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1. Introduction

Local numerical methods such as Newton iterations have proved their efficiency to approximate 
and certify the existence of simple roots. However, for multiple roots they dramatically fail to provide 
fast numerical convergence and certification. The motivation for this work is to find a method with 
fast convergence to an exact singular point and its multiplicity structure for a small perturbation of 
the input polynomials, and to give numerical tests that can certify it. The knowledge of the multi-
plicity structure together with a high precision numerical approximation of a singular solution can be 
valuable information in many problems.

In Mourrain (1997) a method called later integration method is devised to compute the so-called 
inverse system or multiplicity structure at a multiple root. It is used in Mantzaflaris and Mourrain 
(2011) to compute an approximation of the inverse system, given an approximation of that root and 
to obtain a perturbed system that satisfies the duality property. However, this method did not give 
a way to improve the accuracy of the initial approximation of the root and the corresponding in-
verse system. In Hauenstein et al. (2016) a new one-step deflation method is presented that gives 
an overdetermined polynomial system in the coordinates of the roots and the corresponding inverse 
system, serving as a starting point for the present paper. However, for certification, (Hauenstein et al., 
2016) refers to the symbolic-numeric method in Ayyildiz Akoglu et al. (2018) that only works if the 
input system is given exactly with rational coefficients and have a multiple root with the prescribed 
multiplicity structure.

In the present paper we give a solution for the following problem:

Problem 1.1. Given a polynomial system f = ( f1, . . . , fN) ∈ C[x]N and a point ξ ∈ Cn , deduce an 
iterative method that converges quadratically to the triple (ξ∗, μ∗, ǫ∗) such that ξ∗ ∈ Cn , μ∗ defines 
the coefficients of a basis �∗ = {�∗

1, . . . , �
∗
r } ⊂ C[dξ∗ ] dual to the set Bξ∗ = {(x − ξ∗)β1 , . . . , (x −

ξ∗)βr } ⊂ C[x] and ǫ∗ defines a perturbed polynomial system fǫ∗ := f + ǫ∗Bξ∗ with the property that 
ξ∗ is an exact multiple root of fǫ∗ with inverse system �∗ . Furthermore, certify this property and give 
an upper bound on the size of the perturbation ‖ǫ∗‖.

The difficulty in solving Problem 1.1 is that known polynomial systems defining the coordinates 
of the roots and the inverse system are overdetermined, and we need a square subsystem of it in 
the Newton iterations to guarantee the existence of a root (and not merely a local minimum of the 
norm of the function value), which at the same time ensures a quadratic convergence to the root. 
Thus, roots of this square subsystem may not be exact roots of the complete polynomial system, and 
we cannot certify numerically that they are approximations of a root of the complete system. This is 
the reason why we introduce the variables ǫ that allow perturbation of the input system. One of the 
goals of the present paper is to understand what kind of perturbations are needed and to bound their 
magnitude.

Certifying the correctness of the multiplicity structure that the numerical iterations converge to 
poses a more significant challenge: the set of parameter values describing an affine point with mul-
tiplicity r forms a projective variety called the punctual Hilbert scheme. The goal is to certify that we 
converge to a point on this variety. We study an affine subset of the punctual Hilbert scheme and 
give a new description using multilinear quadratic equations that have a triangular structure. These 
equations appear in our deflated polynomial system, have integer coefficients, and have to be satisfied 
exactly without perturbation, otherwise the solution does not define a proper inverse system, closed 
under derivation. Fortunately, the structure allowed us to define a rational parametrization of a strata 
of the punctual Hilbert scheme, called the regular strata. In turn, this rational parametrization allows 
certification when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration Method (Algorithm 1) with 
input f and ξ to compute an approximation of the multiplicity structure, second, an analysis and 
certification part (see Section 6 and Algorithm 2), and third, a numerical iteration part converging to 
the exact multiple root with its multiplicity structure for an explicit perturbation of the input system 
(see Section 5).
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This paper is an extended version of the paper (Mantzaflaris et al., 2020). The present version 
contains a new result, presented in Subsection 5.2, on how the updates of our Newton iteration can 
be evaluated efficiently from the previous iterates, without resorting to the symbolic expression of 
the dual basis in terms of parameters. Furthermore, we give a more detailed explanation of our ex-
amples and numerical experimentation in Section 7. Moreover, in the present version we included all 
proofs that were left aside in the proceedings version (Proofs of Propositions 2.3 and 4.4; Lemma 2.5; 
Theorems 2.8, 3.3, 5.1 and 6.1).

Related work There are many works in the literature studying the certification of isolated singular 
roots of polynomial systems. One approach is to give separation bounds for isolated roots, i.e. a bound 
that guarantees that there is exactly one root within a neighborhood of a given point. Worst case 
separation bounds for square polynomial systems with support in given polytopes and rational co-
efficients are presented in Emiris et al. (2010). In the presence of singular roots, turned into root 
clusters after perturbations, these separation bounds separate the clusters from each other and bound 
the cluster size. Yakoubsohn (2000, 2002); Giusti et al. (2005) give separation bounds and numerical 
algorithms to compute clusters of zeroes of univariate polynomials. (Dedieu and Shub, 2001) extends 
α-theory and gives separation bounds for simple double zeroes of polynomial systems, Giusti et al. 
(2007) extend these results to zeroes of embedding dimension one.

Another approach, called deflation, comprises of transforming the singular root into a regular root 
of a new system and to apply certification techniques on the new system. Kanzawa et al. (1997) uses 
a square deflated system to prove the existence of singular solutions. Leykin et al. (2006) devises 
a deflation technique that adds new variables to the systems for isolated singular roots that accel-
erates Newton’s method and Leykin et al. (2008) modifies this to compute the multiplicity structure. 
Rump and Graillat (2010) computes error bounds that guarantee the existence of a simple double root 
within that error bound from the input, Li and Zhi (2013, 2014) generalizes Rump and Graillat (2010)
to the breadth one case and give an algorithm to compute such error bound. Li and Sang (2015) gives 
verified error bounds for isolated and some non-isolated singular roots using higher order deflations. 
Dayton and Zeng (2005); Wu and Zhi (2008a); Zeng (2009); Wu and Zhi (2008b); Dayton et al. (2011); 
Hao et al. (2013) give deflation techniques based on numerical linear algebra on the Macaulay ma-

