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Let I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be a zero dimensional radical 
ideal defined by polynomials given with exact rational coefficients. 
Assume that we are given approximations {z1, . . . , zk} ⊂ Cn for 
the common roots {ξ1, . . . , ξk} = V (I) ⊆ Cn . In this paper we 
show how to construct and certify the rational entries of Hermite 
matrices for I from the approximate roots {z1, . . . , zk}. When I
is non-radical, we give methods to construct and certify Hermite 
matrices for 

√
I from the approximate roots. Furthermore, we use 

signatures of these Hermite matrices to give rational certificates 
of non-negativity of a given polynomial over a (possibly positive 
dimensional) real variety, as well as certificates that there is a real 
root within an ε distance from a given point z ∈ Qn .

 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The development of numerical and symbolic techniques to solve systems of polynomial equations 
resulted in an explosion of applicability, both in terms of the size of the systems efficiently solvable 
and the reliability of the output. Nonetheless, many of the results produced by numerical methods are 
not certified. When we want to certify the output, we always have to do some symbolic computations. 
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Either we use purely symbolic algorithms, or we perform symbolic-numeric hybrid computations with 
enough precision so that we are able to identify zero.

In this paper, we show how to compute exact Hermite matrices from approximate roots of poly-
nomials and how to certify that these Hermite matrices are correct.

Hermite matrices and Hermite bilinear forms were introduced by Hermite (1850) for univariate 
polynomials and were extended to the multivariate zero-dimensional setting in Basu et al. (2006); 
Stickelberger (1890). Hermite matrices have many applications, including counting real roots Basu 
et al. (2006); Hermite (1853, 1856) and locating them Ayyildiz Akoglu (2016). Assume that we are 
given the ideal I := 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] generated by rational polynomials and assume that 
dimQ Q[x1, . . . , xn]/I = k < ∞. Hermite matrices have two kinds of definitions (see the precise for-
mulation in Section 2.1):

1. The first definition uses symmetric functions of the k common roots of I , counted with multi-

plicity (see Definition 2.1). The advantage of this definition is that it gives a very efficient way to 
evaluate the entries of the Hermite matrix, assuming that we know the common roots of I ex-

actly. The disadvantage is that we need to compute the common roots exactly, which may involve 
working in field extensions of Q.

2. The second definition of Hermite matrices uses the traces of k2 multiplication matrices (see Defi-
nition 2.3), each of them of size k ×k. The advantage of this definition is that it can be computed 
exactly, working with rational numbers only. The disadvantage is that it requires the computation 
of the traces of k2 multiplication matrices.

In this paper we propose to use the second definition to compute Hermite matrices, but instead 
of using exact roots, we use approximate roots that can be computed with numerical methods effi-

ciently Bates et al. (2013). Once we obtain an approximate Hermite matrix, we use rational number 
reconstruction to construct a matrix with rational entries of bounded denominators. Finally, we give a 
symbolic method which certifies that the rational Hermite matrix we computed is in fact the correct 
one, corresponding to the exact roots of I .

The novelty of this work and the difficulty of this problem is to certify the correctness of the 
Hermite matrix that we computed with the above heuristic approach. This part of the algorithm is 
purely symbolic. The main idea is that we use the relationship between multiplication matrices and 
Hermite matrices to compute a system of multiplication matrices using Hermite matrices and vice 
versa. As multiplication matrices, which are also rational matrices, act as roots of the polynomial 
system, we can certify their correctness, which in turn gives us a method to certify Hermite matrices.

Note that both of the above definitions of Hermite matrices are continuous (entry-wise maps are 
continuous) in the presence of root multiplicities. However our use of approximate roots and mul-

tiplication matrices necessitate that we first consider the case where I is radical. To handle the 
non-radical case, we use the fact that the maximal non-singular submatrix of the Hermite matrix 
of I gives the Hermite matrix of 

√
I , so this is what we compute and certify. In both the radical 

and non-radical cases we were able to give sufficient conditions in terms of the quality of the root 
approximations and the size of the rational numbers in the Hermite matrices that guarantee that our 
Hermite matrix construction and certification algorithms do not fail.

Another contribution of this paper is the presentation of two novel applications using the signature 
of the certified Hermite matrices:

The first application is to give a rational certificate that a polynomial g ∈ Q[x1, . . . , xn] is non-
negative over a smooth real variety V ( f1, . . . , fs) ∩ Rn where f1, . . . , fs ∈ Q[x1, . . . , xn]. This appli-
cation was inspired by Cifuentes and Parrilo (2017) where the authors give a method to compute a 
degree d sum of squares (SOS) decomposition (if one exists) for a non-negative polynomial over a 
real algebraic set using a finite set of sample points from the (complex) algebraic set. While the SOS 
decomposition constructed in Cifuentes and Parrilo (2017) is approximate, the construction we give 
here is exact, using Hermite matrices with rational entries.

The second application is to give a rational certificate that for a given point z ∈ Qn , ε ∈ Q+ and 
I := 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] zero dimensional, there exists ξ ∈ V ( f1, . . . , fm) ∩ Rn such that
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‖z − ξ‖22 ≤ ε.

A natural question arises about the advantage of this hybrid symbolic–numeric approach over 
purely symbolic methods to compute Hermite matrices. The answer to this question is not black and 
white, it depends on the situation. For example, one could use a purely symbolic method computing a 
Gröbner bases, and then computing a system of multiplication matrices of the input polynomials and 
then the traces of certain multiplication matrices give the entries of Hermite matrices symbolically 
(just as in the first definition above). Instead, in this study, we use a symbolic-numeric approach. 
We assume that we have an efficient and parallelizable numerical method that can compute high 
precision approximations to all common complex roots for square subsystems of f , i.e. for n random 
linear combinations of f1, . . . , fm . From these approximate roots we select in a certified manner a 
subset z1, . . . , zk ∈ Cn (given with floating point numbers as coordinates) that are approximations of 
the solutions of f ∈ Q[x1, . . . , xn]m . The worst case bit complexity for both the purely symbolic and 
the hybrid methods are similar Hashemi and Lazard (2005) (asymptotically bounded by Dn where D
is the maximum of the degrees of the input polynomials). In Bardet et al. (2004, 2005) the authors 
give some evidence that Gröbner basis techniques for highly overdetermined systems (m >> n) can 
be highly efficient. The underlying idea behind this is that if one is given many polynomials already, 
there is only a little more work needed to generate a Gröbner basis. On the other hand, for systems 
that are square or close to square, the limited accuracy and parallelizability of the numerical approach 
allows us to handle larger polynomial systems in practice than with purely symbolic approaches. In 
Bates et al. (2014) they compare the two different approaches to compute and represent the solutions 
of polynomial systems: numerical homotopy continuation and symbolic computation.3

This paper is a generalization of our paper Ayyildiz Akoglu and Szanto (2020), where we consid-
ered only the univariate radical case.

The paper is organized as follows. In the next section we introduce some preliminaries with fun-
damental definitions such as the Hermite matrices, rational number reconstruction and numerical 
computation of roots of overdetermined polynomial systems. In Section 3, we explain how one can 
construct the exact Hermite matrix using the approximate solutions of the given polynomial system. 
In Section 4 we give an algorithm to certify that the obtained Hermite matrix is the exact one cor-
responding to our input polynomials. So far we assume that the ideal I is radical. In Section 5 we 
generalize the Hermite matrix computation and certification algorithm to the case when I is not rad-
ical. In Section 6 we present the application of Hermite matrices to give a rational certificate that a 
given rational polynomial is non-negative over a real algebraic variety defined by rational polynomi-

als. Finally, in Section 7 we give another application that is a rational certificate for the existence of 
an exact common root of a zero-dimensional ideal within ε distance from a given point in Qn .

2. Preliminaries

2.1. Hermite matrices

In this section we give two definitions for the Hermite matrix of a zero-dimensional ideal. The first 
one defines the matrix from the common roots of the ideal, and in fact can be used to define Hermite 
matrices from any set of points. The second definition uses the traces of multiplication matrices of 
the factor ring of the ideal, and thus it gives a definition where the entries of the Hermite matrices 
are rational functions of the coefficients of the polynomial system.

