) - \eta 3 \.\nabla f(x(\tau )) - (I - W )\cdot x(\tau ))d\tau = x(t) - \eta 3\nabla f(x(t)) - 
\int t

0

(I - W )\cdot x(\tau )d\tau .

Define v1 =
1

2 - \eta 1
\cdot (x - v), z= \eta 3

2 - \eta 1
\nabla f(x), then (4.7) can be equivalently written as

\.x= - \eta 1\eta 2 \cdot (I  - W ) \cdot x - \eta 1\eta 2 \cdot (2 - \eta 1) \cdot v1  - (1 - \eta 1) \cdot \.x
= - \eta 1\eta 2 \cdot (I  - W ) \cdot x - \eta 1\eta 2 \cdot (2 - \eta 1) \cdot (v1  - z) - (1 - \eta 1) \cdot \.x - \eta 1\eta 2\eta 3\nabla f(x),

\.v1 =
1

2 - \eta 1
\cdot (I  - W ) \cdot x+

\eta 3
2 - \eta 1

\.\nabla f(x), \.z=
\eta 3

2 - \eta 1
\.\nabla f(x).

The dynamic of \.x implies 1
2 - \eta 1

(I  - R) \cdot (I  - W ) \cdot x= - (I  - R) \cdot 
\Bigl( 
v1 +

1
\eta 1\eta 2

\.x
\Bigr) 
, where

(I  - R) \cdot (I  - W ) = (I  - W ) by property P1. Substituting this into \.v1, defining
\eta 4 := \eta 1\eta 2, \eta 5 := (2  - \eta 1), \eta 6 := \eta 1\eta 2\eta 3, and rearranging the terms, we obtain the
following equivalent controller:

ug,x = \eta 4 \cdot (I  - W ) \cdot x+ \eta 4\eta 5v1 + (\eta 5  - 1) \cdot \.x, ug,v = - (I  - R) \cdot (v1 + \.x/\eta 4),

u\ell ,x = \eta 6\nabla f(x) - \eta 4\eta 5z, u\ell ,v =
\eta 3
\eta 5

\.\nabla f(x), u\ell ,z =
\eta 3
\eta 5

\.\nabla f(x).

Interestingly, the above dynamics are close to those of Scaffold in (4.6), except that
Scaffold uses R instead of W , a different stepsize, and use R \.x in ug,x instead of \.x.

4.2. Algorithms connections. We summarize the discussion in the previous
subsection in Table 2. It is interesting to observe that some seemingly unrelated
algorithms, in fact, are very closely related in continuous-time. For example, some-
what surprisingly, Scaffold and xFilter share very similar continuous-time dynamics,
although they are designed for very different purposes: the former is designed to im-
prove FedAvg algorithm to better deal with data heterogeneity, while the latter is
a primal-dual algorithm designed to achieve the optimal graph dependency. Simi-
larly, each pair of algorithms FedPD and DLM, FedProx and DGD shares the same
continuous-time dynamics (these algorithms are discussed in detail in Appendix B).
The latter two relations are relatively easier to identify. For example, FedPD and
DLM are, in fact, designed from the same primal-dual perspective.
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Table 2
A summary of the controllers used in different algorithms. In GCFL and LCFL we abstract

the most important steps of the controller.

GCFL LCFL FL RO DO

(I  - W ) \cdot x \nabla f(x) FedProx -- DGD

(I  - W ) \cdot y  - \nabla f(x) +\nabla f(z) -- -- DGT, NEXT

c \cdot (I  - W ) \cdot x+ v \nabla f(x) FedPD -- DLM
(I  - W ) \cdot x+ \eta v+R \.x \nabla f(x) - z Scaffold -- --

(I  - W ) \cdot x+ \eta v+ \.x \nabla f(x) - z -- xFilter --

Additionally, from the table we can see that there are a few missing entries. Each
of these entries represents a new algorithm. Also, we can combine different GCFLs and
LCFLs, or design new controllers, to create new control systems (hence algorithms)
that are not included in this table.

4.3. Convergence analysis and algorithm design: A case study. In this
subsection, we use the DGT algorithm as an example to illustrate how our proposed
framework can be used in practice to analyze algorithm behavior, and to facilitate
the development of new algorithms.

The iteration of the DGT is given in (4.1). Under A1--A3, this algorithm con-
verges to the stationary point of the problem at a rate of \scrO (1/T ) [18, 28]. To use our
framework to analyze it, we will first construct a continuous-time double-feedback sys-
tem, apply the discretization scheme III, and finally leverage Lemma 3.3 and Theorem
3.4 to obtain the convergence rate.

4.3.1. Continuous-time analysis. We begin by analyzing the continuous-time
counterpart of the DGT, whose dynamics, according to (4.2), are given by

(4.8)
\.x(t) = - \eta g(t) \cdot (I  - W ) \cdot x(t) - \eta \ell (t) \cdot (cv(t)), \.z(t) = - \eta \ell (t) \cdot (z(t) - x(t)),

\.v(t) = - \eta g(t) \cdot (I  - W ) \cdot v(t) + \eta \ell (t) \cdot (\nabla f(x(t)) - \nabla f(z(t))),

where \eta g(t) = 1, \eta \ell (t) = 1\forall t.
Let us verify properties P1--P5. First, it is easy to prove property P2 with the

definition of ug given in (4.2). To show property P1, recall that we have defined
W := I - ATdiag(w)A, so it is easy to verify that 1T \cdot (I - W ) = 1T \cdot ATdiag(w)A= 0
and Cg = 1 - \lambda 2(W ).

To show property P3, we have the following bounds for different parts of the local
controller:

\| G\ell ,x(xi, vi, zi;fi) - G\ell ,x(x
\prime 
i, v

\prime 
i, z

\prime 
i;fi)\| 

= \| c(vi  - v\prime i)\| = c\| vi  - v\prime i\| ,
\| G\ell ,v(xi, vi, zi;fi) - G\ell ,v(x

\prime 
i, v

\prime 
i, z

\prime 
i;fi)\| 

= \| \nabla fi(xi) - \nabla fi(zi) - \nabla fi(x
\prime 
i) +\nabla fi(z

\prime 
i)\| 

\leq \| \nabla fi(xi) - \nabla fi(x
\prime 
i)\| + \| \nabla fi(zi) - \nabla fi(z

\prime 
i)\| ,

\leq Lf (\| xi  - x\prime 
i\| + \| zi  - z\prime i\| ),

\| G\ell ,z(xi, vi, zi;fi) - G\ell ,z(x
\prime 
i, v

\prime 
i, z

\prime 
i;fi)\| 

= \| xi  - zi  - x\prime 
i + z\prime i\| \leq \| xi  - x\prime 

i\| + \| zi  - z\prime i\| ,

where Lf is the constant of the Lipschitz gradient in A2. So the smoothness constant
of the local controller g\ell can be expressed as L=max\{ Lf , c,1\} .
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670 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

To verify property P4, let us initialize v(t) = \nabla f(x(t)),z(t) = x(t), and assume
that \eta g(t) = 0 in (4.8), that is, the GCFL is inactive. Then we have

z(t+ \tau ) = x(t+ \tau ), v(t+ \tau ) =\nabla f(x(t+ \tau )),

\.x(t+ \tau ) = - cv(t+ \tau ) = - c\nabla f(x(t+ \tau )).
(4.9)

Further, we can verify that the output of the LCFL can be bounded by

\| ui,\ell ,x(t)\| = \| c \cdot vi(t)\| = c\| \nabla fi(xi(t))\| ,
\| ui,\ell ,v(t)\| = \| \nabla fi(xi(t)) - \nabla fi(zi(t))\| \leq 2\| \nabla fi(xi(t))\| ,
\| ui,\ell ,z(t)\| = \| zi(t) - xi(t)\| = \| c \cdot vi(t)\| = c\| \nabla fi(xi(t))\| .