trices that compute the coefficients of the inverse system, with improvements using the closedness 
property of the dual space. Giusti and Yakoubsohn (2013, 2020) give a new deflation method that 
does not introduce new variables and extends α-theory to general isolated multiple roots for the cer-
tification to a simple root of a subsystem of the overdetermined deflated system. In Hauenstein et 
al. (2016) a new deflated system is presented, its simple roots correspond to the isolated singular 
points with their multiplicity structure. A somewhat different approach is given in Ayyildiz Akoglu 
et al. (2018), where they use a symbolic-numeric certification techniques that certify that polynomial 
systems with rational coefficients have exact isolated singular roots. More recently, Lee et al. (2019)
design a square Newton iteration and provide separation bounds for roots when the deflation method 
of Leykin et al. (2006) terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic analysis of some strata of the 
punctual Hilbert scheme. Some of its geometric properties have been investigated long time ago, for 
instance in Briançon (1977); Iarrobino (1977); Briançon and Iarrobino (1978) or more recently in the 
plane (Bejleri and Stapleton, 2017). However, as far as we know, the effective description that we 
use and the rational parametrization of the regular strata that we compute have not been developed 
previously.

The paper is structured as follows. In the next Section we recall the main definitions and algo-
rithms regarding isolated multiple points. In Section 3 we define the punctual Hilbert Scheme and 
in Section 4 we show that it admits a rational parametrization for its regular part, which can be ob-
tained algorithmically. Then in Sections 5 and 6 we describe the construction and the certification of 
a Newton procedure for computing a multiple point to high accuracy. Finally in Section 7 we develop 
some examples and benchmarks of the proposed approach.

225



A. Mantzaflaris, B. Mourrain and A. Szanto Journal of Symbolic Computation 115 (2023) 223–247

2. Preliminaries

Let f := ( f1, . . . , fN) ∈ C[x]N with x = (x1, . . . , xn). Let ξ = (ξ1, . . . , ξn) ∈ Cn be an isolated multiple 
root of f. Let I = 〈 f1, . . . , fN〉, mξ be the maximal ideal at ξ and Q be the primary component of I
at ξ so that 

√
Q = mξ . The shifted monomials at ξ will be denoted for α = (α1, . . . , αn) ∈ Nn by

xα
ξ := (x1 − ξ1)

α1 · · · (x1 − ξn)
αn .

2.1. Duality and differential polynomials

Consider the ring of power series C[[dξ ]] := C[[d1,ξ , . . . , dn,ξ ]] and we denote dβ
ξ := d

β1

1,ξ · · ·dβn

n,ξ , 
with β = (β1, . . . , βn) ∈ Nn . We identify C[[dξ ]] with the dual space C[x]∗ by considering the action 

of dβ
ξ on polynomials as derivations and evaluations at ξ , defined as

〈dβ
ξ | p〉ξ := d

β
ξ (p) = ∂β(p)

∣

∣

ξ
=

∂ |β|p

∂x
β1

1 · · ·∂xβn
n

(ξ) for p ∈ C[x]. (1)

More generally, for � =
∑

α �α dα
ξ ∈ C[[dξ ]] and p ∈ C[x], we denote 〈�|p〉ξ := �(dξ )(p) =

∑

α �α ∂α(p)
∣

∣

ξ
. Hereafter, we reserve the notation d and di for the dual variables while ∂ and ∂xi

for derivation. We indicate the evaluation at ξ ∈ Cn by writing di,ξ and dξ , and for ξ = 0 it will be 
denoted by d. The derivation with respect to the variable di,ξ in C[[dξ ]] is denoted ∂di,ξ (i = 1, . . . , n). 
Observe that

1

β!
d

β
ξ ((x − ξ)α) =

{

1 if α = β,

0 otherwise,

where β! = β1! · · ·βn!.
For p ∈ C[x] and � ∈ C[[dξ ]] = C[x]∗ , let p ⋆� : q 	→ �(p q). We check that p = (xi − ξi) acts as a 

derivation on C[[dξ ]]: (xi − ξi) ⋆ d
β
ξ = ∂di,ξ (d

β
ξ ) = βid

β−ei
ξ . Throughout the paper we use the notation 

e1, . . . , en for the standard basis of Cn or for a canonical basis of any vector space V of dimension 
n. We will also use integrals of polynomials in C[[dξ ]] as follows: for � ∈ C[[dξ ]] and k = 1, . . . , n, 
∫
k

� denotes the polynomial �∗ ∈ C[[dξ ]] such that ∂dk,ξ (�
∗) = � and �∗ has no constant term. We 

introduce the following shorthand notation

∫
k

� := ∫
k

�(d1,ξ , . . . ,dk,ξ ,0, . . . ,0). (2)

For an ideal I ⊂ C[x], let I⊥ = {� ∈ C[[dξ ]] | ∀p ∈ I, �(p) = 0}. The vector space I⊥ is naturally 
identified with the dual space of C[x]/I . We check that I⊥ is a vector subspace of C[[dξ ]] which is 
closed under the derivations ∂di,ξ for i = 1, . . . , n.

Lemma 2.1. If Q is a mξ -primary isolated component of I , then Q ⊥ = I⊥ ∩ C[dξ ].

This lemma shows that to compute Q ⊥ , it suffices to compute all polynomials of C[dξ ] which are 
in I⊥ . Let us denote this set D = I⊥ ∩ C[dξ ]. It is a vector space stable under the derivations ∂di,ξ . Its 
dimension is the dimension of Q ⊥ or C[x]/Q , that is the multiplicity of ξ , denoted rξ (I), or simply r
if ξ and I is clear from the context.

For an element �(dξ ) ∈ C[dξ ] we define the degree or order ord(�) to be the maximal |β| s.t. dβ
ξ

appears in �(dξ ) with non-zero coefficient.
For t ∈ N , let Dt be the elements of D of order ≤ t . As D is of dimension r, there exists a smallest 

t ≥ 0 s.t. Dt+1 =Dt . Let us call this smallest t , the nil-index of D and denote it by δξ (I), or simply by 

226



A. Mantzaflaris, B. Mourrain and A. Szanto Journal of Symbolic Computation 115 (2023) 223–247

δ. As D is stable by the derivations ∂di,ξ , we easily check that for t ≥ δξ (I), Dt = D and that δξ (I) is 
the maximal degree of elements of D.

