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1. Introduction

The development of numerical and symbolic techniques to solve systems of polynomial equations
resulted in an explosion of applicability, both in terms of the size of the systems efficiently solvable
and the reliability of the output. Nonetheless, many of the results produced by numerical methods are
not certified. When we want to certify the output, we always have to do some symbolic computations.
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Either we use purely symbolic algorithms, or we perform symbolic-numeric hybrid computations with
enough precision so that we are able to identify zero.

In this paper, we show how to compute exact Hermite matrices from approximate roots of poly-
nomials and how to certify that these Hermite matrices are correct.

Hermite matrices and Hermite bilinear forms were introduced by Hermite (1850) for univariate
polynomials and were extended to the multivariate zero-dimensional setting in Basu et al. (2006);
Stickelberger (1890). Hermite matrices have many applications, including counting real roots Basu
et al. (2006); Hermite (1853, 1856) and locating them Ayyildiz Akoglu (2016). Assume that we are
given the ideal Z := (fy,..., fm) C Q[x1, ..., x,] generated by rational polynomials and assume that
dimg QI[x1, ..., x;1/Z = k < co. Hermite matrices have two kinds of definitions (see the precise for-
mulation in Section 2.1):

1. The first definition uses symmetric functions of the k common roots of Z, counted with multi-
plicity (see Definition 2.1). The advantage of this definition is that it gives a very efficient way to
evaluate the entries of the Hermite matrix, assuming that we know the common roots of Z ex-
actly. The disadvantage is that we need to compute the common roots exactly, which may involve
working in field extensions of Q.

2. The second definition of Hermite matrices uses the traces of k* multiplication matrices (see Defi-
nition 2.3), each of them of size k x k. The advantage of this definition is that it can be computed
exactly, working with rational numbers only. The disadvantage is that it requires the computation
of the traces of k2 multiplication matrices.

In this paper we propose to use the second definition to compute Hermite matrices, but instead
of using exact roots, we use approximate roots that can be computed with numerical methods effi-
ciently Bates et al. (2013). Once we obtain an approximate Hermite matrix, we use rational number
reconstruction to construct a matrix with rational entries of bounded denominators. Finally, we give a
symbolic method which certifies that the rational Hermite matrix we computed is in fact the correct
one, corresponding to the exact roots of Z.

The novelty of this work and the difficulty of this problem is to certify the correctness of the
Hermite matrix that we computed with the above heuristic approach. This part of the algorithm is
purely symbolic. The main idea is that we use the relationship between multiplication matrices and
Hermite matrices to compute a system of multiplication matrices using Hermite matrices and vice
versa. As multiplication matrices, which are also rational matrices, act as roots of the polynomial
system, we can certify their correctness, which in turn gives us a method to certify Hermite matrices.

Note that both of the above definitions of Hermite matrices are continuous (entry-wise maps are
continuous) in the presence of root multiplicities. However our use of approximate roots and mul-
tiplication matrices necessitate that we first consider the case where 7 is radical. To handle the
non-radical case, we use the fact that the maximal non-singular submatrix of the Hermite matrix
of Z gives the Hermite matrix of +/I, so this is what we compute and certify. In both the radical
and non-radical cases we were able to give sufficient conditions in terms of the quality of the root
approximations and the size of the rational numbers in the Hermite matrices that guarantee that our
Hermite matrix construction and certification algorithms do not fail.

Another contribution of this paper is the presentation of two novel applications using the signature
of the certified Hermite matrices:

The first application is to give a rational certificate that a polynomial g € Q[xq,...,X;] is non-
negative over a smooth real variety V(f1,..., fs) NR" where f1,..., fs € Q[x1, ..., xy]. This appli-
cation was inspired by Cifuentes and Parrilo (2017) where the authors give a method to compute a
degree d sum of squares (SOS) decomposition (if one exists) for a non-negative polynomial over a
real algebraic set using a finite set of sample points from the (complex) algebraic set. While the SOS
decomposition constructed in Cifuentes and Parrilo (2017) is approximate, the construction we give
here is exact, using Hermite matrices with rational entries.

The second application is to give a rational certificate that for a given point z € Q", ¢ € Q4 and
Z:=(f1,..., fm) CQ[x1,...,x;] zero dimensional, there exists & € V(f1, ..., fm) NR™ such that
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2
lz—¢&l; <e.

A natural question arises about the advantage of this hybrid symbolic-numeric approach over
purely symbolic methods to compute Hermite matrices. The answer to this question is not black and
white, it depends on the situation. For example, one could use a purely symbolic method computing a
Grobner bases, and then computing a system of multiplication matrices of the input polynomials and
then the traces of certain multiplication matrices give the entries of Hermite matrices symbolically
(just as in the first definition above). Instead, in this study, we use a symbolic-numeric approach.
We assume that we have an efficient and parallelizable numerical method that can compute high
precision approximations to all common complex roots for square subsystems of f, i.e. for n random

linear combinations of fi,..., f;;. From these approximate roots we select in a certified manner a
subset z1, ...,z € C" (given with floating point numbers as coordinates) that are approximations of
the solutions of f € Q[xq,...,X,]™. The worst case bit complexity for both the purely symbolic and

the hybrid methods are similar Hashemi and Lazard (2005) (asymptotically bounded by D" where D
is the maximum of the degrees of the input polynomials). In Bardet et al. (2004, 2005) the authors
give some evidence that Grobner basis techniques for highly overdetermined systems (m >> n) can
be highly efficient. The underlying idea behind this is that if one is given many polynomials already,
there is only a little more work needed to generate a Grobner basis. On the other hand, for systems
that are square or close to square, the limited accuracy and parallelizability of the numerical approach
allows us to handle larger polynomial systems in practice than with purely symbolic approaches. In
Bates et al. (2014) they compare the two different approaches to compute and represent the solutions
of polynomial systems: numerical homotopy continuation and symbolic computation.?

This paper is a generalization of our paper Ayyildiz Akoglu and Szanto (2020), where we consid-
ered only the univariate radical case.

The paper is organized as follows. In the next section we introduce some preliminaries with fun-
damental definitions such as the Hermite matrices, rational number reconstruction and numerical
computation of roots of overdetermined polynomial systems. In Section 3, we explain how one can
construct the exact Hermite matrix using the approximate solutions of the given polynomial system.
In Section 4 we give an algorithm to certify that the obtained Hermite matrix is the exact one cor-
responding to our input polynomials. So far we assume that the ideal Z is radical. In Section 5 we
generalize the Hermite matrix computation and certification algorithm to the case when Z is not rad-
ical. In Section 6 we present the application of Hermite matrices to give a rational certificate that a
given rational polynomial is non-negative over a real algebraic variety defined by rational polynomi-
als. Finally, in Section 7 we give another application that is a rational certificate for the existence of
an exact common root of a zero-dimensional ideal within ¢ distance from a given point in Q™.