Everything in this section is valid for polynomials over R, so while in the rest of the pa-
per we assume that our input polynomials are rational, in this section we present the prelim-

inaries over R. We use the following notation. Let f = ( f1, . . . , fm) ∈ R[x1, . . . , xn]m with I =
〈 f1, . . . , fm〉 ⊂ R[x1, . . . , xn] a zero-dimensional ideal and B = {xα1 , . . . , xαk } be a monomial basis for 
R[x1, . . . , xn]/I .

3 We thank Jonathan Hauenstein for pointing out to us the subtleties of using symbolic vs. numeric methods for solving 
polynomial systems.
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Let ξ1, ξ2, . . . , ξk ∈ Cn be the common roots of I , here each root listed as many times as their 
multiplicity. If I is radical (which we assume in most of the later sections), each root is distinct. We 
denote by z1, . . . , zk ∈ Cn approximations to the exact roots ξ1, ξ2, . . . , ξk .

The first definition of Hermite matrices is given for any multiset of points in Cn as follows:

Definition 2.1. Let g ∈ R[x1, . . . , xn] and B = {xα1 , . . . , xαk } be a set of monomials in R[x1, . . . , xn]. Let 
z1, z2, . . . , zk ∈ Cn be points, not necessary distinct. Then the Hermite matrix of z1, z2, . . . , zk with 
respect to g , written in the basis B is

HB

g (z1, z2, . . . , zk) := V T GV (1)

where

V := VB(z1, z2, . . . , zk) = [zα j

i
]i, j=1,...,k

is the multivariate Vandermonde matrix of z1, z2, . . . , zk ∈ Cn with respect to a monomial set B and 
G is a k × k diagonal matrix with [G]i,i = g(zi) for i = 1, . . . , k. We may omit B from the notation if 
it is clear from the context.

Example 2.2. When B = {1, x1, . . . , xk−1
1 } and g = g(x1) are also univariate, then the Hermite ma-

trices are the same as the univariate Hermite matrices Ayyildiz Akoglu and Szanto (2020). If zl =
(zl,1, . . . , zl,n) ∈ Cn for l = 1, . . . , k then the entries of the k × k univariate Hermite matrices are de-
fined by

[HB

g (z1, . . . , zk)]i, j =
k

∑

l=1

g(zl,1)z
i+ j−2
l,1

.

In particular, for g(x) = 1, if z1,1, . . . , zk,1 all distinct, the entries of the Hermite matrix are the power 
sum elementary symmetric functions of the first coordinates:

[HB

1 (z1, . . . , zk)]i, j =
k

∑

l=1

z
i+ j−2
l,1

. (2)

The second definition of Hermite matrices implies that the entries of the Hermite matrix are ra-
tional functions of the coefficients of the defining polynomials of I .

Definition 2.3. Let I ⊂ R[x1, . . . , xn] be a zero dimensional ideal and denote A := R[x1, . . . , xn]/I , a 
finite dimensional vectors space over R with k := dimR A. For any f ∈ A let µ f : A → A, p + I 
→
p · f + I be the multiplication map by f on A. Fix a monomial basis B = {xα1 , . . . , xαk } of A, and 
denote by MB

f
the k × k matrix of µ f in the basis B. The Hermite matrix of I with respect to g , 

written in the basis B is

HB

g (I) =
[

Tr(µ
g·xαi+α j )

]k

i, j=1
=

[

Tr(MB

g·xαi+α j
)
]k

i, j=1
,

where Tr(·) denotes both the trace of a linear transformation and the trace of a matrix (note that 
the trace of a linear transformation is the trace of its matrix in any basis). We may omit B from the 
notation when it is clear from the context.

The next theorem asserts that the two definitions give the same matrix if we take the exact com-

mon roots of a zero dimensional polynomial system.
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Theorem 2.4 (Basu et al. (2006)). Let I ⊂ R[x1, . . . , xn] be a zero dimensional ideal and g ∈ R[x1, . . . , xn]. 
Let k := dimR[x1, . . . , xn]/I and B = {xα1 , . . . , xαk } be a monomial basis for R[x1, . . . , xn]/I . Let 
ξ1, . . . , ξk ∈ Cn be the roots of I , each root listed as many times as their multiplicity. Then

HB

g (ξ1, . . . , ξk) = HB

g (I).

Remark 2.5. Note that if f1, . . . , fm, g ∈ Q[x1, . . . , xn] then for I = 〈 f1, . . . , fm〉 we have H g(I) ∈
Qk×k , thus H g(ξ1, . . . , ξk) ∈ Qk×k , even if the roots are not rational.

Next we present the classical Hermite theorem that uses the signature of Hermite matrices to 
count real roots of a real polynomial system. First we define the signature of a matrix.

Definition 2.6. Let A be a real and symmetric matrix. Then the signature of A is

σ (A) := #{positive eigenvalues ofA} − #{negative eigenvalues ofA}

Definition 2.3 implies that Hermite Matrices of real polynomial ideals are real and symmetric. The 
classical univariate Hermite Theorem Hermite (1856) was generalized to the multivariate case by 
Pedersen, Roy and Szpirglas Pedersen et al. (1993), and was also proved in Basu et al. (2006) and Cox 
et al. (2006):

Theorem 2.7 (Multivariate Hermite Theorem). Let I ⊂ R[x1, . . . , xn] be zero dimensional and B be a mono-

mial basis of R[x1, . . . , xn]/I . If H g(I) is the Hermite matrix of I with respect to g in the basis B, then

σ (H g(I)) = #{x ∈ VR(I) | g(x) > 0} − #{x ∈ VR(I) | g(x) < 0}.

Remark 2.8. There are several ways to obtain the signature of a k × k real and symmetric matrix 
M without computing the eigenvalues explicitly. We will describe two of these methods here. Note 
that if M is a rational symmetric matrix, then both of these methods can be computed with exact 
arithmetic over the rationals.

1. Using Descartes rule of signs: Let p(x) be the characteristic polynomial of the given k × k real and 
symmetric matrix. Since all eigenvalues of real symmetric matrices are real their characteristic 
polynomials have only real roots. Then the Descartes Rule of Signs provides that σ (M) is the 
difference between the number of sign variation of the coefficients of p(x) and the number of 
sign variations of the coefficients of p(−x) (see Proposition 8.4 in Basu et al. (2006)).

2. Using LU decomposition: The LU decomposition of real symmetric matrices can be written as LDLT

where L is a special lower triangular matrix with 1’s on the diagonal entries and D is a diagonal 
matrix with the entries {u11, . . . , ukk}. These entries are the diagonal entries of the upper trian-
gular matrix U obtained from the LU decomposition. By Sylvester Law of inertia, the signature of 
M is the difference between #{uii : uii > 0} and #{uii : uii < 0}. The cost of this computation 
only comes from the LU decomposition which can be found via Gaussian Elimination.

We close this subsection with some definitions that will be used later in this paper. First, in our 
certification algorithm we need the following property of B (see Mourrain (1999)):

Definition 2.9. Let B ⊂ R[x1, . . . , xn]. We say that B (or spanR(B)) is connected to 1 if for all b ∈
spanR(B) there exists b1, . . . , bn ∈ B such that

b =
n

∑

i=1

xibi

and deg(bi) < deg(b) for i = 1, . . . , n.
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Definition 2.10. B ⊂ R[x1, . . . , xn] be a finite set of monomials. The extension of B is defined by

B
+ := B ∪

n
⋃

i=1

xiB = {b, x1b, . . . , xnb | b ∈ B} . (3)

Definition 2.11. Let B be a finite set of monomials and assume that |B+| = l. The extended Hermite 
matrix associated to points z1, . . . , zk ∈ Cn (not necessarily distinct) is

H+
g := HB

+
g (z1, . . . , zk) := (V+)T GV+ ∈ Cl×l (4)

where V+ = VB+(z1, . . . , zk) ∈ Ck×l and G is the k × k diagonal matrix with [G] j, j = g(z j) for j =
1, . . . , k.