Let B = {xβ1

ξ , . . . , xβr

ξ } be a basis of C[x]/Q . We can identify the elements of C[x]/Q with the 
elements of the vector space spanC(B). We define the normal form N(p) of a polynomial p in C[x]
as the unique element b of spanC(B) such that p − b ∈ Q . Hereafter, we are going to identify the 
elements of C[x]/Q with their normal form in spanC(B). For α ∈ Nn , we will write the normal form 
of xα

ξ as

N(xα
ξ ) =

r
∑

i=1

μβi ,α x
βi

ξ . (3)

2.2. The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual pairs of bases for the 
space C[x]/Q and its dual. The following lemma defines the same dual space as in e.g. (Dayton and 
Zeng, 2005; Dayton et al., 2011; Li and Zhi, 2014), but we emphasize on a primal-dual basis pair to 
obtain a concrete isomorphism between the factor ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let f, I, ξ , Q , D, r = rξ (I) and δ = δξ (I) be as above. Then there 
exists a primal-dual basis pair (B, �) of the local ring C[x]/Q with the following properties:

1. The primal basis of the local ring C[x]/Q has the form

B :=
{

x
β1

ξ ,x
β2
ξ , . . . ,x

βr

ξ

}

. (4)

We can assume that β1 = 0 and that the ordering of the elements in B by increasing degree. Define the set 
of exponents in B as E := {β1, . . . , βr} ⊂ Nn .

2. The unique dual basis � = {�1, �2, . . ., �r} of D ⊂ C[dξ ] dual to B has the form

�i =
1

βi !
d

βi

ξ
+

∑

|α|≤|βi |
α /∈E

μβi ,α
1

β!
dα

ξ .

3. We have 0 = ord(�1) ≤ · · · ≤ ord(�r), and for all 0 ≤ t ≤ δ we have Dt = span
{

� j : ord(� j) ≤ t
}

, 
where Dt denotes the elements of D of order ≤ t, as above.

A graded primal-dual basis pair (B, �) of D as described in Lemma 2.2 can be obtained from any 
basis �̃ of D by first choosing pivot elements that are the leading monomials with respect to a graded 
monomial ordering on C[d], these leading monomials define B , then transforming the coefficient 
matrix of �̃ into row echelon form using the pivot leading coefficients, defining �.

A monomial set B is called a graded primal basis of f at ξ if there exists � ⊂ C[dξ ] such that (B, �)

is a graded primal-dual basis pair and � is complete for f at ξ .
Next we describe the so-called integration method introduced in Mourrain (1997); Mantzaflaris and 

Mourrain (2011) that computes a graded pair of primal-dual bases as in Lemma 2.2 if the root ξ
is given. The integration method performs the computation of a basis order by order. We need the 
following proposition, a new version of (Mourrain, 1997, Theorem 4.2):

Proposition 2.3. Let �1, . . . , �s ∈ C[dξ ] and assume that ord(�i) ≤ t for some t ∈ N . Suppose that the 
subspace D := span(�1, . . . , �s) ⊂ C[dξ ] is closed under derivation. Then 
 ∈ C[dξ ] with no constant 
term satisfies ∂dk (
) ∈D for all k = 1, . . . , n if and only if 
 is of the form


 =
s
∑

i=1

n
∑

k=1

νk
i ∫
k

�i (5)
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for some νk
i ∈ C satisfying

s
∑

i=1

νk
i ∂dl (�i) − νl

i∂dk (�i) = 0 for 1 ≤ k < l ≤ n. (6)

Furthermore, (5) and (6) implies that

∂dk (
) =
s
∑

i=1

νk
i �i for k = 1, . . . ,n. (7)

Proof. Suppose � ∈ C[d] with no constant term satisfies ∂dk (�) ∈D for all k = 1, . . . , n. To prove (5), 
we can proceed exactly as in the proof of (Mourrain, 1997, Theorem 4.2): we write 
 uniquely as


 = 
1(d1, . . . ,dn) + 
2(d2, . . . ,dn) + · · · ,+
n(dn)

with 
i ∈ C[di, . . . , dn] \ C[di+1, . . . , dn]. Then ∫
i

∂di
i = 
i . Then we prove that by induction on k

that if σk := 
1 + · · · + 
k then


k =
s
∑

j=1

νk
j∫
k

� j −
(

σk−1 − σk−1|dk=0

)

and

σk = 
k + σk−1 =
s
∑

j=1

νk
j∫
k

� j + σk−1|dk=0

=
s
∑

j=1

νk
j∫
k

� j +
s
∑

j=1

νk−1
j

∫
k

� j|dk=0 + · · · +
s
∑

j=1

ν1
j∫
k

� j|dk=0,···d2=0.

Conversely, suppose that � ∈ C[d] with no constant term is of the form (5) satisfying (6). Define 

̄1 = σ̄1 :=

∑s
j=1 ν1

j
∫
1

� j and for k = 2, . . .n define


̄k :=
s
∑

j=1

νk
j∫
k

� j −
(

σk−1 − σk−1|dk=0

)

and σ̄k := 
̄1 + · · · + 
̄k . Then in the proof of (Mourrain, 1997, Theorem 4.2) it is shown that 
̄k ∈
C[dk, . . . , dn] \ C[dk+1, . . . , dn] and

σ̄k =
s
∑

j=1

νk
j∫
k

� j +
s
∑

j=1

νk−1
j

∫
k

� j|dk=0 + · · · +
s
∑

j=1

ν1
j∫
k

� j|dk=0,···d2=0

so we get that ∂dk (�) = ∂dk (σ̄k) =
∑s

j=1 νk
j� j ∈Dt as claimed. �

Let Q be a mξ -primary ideal. Proposition 2.3 implies that if � = {�1, . . . , �r} ⊂ C[dξ ] with �1 =
1ξ is a basis of Q ⊥ , dual to the basis B = {xβ1

ξ , . . . , xβr

ξ } ⊂ C[x] of C[x]/Q with ord(�i) = |βi |, then 

there exist νk
i, j ∈ C such that

∂dk (�i) =
∑

|β j |<|βi |
νk
i, j � j.