2. Preliminaries
2.1. Hermite matrices

In this section we give two definitions for the Hermite matrix of a zero-dimensional ideal. The first
one defines the matrix from the common roots of the ideal, and in fact can be used to define Hermite
matrices from any set of points. The second definition uses the traces of multiplication matrices of
the factor ring of the ideal, and thus it gives a definition where the entries of the Hermite matrices
are rational functions of the coefficients of the polynomial system.

Everything in this section is valid for polynomials over R, so while in the rest of the pa-
per we assume that our input polynomials are rational, in this section we present the prelim-

inaries over R. We use the following notation. Let f = (f1,..., fm) € R[x1,...,x,]™ with Z =
(f1,y..., fm) CR[x1,..., %] a zero-dimensional ideal and B = {x1, ..., x%} be a monomial basis for
Rx1,...,x51/Z.

3 We thank Jonathan Hauenstein for pointing out to us the subtleties of using symbolic vs. numeric methods for solving
polynomial systems.
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Let &1,&2,...,& € C" be the common roots of Z, here each root listed as many times as their
multiplicity. If Z is radical (which we assume in most of the later sections), each root is distinct. We
denote by z1, ..., 2z, € C" approximations to the exact roots &1, &2, ..., &.

The first definition of Hermite matrices is given for any multiset of points in C" as follows:

Definition 2.1. Let g € R[xq,...,x,] and B = {x*1, ..., x%} be a set of monomials in R[x1, ..., x,]. Let
21,22, ...,z € C" be points, not necessary distinct. Then the Hermite matrix of z1, z, ..., z, with
respect to g, written in the basis B is

HS(z1.23.....z) = VTGV (1)
where
. aj
V:=Vg(z1,22,...,2k) = 2; " 1i,j=1,..k
is the multivariate Vandermonde matrix of z1, z3, ..., zx € C" with respect to a monomial set B and
G is a k x k diagonal matrix with [G];; = g(z;) for i=1,...,k. We may omit B from the notation if

it is clear from the context.

Example 2.2. When B = {1,x1,...,x'§’1} and g = g(xq) are also univariate, then the Hermite ma-
trices are the same as the univariate Hermite matrices Ayyildiz Akoglu and Szanto (2020). If z; =
(z11,.--,210) € C" for I =1, ...,k then the entries of the k x k univariate Hermite matrices are de-
fined by

k

e
[HE (z1,... 20l j= Y g@nzy .
=1

In particular, for g(x) =1, if z11, ..., zx 1 all distinct, the entries of the Hermite matrix are the power
sum elementary symmetric functions of the first coordinates:

k
i
[HF(ZL...,Zk)]i,j:ZZ;jJ : =
I=1

The second definition of Hermite matrices implies that the entries of the Hermite matrix are ra-
tional functions of the coefficients of the defining polynomials of Z.

Definition 2.3. Let Z C R[x1,...,x;] be a zero dimensional ideal and denote A := R[xq,...,x,]/I, a
finite dimensional vectors space over R with k:=dimg A. For any f e Alet uy:A— A, p+I+—
p - f +Z be the multiplication map by f on A. Fix a monomial basis B = {x*1,...,x%} of A, and
denote by M? the k x k matrix of ¢ in the basis B. The Hermite matrix of 7 with respect to g,
written in the basis B is

k

_ B
] = I:TI'(Mg'Xa,--%—aj)] i )

k
i, i,j=1

HE(T) = [Tr(ug,xa,.wj)]

]:

where Tr(-) denotes both the trace of a linear transformation and the trace of a matrix (note that
the trace of a linear transformation is the trace of its matrix in any basis). We may omit 5 from the
notation when it is clear from the context.

The next theorem asserts that the two definitions give the same matrix if we take the exact com-
mon roots of a zero dimensional polynomial system.
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Theorem 2.4 (Basu et al. (2006)). Let Z C R[x1, ..., Xy] be a zero dimensional ideal and g € R[xq, ..., x].
Let k := dimR[xq,...,x,]/Z and B = {x*1,...,x%} be a monomial basis for R[xy,...,xn]/Z. Let
&1, ..., & € C™ be the roots of Z, each root listed as many times as their multiplicity. Then

Hg (1, ..., &) =HZ (D).

Remark 2.5. Note that if fi,..., fm, g8 € Q[x1,...,x,] then for Z = (f1,..., fm) we have Hg(Z) €
QK*k, thus Hg(%1, ..., &) € QK<K, even if the roots are not rational.

Next we present the classical Hermite theorem that uses the signature of Hermite matrices to
count real roots of a real polynomial system. First we define the signature of a matrix.

Definition 2.6. Let A be a real and symmetric matrix. Then the signature of A is

o (A) := #{positive eigenvalues of A} — #{negative eigenvalues of A}

Definition 2.3 implies that Hermite Matrices of real polynomial ideals are real and symmetric. The
classical univariate Hermite Theorem Hermite (1856) was generalized to the multivariate case by
Pedersen, Roy and Szpirglas Pedersen et al. (1993), and was also proved in Basu et al. (2006) and Cox
et al. (2006):

Theorem 2.7 (Multivariate Hermite Theorem). Let Z C R[xq, ..., X,] be zero dimensional and 3 be a mono-
mial basis of R[x1, ..., x,1/Z. If Hg(Z) is the Hermite matrix of Z with respect to g in the basis BB, then

0(Hg(Z)) =#{xe VR(D) | g(x) > 0} — #{x € VR(Z) | g(x) < O}.

Remark 2.8. There are several ways to obtain the signature of a k x k real and symmetric matrix
M without computing the eigenvalues explicitly. We will describe two of these methods here. Note
that if M is a rational symmetric matrix, then both of these methods can be computed with exact
arithmetic over the rationals.

1. Using Descartes rule of signs: Let p(x) be the characteristic polynomial of the given k x k real and
symmetric matrix. Since all eigenvalues of real symmetric matrices are real their characteristic
polynomials have only real roots. Then the Descartes Rule of Signs provides that o (M) is the
difference between the number of sign variation of the coefficients of p(x) and the number of
sign variations of the coefficients of p(—x) (see Proposition 8.4 in Basu et al. (2006)).

2. Using LU decomposition: The LU decomposition of real symmetric matrices can be written as LDLT
where L is a special lower triangular matrix with 1's on the diagonal entries and D is a diagonal
matrix with the entries {uq1, ..., uk}. These entries are the diagonal entries of the upper trian-
gular matrix U obtained from the LU decomposition. By Sylvester Law of inertia, the signature of
M is the difference between #{u;; : uj > 0} and #{u;; : u; < 0}. The cost of this computation
only comes from the LU decomposition which can be found via Gaussian Elimination.