Remark 2.12. Let I ⊂ R[x1, . . . , xn] be zero dimensional and B be a monomial basis of R[x1, . . . , xn]/I
with dimR[x1, . . . , xn]/I = k. The computation of B does not require using Grobner Basis since we 
work on zero dimensional ideals. One may use the set of the standard monomials, i.e., the monomials 
“under the staircase” (see Section 11 in Basu et al. (2006)). If one assumes that all of the i-th coordi-
nates of the solutions are distinct, then B = {1, xi, . . . , xk−1

i
} can be also used (see Section 4.4 in Basu 

et al. (2006)). Example 2.2 and Remark 4.3 illustrate some important advantages and reasons of using 
this choice.

Even though we use the same notation as the monomial basis, Hermite matrices can be defined 
on any monomial set B using the Definition 2.1. However, in the second definition and most of this 
study (indicated otherwise) we assume that B is a monomial basis.

2.2. Rational number reconstruction

The continued fraction method for a real number α > 0 can be described as the computation of

α = γ1 = ⌊γ1⌋ +
1

γ2
= ⌊γ1⌋ +

1

⌊γ2⌋ + 1
γ3

= · · ·

where γ1 = α and γi+1 = 1
γi−⌊γi⌋ . We call the rational numbers

⌊γ1⌋, ⌊γ1⌋ +
1

⌊γ2⌋
, ⌊γ1⌋ +

1

⌊γ2⌋ + 1
⌊γ3⌋

, . . .

the convergents for α. The following theorem (cf. (Schrijver, 1998, Corollary 6.3a)) gives bounds on 
the distance from α that guarantees uniqueness of a rational number with bounded denominator, 
and shows that if such rational number exists, it is a convergent for α.

Theorem 2.13. Schrijver (1998) There exists a polynomial time algorithm which, for a given rational number 
α and a natural number B tests if there exists a pair of integers (p, q) with 1 ≤ q ≤ B and

∣

∣

∣

∣

α −
p

q

∣

∣

∣

∣

<
1

2B2
,

and if so, finds this unique rational number p
q
as a convergent for α.

Approximate solutions are floating point numbers which are obtained from numerical computa-

tions. Using an absolute error bound E > 0 on numerical computations, we can set a denominator 
bound B such that Theorem 2.13 provides the unique rational approximation of α as follows:

Corollary 2.14. Given α ∈ R and E > 0 in R there is at most one rational number with its denominator 
bounded by B :=

⌈

(2E)−1/2
⌉

within the distance E from α.
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2.3. Numerical certification of non-roots of overdetermined systems

In this subsection, we summarize some numerical methods from the literature to compute ap-
proximations of a superset of the common roots of an overdetermined polynomial systems. Let 
f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m where m > n, we describe a method to certify that a given point z
is not an approximate root of f . Assume that I = 〈 f1, . . . , fm〉 is radical and zero dimensional, the dif-
ficulty lies in the fact that numerical methods, such as the homotopy continuation method Bates et al. 
(2013), are designed to compute the common roots of square, well-conditioned polynomial systems. 
Here we describe the approach presented in Hauenstein and Sottile (2012) to handle overdetermined 
systems.

The main idea is the following. Even though the consistency of an overdetermined system is a 
non-continuous property, the converse, inconsistency of an overdetermined system is a continuous 
property that can be certified with numerical methods. Similarly, while certifying that a point is 
approximating an exact root of an overdetermined system with exact rational coefficients cannot be 
certified with purely numerical methods, certifying that a point is not an approximate root can be 
done numerically. This allows us to eliminate roots of a square subsystem of f that are not roots of 
all f i ’s for i = 1, . . . , m, and to give a certified upper bound k on the number of common roots of 
f . With this upper bound, we can guarantee that our certification algorithm of Hermite matrices in 
Section 4 is correct when it gives a certification (although it may also return “fail”).

More precisely, Hauenstein and Sottile (2012) suggests to consider two square subsystems which 
are random linear combinations of the polynomials f1, . . . , fm . If R1, R2 : Cm → Cn are two linear 
maps (represented by two random matrices), then for R1( f ) := R1 ◦ f and R2( f ) := R2 ◦ f , we can 
assume that

V ( f ) = V (R1( f )) ∩ V (R2( f )).

This property is satisfied unless R1 and R2 are from Zariski closed subsets of all linear transforma-

tions. Similarly, for i = 1, 2, we can assume that the roots of V (R i( f )) are finite and all distinct, this 
property is also satisfied unless R i is from a Zariski closed subset of all linear transformations (cf.
(Hauenstein and Sottile, 2012, Section 3)). Using numerical homotopy continuation methods and α-

theory, one can compute and certify all approximate roots of both R1( f ) and R2( f ), see details on 
this part of the algorithm in (Hauenstein and Sottile, 2012, Section 2).

The following idea is a slight modification of (Hauenstein and Sottile, 2012, Section 3) which allows 
us to discard approximate roots of R1( f ) and R2( f ) that do not approximate the exact roots in V ( f ). 
First note that for any approximate root z approximating an exact root ξ ∈ V (R i( f )) for i = 1, 2, we 
can give upper bounds for ‖z − ξ‖. This bound is defined to be two times the β function in α-theory 
(cf. (Blum et al., 1998, Ch 8, Theorem 2)), even without knowing the exact root. Let Ṽ (R i( f )) (for 
i = 1, 2) denote the set of pairs (z, ε) ∈ Cn × R+ , where z is one of the approximate roots computed 
for R i( f ) and ε is an upper bound of the distance of z from the exact root it approximates. Fix 
(z, ε) ∈ Ṽ (R1( f )) and define

S(z,ε) :=
{

(z′,ε′) ∈ Ṽ (R2( f )) : ‖z − z′‖ ≤ ε + ε′
}

.

If |S(z,ε)| > 1 then we need to refine z and all z′ such that (z′, ε′) ∈ S(z,ε) using Newton’s method 
w.r.t R1( f ) and R2( f ) respectively, until one gets S(z,ε) = ∅ or |S(z,ε)| = 1. If Sz = ∅ then we can 
discard (z, ε) since it cannot approximate an exact root in V ( f ) = V (R1( f )) ∩ V (R2( f )). If Sz has one 
element (z′, ε′), suppose z approximates an exact root ξ ∈ V (R1( f )), z′ approximates an exact root 
ξ ′ ∈ V (R2( f )) but ξ �= ξ ′ . Then we can compute refinements zk and z′

k
using k iterations of Newton’s 

method starting from z and z′ w.r.t R1( f ) and R2( f ) respectively, such that

‖zk − z′k‖ > εk + ε′
k, (5)

where εk ≤ 1

22
k−1

ε is a bound on ‖zk − ξ‖, and ε′
k
is a bound for ‖z′

k
− ξ ′‖. If we find a k such that the 

inequality (5) is satisfied then we discard (z, ε), otherwise we keep it. We repeat the above procedure 
for all elements in Ṽ (R1( f )) ∪ Ṽ (R2( f )).
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Note that the above method never eliminates points that are approximating roots in V ( f ), but 
may leave in points that are not near V ( f ). Thus, as a consequence, we can always guarantee that 
the input z1, . . . , zk for Algorithm 3.1 below, to compute an approximate Hermite matrix, is a su-
perset of an approximation of V ( f ), and in particular the above method gives a certification that 
k ≥ dimQ[x1, . . . , xn]/I . On the other hand, our main symbolic-numeric certification Algorithm 4.1

for Hermite matrices will always fail when there are superfluous points among the input. Thus, us-
ing the assumption k ≥ dimQ[x1, . . . , xn]/I , the Hermite matrices that we certify successfully will 
correspond to all roots of V ( f ) (see Theorem 4.2).