Therefore, the matrix Mk of the multiplication map Mk by xk − ξk in the basis B of C[x]/Q is
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Mk = [νk
j,i]

T
1≤i, j≤r = [μβi ,β j+ek ]1≤i, j≤r

using the notation (3) and the convention that νk
i, j = μβi ,β j+ek = 0 if |βi | ≥ |β j |. Consequently,

νk
i, j = μβi ,β j+ek i, j,= 1, . . . , r,k = 1, . . . ,n,

and we have

�i =
∑

|β j |<|βi |

n
∑

k=1

μβi ,β j+ek∫
k

� j

where μβi ,β j+ek is the coefficient of xβi

ξ in the normal form of x
β j+ek
ξ in the basis B of C[x]/Q .

Next we give a result that allows to simplify the linear systems involved in the integration method. 
We first need a definition:

Definition 2.4. Let E ⊂ Nn be a set of exponents. We say that E is closed under division if β =
(β1, . . . , βn) ∈ E implies that β − ek ∈ E as long as βk > 0 for all k = 1, . . . , n. We also call the corre-
sponding primal basis B = {xβ1

ξ , . . . , xβr

ξ } closed under division.

The following lemma provides a simple characterization of dual bases of inverse systems closed 
under derivation, that we will use in the integration algorithm.

Lemma 2.5. Let B = {xβ1

ξ , . . . , xβr

ξ } ⊂ C[x] be closed under division and ordered by degree. Let � =
{�1, . . . , �r} ⊂ C[dξ ] be a linearly independent set such that

�i =
∑

|β j |<|βi |

n
∑

k=1

μβi ,β j+ek∫
k

� j. (8)

Then D = span{�1, . . . , �r} is closed under derivation iff for all i, s = 1, . . . , r, |βs| < |βi | and k �= l ∈
{1, . . . , n} we have

∑

j:|βs|<|β j |<|βi |
μβi ,β j+ekμβ j ,βs+el − μβi ,β j+elμβ j ,βs+ek = 0. (9)

Furthermore, (B, �) is a graded primal-dual basis pair iff they satisfy (9) and

μβi ,β j+ek =
{

1 for βi = β j + ek

0 for β j + ek ∈ E, βi �= β j + ek.
(10)

Proof. Assume � = {�1, . . . , �r} is linearly independent and D = span(�) is closed under deriva-
tion. For t ∈ {0, . . . , δ} denote by {�1, . . . , �rt } = � ∩ C[dξ ]t and Dt = span(�1, . . . , �rt ). Then by 
Proposition 2.3, � satisfy equations (7) for t = 0, . . . , δ and for j = 1, . . . , r, k = 1, . . . , n, we have 
∂dk (� j) =

∑

|βs |<|β j | μβ j ,βs+ek�s . Substituting this to (6) we get for i = 1, . . . , r

∑

|β j |<|βi |
μβi ,β j+ek

∑

|βs|<|β j |
μβ j ,βs+el�s

−μβi ,β j+el

∑

|βs|<|β j |
μβ j ,βs+ek�s = 0. (11)

Then using linear independence and collecting the coefficients of �s we get (9).
Conversely, assume that (9) is satisfied. Then (11) is also satisfied. We use induction on t to prove 
that Dt is closed under derivation. For t = 0 there is nothing to prove. Assume Dt−1 is closed under 
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derivation. Then by Proposition 2.3 if |β j | < t then ∂dk (� j) =
∑

|βs |<|β j | μβ j ,βs+ek�s for k = 1, . . . , n. 
Thus for |βi | = t , (11) implies that

∑

|β j |<|βi |
μβi ,β j+ek∂dl (� j) − μβi ,β j+el∂dk (� j) = 0.

Again, by Proposition 2.3 we get that Dt is closed under derivation.
Next, assume first that (B, �) is a graded primal-dual basis pair. This means that for i = 1, . . . , r and 
for l such that |βl| ≤ |βi |

δi,l = �i

(

x
βl
ξ

)

=
n
∑

k=1

∑

|β j |<|βi |
μβi ,β j+ek∫

k

� j

(

x
βl
ξ

)

=
n
∑

k=1

∑

|β j |<|βi |
μβi ,β j+ekcoeff(

dβl

βl!
, ∫
k

� j)

Fix k to be the index of the last non-zero entry of βl . For all other k’s dβl becomes zero when we 
substitute 0 into dk+1, . . . , dn in ∫

k

� j . Thus,

�i

(

x
βl
ξ

)

=
∑

|β j |<|βi |
μβi ,β j+ekcoeff(

dβl

βl!
, ∫
k

� j)

=
∑

|β j |<|βi |
μβi ,β j+ekcoeff(

dβl−ek

(βl − ek)!
,� j).

Since E is closed under division, βl − ek = βm ∈ E for some m < l. By duality, we have that 
coeff( dβm

(βm)! , � j) = δm, j , so

�i

(

x
βl
ξ

)

= μβi ,βm+ek = μβi ,βl
.

To satisfy �i

(

x
βl
ξ

)

= δi,l we must have

μβi ,βm+ek =
{

1 if βi = βm + ek

0 if βm + ek = βl ∈ E but i �= l.

Conversely, by induction on t = |βi | we have that deg(�i) ≤ |βi |. Then �i

(

x
βl
ξ

)

= 0 when |βl| > |βi |. 

For |βl| ≤ |βi |, relations (10) imply that the coefficient of d
βl

βl ! in �i is 0 if i �= l and 1 if i = l. Therefore 
(B, �) is a graded primal-dual basis pair. �

To compute the inverse system D of f at a point ξ , we will consider the additional systems of 
equations in ξ and μ = {μβi ,α}:

�i( f j) = 0 for 1 ≤ i ≤ r,1 ≤ j ≤ N. (12)

Throughout the paper we use the following notation:

Notation 2.6. Let f1, . . . , fN ∈ C[x], ξ ∈ Cn and fix t ∈ N . Let Bt−1 = {xβ1

ξ , . . ., x
βrt−1

ξ } ⊂ C[xξ ]t−1 be 
closed under division and �t−1 = {�1, . . . , �rt−1} ⊂ C[dξ ]t−1 dual to Bt−1 with

∂dk (� j) =
∑

|βs|<|β j |
μβ j ,βs+ek�s j = 1, . . . , rt−1,k = 1, . . . ,n.
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Algorithm 1 Integration Method - Iteration t .