We close this subsection with some definitions that will be used later in this paper. First, in our
certification algorithm we need the following property of B (see Mourrain (1999)):

Definition 2.9. Let B C R[xq,...,x;]. We say that B (or spang(5)) is connected to 1 if for all b €
spanp (B) there exists by, ..., b, € B such that

n
b= inbi
i=1
and deg(b;) < deg(b) fori=1,...,n.
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Definition 2.10. B C R[x1, ..., x;] be a finite set of monomials. The extension of B is defined by

n
B :=BU| JxB={b.xib.....xab | beB}. (3)
i=1
Definition 2.11. Let B be a finite set of monomials and assume that |3%| =I. The extended Hermite
matrix associated to points z1, ..., z, € C" (not necessarily distinct) is
Hi =HS @1,....z20 = (vHTcvrec™ (4)
where V™ =Vg+(z1,...,2) € C*! and G is the k x k diagonal matrix with [Glj,j = g(zj) for j=
1,....k
Remark 2.12. Let 7 C R[xq, ..., x,] be zero dimensional and B be a monomial basis of R[x1, ..., x;]1/Z
with dimR[x1, ..., x;]/Z = k. The computation of B does not require using Grobner Basis since we

work on zero dimensional ideals. One may use the set of the standard monomials, i.e., the monomials
“under the staircase” (see Section 11 in Basu et al. (2006)). If one assumes that all of the i-th coordi-
nates of the solutions are distinct, then B={1,x;, ..., x:.‘_l} can be also used (see Section 4.4 in Basu
et al. (2006)). Example 2.2 and Remark 4.3 illustrate some important advantages and reasons of using
this choice.

Even though we use the same notation as the monomial basis, Hermite matrices can be defined
on any monomial set B using the Definition 2.1. However, in the second definition and most of this
study (indicated otherwise) we assume that 13 is a monomial basis.

2.2. Rational number reconstruction

The continued fraction method for a real number « > 0 can be described as the computation of

1 1
V2 Ly2) + 55

where y1 =« and yi11 = . We call the rational numbers

1
vi—Lvil
1
, +—, +—...
Ly1l, Lyl ] Ly1] LVzJ—i-U}?

the convergents for «. The following theorem (cf. (Schrijver, 1998, Corollary 6.3a)) gives bounds on
the distance from o that guarantees uniqueness of a rational number with bounded denominator,
and shows that if such rational number exists, it is a convergent for «.

Theorem 2.13. Schrijver (1998) There exists a polynomial time algorithm which, for a given rational number
o and a natural number B tests if there exists a pair of integers (p, q) with 1 <q < B and

p 1
a—=|<>=,
q 2B
and if so, finds this unique rational number % as a convergent for c.
Approximate solutions are floating point numbers which are obtained from numerical computa-

tions. Using an absolute error bound E > 0 on numerical computations, we can set a denominator
bound B such that Theorem 2.13 provides the unique rational approximation of « as follows:

Corollary 2.14. Given « € R and E > 0 in R there is at most one rational number with its denominator
bounded by B := [ (2E)~"/2] within the distance E from c.
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2.3. Numerical certification of non-roots of overdetermined systems

In this subsection, we summarize some numerical methods from the literature to compute ap-
proximations of a superset of the common roots of an overdetermined polynomial systems. Let
f=1,..., fm) € Q[x1,...,x,]™ where m > n, we describe a method to certify that a given point z
is not an approximate root of f. Assume that Z = (fy, ..., fi) is radical and zero dimensional, the dif-
ficulty lies in the fact that numerical methods, such as the homotopy continuation method Bates et al.
(2013), are designed to compute the common roots of square, well-conditioned polynomial systems.
Here we describe the approach presented in Hauenstein and Sottile (2012) to handle overdetermined
systems.

The main idea is the following. Even though the consistency of an overdetermined system is a
non-continuous property, the converse, inconsistency of an overdetermined system is a continuous
property that can be certified with numerical methods. Similarly, while certifying that a point is
approximating an exact root of an overdetermined system with exact rational coefficients cannot be
certified with purely numerical methods, certifying that a point is not an approximate root can be
done numerically. This allows us to eliminate roots of a square subsystem of f that are not roots of
all fi’s for i=1,...,m, and to give a certified upper bound k on the number of common roots of
f. With this upper bound, we can guarantee that our certification algorithm of Hermite matrices in
Section 4 is correct when it gives a certification (although it may also return “fail”).

More precisely, Hauenstein and Sottile (2012) suggests to consider two square subsystems which
are random linear combinations of the polynomials fi,..., f;. If R1, Ry : C™ — C™ are two linear
maps (represented by two random matrices), then for R1(f) := Ry o f and Ry(f) := Ry o f, we can
assume that

V() =V(Ri(f)NV(R2S)).

This property is satisfied unless Ry and R, are from Zariski closed subsets of all linear transforma-
tions. Similarly, for i =1, 2, we can assume that the roots of V(R;(f)) are finite and all distinct, this
property is also satisfied unless R; is from a Zariski closed subset of all linear transformations (cf.
(Hauenstein and Sottile, 2012, Section 3)). Using numerical homotopy continuation methods and «-
theory, one can compute and certify all approximate roots of both R1(f) and R(f), see details on
this part of the algorithm in (Hauenstein and Sottile, 2012, Section 2).

The following idea is a slight modification of (Hauenstein and Sottile, 2012, Section 3) which allows
us to discard approximate roots of R{(f) and Ry (f) that do not approximate the exact roots in V (f).
First note that for any approximate root z approximating an exact root & € V(R;(f)) for i=1,2, we
can give upper bounds for ||z — &||. This bound is defined to be two times the g8 function in «-theory
(cf. (Blum et al., 1998, Ch 8, Theorem 2)), even without knowing the exact root. Let V (R;(f)) (for
i=1,2) denote the set of pairs (z,&) € C" x R, where z is one of the approximate roots computed
for Ri(f) and ¢ is an upper bound of the distance of z from the exact root it approximates. Fix
(z, &) € V(R1(f)) and define

Seo =] &) e VR : lz=Z I se+6'}.

If [S¢z¢)| > 1 then we need to refine z and all z’ such that (Z/,&’) € S, ¢) using Newton's method
w.rt Ri(f) and Rp(f) respectively, until one gets S ¢ =@ or S| =1.1f S; = then we can
discard (z, €) since it cannot approximate an exact root in V(f) = V(R1(f))NV(R(f)). If S; has one
element (Z/, &), suppose z approximates an exact root & € V(R1(f)), Z approximates an exact root
&' € V(R2(f)) but & #¢'. Then we can compute refinements z; and z, using k iterations of Newton’s
method starting from z and z’ w.r.t R{(f) and R, (f) respectively, such that

J /
lzk — Z'k|l > ek + &, (5)

where g <

i is a bound on |z —£||, and ¢, is a bound for ||z, —&’||. If we find a k such that the

inequality (5) is satisfied then we discard (z, ¢), otherwise we keep it. We repeat the above procedure
for all elements in V(R1(f)) U V(R2(f)).
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Note that the above method never eliminates points that are approximating roots in V (f), but
may leave in points that are not near V(f). Thus, as a consequence, we can always guarantee that
the input z1, ...,z for Algorithm 3.1 below, to compute an approximate Hermite matrix, is a su-
perset of an approximation of V(f), and in particular the above method gives a certification that
k > dimQI[xq,...,x,]/Z. On the other hand, our main symbolic-numeric certification Algorithm 4.1
for Hermite matrices will always fail when there are superfluous points among the input. Thus, us-
ing the assumption k > dimQ[xy, ..., x;]1/Z, the Hermite matrices that we certify successfully will
correspond to all roots of V (f) (see Theorem 4.2).