In the rest of the paper we assume that we already computed a set {z1, . . . , zk} ⊂ Cn that contains 
an approximate root for each root in V ( f ), i.e. if V ( f ) = {ξ1, . . . , ξk′ } then k′ ≤ k and for i = 1, . . . , k′

there exists ji ∈ {1, . . . , k} such that the Newton iteration starting from z ji quadratically converges to 
ξi . Moreover, using the β function from α-theory as above, we assume that we have a certified bound 
E ∈ R+ that we call accuracy, such that

∥

∥ξi − z ji

∥

∥

2
≤ E i = 1, . . . ,k′. (6)

3. Constructing rational Hermite matrices

In this section we construct a rational matrix H+
1 ∈ Ql×l from points z1, . . . , zk given with limited 

precision, using the definition of Hermite matrices in Definition 2.11 and rational number reconstruc-
tion.

Let z1, . . . , zk ∈ Cn with zi = (zi,1, . . . , zi,n) for i = 1, . . . , k. Let B = {xα1 , . . . , xαk } be basis for 
R[x1, . . . , xn]/I(z1, . . . , zk), and we use B+ as described in (3). Algorithm 3.1 below computes the 
matrix H+

1 from the Hermite matrix HB+
1 (z1, z2, . . . , zk) with respect to B+ by applying rational 

number reconstruction.
As part of the input of Algorithm 3.1, we also use quantities E, M ∈ R+ , where E is an upper 

bound for the accuracy of each zi for i = 1, . . . , k and M is an upper bound for the absolute values 
of the coordinates of the exact common roots of I . We assume that E is computed as part of the 
numerical method computing z1, . . . , zk , as described in Section 2.3. In this section we use E and 
M to estimate the denominator in the rational number reconstruction for each entry of H+

1 using 
Proposition 3.2 below. Moreover, note that ‖zi‖∞ ≤ M + E for i = 1, . . . , k since the coordinates of the 
exact roots are bounded by M and each zi cannot be larger than M + E .

Algorithm 3.1 (Hermite Matrix Computation).

Input: B = {xα1 , . . . , xαk } and B+ as in (3) with |B+| = l for k, l ∈ N .

E, M ∈ R+ and z1, . . . , zk ∈ Cn such that ‖zi‖∞ ≤ M + E for i = 1, . . . , k and E is as in (6).
Output: H+

1 ∈ Ql×l with rows and columns indexed by the elements of B+ .

1: Compute the extended Hermite matrix HB+
1 (z1, z2, . . . , zk) using Definition 2.11 with respect 

to the auxiliary function g = 1 and the monomials in B+ .

2: Rationalize each entry of the approximate Hermite matrix HB+
1 (z1, z2, . . . , zk) using ratio-

nal number reconstruction as explained in Subsection 2.2. For the (i, j)-th entry of the 
HB+

1 (z1, z2, . . . , zk), we use the following denominator bound:

B i j :=
⌈

(2Ekndi, jM
di, j−1)−1/2

⌉

, (7)

where di, j = degbi + degb j and bi and b j are the i-th and j-th elements of B+ respectively, 
for 1 ≤ i, j ≤ l. (See Proposition 3.2 below for obtaining this bound.) Return the resulting 
rational matrix.

We need the following proposition to get the bounds in (7) for the denominators of the entries of 
the Hermite matrix.
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Proposition 3.2. Assume I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] is a zero dimensional radical ideal with V (I) =
{ξ1, . . . , ξk} ⊂ Cn . Suppose E > 0 and z1, . . . , zk ∈ Cn are such that

‖ξi − zi‖2 < E.

Let M > 0 such that for all i = 1, . . . , k and y ∈ Ball(zi, E) = {x ∈ Cn : ‖x − zi‖2 < E}

‖y‖∞ ≤ M.

Let α ∈ Nn with d := |α|. Then we have

∣

∣

∣

∣

∣

k
∑

i=1

ξα
i −

k
∑

i=1

zαi

∣

∣

∣

∣

∣

≤ EkndMd−1. (8)

Furthermore, there is at most one rational number within EkndMd−1 distance from 
∑k

i=1 z
α
i
with denominator 

bounded by

B :=
⌈

(2EkndMd−1)−1/2
⌉

.

Proof. Fix α ∈ Nn with d := |α|. First note that 
∑k

i=1 z
α
i

is a polynomial in the nk coordinates of 
z1, . . . , zk of degree d. Using a multivariate version of Taylor’s Theorem Apostol (1969), there exist 
R i, j(z1, . . . , zk) for i = 1, . . . , k and j = 1, . . . , n such that

k
∑

i=1

zαi −
k

∑

i=1

ξα
i =

k
∑

i=1

n
∑

j=1

R i, j(z1, . . . , zk)(zi, j − ξi, j).

Moreover,

|R i, j(z1, . . . , zk)| ≤ max
s,t

max
ys∈Ball(zs,E)

∣

∣

∣

∣

∂zαs

∂zs,t
(ys)

∣

∣

∣

∣

≤ dMd−1.

Thus we get

∣

∣

∣

∣

∣

k
∑

i=1

zαi −
k

∑

i=1

ξα
i

∣

∣

∣

∣

∣

≤
n

∑

j=1

k
∑

i=1

dMd−1
∣

∣zi, j − ξi, j
∣

∣ ≤ kndMd−1E.

The second claim is straightforward from Corollary 2.14 using E ′ = EkndMd−1 . �

The next theorem gives sufficient conditions for Algorithm 3.1 to correctly compute the exact 
Hermite matrices H+

1 for I from the approximate points z1, . . . , zk .

Theorem 3.3. Let I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be a zero dimensional radical ideal with B = {xα1 , . . . ,

xαk } a basis for Q[x1, . . . , xn]/I . Denote VC(I) = {ξ1, . . . , ξk} ⊂ Cn . Let E > 0 and z1, . . . , zk ∈ Cn such 
that for each i ∈ {1, . . . , k} there exists a unique ji such that

‖z ji − ξi‖2 < E.

Assume further that ‖zi‖∞ ≤ M + E for all i = 1, . . . , k. Finally, assume that for xα = xix jx
αt xαs for 

i, j = 1, . . .n and t, s = 1, . . . , k, the denominator of 
∑k

j=1 ξα
i ∈ Q is at most ⌈(2Ekn|α|M |α|−1)−1/2⌉. Then 

Algorithm 3.1 computes the exact Hermite matrices HB+
1 (I).
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Proof. Since ‖zi − ξ ji‖2 < E and ‖zi‖∞ ≤ M + E , we have that ‖ξi‖∞ ≤ M , thus the assumptions 
of Proposition 3.2 are satisfied. Therefore, for all α ∈ Nn as in the claim, we have that there is at 
most one rational number within Ekn|α|M |α|−1 distance from 

∑k
i=1 z

α
i with denominators bounded 

by ⌈(2Ek|α|M|α|−1)−1/2⌉. By Proposition 3.2 we can see that 
∑k

i=1 ξα
i

is within that distance from 
∑k

i=1 z
α
i
, and using our assumption on the denominator of 

∑k
i=1 ξα

i
∈ Q, by Theorem 2.13 the rational 

number reconstruction algorithm finds 
∑k

i=1 ξα
i
. Thus, the entries of H+

1 computed by Algorithm 3.1

are the same as the entries of HB+
1 (I) as claimed. �

Remark 3.4. The assumption of Theorem 3.3 that the denominator of 
∑k

j=1 ξα
i

∈ Q is at most 

⌈(2Ekn|α|M|α|−1)−1/2⌉ can be achieved by improving the accuracy E of the approximate roots 
z1, . . . , zk . If we assume that z1, . . . , zk are all approximate roots for a square subsystem of f , we 
can use Newton iterations to quadratically converge to the exact roots, thus decrease E . Meanwhile, 
the other quantities in this bound (k, n, |α|, M) are fixed, so with enough iterations we increase 
⌈(2Ekn|α|M|α|−1)−1/2⌉ to satisfy the condition of the Theorem. One could in theory study the sepa-
ration bounds for how small E has to be to satisfy this condition, (for similar analysis see Emiris et 
al. (2020) and Ayyildiz Akoglu et al. (2018)), but in this paper we let our Hermite matrix certification 
algorithm reject cases when the accuracy of the root approximation is not sufficiently good.