Input: t > 0, f = ( f1, . . . , fN ) ∈ C[x]N , ξ ∈ Cn , Bt−1 = {xβ1

ξ , . . . , x
βrt−1

ξ } ⊂ C[x] closed under division and 
�t−1 = {�1, . . . , �rt−1 } ⊂ C[dξ ] a basis for Dt−1 dual to Bt−1 , of the form (8).
Output: Either “Dt = Dt−1” or Bt = {xβ1

ξ , . . . , xβrt
ξ } for some rt > rt−1 closed under division and �t = {�1, . . . , �rt } with �i of 

the form (8), satisfying (9), (10) and (12).

(1) Set up the coefficient matrix Kt of the homogeneous linear system (13)-(15) in Notation 2.6 in the variables 
{νk

j } j=1,...,rt−1, k=1,...,n associated to an element of the form � =
∑rt−1

j=1

∑n
k=1 νk

j
∫
k

� j . Let ht := dimker Kt .

(2) If ht = 0 then return “Dt = Dt−1”. If ht > 0 define rt := rt−1 + ht . Perform a triangulation of Kt by row reductions with 
row permutations and column pivoting so that the non-pivoting columns correspond to exponents βrt−1+1, . . . , βrt with strict 
divisors in Bt−1 . Let Bt = Bt−1 ∪ {x

βrt−1+1

ξ , . . . , xβrt
ξ }.

(3) Compute a basis �rt−1+1, . . . , �rt ∈ C[dξ ] of ker Kt from the triangular reduction of Kt by setting the coefficients of the 
non-pivoting columns to 0 or 1. This yields a basis �t = �t−1 ∪ {�rt−1+1, . . . , �rt } dual to Bt . The coefficients νk

i, j of �i are 
μβi ,β j+ek in (8) so that Eq. (12) are satisfied. Eq. (10) are satisfied, since �t is dual to Bt .

Consider the following homogeneous linear system of equations in the variables {νk
j : j =

1, . . . , rt−1, k = 1, . . . , n}:
∑

j:|βs|<|β j |<t

νk
j μβ j ,βs+el − νl

j μβ j ,βs+ek = 0, 1 ≤ k < l ≤ n (13)

νk
j = 0 if β j + ek = βl for some 1 ≤ l ≤ rt−1 (14)
⎛

⎝

rt−1
∑

j=1

n
∑

k=1

νk
j∫
k

� j

⎞

⎠ ( fl) = 0 l = 1, . . . ,N. (15)

We will denote by Ht the coefficient matrix of the equations in (13) and (14) and by Kt the coefficient 
matrix of the equations in (13)-(15).

By Proposition 2.3 and Lemma 2.5, if Kt ν = 0 where ν = [νk
j : j = 1, . . . , s, k = 1, . . . , n], then 

� =
∑s

j=1

∑n
k=1 νk

j
∫
k

� j ∈ (f)⊥ ∩ C[dξ ]t = Dt . The main loop of the integration method described in 

Algorithm 1 consists of computing the new basis elements in Dt and the new basis monomials in Bt

of degree t from the primal-dual basis pair (Bt−1, �t−1) in degree t − 1.
Algorithm 1 produces incrementally a basis of D, similarly to Macaulay’s method. The algorithmic 

advantage is the smaller matrix size in O (r n2 + N) instead of N
(n+δ−1

δ

)

, where δ is the maximal 
degree (depth) in the dual, cf. (Mantzaflaris and Mourrain, 2011; Hauenstein et al., 2016).

The full Integration Method consists of taking �1 := 1ξ for t = 0, a basis of D0 and then iterating 
algorithm Integration Method - Iteration t until we find a value of t when Dt = Dt−1 . This implies 
that the order δ = δξ (f) = t − 1. This leads to the following definition.

Definition 2.7. We say that � ⊂ C[dξ ] is complete for f at ξ if for δ := ord(�) we have ker Kδ+1 = {0}. 
Here the linear system Kt is as in (13)-(15).

Notice that the full Integration Method constructs a graded primal-dual basis pair (B, �). The 
basis � ⊂ (f)⊥ spans a space stable by derivation and is complete for f, so that we have span(�) =
(f)⊥ ∩ C[dξ ] = Q ⊥ where Q is the primary component of (f) at ξ .

To guarantee that Bt is closed under division, one could choose a graded monomial ordering ≺ of 
C[dξ ] and compute an auto-reduced basis of ker Kt such that the initial terms for ≺ are dβi

ξ . The set 
Bt constructed in this way would be closed under division, since Dt is stable under derivation. In the 
approach we use in practice, we choose the column pivot taking into account the numerical values of 
the coefficients and not according to a monomial ordering and we check a posteriori that the set of 
exponents is closed under division (See Example 7.1).
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The main property that we will use for the certification of multiplicities is given in the next 
theorem.

Theorem 2.8. If ξ∗ is an isolated solution of the system f(x) = 0 and B is a graded primal basis at ξ∗ closed 
under division, then the system F (ξ, μ) = 0 of all equations (9), (10) and (12) admits (ξ∗, μ∗) as an isolated 
simple root, where μ∗ defines the basis �∗ of the inverse system of (f) at ξ dual to B, due to (8).

Proof. This is a direct consequence of (Hauenstein et al., 2016, Theorem 4.11), since the system of 
equations (9)-(12) is equivalent to the system (14) in (Hauenstein et al., 2016, Theorem 4.11). The 
equations (9) express the commutation of the transposed of the parametric operator of multiplica-
tion in B , which are the same as the equations of commutation of the operators. By Lemma 2.5, the 
equations (10) are equivalent to the fact that (B, �∗) is a graded primal-dual basis pair. Finally, the 
equations (12) are the same as N ( f i) = 0, i = 1, . . . , s where N is the parametric normal form de-
fined in Hauenstein et al. (2016)[see Definition 4.7 and following remark]. Therefore the two systems 
are equivalent. By (Hauenstein et al., 2016, Theorem 4.11), they define the simple isolated solution 
(ξ∗, μ∗), where μ∗ defines the basis �∗ dual to B due to (8). �

3. Punctual Hilbert scheme

The results in Sections 3 and 4 do not depend on the point ξ ∈ Cn , so to simplify the notation, we 
assume in these sections that ξ = 0. Let m = (x1, . . . , xn) be the maximal ideal defining ξ = 0 ∈ Cn . 
Let C[d] be the space of polynomials in the variables d = (d1, . . . , dn) and C[d]t ⊂ C[d] the subspace 
of polynomials in d of degree ≤ t .