The algorithm becomes the gradient flow algorithm that satisfies property P4 with
\alpha (t) = c, Cx = c,Cv \leq 2,Cz = c. Finally, we verify property P5. We can compute \.\scrE (t)
as follows:

\.\scrE (t) = - 

\Biggl\langle 
\nabla f(\=x(t)),

1

N

N\sum 
i=1

u\ell ,x(t)

\Biggr\rangle 
 - \langle (I  - R) \cdot y(t), ug,y(t) + u\ell ,y(t)\rangle 

(4.2)
=  - \langle \nabla f(\=x(t)), c\=v(t)\rangle  - \langle (I  - R) \cdot y(t), (I  - W ) \cdot y(t)\rangle (4.10)

 - \langle (I  - R) \cdot x(t), cv(t)\rangle + \langle (I  - R) \cdot v(t),\nabla f(x(t)) - \nabla f(z(t))\rangle .

Then we bound each term on the RHS above separately, and finally integrate. The
detailed derivation is relegated to [37, sec. D]. The final bound we can obtain is\int t

0

\.\scrE (\tau )d\tau \leq  - c

2

\int t

0

\| \nabla f(\=x(\tau ))\| 2 d\tau  - c - 8Lfc
2/\beta 

2

\int t

0

\| \=v(\tau )\| 2 d\tau 

 - 
\Bigl( 
Cg  - 

c+ 2cLf + \beta + 16cLf/\beta 

2

\Bigr) 
\cdot 
\int t

0

\| (I  - R) \cdot y(\tau )\| 2 d\tau .

By choosing \beta < Cg/2,
C2

g

64Lf
\leq c \leq C2

g

32Lf
, we can verify that the dynamics of the

continuous-time system (4.8) satisfy (2.8), with \gamma 1(t)\geq 
C2

g

128Lf
and \gamma 2(t)\geq Cg

4 . Apply-
ing Theorem 2.1, we know that continuous-time gradient tracking algorithm converges
in \scrO (1/T ).

4.3.2. New algorithm design. Now that we have verified properties P1--P5
for the continuous-time system (4.8), we can derive a number of related algorithms
by adjusting the discretization schemes, or by changing the GCFL.

Let us first consider changing the discretization scheme from cases III to IV, where
\tau g =Q\tau \ell > 0. In this case, there will be Q local computation steps between every two
communication steps. This kind of update scheme is closely related to algorithms
in FL, and we refer to the resulting algorithm the Decentralized Federated Gradient
Tracking (D-FedGT) algorithm. Its steps are listed below (where k0 = k - (k mod Q)):

(4.11)
x(k+ 1) = x(k) - \tau \ell v(k) - \tau g(I  - W )x(k0),

v(k+ 1) = v(k) +\nabla f(x(k+ 1)) - \nabla f(xk) - \tau g(I  - W )v(k0).

By applying Lemma 3.3 and Theorem 3.4, we can directly obtain that this new al-
gorithm also converges with rate \scrO ( 1

T ) with properly chosen constant \tau \ell , \tau g and Q
following Lemma 3.3 and (3.8).
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 671

Second, we can replace the GCFL of the DGT with an accelerated consensus
controller [7]. This leads to a new Accelerated Gradient Tracking (AGT) algorithm:

(4.12)

x(k+ 1) = x(k) - \eta \prime \ell v(k) - \eta \prime g(1 + c)x(k) + cvx(k),

v(k+ 1) = v(k) +\nabla f(x(k+ 1)) - \nabla f(x(k)) - \eta g(1 + c)v(k) + cvv(k),

vx(k+ 1) = x(k), vv(k+ 1) = v(k), where c :=
1 - 

\sqrt{} 
1 - \lambda 2(W )

1 +
\sqrt{} 
1 - \lambda 2(W )2

.

Then by examining property P1, we know that the network dependency of the new

algorithm improved from Cg to \^Cg =Cg \cdot 
\surd 

Cg+
\surd 

2 - Cg\surd 
Cg+Cg

\surd 
2 - Cg

>Cg. And when Cg is small,

\^Cg scales with
\sqrt{} 
Cg. Then according to the derivation in the last subsection, we have

\gamma 2(t) \geq 
\^Cg

4 . Finally, we can apply Theorem 3.4, and assert that the new algorithm
improves the convergence speed from \scrO ( 1

CgT
) to \scrO ( 1

\^CgT
).

4.3.3. Numerical results. We provide numerical results for implementations
of Continuous-time (CT) DGT, the D-FedGT, and D-AGT algorithms discussed in
the previous subsection. We first verify an observation from Theorem 3.4, that dis-
cretization slows down the convergence speed of the system. Towards this end, we
conduct numerical experiments with different discretization patterns and compare the
convergence speed in terms of the stationarity gap. Then we compare the convergence
speed of CT-DGT and CT-AGT to demonstrate the benefit of changing the controller
in the GCFL from the standard consensus controller to the accelerated one.

In the experiments, we consider the nonconvex regularized logistic regression prob-
lem:

fi(x; (ai, bi)) = log(1 + exp( - bix
Tai)) +

dx\sum 
d=1

\beta \alpha (x[d])2

1 + \alpha (x[d])2
,

where ai denotes the features and bi denotes the labels of the dataset on the ith agent.
We set the number of agent N = 20 and each agent has a local dataset of size 500. We
use an Erd\H os--R\'enyi random graph with density 0.5 for the network and optimize the
weight matrix W to achieve the optimal Cg. We set c = 1 for the gradient tracking
algorithm.

We first compare CT-DGT (\tau g = \tau \ell = 0) and D-FedGT (\tau g = 0.1, \tau \ell = 0.005,Q=
20), the result of CT-DGT and D-FedGT is shown in Figure 4a. We can see that by
discretizing each loop, the system converges slower as compared with the CT system.
Figure 4b shows the convergence behavior of the D-FedGT algorithm with different
\tau g. We observe that by increasing the sampling interval for GCFL, the convergence
of the system slows down and it eventually diverges. Figures 4c and 4d show the
convergence results of D-AGT compared with DGT in both CT and in case III. We
observe that by changing the GCFL, D-AGT converges faster than DGT.