4. Certification of the exact Hermite matrix

Let f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m be a polynomial system with zero dimensional radical ideal 
I = 〈 f1, . . . , fm〉. In the previous section we computed a matrix H+

1 with rows and columns corre-
sponding to B+ , where B = {xα1 , . . . , xαk }. In this section we certify if this matrix is the extended 
Hermite matrix of I and we also compute H g(I) for any polynomial g ∈ Q[x1, . . . , xn], as long as 
k ≥ dimQ[x1, . . . , xn]/I . Here we assume that B is connected to 1 as in Definition 2.9. The following 
algorithm is purely symbolic:

Algorithm 4.1 (Hermite Matrix Certification).

Input: f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m with I = 〈 f1, . . . , fm〉 zero dimensional and radical;
g ∈ Q[x1, . . . , xn],
B = {xα1 , . . . , xαk } connected to 1 with |B+| = l for some k, l ∈ N

H+
1 ∈ Ql×l with rows and columns indexed by the elements of B+ .

Output: The certified H1(I) and H g(I), or Fail.
1: H1 ← k × k submatrix of H+

1 with rows and columns corresponding to B.

H
xs
1 ← k × k submatrix of H+

1 with rows corresponding to B and columns corresponding to 
xsB for s = 1, . . . , n.

2: If rank H1 = rank H+
1 = k, then Ms ← H−1

1 · Hxs
1 for s = 1, . . . , n. else return Fail.

3: For s = 1, . . . , n, i, j = 1, . . . , k
if xsx

αi = xα j and [Ms]i,∗ �= eT
j
then return Fail.

4: Let c1, . . . , cn be either new parameters or generic elements of Q.

p(λ) ← characteristic polynomial to 
∑n

i=1 ciMi .

if gcd(p(λ), p′(λ)) �= 1 return Fail.

5: If

Mi · M j = M j · Mi 1 ≤ i < j ≤ n

and

f i(M1,M2, . . . ,Mn) = 0 for i = 1, . . . ,m,

then we certified that Mi is the transpose of the multiplication matrix of I with respect to 
xi in the basis B for all i = 1, . . . , n.
Else return Fail.
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6: For i, j = 1, . . . , l if

Tr((bi · b j)(M1,M2, . . . ,Mn)) �= [H1]i, j

where bi and b j are the i-th and j-th elements of B respectively, and (bi ·b j)(M1, M2, . . . , Mn)

is the matrix obtained by evaluating the polynomial bi · b j in the matrices M1, M2, . . . , Mn

then return Fail.

Else we certified H1 = H1(I).

7: Return H1 and H g ← H1 · g(M1, . . . , Mn).

We have the following result on the correctness of Algorithm 4.1.

Theorem 4.2. Let f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn] with I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn], g ∈ Q[x1, . . . ,
xn], B = {xα1 , . . . , xαk } connected to 1 with |B+| = l for some k, l ∈ N . Let H+

1 ∈ Ql×l be a matrix with rows 
and columns indexed by the elements of B+. If k ≥ dimQ[x1, . . . , xn]/I and Algorithm 4.1 does not return 
Fail then I is radical, B is a basis for Q[x1, . . . , xn]/I and the output satisfies

H1 = HB

1 (I) and H g = HB

g (I).

Proof. Assume Algorithm 4.1 did not fail, and let M1, . . . , Mn be the matrices computed in Step 2. 
Define the set of polynomials F from the columns of M1, . . . , Mn as follows

F :=
{

x jx
αt −

k
∑

i=1

[M j]i,t xαi : j = 1, . . . ,n, t = 1, . . . ,k

}

.

Let J := 〈F〉 ⊂ Q[x1, . . . , xn]. In (Mourrain, 1999, Theorem 3.1) it is proved that B forms a basis for 
Q[x1, . . . , xn]/ J and F is a border basis for J if the following three conditions are satisfied:

1. the map N : span(B+) → span(B) defined as N(x jx
αt ) :=

∑k
i=1[M j]i,txαi satisfy N |B = Id;

2. the space spanned by B is connected to 1;
3. {M1, . . . , Mn} is a set of pairwise commuting matrices.

The first condition is certified in Step 3, the second is an assumption, and the third is certified in Step 
5. Also by Step 5 we have

f i(M1,M2, . . . ,Mn) = 0 for i = 1, . . . ,m,

thus I ⊂ J . Since dimQ[x1, . . . , xn]/ J = k and dimQ[x1, . . . , xn]/I ≤ k by assumption, we must have 
that I = J and for s = 1, . . . , n, Ms is the transpose of the matrix of the multiplication map

µxs : Q[x1, . . . , xn]/I → Q[x1, . . . , xn]/I, [p] 
→ [xsp],

with respect to the basis B. Step 6 certifies that the entries of H+
1 are correct using Definition 2.3. 

Let p be the characteristic polynomial as in Step 4. Since gcd(p(λ), p′(λ)) �= 1 we have that p has k
distinct roots, so M1, . . . , Mn are simultaneously diagonalizable, and we have for g ∈ Q[x1, . . . , xn]

g(M1, . . . ,Mn) = V−1GV

where V = VB(ξ1, . . . , ξk) is the Vandermonde matrix of the exact roots of V (I) = {ξ1, . . . , ξk} with 
respect to B and G is the diagonal matrix diag(g(ξ1), . . . , g(ξk)). This gives

H1 · g(M1, . . . ,Mn) = (V T V ) · (V−1GV ) = V T GV = H g .

Thus, once H1 and M1, . . . , Mn are certified, we have computed the certified matrix H g(I). �
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Remark 4.3. For B = {1, x1, . . . , xk−1
1 } we can guarantee that

rank(H1) = rank(H+
1 ) = k,

by checking that the difference between the first coordinates of zi and z j is at least 2E for all 
1 ≤ i < j ≤ n. In this case, since we assume that ‖zi −ξ ji‖2 < E , then we must have that the first coor-
dinates of ξ1, . . . , ξk are all distinct. Since H1(I) = V T V where V is the usual univariate Vandermonde 
matrix of these first coordinates of ξ1, . . . , ξk , we get that H1(I) is invertible. Since H+

1 (I) = V T
B+ VB+ , 

and rank(VB+) = k, we have that rank(H1) = rank(H+
1 ) = k. For general B there are no such simple 

conditions, but the SVD of the Vandermonde matrix of z1, . . . , zk with respect to B gives a good in-
dication that B is a basis for both C[x1, . . . , xn]/I(z1, . . . , zk) and C[x1, . . . , xn]/I(ξ1, . . . , ξk). Also for 
B = {1, x1, . . . , xk−1

1 }, Step 3 is simply checking if M1 has a companion matrix structure. In this case, 
in Step 6 we can certify H+

1 using the Newton-Girard formulae (cf. Macdonald (1979)), computing the 
power sum elementary symmetric functions for degrees 1, . . . , 2k from the coefficients of p(x1), and 
constructing the matrix H+

1 according to (2).

5. Extension to the non-radical case

So far in this paper we assumed that the ideal I is radical and zero-dimensional. In this section, 
we describe what we can certify when we drop the assumption of radicality. However for sake of 
simplicity, we continue the radical case assumption after this section.

First note that Definition 2.1 for the Hermite matrix in terms of roots is well defined and con-
tinuous (the computation of the entries is only use continuous maps) even if some of the roots 
are repeated. This is no longer true when we try to define the multiplication matrices from the 
roots. Using a notation similar to the previous section, for B a basis for R[x1, . . . , xn]/I and 
g ∈ Q[x1, . . . , xn], denote by MB

g the transpose of the matrix of multiplication µg : Q[x1, . . . , xn]/I →
Q[x1, . . . , xn]/I, [p] 
→ [gp] in the basis B. While in the case when I is radical we have

MB

g = VB G V −1
B

,

with VB = [b(ξ)]ξ∈V (I),b∈B and G = diag(g(ξ) : ξ ∈ V (I)), MB
g is not diagonalizable when I is not 

radical. In particular, VB(I) and HB
1 (I) are not invertible, so we cannot use them to compute multi-

plication matrices in the certification algorithm as above.
To overcome this difficulty, we notice that while in the non-radical case HB

1 (I) is not invertible, 

its maximal non-singular submatrix is the Hermite matrix HB̄
1 (

√
I) of the radical of I , with respect 

to a subset B̄ ⊂ B that is a basis for R[x1, . . . , xn]/
√
I (cf. Janovitz-Freireich et al. (2007)). Denote by 

H̄1 this maximal non-singular submatrix of HB
1 (I), with rows and columns corresponding to B̄ ⊂ B

and by H̄xi
1 the submatrix of HB+

1 (I) corresponding to rows indexed by B̄ and columns indexed by 
xi · B̄. Then we get the transpose of the matrix of multiplication by xi in Q[x1, . . . , xn]/

√
I w.r.t. the 

basis B̄ by

M̄i := MB̄

xi
= H̄−1

1 · H̄xi
1 i = 1, . . . ,n.