In the rest of the paper we assume that we already computed a set {z1, ..., z;} C C" that contains
an approximate root for each root in V(f), i.e. if V(f) ={&1,...,&¢} then k' <k and for i=1,...,k
there exists j; € {1,...,k} such that the Newton iteration starting from zj, quadratically converges to
&;. Moreover, using the 8 function from «-theory as above, we assume that we have a certified bound
E e R, that we call accuracy, such that

|6 =z, <E i=1,... K. (6)
3. Constructing rational Hermite matrices

In this section we construct a rational matrix HT € Q™! from points z1, ...,z given with limited
precision, using the definition of Hermite matrices in Definition 2.11 and rational number reconstruc-
tion.

Let z1,...,2z, € C" with zi = (zj1,...,2zip) for i=1,...,k. Let B = {x",...,x%} be basis for
Rx1,...,%21/Z(z1,...,2), and we use BT as described in (3). Algorithm 3.1 below computes the
matrix HT from the Hermite matrix ng+ (z1,22,...,2) with respect to BT by applying rational
number reconstruction.

As part of the input of Algorithm 3.1, we also use quantities E,M € R, where E is an upper
bound for the accuracy of each z; for i =1,...,k and M is an upper bound for the absolute values
of the coordinates of the exact common roots of Z. We assume that E is computed as part of the
numerical method computing z1, ..., 2, as described in Section 2.3. In this section we use E and
M to estimate the denominator in the rational number reconstruction for each entry of HT using
Proposition 3.2 below. Moreover, note that ||zj||co <M+ E fori=1, ...,k since the coordinates of the
exact roots are bounded by M and each z; cannot be larger than M + E.

Algorithm 3.1 (Hermite Matrix Computation).

Input: B={x*1,...,x%} and B* as in (3) with |B*| =1 for k,I e N.
E,MeR, and z1,...,z, € C" such that ||zjloo <M +E fori=1,...,k and E is as in (6).
Output: H 1* € Q" with rows and columns indexed by the elements of B™.

1: Compute the extended Hermite matrix Hfﬁ (21,22, ..., z) using Definition 2.11 with respect
to the auxiliary function g =1 and the monomials in B*.

2: Rationalize each entry of the approximate Hermite matrix Hfg+ (z1,22,...,2¢) using ratio-
nal number reconstruction as explained in Subsection 2.2. For the (i, j)-th entry of the
HlB+ (z1,22, ..., 2), we use the following denominator bound:

Bij = {(2Ekndi,jde—1)—1/ﬂ , 7)

where d; j = degb; + degb; and b; and b; are the i-th and j-th elements of B* respectively,
for 1 <i,j <l (See Proposition 3.2 below for obtaining this bound.) Return the resulting
rational matrix.

We need the following proposition to get the bounds in (7) for the denominators of the entries of
the Hermite matrix.
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Proposition 3.2. Assume Z = (f1, ..., fm) C Q[x1, ..., xy] is a zero dimensional radical ideal with V (I) =
{&1,..., &} Cc C". Suppose E > 0 and z1, ..., z, € C" are such that

l& — zill2 < E.

Let M > O such that foralli=1,...,kand y € Ball(z;, E) = {x € C" : ||x — z||2 < E}

IYlloo <M.

Let @ € N™ with d := |«|. Then we have

k k
YE =Y 2
i=1

i=1

< EkndM®1, (8)

Furthermore, there is at most one rational number within EkndM?—" distance from Zfﬂ z{¥ with denominator
bounded by

B:= {(2Eknde—1)—1/ﬂ .

Proof. Fix o« € N" with d := |¢/|. First note that Zi‘:l z¥ is a polynomial in the nk coordinates of
z1,...,2, of degree d. Using a multivariate version of Taylor's Theorem Apostol (1969), there exist
R j(z1,...,zr) fori=1,...,k and j=1,...,n such that

k k k—n
D= E =YD Rijz. .. 20— ).

i=1 i=1 i=1 j=1
Moreover,
ol
IRi j(z1,...,2K)] <max  max S (ys)| <dM?1,
s,t yseBall(zs,E) | 0Zs.t

Thus we get

k k
Do - g
i=1 i=1

The second claim is straightforward from Corollary 2.14 using E’ = EkndM4~1. O

n ok
<Y > dM |z j—& j| <kndM?'E.
j=1i=1

The next theorem gives sufficient conditions for Algorithm 3.1 to correctly compute the exact

Hermite matrices HT for Z from the approximate points z1, ..., z.

Theorem 3.3.Let Z = (f1, ..., fm) C Q[x1, ..., xn] be a zero dimensional radical ideal with B = {x*1, ...,
x%} a basis for Q[x1,...,xy]/Z. Denote Vo (Z) = {&1,...,&} Cc C". Let E > 0and z1, ...,z € C" such
that foreach i € {1, ..., k} there exists a unique j; such that

llzj; = &ill2 < E.

Assume further that ||zillcc <M + E for all i =1,... k. Finally, assume that for x* = x;xjx* x* for
i,j=1,...nandt,s=1,...,k the denominator olejzl €Y € Q is at most [(2Ekn|oe| M!“I=1)=1/2]. Then
Algorithm 3.1 computes the exact Hermite matrices H fﬁ D).
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Proof. Since |z; — &j;|l2 < E and ||zj]lc < M + E, we have that ||]lc < M, thus the assumptions

of Proposition 3.2 are satisfied. Therefore, for all ® € N" as in the claim, we have that there is at
most one rational number within Ekn|o|M'*I~1 distance from Z:f:] z¥ with denominators bounded

by [(2Ek|oe|M'®1=1)=1/27_ By Proposition 3.2 we can see that Zfﬂ £€¥ is within that distance from
Yk z¥, and using our assumption on the denominator of Yk &* € Q, by Theorem 2.13 the rational
number reconstruction algorithm finds f:l &7. Thus, the entries of HT computed by Algorithm 3.1
are the same as the entries of H{3+ (Z) as claimed. O

Remark 3.4. The assumption of Theorem 3.3 that the denominator of Z’;:] &¥ € Q is at most
[(2Ekn|oe|M!*1=1)=1/27 can be achieved by improving the accuracy E of the approximate roots
z1,...,2. If we assume that zq,...,z, are all approximate roots for a square subsystem of f, we
can use Newton iterations to quadratically converge to the exact roots, thus decrease E. Meanwhile,
the other quantities in this bound (k,n, |«|, M) are fixed, so with enough iterations we increase
[(2Ekn|a|MI¢1=1)=1/27 to satisfy the condition of the Theorem. One could in theory study the sepa-
ration bounds for how small E has to be to satisfy this condition, (for similar analysis see Emiris et
al. (2020) and Ayyildiz Akoglu et al. (2018)), but in this paper we let our Hermite matrix certification
algorithm reject cases when the accuracy of the root approximation is not sufficiently good.