5. Conclusion. In this work, we have designed a framework to understand dis-
tributed optimization algorithms from a control perspective. We have shown that a
multirate double-feedback control system can represent a wide range of deterministic
distributed optimization algorithms. We use a few examples to demonstrate how the
proposed framework can help understand the connection between algorithms, as well
as facilitate new algorithm design. In the future, we plan to extend the framework to
model distributed stochastic algorithms.
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672 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

(a) The evoluation of the Energy function
\scrE (t) of CT-CGT, D-FedGT.

(b) Energy function \scrE (t) of D-FedGT
with different intervals \tau g.

(c) The evolution of the Energy function
\scrE (t) of CT-DGT and CT-D-AGT.

(d) The evolution of the Energy function
\scrE (t) of DGT and D-AGT.

Fig. 4. The performance of Continuous-GT, D-FedGT, D-MGT, and AGT.

Appendix A. Proofs of Section 3. Let t\ell (resp., tg) denote the time at
which the local (resp., global) controller samples, that is, t\ell := t  - t mod \tau \ell and
tg := t  - t mod \tau g. To simplify the analysis, we treat the stepsizes \eta \ell (t), \eta g(t) as
constants in each sampling intervals. Also recall that y(t) = [x(t);v(t)]. The following
relations will be useful:

\langle a, b\rangle = 1

2\alpha 
\| a\| 2 + \alpha 

2
\| b\| 2  - 1

2

\bigm\| \bigm\| \bigm\| \bigm\| 1\surd 
\alpha 
a+

\surd 
\alpha b

\bigm\| \bigm\| \bigm\| \bigm\| 2

\leq 1

2\alpha 
\| a\| 2 + \alpha 

2
\| b\| 2 ,(A.1)

(I  - R)2 = I  - 2R+R2 = I  - R, \| R\| \leq 1, \| I  - R\| \leq 1.(A.2)

The proofs of Lemmas 3.1, 3.2, and 3.3 adopt the similar concept in robust control
theory. The time derivative of the energy function of the discretized system is given
by

\.\scrE (t) = - 
\biggl\langle 
\nabla f(\=x(t)),

1

N
1T \eta \ell (t)u\ell ,x(t)

\biggr\rangle 
 - \langle (I  - R) \cdot y(t), \eta \ell (t) \cdot u\ell ,y(t) + \eta g(t) \cdot ug(t)\rangle \underbrace{}  \underbrace{}  

term I

+ \^\scrE (t),
(A.3)
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 673

where ``term I"" is the derivative of the CT energy function given in (2.7); \^\scrE (t) is the
error caused by discretization. By integrating (A.3) and apply property P5, we have\int t

0

\.\scrE (t)\leq  - 
\int t

0

\gamma 1(\tau )\| \nabla f(\=x(\tau ))\| 2 + \gamma 2(\tau )\| (I  - R) \cdot y(\tau )\| 2 d\tau +
\int t

0

\^\scrE (\tau )d\tau .(A.4)

The key idea of proofs is to bound
\int t

0
\^\scrE (\tau )d\tau by the first two terms.

A.1. Proof of Lemma 3.1. In this case \^ug(t) =Gg(x(tg),v(tg);A). By taking
derivative of \scrE (t), and by comparing with (A.3), we can obtain

\^\scrE (t) = \eta g(t) \langle (I  - R) \cdot y(t), ug(t) - \^ug(t)\rangle .(A.5)

Next, we bound
\int t

0
\^\scrE (\tau )d\tau . Towards this end, we first observe that

\langle (I  - R) \cdot y(t), ug(t) - \^ug(t)\rangle 
(i)
= \langle (I  - R) \cdot y(t),Gg(y(t) - y(tg);A)\rangle 

=

\Biggl\langle 
(I  - R) \cdot y(t),Gg

\biggl( \int t

tg

\.y(s)ds;A

\biggr) \Biggr\rangle 
(A.1)

\leq \gamma 2(t)

2
\| (I  - R) \cdot y(t)\| 2

+
1

2\gamma 2(t)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Gg

\biggl( \int t

tg

\.y(s)ds;A

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

,

where (i) is due to the linearity property P2. Next, we bound the last term above by
\| \nabla f(\=x(t))\| 2 and \| (I  - R) \cdot y(t)\| 2. To proceed, let us define

\~y(t) :=Gg

\biggl( \int t

tg

\.y(s)ds;A

\biggr) 
= ug(t) - \^ug(t), w(t) := [(I  - R) \cdot y(t);\nabla f(\=x(t))],

q(t) :=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| Gg

\biggl( \int t

tg

\.y(s)ds;A

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| /\| [(I  - R) \cdot y(t);\nabla f(\=x(t)]]\| = \| \~y(t)\| /\| w(t)\| .

(A.6)

Using the above definition, we have

(A.7)

\bigm\| \bigm\| \bigm\| \bigm\| Gg

\Bigl( \int t

tg

\.y(s)ds;A
\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| 2

= \| \~y(t)\| 2 = q2(t)\| w(t)\| 2 .

It then suffices to bound q(t). Towards this end, let us first bound \| \.w(t)\| by

\| \.w(t)\| (i)
=

\bigm\| \bigm\| \bigm\| \bigm\| \biggl[ (I  - R) \cdot (\eta g(t)\^ug(t) + \eta \ell (t)u\ell ,y(t));

\biggl\langle 
\partial 2f(\=x(t)), \eta \ell (t)

1T

N
u\ell ,x(t)

\biggr\rangle \biggr] \bigm\| \bigm\| \bigm\| \bigm\| 
\leq \eta g(t)\| (I  - R) \cdot \^ug(t)\| +min

\biggl\{ 
\eta \ell (t),

\eta \ell (t)
\bigm\| \bigm\| \partial 2f(\=x(t))

\bigm\| \bigm\| 
N

\biggr\} 
\| u\ell ,y(t)\| 

(ii)

\leq \eta g(t) (\| (I  - R) \cdot (ug(t) - \^ug(t))\| + \| (I  - R) \cdot ug(t)\| )

+
\sqrt{} 
C2

x +C2
v \cdot \eta \ell (t) \cdot 

\Bigl( 
1 +

Lf

N

\Bigr) 
\cdot \| \nabla f(x(t))\| 

(iii)

\leq \eta g(t) (\| \~y(t)\| + \| (I  - R) \cdot y(t)\| ) +
\sqrt{} 

C2
x +C2

v \cdot \eta \ell (t) \cdot 
\Bigl( 
1 +

Lf

N

\Bigr) 
\cdot \| \nabla f(x(t))\| 
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674 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

(iv)