Thus we can use H̄B̄+
1 to compute the multiplication matrices of the radical 

√
I and certify them.

We modify Algorithm 3.1 to output the maximal non-singular submatrix H̄1 of H1 with rows and 
columns corresponding to B̄ ⊂ B, and its extension H̄+

1 to the basis B̄+ .

Algorithm 5.1 (Hermite Matrix Computation - Non Radical Case).

Input: k ∈ N , B = {xα1 , . . . , xαk } connected to 1, E, M ∈ R+ and z1, . . . , zk ∈ Cn such that E is a 
bound on the accuracy of zi and ‖zi‖∞ ≤ M + E for i = 1, . . . , k.
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Output: Fail or k̄ ≤ k ∈ N , B̄ ⊂ B connected to 1, and H̄+
1 ∈ Ql̄×l̄ with rows and columns indexed by 

the elements of B̄+such that

rank H̄1 = rank H̄+
1 = k̄,

where H̄1 is the submatrix of H̄+
1 with rows and columns corresponding to B̄.

1: HB+
1 (z1, z2, . . . , zk) ← Hermite Matrix Computation

(

B,B+, E,M, {z1, . . . , zk}
)

(see Algorithm 3.1). Denote the resulting matrix by H+
1 and its submatrix corresponding to 

rows and columns of B by H1 .

2: Find k̄ maximal and B̄ ⊂ B connected to 1 with |B̄| = k̄ such that the submatrix H̄1 of H1 , 
corresponding to rows and columns in B̄, have the same rank as H1 .

3: If rank(H+
1 ) > k̄ return Fail. Else return H̄+

1 , the submatrix of H+
1 with rows and columns 

corresponding to B̄+ .

Theorem 5.2. Let B = {xα1 , . . . , xαk }, I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] be a zero dimensional ideal 

VC(I) = {ξ1, . . . , ξk̄} ⊂ Cn for some k̄ ∈ N with the multiplicity of ξi denoted by ki , where k :=
∑k̄

i=1 ki =
dimQ[x1, . . . , xn]/I . Let E > 0 and z1, . . . , zk ∈ Cn , not necessarily all distinct. Assume that for each 
i ∈ {1, . . . , ̄k} there exists a multi-subset Z i of the multiset {z1, . . . , zk} such that for z ∈ Z i

‖z − ξi‖2 < E.

Furthermore, assume that the multiset Z i has ki elements, counted with multiplicity, Z i ∩ Z j = ∅ for 1 ≤
i < j ≤ k̄ and k =

∑k̄
i=1 ki . Assume further that ‖zi‖∞ ≤ M + E for all i = 1, . . . , k. Finally, assume that 

for xα = xix jx
αt xαs for i, j = 1, . . .n and t, s = 1, . . . , k, the denominator of 

∑k̄
j=1 kiξ

α
i

∈ Q is at most 

⌈(2Ekn|α|M|α|−1)−1/2⌉. Then Step 1 computes the exact Hermite matrices H+
1 = HB+

1 (I). Moreover, if B̄

defined in Step 2 forms a basis of Q[x1, . . . , xn]/
√
I then rank(H+

1 ) = rank(H̄1) = k̄ and H̄+
1 = HB̄+

1 (
√
I).

Proof. Since ‖zi − ξ ji‖2 < E and ‖zi‖∞ ≤ M + E , we have that ‖ξi‖∞ ≤ M , thus the assumptions 
of Proposition 3.2 are satisfied. Therefore, for all α ∈ Nn as in the claim, we have that there is at 
most one rational number within Ekn|α|M |α|−1 distance from 

∑k
i=1 z

α
i

with denominators bounded 
by ⌈(2Ek|α|M|α|−1)−1/2⌉. We can take a limit argument from k distinct points to the multiset 

{(ξ1, k1), . . . , (ξk̄, kk̄)} and apply Proposition 3.2 to this multiset and get that 
∑k̄

i=1 kiξ
α
i

is within that 

distance from 
∑k

i=1 z
α
i
. Using our assumption on the denominator of 

∑k
i=1 ξα

i
∈ Q, by Theorem 2.13

the rational number reconstruction algorithm finds 
∑k̄

i=1 kiξ
α
i
. Thus, the entries of H+

1 computed by 
Algorithm 3.1 are the same as the entries of H+

1 (I) as claimed.

To prove the last claim, if B̄ forms a basis for Q[x1, . . . , xn]/
√
I then V

B̄
= [b(ξi)]i=1,...,k̄,b∈B̄ is a 

square submatrix of maximal rank of VB+(I) = [b(ξ)]ξ∈V (I),b∈B+ with each roots in V (I) listed 

as many times as their multiplicity. Since H+
1 = HB+

1 (I) = VB+ (I)T VB+(I), and H̄1 = V T

B̄
V
B̄

which 

proves rank(H+
1 ) = rank(H̄1) = k̄ and H̄+

1 = HB̄+
1 (

√
I). �

We can use Algorithm 4.1 unchanged with input f , g , B̄, and H̄+
1 to compute certified Hermite 

matrices H1 and H g for 
√
I . We have the following theorem.

Theorem 5.3. Let f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m , I = 〈 f1, . . . , fm〉 ⊂ Q[x1, . . . , xn] a zero dimensional 
ideal, g ∈ Q[x1, . . . , xn]. Let B connected to 1 with |B| = k and |B+| = l for some k, l ∈ N . Suppose Al-
gorithm 5.1 returns k̄ ≤ k, B̄ connected to 1 with |B̄| = k̄ and H̄+

1 with rows and columns indexed by the 
elements of B̄+ . If k̄ ≥ dimQ[x1, . . . , xn]/

√
I and Algorithm 4.1 with inputs f , g, B̄, and H̄+

1 returns H1 and 
H g then B̄ is a basis for Q[x1, . . . , xn]/

√
I and

H1 = H B̄

1 (
√
I) and H g = H B̄

g (
√
I).
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Proof. Assume Algorithm 5.1 did not fail, and returns k̄ ≤ k, B̄ connected to 1 with |B̄| = k̄ and H̄+
1 . 

Then by Step 3 of Algorithm 5.1 we have rank(H+
1 ) = rank(H̄+

1 ) = rank(H̄1) = k̄ so we can define 
the k̄ × k̄ matrices M1, . . . , Mn in Step 2 of Algorithm 4.1. The same argument as in the proof of 
Theorem 4.2 shows that M1, . . . , Mn forms a system of (transpose) multiplication matrices for an 
ideal J such that dimQ[x1, . . . , xn]/ J = k̄, and M1, . . . , Mn are simultaneously diagonalizable and 
their eigenvalues are the coordinates of the k̄ distinct roots of J . Since f i(M1, . . . , Mn) = 0 for all 
i = 1, . . .m we have that these k̄ distinct roots are also common roots of I . By assumption, k̄ ≥
dimQ[x1, . . . , xn]/

√
I , so I has at most k̄ distinct roots, so we must have k̄ = dimQ[x1, . . . , xn]/

√
I

and B̄ forms a basis Q[x1, . . . , xn]/
√
I . Thus J =

√
I . The rest of the proof is the same as the proof 

of Theorem 4.2 with 
√
I replacing I . �

6. Application: rational certificate of non-negativity over real varieties

As mentioned in the Introduction, the following application was inspired by Cifuentes and Parrilo 
(2017) where the authors give a method to compute a degree d sum of squares (SOS) decomposition 
(if one exists) for a non-negative polynomial over a real algebraic set using a finite set of sample 
points from the (complex) algebraic set. In Cifuentes and Parrilo (2017) they also give bounds on 
the number of sample points needed to decide whether a degree d SOS decomposition exists. Their 
method uses semidefinite programming.