4. Certification of the exact Hermite matrix

Let f=(f1,..., fm) € Q[x1,...,%,]™ be a polynomial system with zero dimensional radical ideal
Z={(f1,..., fm). In the previous section we computed a matrix HT with rows and columns corre-
sponding to BT, where B = {x¥!,...,x%}. In this section we certify if this matrix is the extended
Hermite matrix of Z and we also compute Hg(Z) for any polynomial g € QIx1, ..., x,], as long as
k>dimQ[xq,...,x,]1/Z. Here we assume that 53 is connected to 1 as in Definition 2.9. The following
algorithm is purely symbolic:

Algorithm 4.1 (Hermite Matrix Certification).

Input: f=(f1,..., fm) € Qlx1,...,x,]™ with Z=(fy, ..., f;m) zero dimensional and radical;
g€ Qlxy, ..., x],
B={x*,...,x*} connected to 1 with |BT| =1 for some k,l e N
HT € Q! with rows and columns indexed by the elements of BT.
Output: The certified H{(Z) and Hi(I), or Fail.
1: Hy <k x k submatrix of H]” with rows and columns corresponding to 5.
H;‘S <« k x k submatrix of HT with rows corresponding to B and columns corresponding to
xB fors=1,...,n.
2: If rank H; =rank H =k, then M, < H1_1 -HY* for s=1,...,n. else return Fail.
3:Fors=1,...,n,i,j=1,...,k
if x;x% =x% and [Ms]); , # ejT. then return Fail.
4: Let cq,...,cp be either new parameters or generic elements of Q.
p(A) < characteristic polynomial to Z?:l ciM;.
if gcd(p(A), p’ (X)) # 1 return Fail.
5: If

Mi-Mj=M;-M; 1<i<j<n
and

fi(M1,M2,...,Mn):0fori:1,...,m,

then we certified that M; is the transpose of the multiplication matrix of Z with respect to
x; in the basis B foralli=1,...,n.
Else return Fail.
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6: Fori,j=1,...,1if

Tr((b; - bj)(M1, M2, ..., Myp)) # [H1];

where b; and b; are the i-th and j-th elements of B respectively, and (b;-b;)(M1, M2, ..., My)
is the matrix obtained by evaluating the polynomial b; - b; in the matrices M1, M2, ..., My
then return Fail.
Else we certified Hy = H{(Z).

7: Return Hy and Hg <— H1 - g(M1, ..., Mpy).

We have the following result on the correctness of Algorithm 4.1.

Theorem4.2. Let f = (f1,..., fm) € Qx1,.... ] WithZT = (f1, ..., fm) CQ[x1,...,%], g€ Q[x1,...,
xnl, B={x*, ..., x%} connected to 1 with |B*| =1 for some k,l € N. Let HT € Q™! be a matrix with rows
and columns indexed by the elements of BY. If k > dim Q[x1, ..., x,]/Z and Algorithm 4.1 does not return
Fail then T is radical, BB is a basis for Q[x1, ..., X,1/Z and the output satisfies

Hy=H} (Z) and Hg = Hg (T).

Proof. Assume Algorithm 4.1 did not fail, and let Mq,..., M, be the matrices computed in Step 2.
Define the set of polynomials F from the columns of My, ..., M, as follows

k
F = {xjx“‘—Z[Mj],-ytx“f cj=1,...,nt=1,...,k
i=1

Let J :=(F) C Qlx1,...,xn]. In (Mourrain, 1999, Theorem 3.1) it is proved that B forms a basis for
QI[x1,...,xy1/J] and F is a border basis for ] if the following three conditions are satisfied:

1. the map N :span(B8+) — span(B3) defined as N(x;jx%) := Zi‘c:l[Mj]LtXai satisfy N |z =1d;

2. the space spanned by B is connected to 1;

3. {My, ..., My} is a set of pairwise commuting matrices.
The first condition is certified in Step 3, the second is an assumption, and the third is certified in Step
5. Also by Step 5 we have

fi(M],Mz,...,Mn)ZOfOFi:l,...,m,

thus Z C J. Since dimQ[x1,...,x;]/J =k and dimQ[x1, ..., x,]/Z < k by assumption, we must have
that Z=J and for s=1,...,n, Ms is the transpose of the matrix of the multiplication map

Mx : Qx1, ..., %]/ — Q[x1,...,x]/Z, [p]+ [xsP],

with respect to the basis 5. Step 6 certifies that the entries of H]Jr are correct using Definition 2.3.
Let p be the characteristic polynomial as in Step 4. Since gcd(p(), p’(A)) # 1 we have that p has k
distinct roots, so M1, ..., M, are simultaneously diagonalizable, and we have for g € Q[x1, ..., Xs]

g(My,...,Mp)=V~IGgV

where V = Vpg(&,..., &) is the Vandermonde matrix of the exact roots of V(Z) = {&1,..., &} with
respect to 3 and G is the diagonal matrix diag(g(&1), ..., g(&)). This gives

Hi-gM1,...,My) =(VTV).(V7IGV)=VTGV = H,.
Thus, once H1 and My, ..., M, are certified, we have computed the certified matrix Hg(Z). O
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Remark 4.3. For 5={1, xq,..., x’f‘l} we can guarantee that

rank(H1) = rank(H{) =k,

by checking that the difference between the first coordinates of z; and z; is at least 2E for all
1<i < j<n.In this case, since we assume that ||z; —&j;|l> < E, then we must have that the first coor-
dinates of &1, ..., & are all distinct. Since H1(Z) = VTV where V is the usual univariate Vandermonde
matrix of these first coordinates of &1, ..., &, we get that H1(Z) is invertible. Since HT(I) = V[L Vi+,
and rank(Vg+) =k, we have that rank(H1) = rank(HT) = k. For general B there are no such simple
conditions, but the SVD of the Vandermonde matrix of z1, ..., z;x with respect to 3 gives a good in-
dication that B is a basis for both C[xq,...,x,1/I1(z1,...,2z) and C[xq,...,x,1/1(&1, ..., &). Also for
B={1,x,.. .,x’l‘_l}, Step 3 is simply checking if M1 has a companion matrix structure. In this case,
in Step 6 we can certify H T using the Newton-Girard formulae (cf. Macdonald (1979)), computing the
power sum elementary symmetric functions for degrees 1,..., 2k from the coefficients of p(x1), and
constructing the matrix H T according to (2).

5. Extension to the non-radical case

So far in this paper we assumed that the ideal Z is radical and zero-dimensional. In this section,
we describe what we can certify when we drop the assumption of radicality. However for sake of
simplicity, we continue the radical case assumption after this section.