\leq \eta g(t) \cdot q(t) \cdot \| w(t)\| + \eta g(t) \cdot \| (I  - R) \cdot y(t)\| 

+
\sqrt{} 

C2
x +C2

v \cdot \eta \ell (t) \cdot 
\Bigl( 
1 +

Lf

N

\Bigr) 
\cdot 
\biggl( 
\| \nabla f(\=x(t))\| + Lf

N
\| (I  - R) \cdot x(t)\| 

\biggr) 
(v)

\leq 
\surd 
2

\Biggl( 
\eta g(t)q(t) + \eta g(t) +

\sqrt{} 
C2

x +C2
v \cdot \eta \ell (t) \cdot 

\biggl( 
1 +

Lf

N

\biggr) 2
\Biggr) 
\cdot \| w(t)\| ,

(A.8)

where (i) can be derived similarly as in (2.7); in (ii) we add and subtract ug(t) to
the first term, apply property P4 to the last term, used the following definition of
sub-Hessian:

lim
\delta \rightarrow 0

\bigm\| \bigm\| f(x+ \delta ) - f(x) - \langle \nabla f(x), \delta \rangle  - 1
2\delta 

T\partial 2f(x)\delta 
\bigm\| \bigm\| 

\| \delta \| 2
= 0,

and the fact that that under the smoothness A2, it holds that \| \partial 2f(x)\| \leq L [23,
Theorem 3.1]; in (iii) we combine \| I  - R\| \leq 1 and (2.1) to the second term, use
the definition of \~y(t) in (A.6); in (iv) we use the definition of q(t) in (A.6), add
and subtract \nabla f(\=x(t)) to the last term and apply A2; in (v) we use the fact that
\| a\| + \| b\| \leq 

\sqrt{} 
2(\| a\| 2 + \| b\| 2), and x is a subvector of y. Then we can bound \.q(t) by

\.q(t) =
\.\~y(t)T \~y(t)

\| w(t)\| \| \~y(t)\| 
 - \| \~y(t)\| w(t)T \.w(t)

\| w(t)\| 3

(i)

\leq 

\bigm\| \bigm\| \bigm\| \.\~y(t)\bigm\| \bigm\| \bigm\| \| \~y(t)\| 
\| w(t)\| \| \~y(t)\| 

+
\| \~y(t)\| \| w(t)\| \| \.w(t)\| 

\| w(t)\| 3
(ii)

\leq (1 + q(t))
\| \.w(t)\| 
\| w(t)\| 

(A.8)

\leq (1 + q(t)) \cdot 
\surd 
2

\Biggl( 
q(t)\eta g(t) + \eta g(t) +

\sqrt{} 
C2

x +C2
v\eta \ell (t) \cdot 

\biggl( 
1 +

Lf

N

\biggr) 2
\Biggr) 
,

where in (i) we apply the Cauchy--Schwarz inequality; (ii) is due to the definition
of q(t) in (A.6), and the relations below (where equality comes from the linearity
property P2): \bigm\| \bigm\| \bigm\| \.\~y(t)\bigm\| \bigm\| \bigm\| = \| Gg( \.y(t);A)\| 

(2.1)

\leq \| (I  - R) \cdot \.y(t)\| \leq \| \.w(t)\| .

Note that q(tg) = 0, solve the above inequality of \.q(t) by using Grownwall's inequality,
we obtain q(t) \leq qmax := exp\{ 

\surd 
2\tau g \cdot (

\sqrt{} 
C2

x +C2
v \cdot \eta \ell (t) \cdot (1 + Lf/N)2)\}  - 1. Plug in

this estimate to (A.7), and further to (A.5) and (A.4), we obtain\int t

0

\.\scrE (\tau )d\tau \leq 
\int t

0

\Bigl( 
 - \gamma 1(\tau )\| \nabla f(\=x(\tau ))\| 2  - \gamma 2(\tau )\| (I  - R) \cdot y(\tau )\| 2

\Bigr) 
d\tau 

+

\int t

0

\biggl( 
\gamma 2(\tau )

2
\| (I  - R) \cdot y(\tau )\| 2 + 1

2\gamma 2(\tau )
q2max \| w(\tau )\| 2

\biggr) 
d\tau 

=

\int t

0

 - 
\biggl( 
\gamma 1(\tau ) - 

q2max

2\gamma 2(\tau )

\biggr) 
\cdot \| \nabla f(\=x(\tau ))\| 2  - 

\biggl( 
\gamma 2(\tau )

2
 - q2max

2\gamma 2(\tau )

\biggr) 
\cdot \| (I  - R) \cdot y(\tau )\| 2 d\tau .

A.2. Proof of Lemma 3.2. For notation simplicity, let us define the discrete
time controller output as \^ui,\ell (t) = Gi,\ell (xi(t\ell ), vi(t\ell ), zi(t\ell );fi). Then we can write
\.\scrE (t) similarly as in (A.3), and the error term \^\scrE (t) in this case can be expressed, and
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 675

bounded as below:

\^\scrE (t) =
\biggl\langle 
\nabla f(\=x(t)),

\eta \ell (t)

N
1T(u\ell ,x(t) - \^u\ell ,x(t))

\biggr\rangle 
+ \langle (I  - R)y(t), \eta \ell (t)(I  - R) \cdot (u\ell ,y(t) - \^u\ell ,y(t))\rangle 

(A.1)

\leq \gamma 1(t)

2
\| \nabla f(\=x(t))\| 2 + \gamma 2(t)

2
\| (I  - R) \cdot y(t)\| 2

+
\eta 2\ell (t)

2N\gamma 1(t)
\| R \cdot (u\ell ,y(t) - \^u\ell ,y(t))\| 2 +

\eta 2\ell (t)

2\gamma 2(t)
\| (I  - R) \cdot (u\ell ,y(t) - \^u\ell ,y(t))\| 2

\leq \gamma 1(t)

2
\| \nabla f(\=x(t))\| 2 + \gamma 2(t)

2
\| (I  - R) \cdot y(t)\| 2

+
\eta 2\ell (t)L

2

2min\{ N\gamma 1(t), \gamma 2(t)\} 

\Bigl( 
\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2

\Bigr) 
,(A.9)

where the last inequality combines (A.2) and the Lipschitz gradient property P3,
which gives

\| u\ell ,y(t) - \^u\ell ,y(t)\| 2 =
N\sum 
i=1

\| G\ell (xi(t),vi(t),zi(t)) - G\ell (xi(t\ell ),vi(t\ell ),zi(t\ell ))\| 2

\leq L2(\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2).

The key step is to bound the last term in (A.9). Towards this end, first note that we
have the following relations from (3.3) and property P2:

(I  - R) \cdot \.y(t) = - \eta g(t) \cdot (I  - R) \cdot ug,y(t) - \eta \ell (t) \cdot (I  - R) \cdot \^u\ell ,y(t)

= - \eta g(t) \cdot (I  - R) \cdot WAy(t) - \eta \ell (t) \cdot (I  - R) \cdot \^u\ell ,y(t).