The application we present below also gives a certificate for the non-negativity of a polynomial 
over a real algebraic set, and also uses sample points of the complex algebraic set. However, it does 
not give an SOS decomposition, instead it uses Hermite matrices reconstructed and certified from the 
sample points. While the SOS decomposition constructed in Cifuentes and Parrilo (2017) is approxi-
mate, the construction we give here is exact, using rational numbers.

Consider the following problem:

Problem 6.1. Given f = ( f1, . . . , fs) ∈ Q[x]s and g ∈ Q[x] for x = (x1, . . . , xn). Decide if g(z) ≥ 0 for all 
z ∈ V ( f ) ∩ Rn and give a rational certificate.

We use the following notion of critical points of g in V ( f ) ⊂ Cn:

Definition 6.2. Let f = ( f1, . . . , fs) ∈ Q[x]s and g ∈ Q[x], and assume that I := 〈 f1, . . . , fs〉 is a radi-
cal ideal. z ∈ Cn is a critical point of g in V ( f ) if z ∈ V ( f ), z is non-singular in V ( f ), i.e. the Jacobian 
matrix J f (z) of f has rank c := n − dim V ( f ), and the Jacobian matrix J f (z) augmented with the 
row vector ∇g(z) has also rank c.

We can solve Problem 6.1 using the following assumptions on f = ( f1, . . . , fs) and g:

Assumption 6.3. Let f = ( f1, . . . , fs) ∈ Q[x]s and g ∈ Q[x] for x = (x1, . . . , xn). We assume

1. For all z ∈ V ( f ), the Jacobian matrix J f (z) of f has rank s ≤ n, i.e., f is a regular sequence and 
V ( f ) is smooth.

2. V ( f ) ∩ Rn is bounded,
3. g has finitely many critical points on V ( f ).

We need the following lemma:

Lemma 6.4. Let f ∈ Q[x]s and g ∈ Q[x] satisfying Assumption 6.3. Then, the set of polynomials in 
Q[x1, . . . , xn, λ1, . . . , λs]

L(x, λ) = { f1, . . . , f s} ∪

⎧

⎨

⎩

∂ g

∂xi
+

s
∑

j=1

λ j

∂ f j

∂xi
: i = 1, . . . ,n

⎫

⎬

⎭
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has finitely many roots in Cn+s , and their projections to the x coordinates contain all real points where g
attains its extreme values on each connected component of (V ( f ) \ V (g)) ∩ Rn .

Proof. First we prove that the projection V (L) ⊂ Cn+s onto the x-coordinates are the critical points 
of g in V ( f ). Let (x, λ) ∈ V (L) ⊂ Cn+s . Then clearly x ∈ V ( f ), and because of our first assumption 
and that s ≥ c = n − dim V ( f ) we have that s = c and x is non-singular in V ( f ). By (x, λ) ∈ V (L) we 
also have that J f (x) augmented with ∇g(x) has rank at most c, thus x is a critical point. Conversely, 
let x be a critical point of g on V ( f ). Then f1, . . . , fs vanishes at x, and since both J f (x) and the 
augmented matrix J f (x) by ∇g(x) has rank s, ∇g(x) is in the row space of J f (x), thus there exists 
λ ∈ Cs such that (x, λ) ∈ V (L).

Next we prove that V (L) ⊂ Cn+s is finite. By assumption, g has finitely many critical points in 
V ( f ), thus the projection of V (L) onto the x coordinates is finite. Since J f (x) has full row rank for 
every x ∈ V ( f ), for every critical point x there is a unique λ ∈ Cs such that (x, λ) ∈ V (L). Thus V (L)

is finite.
To prove the second claim, assume that (V ( f ) \ V (g)) ∩ Rn �= ∅ and let C be a connected compo-

nent of the set (V ( f ) \V (g)) ∩Rn . Since V ( f ) ∩Rn is bounded, C is bounded as well. Since C �⊂ V (g), 
there exists x ∈ C with g(x) �= 0. Let C be the Euclidean closure of C so that C ⊂ V ∩ Rn is closed 
and bounded, and g vanishes identically on C \ C . By the extreme value theorem, g attains both a 
minimum and a maximum on C . Since g is not identically zero on C , either the minimum or the 
maximum value of g on C must be nonzero, so g attains a non-zero extreme value on C . By the La-
grange multiplier theorem, using our assumptions, the points in C where g attains its extreme values 
are critical points of g in V ( f ), which proves the claim. �

Now we are ready to prove the main result of the section:

Theorem 6.5. Let f ∈ Q[x]s, g ∈ Q[x] and L ⊂ Q[x, λ] as in Lemma 6.4. Let J be the ideal generated by L in 
Q[x, λ], and B ⊂ Q[x, λ] be any finite monomial basis for Q[x, λ]/ J . Then4

σ (HB

g ) = σ (HB

g2
) if and only if g(x) ≥ 0 for all x ∈ V ( f ) ∩ Rn.

Proof. For the given polynomials f ∈ Q[x]s and g ∈ Q[x], let

g(x, λ) ∈

⎧

⎨

⎩

∂ g

∂xi
+

s
∑

j=1

λ j

∂ f j

∂xi
: i = 1, . . . ,n

⎫

⎬

⎭

⊂ L(x, λ).

First we prove that g(x) ≥ 0 for all x ∈ V ( f ) ∩ Rn if and only if g(x, λ) ≥ 0 for all (x, λ) ∈ V (L) ∩
Rn+s . Assume that g(x) ≥ 0 for all x ∈ V ( f ) ∩ Rn . Let (x, λ) ∈ V (L) ∩ Rn+s . Then x ∈ V ( f ) ∩ Rn

and since g ∈ Q[x], g(x, λ) = g(x) ≥ 0. Conversely, assume g(x, λ) ≥ 0 for all (x, λ) ∈ V (L) ∩ Rn+s . 
Suppose there exists x ∈ V ( f ) ∩ Rn such that g(x) < 0. Let C be the bounded connected component 
of (V ( f ) \ V (g)) ∩ Rn that contains x and C its Euclidean closure. Let x∗ ∈ C where g attains its 
minimum on C . Then g(x∗) ≤ g(x) < 0, so x∗ ∈ C and x∗ is a critical point of g in V ( f ). Thus there 
exists a unique λ ∈ Rs , the solution of a linear system, such that (x∗, λ) ∈ V (L) ∩ Rn+s . But then 
g(x∗, λ) = g(x∗) ≥ 0, a contradiction.

By Lemma 6.4 we have V (L) is finite, so B is finite. Since L has real (rational) coefficients, by 
Hermite’s theorem

σ (HB

g ) = #{(x, λ) ∈ V (L) ∩ Rn+s : g(x) > 0} − #{(x, λ) ∈ V (L) ∩ Rn+s : g(x) < 0}

σ (HB

g2
) = #{(x, λ) ∈ V (L) ∩ Rn+s : g(x) > 0}.

4 We thank to Bernard Mourrain for pointing out this simple fact.
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Thus, σ (HB
g ) = σ (HB

g2
) if and only if #{(x, λ) ∈ V (L) ∩ Rn+s : g(x) < 0} = 0, i.e. for all (x, λ) ∈ V (L) ∩

Rn+s we have g(x) ≥ 0. This proves the theorem. �

Corollary 6.6. Let f ∈ Q[x]s, g ∈ Q[x] and L ⊂ Q[x, λ] as in Lemma 6.4 and B ⊂ Q[x, λ] as in Theorem 6.5. 
Then HB

g and HB

g2
have rational entries, and can be computed and certified from approximate roots for the sys-

tem L. Moreover, σ (HB
g ) = σ (HB

g2
) can be also certified exactly over the rationals, giving a rational certificate 

for g(x) ≥ 0 for all x ∈ V ( f ) ∩ Rn .