For a vector space V , let Gr(V ) be the projective variety of the r dimensional linear subspaces 
of V , also known as the Grassmannian of r-spaces of V . The points in Gr(V ) are the projective 
points of P (∧rV ) of the form v = v1 ∧ · · · ∧ vr for v i ∈ V . Fixing a basis e1, . . . , es of V , the Plücker 
coordinates of v are the coefficients of 
i1,...,ir (v) of v =

∑

i1<···<ir

i1,...,ir (v) ei1 ∧ · · · ∧ eir . When 

V = C[d]r−1 , a natural basis is the dual monomial basis ( d
α

α! )|α|<r . The Plücker coordinates of an 
element v ∈ Gr(C[d]r−1) for this basis are denoted 
α1,...,αr (v) where αi ∈ Nn , |αi| < r.

If � = {�1, . . . , �r} is a basis of a r-dimensional space D in C[d]r−1 with �i =
∑

|α|<r μi,α
dα

α! , 
the Plücker coordinates of D are, up to a scalar, of the form 
α1,...,αr = det

[

μi,α j

]

1≤i, j≤r
. In par-

ticular, a monomial set B = {xβ1 , . . . , xβr } ⊂ C[x]r−1 has a dual basis in D iff 
β1,...,βr (D) �= 0. If 
(B = {xβi }ri=1, � = {�i}ri=1) is a graded primal-dual basis pair, then μi,β j

= δi, j . To keep our notation 
consistent with the previous sections, the coordinates of �i ∈ � when � is dual to B will be denoted 
by μβi ,α instead of μi,α . By properties of the determinant, the Plücker coordinates of D are such that

μβi ,α =

β1,...,βi−1,α,βi+1,...,βr


β1,...,βr

i = 1, . . . , r. (16)

If D is the dual of an ideal Q = D⊥ ⊂ C[x] and B = {xβ1 , . . . , xβr } is a basis of C[x]/Q so that 

β1,...,βr (D) �= 0, the normal form of xα ∈ C[x]r−1 modulo Q =D⊥ in the basis B is

N(xα) =
r
∑

j=1

μβ j ,α xβ j =
r
∑

j=1


β1,...,β j−1,α,β j+1,...,βr


β1,...,βr

xβ j

(if deg(xα) ≥ r, then N(xα) = 0).

Definition 3.1. Let Hr ⊂ Gr(C[d]r−1) be the set of linear spaces D of dimension r in C[d]r−1 which 
are stable by the derivations ∂di with respect to the variables d (i.e. ∂diD ⊂ D for i = 1, . . . , n). We 
called Hr the punctual Hilbert scheme of points of multiplicity r.

If D ⊂ C[d] is stable by the derivations ∂di , then by duality I = D⊥ ⊂ C[x] is a vector space of 
C[x] stable by multiplication by xi , i.e. an ideal of C[x].
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Proposition 3.2. D ∈ Hr iff D⊥ = Q is an m-primary ideal such that dimC[x]/Q = r.

Proof. Let D ∈ Hr . We prove that D⊥ = Q is an m-primary ideal. As D is stable by derivation, Q =
D⊥ is an ideal of C[x]. This also implies that 1 ∈ D, so that Q ⊂ m. As dimD = dimC[x]/Q = r, δ =
ord(D) is finite and mδ+1 ⊂D⊥ = Q . Therefore, Q is m-primary, which shows the first implication.

Conversely, let Q be a m-primary ideal such that dimC[x]/Q = r. Then by Lemma 2.1, D = Q ⊥ ⊂
C[d]t is stable by derivation and of dimension r = dimC[x]/Q . Thus D ∈ Hr . This concludes the 
proof of the proposition. �

For D ∈ Hr , for t ≥ 0 we denote by Dt the vector space of elements of D of order ≤ t . We verify 
that D⊥

t =D⊥ +m
t+1 . The next theorem follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B ⊂ C[x] closed under division such that |B| = r and δ = deg(B), the following points are 
equivalent:

1. D ∈ Hr and Bt is a basis of C[x]/(D⊥ +m
t+1) for t = 1, . . . , δ.

2. The dual basis � = {�1, . . . , �r} of B satisfies �1 = 1 and the equations (8), (9) and (10).

Proof. (1) ⇒ (2) Assume that D ∈ Hr and that Bt is a basis of C[x]/(D⊥ + m
t+1). Let �t =

{�1, . . . , �rt } be a basis of Dt dual to Bt with rt = |Bt |. Then, for j = rt−1 + 1, . . . , rt , � j ∈ Dt is 
such that

∂dk (� j) =
rt−1
∑

j=1

νi,k�i

for t = 1, . . . , o. By Proposition 2.3, Equations (8) and (9) are satisfied. As Bt is dual to �1, . . . , �rt , 
Equation (10) are satisfied.

(2) ⇒ (1) Let �i ∈ C[d]r−1 for i = 1, . . . , r be elements of C[d]r−1 dual to B , which satisfies 
Equations (8), (9) and (10). By induction on t = 0, . . . , δ = deg(B), we prove that if �t = {�1, . . . , �rt }
is dual to Bt , then �1, . . . , �rt ∈ C[d]t . The property is true for t = 0 since �1 = 1. If it is true 
for t − 1, for � j with j = rt−1 + 1, . . . , rt we have by (8), (9) and Proposition 2.3, that ∂dk (� j) =
∑rt−1

j=1 νi,k�i , k = 1, . . . , n. Thus � j ∈ C[d]t . This shows that Dt is stable by derivation where Dt ⊂
C[d]t is the vector space spanned �1, . . . , �rt ∈ C[d]t . Let D = Dδ . Since, by (10), Bt is dual to 
�1, . . . , �rt ∈ C[d]t , we see that D ∩ C[d]t = Dt . By Proposition 3.2, Q = D⊥ is a m-primary ideal 
such that dimC[x]/Q = dimD = |B| = r. Moreover, since Bt is dual to the basis {�1, . . . , �rt } of Dt , 
Bt is a basis C[x]/(D⊥ +m

t+1). This proves the reverse inclusion. �

For a sequence h = (h0, h1, . . . , hδ) ∈ Nδ+1
+ and 0 ≤ t ≤ δ, let ht = (h0, . . . , ht), rt =

∑t
i=0 hi . For 

r ≥ 1 we denote by Sr the set of sequences h of some length δ < r with hi �= 0, h0 = 1 and rδ = r. For 
h ∈ Sr , we consider the following subvarieties of Hrt :

Hht
= {D ∈ Hrt | dimDi = dimD ∩ C[d]i ≤ ri, i = 0, . . . , t}.