Solving this differential equation with initial condition y(t\ell ), we obtain

(I  - R) \cdot y(t)

= e
 - (I - R)\cdot WA

\int t
t\ell 

\eta g(s)ds
\biggl( 
y(t\ell ) - 

\int t

t\ell 

\eta \ell (s)e
(I - R)\cdot WA

\int s
t\ell 

\eta g(s1)ds1ds \cdot \^u\ell ,y(t)

\biggr) 
.

(A.10)

This expression for y(t\ell ) can be used to further bound the following term:

\| (I  - R) \cdot (y(t) - y(t\ell ))\| 2

(A.10)
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| (I  - R) \cdot 
\biggl( 
y(t) - 

\Bigl( 
e
 - (I - R)\cdot WA

\int t
t\ell 

\eta g(s)ds
\Bigr)  - 1

(I  - R) \cdot y(t)(A.11)

 - 
\int t

t\ell 

\eta \ell (s)e
(I - R)\cdot WA

\int s
t\ell 

\eta g(s1)ds1ds \cdot \^u\ell ,y(t)

\biggr) \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(i)

\leq (1 + \beta )

\bigm\| \bigm\| \bigm\| \bigm\| I  - (I  - R) \cdot 
\Bigl( 
e
 - (I - R)\cdot WA

\int t
t\ell 

\eta g(s)ds
\Bigr)  - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2

\| (I  - R) \cdot y(t)\| 2

+
\Bigl( 
1 +

1

\beta 

\Bigr) \bigm\| \bigm\| \bigm\| \bigm\| \int t

t\ell 

\eta \ell (s)e
(I - R)\cdot WA

\int s
t\ell 

\eta g(s1)ds1ds \cdot (I  - R) \cdot \^u\ell ,y(t))

\bigm\| \bigm\| \bigm\| \bigm\| 2
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676 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

(ii)

\leq (1 + \beta ) \cdot 
\biggl( 
1 - Cy

Cy

\biggr) 2

\cdot \| (I  - R) \cdot y(t)\| 2

+
\Bigl( 
1 +

1

\beta 

\Bigr) 
\cdot 
\biggl( 
\tau \ell \eta \ell (t)

Cy

\biggr) 2

\cdot \| (I  - R) \cdot \^u\ell ,y(t))\| 2

(iii)
=

\biggl( 
1 - Cy

C2
y

\biggr) 
\cdot \| (I  - R) \cdot y(t)\| 2 +

\biggl( 
\tau 2\ell \eta 

2
\ell (t)

Cy

\biggr) 
\cdot \| (I  - R) \cdot \^u\ell ,y(t))\| 2 ,(A.12)

where in (i) we use Cauchy--Schwarz inequality (with \beta > 0 being an arbitrary con-
stant); in (ii) we bound the first norm with property P1 so that \| (I  - R)WA\| =
\| WA\| \geq Cg, which implies the following:\bigm\| \bigm\| \bigm\| \bigm\| I  - (I  - R) \cdot 

\Bigl( 
e
 - (I - R)\cdot WA

\int t
t\ell 

\eta g(s)ds
\Bigr)  - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2

\leq 
\Bigl( 
1 - (e

 - Cg

\int t
t\ell 

\eta g(s)ds) - 1
\Bigr) 2

;

then by using the fact that t  - t\ell \leq \tau \ell , \eta g(s) can be treated as constant in the
integration, and define Cy := e - Cg\tau \ell \eta g(t), the bound can be further simplified as\Bigl( 
1 - (e

 - Cg

\int t
t\ell 

\eta g(s)ds) - 1
\Bigr) 2

\leq 
\Bigl( 
1 - 1

Cy

\Bigr) 2

; in (iii) we choose \beta =
Cy

1 - Cy
.

Using the system dynamics (3.3), we have

R \cdot y(t) =R \cdot y(t\ell ) - 
\biggl( \int t

t\ell 

\eta \ell (s)ds

\biggr) 
R\^u\ell ,y(t).(A.13)

Then we can bound the last term of (A.9) by

\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2

(i)
= \| (I  - R) \cdot (y(t) - y(t\ell ))\| 2 + \| R \cdot (y(t) - y(t\ell ))\| 2 +

\bigm\| \bigm\| \bigm\| \bigm\| \int t

t\ell 

\eta \ell (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2

\cdot \| \^u\ell ,z(t)\| 2

(A.12),(A.13)

\leq 
\biggl( 
1 - Cy

C2
y

\biggr) 
\cdot \| (I  - R) \cdot y(t)\| 2 +

\biggl( 
\tau 2\ell \eta 

2
\ell (t)

Cy

\biggr) 
\cdot \| (I  - R) \cdot \^u\ell ,y(t)\| 2

+

\bigm\| \bigm\| \bigm\| \bigm\| \int t

t\ell 

\eta \ell (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2

\| R\^u\ell ,y(t)\| 2 +
\bigm\| \bigm\| \bigm\| \bigm\| \int t

t\ell 

\eta \ell (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2

\cdot \| \^u\ell ,z(t)\| 2

(ii)

\leq 
\biggl( 
1 - Cy

C2
y

\biggr) 
\cdot \| (I  - R) \cdot y(t)\| 2 + (\tau \ell \eta \ell (t))

2

min\{ Cy,1\} 

\Bigl( 
\| \^u\ell ,y(t)\| 2 + \| \^u\ell ,z(t)\| 2

\Bigr) 
(iii)

\leq 
\biggl( 
1 - Cy

C2
y

\biggr) 
\cdot \| (I  - R) \cdot y(t)\| 2 + 2C2

\ell 

\Bigl( 
\| u\ell (t) - \^u\ell (t)\| 2 + \| u\ell (t)\| 2

\Bigr) 
(iv)

\leq 
\biggl( 
1 - Cy

C2
y

\biggr) 
\cdot \| (I  - R) \cdot y(t)\| 2 + 2L2C2

\ell 

\Bigl( 
\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2

\Bigr) 
+ 4C2

\ell \cdot (C2
x +C2

v +C2
z ) \cdot (\| \nabla f(\=x(t))\| 2 + \| \nabla f(x(t)) - \nabla f(\=x(t))\| 2)

(v)

\leq 

\Bigl( 
1 - Cy

C2
y

\Bigr) 
+ 4L2

fC
2
\ell Cf

1 - 2L2C2
\ell 

\| (I  - R) \cdot y(t)\| 2 + 4C2
\ell Cf

1 - 2L2C2
\ell 

\| \nabla f(\=x(t))\| 2 ,

(A.14)

where in (i) we separate y(t) - y(t\ell ) into R \cdot (y(t) - y(t\ell )) + (I  - R) \cdot (y(t) - y(t\ell )),
expand the square, and use the fact that R\cdot (I - R) = 0; in (ii) we bound the integration
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 677

interval in the last two terms with t - t\ell \leq \tau \ell , using the fact that \eta \ell (s) is treated as
constant in the integration, and combine the last three terms; in (iii) we add and
subtract u\ell (t) to the last term and apply the Cauchy--Schwarz inequality and further

define C\ell :=
\tau \ell \eta \ell (t)

min\{ Cy,1\} ; in (iv) we apply properties P3 and P4 to the last two terms
and define

(A.15) Cf :=C2
x +C2

v +C2
z ;

in (v) we apply A2 to the last term and move \| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2 to the
left and divide both sides by 1 - 2L2C2

\ell (note that this operation is legitimate since

we have chosen \tau \ell \leq 1+2Cg\eta g(t)
2L\eta \ell (t)

such that 2L2C2
\ell < 1).