Proof. Since L and g has rational coefficients, the matrices HB
g and HB

g2
have rational entries. One 

can find their signature by computing their LU-decomposition for example, again resulting in rational 
matrices. These give a rational certificate for σ (HB

g ) = σ (HB

g2
) and by the previous theorem for g(x) ≥

0 for all x ∈ V ( f ) ∩ Rn . �

Remark 6.7. The size k of the matrices HB
g and HB

g2
is equal to the number of critical points of g in 

V ( f ). A rough estimate is given by |V (L)| ≤ dn+s with d = max{deg(g), deg( f1), . . . , deg( f s)}, using 
the Bezout bound for the polynomial system L.

The following proposition is needed in the algorithm below.

Proposition 6.8. Let {z1, . . . , zk}, {ξ1, . . . , ξk} ⊂ Cn be such that for some E, M > 0

‖ξi − zi‖2 < E and ‖zi‖2 ≤ M + E i = 1, . . . ,k.

Let B = {xα1 , . . . , xαk } ⊂ Q[x1, . . . , xn] be a set of monomials such that deg(xαi ) ≤ d for some d > 0. Then 
the Frobenious distance of the Vandermonde matrices is bounded by

‖VB(ξ1, . . . , ξk) − VB(z1, . . . , zk)‖F ≤ kndMd−1E.

Proof. As in the proof of Proposition 3.2 we can see that for α ∈ Nn , |α| ≤ d we have

∣

∣ξα
i − zαi

∣

∣ ≤ ndMd−1E.

Taking the Frobenius norm of the difference of the Vandermonde matrices gives

‖VB(ξ1, . . . , ξk) − VB(z1, . . . , zk)‖F ≤
√

k2(ndMd−1E)2 = kndMd−1E. �

Algorithm 6.9. (Certification that g is non-negative over V ( f ) ∩ Rn)

Input: n ∈ N , f ∈ Q[x]s, g ∈ Q[x] for x = (x1, . . . , xn) satisfying Assumption 6.3.

Output: True: g(z) ≥ 0 for all z ∈ V ( f ) ∩ Rn

False: g(z) is not ≥ 0 for all z ∈ V ( f ) ∩ Rn

or Fail
1: Construct L(x, λ) as defined in Lemma 6.4.

2: Compute {(z1, µ1) . . . , (zk, µk)} ⊂ Cn+s , finitely many approximate roots of the real polyno-
mial system L(x, λ) as defined in Lemma 6.4, together with their precision E and a bound 
M such that ‖zi‖ ≤ M + E for i = 1, . . . , k. Return Fail if L(x, λ) has infinitely many roots or 
zi = z j for some 1 ≤ i < j ≤ k.

3: Compute B = {xα1 , . . . , xαk } connected to 1, such that the Vandermonde matrix VB(z1, . . . , zk)
has smallest singular value is greater than kndMd−1E , where d is the maximal degree of the 
monomials in B (see Proposition 6.8). Let B+ :=

⋃

i xiB ∪
⋃

j λ jB.

4: H+
1 ← Hermite Matrix Computation

(

B,B+, E,M, {(z1,µ1), . . . , (zk,µk)}
)

(see Algorithm 3.1)
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5: For J := 〈L(x, λ)〉 compute H g( J ) and H g2 ( J ) by calling Hermite Matrix Certification with 
input L(x, λ), g, B, B+, H+

1 and L(x, λ), g2, B, B+, H+
1 respectively, which algorithm can also 

return Fail (see Algorithm 4.1)

6: Calculate the signatures σ (H g( J ) and σ (H g2 ( J )) (see Remark 2.8)

7: if σ (H g( J ))=σ (H g2( J )), then return True
else return False

7. Application: real root certification with Hermite matrices

Let f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m such that I = 〈 f1, . . . , fm〉 is a zero dimensional radical 
ideal. The certification problem is the following: We are given z∗ ∈ Qn , ε ∈ Q+ and we would like to 
know if there is a root of f within the ε ball of z∗ in Rn . In this section, we present how one can use 
the signature of Hermite matrices to answer this certification problem as an application of Hermite 
matrices.

Now we introduce the certification theorem as a corollary of the Multivariate Hermite Theorem 2.7.

Corollary 7.1. Let f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m for all i = 1, . . .m, and I = 〈 f1, . . . , fm〉 is a zero di-
mensional radical ideal. Given z∗ ∈ Qn and ε ∈ Q+ , define g(x) := ‖x − z∗‖22 − ε2 ∈ Q[x1, . . . , xn]. Then

σ (H1(I)) = σ (H g(I))

if and only if there is no real root within the closed ball in Rn of radius ε around z∗ .

Proof. By Theorem 2.7, σ (H g(I)) = #{x ∈ VR(I) | g(x) > 0} − #{x ∈ VR(I) | g(x) < 0}. Since 1 is 
greater than 0, the signature of H1(I) gives the number of all real roots of I . Thus, it can be written 
as

σ (H1(I)) = #{x ∈ VR(I) | g(x) > 0}+#{x ∈ VR(I) | g(x) < 0}+#{x ∈ VR(I) | g(x) = 0} (9)

for any g(x) ∈ R[x1, . . . , xn]. Now, let g(x) = ‖x − z∗‖22 − ε2 ∈ R[x1, . . . , xn].
Assume that σ (H1(I)) = σ (H g(I)). Using the definitions above and canceling the terms #{x ∈
VR(I) | g(x) > 0} from both sides, we have 2#{x ∈ VR(I) | g(x) < 0} = −#{x ∈ VR(I) | g(x) = 0}. 
The only solution to this equation is

#{x ∈ VR(I) | g(x) < 0} = 0 and #{x ∈ VR(I) | g(x) = 0} = 0,

since these terms are nonnegative integers by definition. This implies that there is no real solution to 
I , when g(x) < 0 and g(x) = 0. By the definition of g(x) = ‖x − z∗‖22 − ε2 , there is no x ∈ Rn such 
that ‖x − z∗‖22 ≤ ε2 . Thus we conclude that there is no real root within the closed ball of radius ε.
Assume that there is no real root to I within the closed ball in Rn of radius ε around z∗ . It implies 
that any x ∈ VR(I) satisfies the inequality ‖x − z∗‖22 > ε2 . Then g(x) = ‖x − z∗‖22 − ε2 is always 
positive, and #{x ∈ VR(I) | g(x) ≤ 0} = 0. By Theorem 2.7 and (9), we have

σ (H1(I)) = σ (H g(I)) = #{x ∈ VR(I) | g(x) > 0}. �

Algorithm 7.2 (Real Root Certification).

Input: f = ( f1, . . . , fm) ∈ Q[x1, . . . , xn]m; z∗ ∈ Q[i]n; ε2 ∈ Q+;

B = {xα1 , . . . , xαk } connected to 1 with |B+| = l for some k, l ∈ N

E, M ∈ R+ and z1, . . . , zk ∈ Cn such that ‖zi‖∞ ≤ M + E for i = 1, . . . , k and the accuracy of zi is 
at least E .

Output: True: ∃z ∈ VR(I) such that z is in the closed ball of radius ε around z∗

False: No real root of I within the closed ball of radius ε around z∗

or Fail.
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1: Define g(x) := ‖x − z∗‖22 − ε2 ∈ Q[x1, . . . , xn]
2: H+

1 := HB+
1 (z1, . . . , zk) ← Hermite Matrix Computation

(

B,B+, E,M, {z1, . . . , zk}
)

(see Algorithm 3.1)

3: For I := 〈 f1, . . . , fm〉 call Hermite Matrix Certification( f , g(x), B, H+
1 ) to obtain certified 

H1(I) and H g(I), that algorithm can also return Fail (see Algorithm 4.1)

4: Compute σ (H1(I)) and σ (H g(I)). See Remark 2.8 for computational details.
5: If σ (H1(I)) = σ (H g(I)) then return False

else return True.
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