First note that Definition 2.1 for the Hermite matrix in terms of roots is well defined and con-
tinuous (the computation of the entries is only use continuous maps) even if some of the roots
are repeated. This is no longer true when we try to define the multiplication matrices from the
roots. Using a notation similar to the previous section, for B a basis for R[xi,...,x;]/Z and
g€ Q[x1,...,x,], denote by M? the transpose of the matrix of multiplication g : Qlx1,...,x1/T —
QIx1,...,x1/Z, [p] — [gp] in the basis B. While in the case when Z is radical we have

B -1
ME=VEGVg',

with Vg = [b(§)]zev(z)be and G =diag(g(é) : £ e V(D)), M? is not diagonalizable when Z is not
radical. In particular, Vi (Z) and H]B (I) are not invertible, so we cannot use them to compute multi-
plication matrices in the certification algorithm as above.

To overcome this difficulty, we notice that while in the non-radical case HlB (Z) is not invertible,
its maximal non-singular submatrix is the Hermite matrix H lB_(\/f) of the radical of Z, with respect
to a subset B C B that is a basis for R[x1, ..., X;]/+/Z (cf. Janovitz-Freireich et al. (2007)). Denote by
H; this maximal non-singular submatrix of HlB (Z), with rows and columns corresponding to B c B
and by I:I’l"' the submatrix of H? *(Z) corresponding to rows indexed by B and columns indexed by
x; - B. Then we get the transpose of the matrix of multiplication by x; in Q[x1, ..., X;]/~/Z W.rt. the
basis B by

. .—mB_g-1. g% i_
M,._Mxl__Hl -H' i=1,...,n.
Thus we can use H ?+ to compute the multiplication matrices of the radical +/Z and certify them.

We modify Algorithm 3.1 to output the maximal non-singular submatrix H; of Hy with rows and
columns corresponding to B C /3, and its extension HT to the basis B*.

Algorithm 5.1 (Hermite Matrix Computation - Non Radical Case).

Input: k € N, B= {x*1,...,x%} connected to 1, E;M € Ry and z1,...,2x € C" such that E is a
bound on the accuracy of z; and ||zj[lco <M+ E fori=1,... k.
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Output: Fail or k < kg N, B c B connected to 1, and I:I;r € Q?Xi with rows and columns indexed by
the elements of B*tsuch that

rank Hy =rank Hf = k,

where H; is the submatrix of I:I;r with rows and columns corresponding to B.

1: Hfg+ (z1,22,...,2k) < HERMITE MATRIX COMPUTATION (B, BY E,M,{z1,..., zk})
(see Algorithm 3.1). Denote the resulting matrix by HT and its submatrix corresponding to
rows and columns of B by Hj. _

2: Find k maximal and B c B connected to 1 with |l§| =k such that the submatrix H; of Hj,
corresponding to rows and columns in B, have the same rank as Hj.

3: If rank(H;) > k return Fail. Else return H, the submatrix of H with rows and columns
corresponding to B.

Theorem 5.2.Let B = {x¥!,...,x*}, T = (f1,..., fm) C Q[x1,...,x,] be a zero dimensional ideal
Ve (@) = {&1, ..., &) c C" for some k € N with the multiplicity of & denoted by k;, where k := Zi-‘:] ki =

dim Q[xl,._.‘,xn]/l'. Let E > 0 and z1,...,z, € C", not necessarily all distinct. Assume that for each
i€{1,...,k} there exists a multi-subset Z; of the multiset {z1, ..., zx} such that for z € Z;
llz—&illa <E.

Furthermore, assume that the multiset Z; has k; elements, counted with multiplicity, Z; N Z; =@ for 1 <
i<j<kandk= Zfﬂ ki. Assume further that ||zilloo <M + E foralli=1,. .:,k. Finally, assume that
for x* = xixjx*x% fori,j=1,...nand t,s = 1,...,k, the denominator of Z’]‘-:] kig? e Q is at mos_t
[(2Ekn|a|M¥1=1Y=1/27 Then Step 1 computes the exact Hermite matrices Hf = H?+ (T). Moreover, if B

defined in Step 2 forms a basis of Q[x1, ..., Xn1/~/Z then rank(H{") = rank(H1) =k and H{ = ng+ WI).

Proof. Since ||z — &j;ll2 < E and |zilloo < M + E, we have that [|&]lcc < M, thus the assumptions

of Proposition 3.2 are satisfied. Therefore, for all @« € N" as in the claim, we have that there is at
most one rational number within Ekn|o/|M'*1=1 distance from Z;‘:] z¥ with denominators bounded
by [(2Ek|la|M'*I=1)=1/21 We can take a limit argument from k distinct points to the multiset
{(61,k1), ..., (5. kp)} and apply Proposition 3.2 to this multiset and get that Z?:] ki&? is within that
distance from ¥ | z{. Using our assumption on the denominator of Pl £ € Q, by Theorem 2.13
the rational number reconstruction algorithm finds 2?21 ki&?. Thus, the entries of HT computed by
Algorithm 3.1 are the same as the entries of HT(I) as claimed.

To prove the last claim, if B forms a basis for Q[xl,..,,xn]/«/f then Vg = [b(gi)]i:L...,l},beB is a
square submatrix of maximal rank of Vpg+(I) = [b(§)]lzev (z),pep+ With each roots in V(Z) listed

as many times as their multiplicity. Since H = HF*(I) =Vg+(DTVg (D), and Hy = VEVB which
proves rank(H}) = rank(H) =k and Hf = HB" (VZ). O

We can use Algorithm 4.1 unchanged with input f, g, B, and I:I;r to compute certified Hermite
matrices Hy and Hy for /Z. We have the following theorem.

Theorem 5.3. Let f = (f1,..., fm) € Qx1,.... ™. ZT=(f1,..., fm) C Qlx1, ..., xn] a zero dimensional
ideal, g € Q[xq, ..., X]. Let B connected to 1 with |B| =k and |B™| =1 for some k,| € N. Suppose Al-
gorithm 5.1 returns k < k, B connected to 1 with |B| = k and H{ with rows and columns indexed by the
elements of BT. Ifk > dim Q[x, . .., x1)/~/T and Algorithm 4.1 with inputs f, g, B, and I:I;r returns Hy and
Hg then B is a basis for Q[x1, ..., xn]1/~/Z and

Hi=HP(/T) and Hy = HE (VD).
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Proof. Assume Algorithm 5.1 did not fail, and returns k <k, B connected to 1 with |B] =k and I:IT.
Then by Step 3 of Algorithm 5.1 we have rank(HT) = rank(I:I]*) = rank(H1) —k so we can define
the k x k matrices My, ..., M, in Step 2 of Algorithm 4.1. The same argument as in the proof of
Theorem 4.2 shows that Mji,..., M, forms a system of (transpose) multiplication matrices for an
ideal J such that dimQ[x1,...,x,]1/J =k, and Mj,..., M, are simultaneously diagonalizable and
their eigenvalues are the coordinates of the k distinct roots of J. Since f;j(Mq,..., M) =0 for all
i=1,...m we have that these k distinct roots are also common roots of Z. By assumption, k >
dim Q[xl, .. xn]/ﬁ so Z has at most k distinct roots, so we must have k = dim Q[xy, .. xn]/\/_
and B forms a basis Q[xq, .. .,xn]/ﬁ. Thus | = /Z. The rest of the proof is the same as the proof
of Theorem 4.2 with +/Z replacing Z. O

6. Application: rational certificate of non-negativity over real varieties

As mentioned in the Introduction, the following application was inspired by Cifuentes and Parrilo
(2017) where the authors give a method to compute a degree d sum of squares (SOS) decomposition
(if one exists) for a non-negative polynomial over a real algebraic set using a finite set of sample
points from the (complex) algebraic set. In Cifuentes and Parrilo (2017) they also give bounds on
the number of sample points needed to decide whether a degree d SOS decomposition exists. Their
method uses semidefinite programming.