Substitute to \^\scrE in (A.4), we have\int t

0

\.\scrE (\tau )d\tau \leq 
\int t

0

\biggl( 
 - 

\biggl( 
\gamma 1(\tau )

2
 - C21

\biggr) 
\| \nabla f(\=x(\tau ))\| 2  - 

\biggl( 
\gamma 2(\tau )

2
 - C22

\biggr) 
\| (I  - R) \cdot y(\tau )\| 2

\biggr) 
d\tau ,

where C21 :=
4L2C2

\ell \eta 
2
\ell (\tau )\cdot Cf

2(1 - 2L2C2
\ell )\cdot min\{ N\gamma 1(\tau ),\gamma 2(\tau )\} and C22 :=

L2\eta 2
\ell (\tau )\cdot 

\biggl( \biggl( 
1 - Cy

C2
y

\biggr) 
+4L2

fC
2
\ell Cf

\biggr) 
2(1 - 2L2C2

\ell )\cdot min\{ N\gamma 1(\tau ),\gamma 2(\tau )\} .

A.3. Proof for Lemma 3.3. In cases III--IV, we have \tau g =Q\tau \ell . Also note that
tg, t\ell were defined at the beginning of Appendix A. The update of the states can be
written as

y(tg + (q+ 1)\tau \ell ) = y(tg + q\tau \ell ) - 
\int tg+(q+1)\tau \ell 

tg+q\tau \ell 

\eta g(s)\^ug(s) + \eta \ell (s)\^u\ell ,y(s)ds,

z(tg + (q+ 1)\tau \ell ) = z(tg + q\tau \ell ) - 
\int tg+(q+1)\tau \ell 

tg+q\tau \ell 

\eta \ell (s)\^u\ell ,z(s)ds.

(A.16)

Using the decomposition \scrE (t) = term I+ \^\scrE (t), one can express, and subsequently
bound the sampling error as

\^\scrE (t) =
\biggl\langle 
\nabla f(\=x(t)),

\eta \ell (t)

N
1T \cdot (u\ell ,x(t) - \^u\ell ,x(t))

\biggr\rangle 
+ \langle (I  - R) \cdot y(t), \eta g(t) \cdot (ug(t) - \^ug(t))\rangle 

+ \langle (I  - R) \cdot y(t), \eta \ell (t) \cdot (u\ell ,y(t) - \^u\ell ,y(t))\rangle 
(A.1)

\leq \gamma 1(t)

2
\| \nabla f(\=x(t))\| 2 + \gamma 2(t)

2
\| (I  - R) \cdot y(t)\| 2

+
\eta 2g(t)

2\gamma 2(t)
\| (I  - R) \cdot (ug(t) - \^ug(t))\| 2 +

\eta 2\ell (t)

2min\{ N\gamma 1(t), \gamma 2(t)\} 
\| u\ell ,y(t) - \^u\ell ,y(t)\| 2

(i)

\leq \gamma 1(t)

2
\| \nabla f(\=x(t))\| 2 + \gamma 2(t)

2
\| (I  - R) \cdot y(t)\| 2 +

\eta 2g(t)

2\gamma 2(t)
\| (I  - R) \cdot (y(t) - y(tg))\| 2

+
L2\eta 2\ell (t)

2min\{ N\gamma 1(t), \gamma 2(t)\} 

\Bigl( 
\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2

\Bigr) 
,

(A.17)

where in (i) we apply property P2 and (2.1) to the third term, such that \| (I  - R) \cdot 
(ug(t) - \^ug(t))\| 2 = \| (I  - R) \cdot WA(y(t) - y(tg))\| 2 \leq \| (I  - R) \cdot (y(t) - y(tg))\| 2, and we
have used property P3 to the last term. The key is to bound the last three terms of
(A.17). We divide it into three steps.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

11
/1

2/
23

 to
 1

34
.8

4.
0.

1 
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.si
am

.o
rg

/te
rm

s-
pr

iv
ac

y



678 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

Step 1. We bound the third term involving \| (I - R) \cdot (y(t) - y(tg))\| 2. With (A.2),
we have \| (I  - R) \cdot (y(t) - y(tg))\| 2 \leq \| y(t) - y(tg)\| 2; then we bound the RHS by

\| y(t) - y(tg)\| 2
(i)
=

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| (I  - R) \cdot 
\int t

\tau g

\eta g(s)\^ug(s)ds+

\int t

tg

\eta \ell (s)\^u\ell ,y(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(ii)

\leq 2\tau 2g \eta 
2
g(t)\| \^ug(t)\| 2 + 2

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\int t

tg

\eta \ell (s)\^u\ell ,y(s)ds

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
2

(iii)

\leq 4\tau 2g \eta 
2
g(t)

\Bigl( 
\| \^ug(t) - ug(t)\| 2 + \| ug(t)\| 2

\Bigr) 
+ 2\tau 2\ell 

t\ell \sum 
\tau =tg

\eta 2\ell (\tau )\| \^u\ell ,y(\tau )\| 2

(iv)

\leq 4\tau 2g \eta 
2
g(t)

\Bigl( 
\| y(t) - y(tg)\| 2 + \| (I  - R) \cdot y(t)\| 2

\Bigr) 
+ 2\tau 2\ell 

t\ell \sum 
\tau =tg

\eta 2\ell (\tau )\| \^u\ell ,y(\tau )\| 2

(v)

\leq 
4\tau 2g \eta 

2
g(t)

1 - 4\tau 2g \eta 
2
g(t)

\| (I  - R) \cdot y(t)\| 2 + 2\tau 2\ell 
1 - 4\tau 2g \eta 

2
g(t)

t\ell \sum 
\tau =tg

\eta 2\ell (\tau )\| \^u\ell ,y(\tau )\| 2 ,(A.18)

where (i) uses the first relation in (A.16), and R \cdot \^ug(t) = 0 (see property P1); in (ii)
we apply Cauchy--Schwarz inequality and use the fact that t - t\ell \leq \tau g and \^ug(s), \eta g(s)
remain constants in the integration; in (iii) we add and subtract ug(t) in the first term
and applied Cauchy--Schwarz inequality, and (A.2); in (iv) we apply property P2 to the
first term and get \^ug(t) - ug(t) =Gg(y(t) - y(tg);A), and apply the second inequality
in (2.1), and the last inequality in (A.2); (v) holds because we moved \| y(t) - y(tg)\| 2
to the left and divide both sides by 1  - 4\tau 2g \eta 