These are projective varieties in Hrt defined by rank conditions on the linear spaces D ∩ C[d]i for 
D ∈ Hrt , that can be expressed in terms of homogeneous polynomials in the Plücker coordinates of D. 
In particular, the varieties Hh := Hhδ

are projective subvarieties of Hr . They may not be irreducible 
or irreducible components of Hr , but we have Hr = ∪h∈SrHh .

We will study a particular component of Hh , that we call the regular component of Hh , denoted 
H

reg
h

. It is characterized as follows. Let H reg
h0

= {〈1〉} = {C[d]0} = G1(C[d]0) and assume that H reg
ht−1

has been defined as an irreducible component of Hht−1
. Let

W t = {(Dt−1,Et) | Dt−1 ∈ Hht−1
,Et ∈ Grt (C[d]t),Dt−1 ⊂ Et ,∀i ∂diEt ⊂ Dt−1}
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The constraints Dt−1 ⊂ Et and ∂diEt ⊂ Dt−1 for i = 1, . . . , n define a linear system of equations in 
the Plücker coordinates of Et (see e.g. Doubilet et al., 1974), corresponding to the equations (5), 
(6). By construction, the projection of W t ⊂ Hht−1

× Grt (C[d]t) on the second factor Grt (C[d]t) is 
π2(W t) = Hht

and the projection on the first factor is π1(W t) = Hht−1
.

There exists a dense subset Ut−1 of the irreducible variety H
reg
ht−1

(with Ut−1 = H
reg
ht−1

) such 
that the rank of the linear system corresponding to (5) and (6) defining Et is maximal. Since 
π−1
1 (Dt−1) is irreducible (in fact linear) of fixed dimension for Dt−1 ∈ Ut−1 ⊂ H

reg
ht−1

, there is a 

unique irreducible component W t,reg of W t such that π1(W t,reg) = H
reg
ht−1

(see e.g. Shafarevich, 

2013[Theorem 1.26]). We define H reg
ht

= π2(W t,reg). It is an irreducible component of Hht
, since 

otherwise W t,reg = π−1
2 (H

reg
ht

) would not be a component of W t but strictly included in one of the 
irreducible components of W t .

Definition 3.4. Let πt : Hht
→ Hht−1

, D 	→ D ∩ C[d]t−1 be the projection in degree t − 1. We define 
by induction on t , H reg

h0
= {〈1〉} and H reg

ht
is the irreducible component π−1

t (H
reg
ht−1

) of Hht
for 

t = 1, . . . , δ.

4. Rational parametrization

Let B = {xβ1 , . . . , xβr } ⊂ C[x]r−1 be a monomial set. In this section we assume that B is closed 
under division and its monomials are ordered by increasing degree. For t ∈ N , we denote by Bt =
B ∩ C[x]t , by B[t] the subset of its monomials of degree t . Let ht = |B[t]|, rt =

∑

0≤i≤t ht = |Bt | and 
δ = deg(B).

Let

HB := {D ∈ Hr | Bt is a basis of C[x]/(D⊥ +m
t+1), t = 0, . . . , δ}.

By Theorem 3.3, HB is the set of linear spaces D ∈ Hr such that Dt =D∩C[d]t satisfy Equations (8)
and (9). It is the open subset of D ∈ Hh such that 
Bt (Dt) �= 0 for t = 1, . . . , δ, where 
Bt := 
β1,...,βrt

denotes the Plücker coordinate for Grt (C[d]t) corresponding to the monomials in Bt .

Since for D ∈ HB we have 
B(D) �= 0, we can define the affine coordinates of HB using the 
coordinates of the elements of the basis � = {�1, . . . , �r} dual to B:

{

μβ j ,α =

β1,...,β j−1,α,β j+1,...,βr


B
: j = 1, . . . , r, |α| < r

}

.

The following lemma shows that the values of the coordinates {μβi ,β j+ek : i, j = 1, . . . r, |β j | <
|βi |, k = 1, . . . , n} uniquely define �.

Lemma 4.1. Let B = {xβ1 , . . . , xβrt } closed under division, D ∈ HB and � = {�1, . . . , �r} be the unique basis 
of D dual to B with �i =

∑

|α|≤|βi | μβi ,α
dα

α! for i = 1, . . . , r. Then �1 = 1 and for i = 2, . . . , r

�i =
∑

|β j |<|βi |

n
∑

k=1

μβi ,β j+ek∫
k

� j.

Thus, μβi ,α is a polynomial function of {μβs,β j+ek : |βs| ≤ |βi |, |β j| < |βs|, k = 1, . . . , n} for i = 1, . . . , r, |α|
< |βi |.