The application we present below also gives a certificate for the non-negativity of a polynomial
over a real algebraic set, and also uses sample points of the complex algebraic set. However, it does
not give an SOS decomposition, instead it uses Hermite matrices reconstructed and certified from the
sample points. While the SOS decomposition constructed in Cifuentes and Parrilo (2017) is approxi-
mate, the construction we give here is exact, using rational numbers.

Consider the following problem:

Problem 6.1.Given f = (f1,..., fs) € Q[x]° and g € Q[x] for x = (x1, ..., Xy). Decide if g(z) > 0 for all
z € V(f) N R™" and give a rational certificate.

We use the following notion of critical points of g in V(f) c C":
Definition 6.2. Let f = (f1,..., fs) € Q[x]° and g € Q[x], and assume that Z := (fy, ..., fs) is a radi-
cal ideal. z € C" is a critical point of g in V (f) if ze V(f), z is non-singular in V (f), i.e. the Jacobian
matrix Jf(z) of f has rank c:=n —dimV(f), and the Jacobian matrix Jf(z) augmented with the
row vector Vg(z) has also rank c.
We can solve Problem 6.1 using the following assumptions on f = (f1,..., fs) and g:
Assumption 6.3. Let f = (f1,..., fs) € Q[x]* and g € Q[x] for x = (x1, ..., X;). We assume
1. For all z € V(f), the Jacobian matrix Jf(z) of f has rank s <n, i.e,, f is a regular sequence and
V (f) is smooth.
2. V(f)NR" is bounded,
3. g has finitely many critical points on V (f).

We need the following lemma:

Lemma 64.Let f € Q[x]° and g € Qlx] satisfying Assumption 6.3. Then, the set of polynomials in
QIX1, -+ X0 Ay e vy As]

9
Lx,0)={f1,..., fs}U 8x1 Z i 3 ci=1,...,n

0X;
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has finitely many roots in C™*S, and their projections to the x coordinates contain all real points where g
attains its extreme values on each connected component of (V(f)\ V(g)) NR".

Proof. First we prove that the projection V(L) c C"*** onto the x-coordinates are the critical points
of g in V(f). Let (x,A) € V(L) c C"**. Then clearly x € V(f), and because of our first assumption
and that s > c=n —dimV (f) we have that s =c and x is non-singular in V (f). By (x,A) € V(L) we
also have that Jf(x) augmented with Vg(x) has rank at most c, thus x is a critical point. Conversely,
let x be a critical point of g on V(f). Then fi,..., fs vanishes at x, and since both Jf(x) and the
augmented matrix Jf(x) by Vg(x) has rank s, Vg(x) is in the row space of Jf(x), thus there exists
A € C® such that (x, 1) € V(L).

Next we prove that V(L) c C"*S is finite. By assumption, g has finitely many critical points in
V (f), thus the projection of V(L) onto the x coordinates is finite. Since Jf(x) has full row rank for
every x € V(f), for every critical point x there is a unique A € C* such that (x, 1) € V(L). Thus V(L)
is finite.

To prove the second claim, assume that (V(f)\ V(g)) NR" £ @ and let C be a connected compo-
nent of the set (V(f)\V(g))NR". Since V(f)NR" is bounded, C is bounded as well. Since C ¢ V(g),
there exists x € C with g(x) # 0. Let C be the Euclidean closure of C so that C ¢ V N R" is closed
and bounded, and g vanishes identically on C \ C. By the extreme value theorem, g attains both a
minimum and a maximum on C. Since g is not identically zero on C, either the minimum or the
maximum value of g on C must be nonzero, so g attains a non-zero extreme value on C. By the La-
grange multiplier theorem, using our assumptions, the points in C where g attains its extreme values
are critical points of g in V(f), which proves the claim. O

Now we are ready to prove the main result of the section:

Theorem 6.5. Let f € Q[x]°, g € Q[x] and L C Q[x, A] as in Lemma 6.4. Let | be the ideal generated by L in
QIx, A1, and B C Q[x, A] be any finite monomial basis for Q[x, A1/ J. Then*

U(HB) —O’(H ) ifand only if g(x) > 0 forallx € V(f) NR".

Proof. For the given polynomials f € Q[x]° and g € Q[x], let
S
afj ;
X,A) € ci=1,...,np CLx,A).
g, 1) + Z i (X, 1)

First we prove that g(x) > 0 for all x € V(f) N R" if and only if g(x,A) >0 for all (x,A) € V(L) N
RS, Assume that g(x) > 0 for all x e V(f) NR™ Let (x,A) € V(L) NR"™S, Then x € V(f) N R"
and since g € Q[x], g(x,A) = g(x) > 0. Conversely, assume g(x,A) > 0 for all (x,A) € V(L) N RS,
Suppose there exists x € V(f) NR" such that g(x) < 0. Let C be the bounded connected component
of (V(f)\V(g) N R" that contains x and C its Euclidean closure. Let x* € C where g attains its
minimum on C. Then g(x*) < g(x) <0, so x* € C and x* is a critical point of g in V(f). Thus there
exists a unique A € RS, the solution of a linear system, such that (x*, 1) € V(L) N R"™S. But then
g(x*, 1) = g(x*) >0, a contradiction.

By Lemma 6.4 we have V(L) is finite, so B is finite. Since L has real (rational) coefficients, by
Hermite’s theorem

a(HB) =#{(x,)) e V(L)NR™ : g(x) >0} —#{(x,A) e V(L) NR™ : g(x) <0}
a(H ) =#{(x, 1) € V(L)NR™S : g(x) > 0}.

4 We thank to Bernard Mourrain for pointing out this simple fact.
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Thus, G(H?) = J(H?z) if and only if #{(x, 1) e V(L)NR™S : g(x) <0} =0, i.e. for all (x,1) e V(L)N
R™S we have g(x) > 0. This proves the theorem. O

Corollary 6.6. Let f € Q[x]°, g € Q[x] and L C Q[x, A] as in Lemma 6.4 and B C Q[x, A] as in Theorem 6.5.
Then H ? and H 52 have rational entries, and can be computed and certified from approximate roots for the sys-
tem L. Moreover, o (H f) =o(H ?2) can be also certified exactly over the rationals, giving a rational certificate
forg(x) >0 forallxe V(f)NR™

Proof. Since L and g has rational coefficients, the matrices HE and H?Z have rational entries. One

can find their signature by computing their LU-decomposition for example, again resulting in rational
matrices. These give a rational certificate for o (H ?) =o(H 52) and by the previous theorem for g(x) >

Oforall xe V(f)NR". O

Remark 6.7. The size k of the matrices HgB and Hfz is equal to the number of critical points of g in

V(f). A rough estimate is given by |V (L)| <d"" with d = max{deg(g), deg(f1),...,deg(fs)}, using
the Bezout bound for the polynomial system L.