2
g(t), and choose \tau g < 1

2\eta g(t)
such that

4\tau 2g \eta 
2
g(t) < 1. To bound the last term of (A.18), we note that following series of

relations:

\| \^u\ell ,y(\tau )\| 2 \leq \| \^u\ell (\tau )\| 2 \leq 2\| \^u\ell (\tau ) - u\ell (\tau )\| 2 + 2\| u\ell (\tau )\| 2(A.19)

(P3)

\leq 2L2 \cdot 
\Bigl( 
\| y(\tau ) - y(t\ell )\| 2 + \| z(\tau ) - z(t\ell )\| 2

\Bigr) 
+ 2\| u\ell (\tau )\| 2

(P4)

\leq 2L2 \cdot 
\Bigl( 
\| y(\tau ) - y(t\ell )\| 2 + \| z(\tau ) - z(t\ell )\| 2

\Bigr) 
+ 2Cf \| \nabla f(x(\tau ))\| 2

\leq 2L2 \cdot 
\Bigl( 
\| y(\tau ) - y(t\ell )\| 2 + \| z(\tau ) - z(t\ell )\| 2

\Bigr) 
+ 4Cf

\Bigl( 
\| \nabla f(x(\tau )) - \nabla f(\=x(\tau ))\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
(A2)

\leq 2L2 \cdot 
\Bigl( 
\| y(\tau ) - y(t\ell )\| 2 + \| z(\tau ) - z(t\ell )\| 2

\Bigr) 
+ 4Cf

\Bigl( 
L2
f \| (I  - R) \cdot x(\tau ))\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
,

where Cf is defined in (A.15). Note that we need to further bound \| y(\tau ) - y(t\ell )\| 2 +
\| z(\tau ) - z(t\ell )\| 2, which is the same as the last two terms in (A.16).

Step 2. We then bound \| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2. By (A.16), we have

\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2
(A.19)
=

\bigm\| \bigm\| \bigm\| \bigm\| \int t

t\ell 

\eta g(s)\^ug(s) + \eta \ell (s) \cdot \^u\ell (s)ds

\bigm\| \bigm\| \bigm\| \bigm\| 2

(A.20)

(i)

\leq 2\tau 2\ell \eta 
2
g(t)\| \^ug(t)\| 2 + 2\tau 2\ell \eta 

2
\ell (t) \cdot \| \^u\ell (t)\| 2

(A.19)

\leq 2\tau 2\ell \eta 
2
g(t)\| \^ug(t)\| 2 + 4L2\tau 2\ell \eta 

2
\ell (t) \cdot 

\Bigl( 
\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2

\Bigr) 
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A MULTIRATE FEEDBACK CONTROL PERSPECTIVE 679

+ 8L2Cf\tau 
2
\ell \eta 

2
\ell (t) \cdot 

\Bigl( 
\| \nabla f(\=x(t))\| 2 +L2

f \| (I  - R) \cdot x(t)\| 2
\Bigr) 

(ii)

\leq 
4\tau 2\ell \eta 

2
g(t)

1 - 4L2\tau 2\ell \eta 
2
\ell (t)

\Bigl( 
\| ug(t) - \^ug(t)\| 2 + \| ug(t)\| 2

\Bigr) 
+

8L2Cf\tau 
2
\ell \eta 

2
\ell (t)

1 - 4L2\tau 2\ell \eta 
2
\ell (t)

\cdot 
\Bigl( 
\| \nabla f(\=x(t))\| 2 +L2

f \| (I  - R) \cdot x(t)\| 2
\Bigr) 

(iii)

\leq 
4\tau 2\ell \eta 

2
g(t)

1 - 4L2\tau 2\ell \eta 
2
\ell (t)

\Bigl( 
\| y(t) - y(tg)\| 2 + \| (I  - R) \cdot y(t)\| 2

\Bigr) 
+

8L2Cf\tau 
2
\ell \eta 

2
\ell (t)

1 - 4L2\tau 2\ell \eta 
2
\ell (t)

\cdot 
\Bigl( 
\| \nabla f(\=x(t))\| 2 +L2

f \| (I  - R) \cdot x(t)\| 2
\Bigr) 
,

where in (i) we apply Cauchy--Schwarz inequality; in (ii) add and subtract ug(t) to
the first term and move \| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2 to the left and divide both
sides by 1 - 4L2\tau 2\ell \eta 

2
\ell (t), and choose \tau \ell <

1
2L\eta \ell (t)

such that 4L2\tau 2\ell \eta 
2
\ell (t)< 1; in (iii) we

apply the second inequality in (2.1), as well as the fact that \| I  - R\| \leq 1.

To proceed, let us define C43 :=
4\tau 2

g\eta 
2
g(t)

1 - 4\tau 2
g\eta 

2
g(t)

, C44 :=
2\tau 2

\ell \eta 
2
\ell (t)

1 - 4\tau 2
g\eta 

2
g(t)

, C45 :=
4\tau 2

\ell \eta 
2
g(t)

1 - 4L2\tau 2
\ell \eta 

2
\ell (t)

,

and C46 :=
8L2Cf\tau 

2
\ell \eta 

2
\ell (t)

1 - 4L2\tau 2
\ell \eta 

2
\ell (t)

. Then by plugging (A.18) into (A.20), we have

\| y(t) - y(t\ell )\| 2 + \| z(t) - z(t\ell )\| 2
(i)

\leq 
\bigl( 
C45 +C43C45 + C46L

2
f

\bigr) 
\cdot \| (I  - R) \cdot y(t)\| 2

(A.21)

+C46 \| \nabla f(\=x(t))\| 2 +QC44C45 \cdot 
t\ell \sum 

\tau =tg

\| \^u\ell ,y(\tau )\| 2

(ii)

\leq 
\bigl( 
C45 +C43C45 +C46L

2
f

\bigr) 
\cdot \| (I  - R) \cdot y(t)\| 2 +C46 \| \nabla f(\=x(t))\| 2

+QC44C45 \cdot 
t\ell \sum 

\tau =tg

(C2
x +C2

v ) \cdot 
\Bigl( 
\| \nabla f(x(\tau )) - \nabla f(\=x(\tau ))\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
(A2)

\leq 
\bigl( 
C45 +C43C45 +C46L

2
f

\bigr) 
\cdot \| (I  - R) \cdot y(t)\| 2 +C46 \| \nabla f(\=x(t))\| 2

+ QC44C45 \cdot 
t\ell \sum 

\tau =tg

(C2
x +C2

v ) \cdot 
\Bigl( 
L2
f \| (I  - R) \cdot x(\tau )\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
,

where in (i) we use the fact that t - tg \leq Q\tau \ell ; in (ii) we first apply property P4 to
the last term, then subtract \nabla f(\=x(\tau )), and finally used Cauchy--Schwartz inequality.
This completes part II of the proof.

Step 3. Finally, we substitute (A.21) into part I (A.19); then to (A.18), we obtain

\| y(t) - y(tg)\| 2
(A.19)

\leq 4CfC44

t\sum 
\tau =tg

\Bigl( 
L2
f \| (I  - R) \cdot x(\tau )\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
+C43 \| (I  - R) \cdot y(t)\| 2 + 2L2C44

t\sum 
\tau =tg

\Bigl( 
\| y(\tau ) - y(t\ell )\| 2 + \| z(\tau ) - z(t\ell )\| 2

\Bigr) 
(A.21)

\leq C43 \| (I  - R) \cdot y(t)\| 2 + 4CfC44

t\sum 
\tau =tg

\Bigl( 
L2
f \| (I  - R) \cdot x(\tau )\| 2 + \| \nabla f(\=x(\tau ))\| 2

\Bigr) 
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680 XINWEI ZHANG, MINGYI HONG, AND NICOLA ELIA

+ 2L2C44

t\sum 
\tau =tg

C46 \| \nabla f(\=x(\tau ))\| 2

+ 2L2C2
44C45 \cdot 

t\sum 
\tau =tg

\tau \sum 
\tau 1=tg

(C2
x +C2

v ) \cdot 
\Bigl( 
L2
f \| (I  - R) \cdot x(\tau 1)\| 2 + \| \nabla f(\=x(\tau 1))\| 2

\Bigr) 
.

Then we substitute (A.18) and (A.21) into (A.17); then to (A.4), we obtain\int t

0

\.\scrE (\tau )d\tau \leq  - 
\int t

0

\Bigl( \gamma 1(\tau )
2

 - C41(\tau )
\Bigr) 
\cdot \| \nabla f(\=x(\tau ))\| 2 d\tau 

 - 
\int t

0

\Bigl( \gamma 2(\tau )
2

 - C42(\tau )
\Bigr) 
\cdot \| (I  - R) \cdot y(\tau )\| 2 d\tau ,

where we have defined

C41 :=
L2\eta 2\ell (\tau ) \cdot 

\Bigl( 
C45 \cdot (1 +L2

fC47 +C45) +C46L
2
f

\Bigr) 
2min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 

+
Cg\eta 

2
g(\tau ) \cdot (C43 +L2

fC47)

2\gamma 2(\tau )
,

C42 :=
L2\eta 2\ell (\tau ) \cdot (C46 +C45C47)

2min\{ N\gamma 1(\tau ), \gamma 2(\tau )\} 
+

Cg\eta 
2
g(\tau )C47

2\gamma 2(\tau )
and C47 :=Q2C2

44 \cdot (C2
x +C2

v ).

Appendix B. Distributed algorithms as discretized multirate systems.
In this section, we provide additional discussions on how to map the distributed
algorithms to the discretized multirate systems. First, let us discuss decentralized
algorithms.
DGD [20]. The updates are given by (where c > 0 is the stepsize)

x(k+ 1) =Wx(k) - c\nabla f(x(k)) = x(k) - ((I  - W )x(k) + c) \cdot \nabla f(x(k)).

It uses the discretization case III, with the following continuous-time controllers:

ug,x = (I  - W ) \cdot x, u\ell ,x =\nabla f(x).

DLM [17]. The updates are given by

x(k+ 1) = x(k) - \eta \cdot (\nabla f(x(k)) + c \cdot (I  - W ) \cdot x(k) + v(k)) ,

v(k+ 1) = v(k) + c \cdot (I  - W ) \cdot x(k+ 1).

It corresponds to case III, with the following continuous-time controllers:

ug,x = c \cdot (I  - W ) \cdot x+ v, ug,v = (I  - W ) \cdot x, u\ell ,x =\nabla f(x), u\ell ,v = 0.

Next, we discuss some popular FL algorithms. For this class of algorithms, the
agents are connected with a central server which performs averaging. The correspond-
ing communication graph is a fully connected graph, with the weight matrix being
the averaging matrix, i.e., W =R,WA = I  - R.
FedProx [14]. The updates are given by (where GD is used to solve local problems):

x(k+ 1) =

\Biggl\{ 
x(k) - \eta 1\nabla f(x(k)) - \eta 2(x(k) - x(k0)), kmodQ \not = 0, k0 = k - (kmodQ),

Rx(k) - \eta 1\nabla f(x(k)) - \eta 2 \cdot (x(k) - x(k0)), kmodQ= 0.

It uses the discretization case I, with the following continuous-time controllers:

ug,x = (I  - R) \cdot x, u\ell ,x =\nabla f(x).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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FedPD [36]. The updates are given by (where GD is used to solve local problems):

x(k+ 1) = x(k) - \eta 1 \cdot (\nabla f(x(k)) + v(k) + \eta 2 \cdot (x(k0) - Rx(k0))), k0 = k - (kmodQ),

w(k+ 1) =

\Biggl\{ 
Rx(k), kmodQ= 0,

w(k), kmodQ \not = 0,

v(k+ 1) =

\Biggl\{ 
v(k) + 1

\eta 2
\cdot (x(k) - w(k)), kmodQ= 0,

v(k), kmodQ \not = 0.

It uses the discretization cases I or IV. Observe that w tracks Rx. Replace w with
Rx, we can obtain the following controller:

ug,x = (I  - R) \cdot x+ v, ug,v = - (I  - R) \cdot x, u\ell ,x =\nabla f(x), u\ell ,v = 0.

Finally, we discuss one more rate optimal algorithm.
D-GPDA [27]. The update step of the Distributed Gradient Primal-Dual Algorithm
(D-GPDA) is given by

x(k+ 1) = argminx
\bigl\langle 
\nabla f(x(k)) +ATv(k),x - x(k)

\bigr\rangle 
+

1

2
\| \eta 1Ax\| 2 + \| \eta 1 | A| \cdot (x - x(k))\| 2 + \| \eta 2 \cdot (x - x(k))\| 2

v(k+ 1) = v(k) + \eta 21Ax(k+ 1),

where v is the dual variable for the linear consensus constraint. By assuming the
minimization is solved with gradient flow or K-step gradient descent, this algorithm
is using the discretization case II, with the following continuous-time controllers:

ug,x = \eta 1Wx+ \eta 2 \cdot (x - v2) - \eta 1
\bigm| \bigm| ATA

\bigm| \bigm| v2 +ATv1, ug,v = [ - \eta 21Ax; 0],

u\ell ,x =\nabla f(x), u\ell ,v = [0;  - (x - v2)].
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