The following proposition is needed in the algorithm below.

Proposition 6.8. Let {z1, ..., z}, {1, ..., &} C C" be such that for some E,M > 0

I§i —zillz <Eand ||zil2 <M+ E i=1,....k

Let B={x*1,...,x*} C Q[xq, ..., Xq] be a set of monomials such that deg(x*) < d for some d > 0. Then
the Frobenious distance of the Vandermonde matrices is bounded by

VB, ....&) — V521, ..., z1) | F < kndM?1E.

Proof. As in the proof of Proposition 3.2 we can see that for « € N", || <d we have

&% — 2| < ndM94=1E.

P

Taking the Frobenius norm of the difference of the Vandermonde matrices gives

IVBG1,....6) = V(. ..., 20 |F < k2 (ndMI-1E)? = kndM*~'E. O

Algorithm 6.9. (Certification that g is non-negative over V (f) NRR")

Input: ne N, f e Q[x)°, g € Q[x] for x=(x1,...,x,) satisfying Assumption 6.3.
Output: True: g(z) >0 forall ze V(f)NR"

False: g(z) isnot >0 forall ze V(f) NR"

or Fail

1: Construct L(x, A) as defined in Lemma 6.4.

2: Compute {(z1, ®1) ..., (zk, x)} € C"**, finitely many approximate roots of the real polyno-
mial system L(x,A) as defined in Lemma 6.4, together with their precision E and a bound
M such that ||z;|| <M+ E for i =1,...,k. Return Fail if L(x, 1) has infinitely many roots or
zi=zj forsome 1 <i< j<k.

3: Compute B = {x*1, ..., x%} connected to 1, such that the Vandermonde matrix Vz(z1, ..., Z)
has smallest singular value is greater than kndM?'E, where d is the maximal degree of the
monomials in B3 (see Proposition 6.8). Let B := | J; x;BU Uj XjiB.

4: H{ < HERMITE MATRIX COMPUTATION (B, B*, E, M, {(z1, it1), . .., (2k. itk)}) (see Algorithm 3.1)
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5: For J:=(L(x,2)) compute Hg(J) and Hg2(J) by calling HERMITE MATRIX CERTIFICATION with
input L(x, 1), g, B, B*,H] and L(x, 1), g%, B, B+, H respectively, which algorithm can also
return Fail (see Algorithm 4.1)

6: Calculate the signatures o (Hg(J) and o (H,2(J)) (see Remark 2.8)

7. if o (Hg(J)=0(Hg(])), then return True
else return False

7. Application: real root certification with Hermite matrices

Let f=(f1,..., fm) € Q[X1,...,x,]™ such that Z = (f1,..., fm) is a zero dimensional radical
ideal. The certification problem is the following: We are given z* € Q", ¢ € Q4 and we would like to
know if there is a root of f within the ¢ ball of z* in R". In this section, we present how one can use
the signature of Hermite matrices to answer this certification problem as an application of Hermite
matrices.

Now we introduce the certification theorem as a corollary of the Multivariate Hermite Theorem 2.7.

Corollary 71. Let f = (f1,..., fm) € Q[xq,....xp " foralli=1,...m,and T = (f1, ..., fm) is a zero di-
mensional radical ideal. Given z* € Q" and ¢ € Q_, define g(x) := ||x — z*||% —&2eQIxi,...,%a]. Then

0 (H1(I)) =0 (Hg(D)

if and only if there is no real root within the closed ball in R" of radius ¢ around z*.

Proof. By Theorem 2.7, 0 (Hg(Z)) =#{x e VR(Z) | g(x) > 0} —#{x e VR(Z) | g(x) < 0}. Since 1 is
greater than 0, the signature of H{(Z) gives the number of all real roots of Z. Thus, it can be written
as

o(H1(1)) =#{x € VR(T) | g(x) > O} +#{x € VR (D) | g(x) < O} +#{x € VR(Z) | g(x) =0} (9)

for any g(x) € R[xq,...,xp]. Now, let g(x) = ||x — z*||§ —&e2eR[x1,..., %]

Assume that o (H1(Z)) = 0 (Hg(Z)). Using the definitions above and canceling the terms #{x e
VR () | g(x) > 0} from both sides, we have 2#{x € Vr(Z) | g(x) <0} = —#{x € Vr(Z) | g(x) =0}.
The only solution to this equation is

#{xeVR(@) |g(x) <0} =0and #{x e VR (Z) | g(x) =0} =0,

since these terms are nonnegative integers by definition. This implies that there is no real solution to
Z, when g(x) <0 and g(x) = 0. By the definition of g(x) = ||x — z*||% — &2, there is no x € R" such
that ||x — z*H% < &2. Thus we conclude that there is no real root within the closed ball of radius e.
Assume that there is no real root to Z within the closed ball in R" of radius & around z*. It implies
that any x € Vg (Z) satisfies the inequality [[x — z*||3 > &2. Then g(x) = ||x — z*||3 — &2 is always
positive, and #{x € VR (Z) | g(x) <0} =0. By Theorem 2.7 and (9), we have

0(H1(1)) =0(Hg(Z)) =#{xe Vr(Z) | g(x) >0}. O
Algorithm 7.2 (Real Root Certification).

Input: f=(f1,..., fm) € Qx1,...,x:1™; z* € Q[i]"; €2 € Q;

B={x¥,...,x%)} connected to 1 with |BT| =1 for some k,l ¢ N
E,MeR, and z1,...,z, € C" such that ||zj||loo <M +E fori=1,...,k and the accuracy of z; is
at least E.

Output: True: 3z € VR (Z) such that z is in the closed ball of radius ¢ around z*
False: No real root of Z within the closed ball of radius ¢ around z*
or Fail.
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-

: Define g(x) := ||lx — z*||2 — £ € Q[x1, ..., x4]
2: Hf = H?Jr (z1,...,2) < HERMITE MATRIX COMPUTATION (B, BT, E, M, {z1, ..., z})
(see Algorithm 3.1)
3: For I := (f1,..., fm) call HERMITE MATRIX CERTIFICATION(f,g(x),B,HT) to obtain certified
Hi(I) and Hg(I), that algorithm can also return Fail (see Algorithm 4.1)
: Compute o (H1(Z)) and o (Hg(Z)). See Remark 2.8 for computational details.
: If 0(H1(Z)) =0 (Hg(Z)) then return False
else return True.
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