Proof. Since D is closed under derivation, by Proposition 2.3 there exist ci,s,k ∈ C such that ∂dk (�i) =
∑

|βs|<|βi | ci,s,k�s . Then

μβi ,β j+ek = �i(x
β j+ek ) = ∂dk (�i)(x

β j ) =
∑

|βs |<|βi |
ci,s,k�s(x

β j ) = ci, j,k.
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The second claim follows from obtaining the coefficients in � recursively from �1 = 1 and

�i =
∑

|β j |<|βi |

n
∑

k=1

μβi ,β j+ek∫
k

� j for i = 2, . . . , r. �

We define μ := {μβi ,β j+ek }i, j=1,...r,|β j |<|βi |,k=1,...,n , μt := {μβi ,β j+ek ∈ μ : |βi | ≤ t} ⊂ μ and μ[t] :=
{μβi ,β j+ek ∈ μ : |β j | = t} ⊂ μt . The next definition uses the fact that Equations (13) and (14) are 

linear in νk
j with coefficients depending on μt−1:

Definition 4.2. Given Dt−1 ∈ HBt−1 with a unique basis �t−1 = {�1, . . . , �rt−1} with �i =
∑

|α|<t μβi ,α
dα

α! for j = 1, . . . , rt−1 that is dual to Bt−1 , uniquely determined by μt−1 = {μβi ,β j+ek :
|βi | ≤ t − 1, |β j | < |βi |} as above. Recall from Notation 2.6 that Ht is the coefficient matrix of the 
homogeneous linear system (13) and (14) in the variables {νk

j : j = 1, . . . , rt−1, k = 1, . . . , n}. To 
emphasize the dependence of its coefficients on Dt−1 or μt−1 we use the notation Ht(Dt−1) or 
Ht(μt−1). For D ∈ H

reg
h

in an open subset, the rank ρt of Ht(Dt−1) is maximal.

The next definition describes a property of a monomial set B such that it will allow us to give a 
rational parametrization of HB .

Definition 4.3. For t = 1, . . . , δ = deg(B) we say that Dt ∈ Grt (C[d]t) is regular for Bt if,

• dim(Dt) = rt = |Bt |,
• rank Ht(Dt−1) = ρt the generic rank of Ht on H reg

ht
,

• 
B[t] (D[t]) �= 0 where 
B[t] (D[t]) is the Plücker coordinate of D[t] ∈ Ght (C[d]r) corresponding to 
the monomials in B[t] .

Let Ut := {Dt ∈ H
reg
ht

: Dt is regular for Bt}. Then Ut is either an open dense subset of the irre-

ducible variety H reg
ht

or empty if 
B[t](D[t]) = 0 for all D ∈ H
reg
ht

. We say that B is a regular basis if 

Ut = H
reg
ht

(or Ut �= ∅) for t = 1, . . . , δ.

We denote by γ[t] = dimGht (ker Ht(Dt−1)) for Dt−1 ∈ Ut−1 and γ =
∑δ

t=0 γ[t] .

If the basis B is regular and closed under division, then H reg
h

can be parametrized by rational 
functions of free parameters μ. We present hereafter Algorithm 2 to compute such a parametrization 
iteratively.

Proposition 4.4. Let B = {xβ1 , . . . , xβr } ⊂ C[x]r−1 be closed under division and assume that B is a regular 
basis. There exist a subset μ ⊂ μ with |μ| = γ and rational functions qβ j,α(μ) ∈ Q(μ) for j = 1, . . . , r and 
|α| < r, such that the map � : Cγ → HB defined by

� : μ 	→
(

qβ j ,α(μ)
)

j=1,...,r,|α|<r

parametrizes a dense subset of H reg
h

.

Proof. Let us define, by induction on t , parameters μt with |μt | =
∑t

i=1 γ[i] , and a rational 
parametrization of a basis �1(μt), . . . , �rt (μt) of a generic element of H

reg
Bt

. For t = 0, we de-
fine �1 = 1 and μ0 = ∅. Assume that there exist μt−1 ⊂ μt−1 and a rational parametrization 
�1(μt−1), . . . , �rt−1 (μt−1) of a basis dual to Bt−1 for a generic element HBt−1 defined by the map

�t−1 : μt−1 	→
(

qβ j ,α(μt−1)
)

|β j |≤t−1,|α|<r
.
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Algorithm 2 Rational Parametrization - Iteration t .
Input: t > 0, Bt = {xβ1 , . . . , xβrt } ⊂ C[x]t closed under division and regular, μt−1 ⊂ μt−1 and 
�t−1 : μt−1 	→

(

qβ j ,α(μt−1)
)

|β j |≤t−1,|α|<r
with qβ j ,α ∈ Q(μt−1) parametrizing a dense subset of H reg

ht−1
.

Output: μt ⊂ μt and �t : μt 	→
(

qβ j ,α

)

|β j |≤t,|α|<r
, qβ j ,α∈Q(μt ) extending �t−1 and parametrizing a dense subset of H reg

ht
.

(1) Let Ht be as in Notation 2.6, ν = [νk
j : j = 1, . . . , rt−1, k = 1, . . . , n]T . Decompose Ht (�t−1(μt−1)) · ν = 0 as

[

A(μt−1) B(μt−1) C(μt−1)
]

⎡

⎣

ν ′

ν ′′

ν

⎤

⎦= 0, (17)

where ν ′ is associated to a maximal set of independent columns of Ht(�t−1(μt−1)), ν ′′ = {νk
j : xβ j+ek ∈ B[t]} and ν refers to 

the rest of the columns. If no such decomposition exists, return “Bt is not regular”.
(2) For νk

j ∈ ν ′ express νk
j = ϕk

j (ν, ν ′′) ∈ Q(μt−1)[ν, ν ′′]1 as the generic solution of the system Ht(�t−1(μt−1)) · ν = 0.

(3) For i = rt−1 + 1, . . . , rt do:

(3.1) Define μ[t],i :=
{

μβi ,β j+ek : ν j,k ∈ ν
}

, μ′
[t],i = {μβi ,β j+ek : νk

j ∈ ν ′}, μ′′
[t],i = {μβi ,β j+ek : νk

j ∈ ν ′′}, and 

μt := μt−1 ∪
⋃rt

i=rt−1+1
μ[t],i .

(3.2) For μβi ,β j+ek ∈ μ′′
[t],i set qβi ,β j+ek = μβi ,β j+ek = 1 if βi = β j + ek and 0 otherwise.

(3.3) For μβi ,β j+ek ∈ μ′
[t],i define

qβi ,β j+ek := ϕk
j (μ[t],i ,μ

′′
[t],i) ∈ Q(μt)

(3.4) For |α| < r and μβi ,α /∈ μt find qβi ,α using Lemma 4.1.

This means that im�t−1 = HBt−1 . Denote by
Dt−1(μt−1) ∈ Grt−1(Q(μt−1)[d]t−1) the space spanned by {�1(μt−1), . . . , �rt−1 (μt−1)} over the frac-
tion field Q(μt−1).

By Theorem 3.3 and Lemma 2.5, to define μt and to extend Dt−1(μt−1) to Dt(μt), we need to 
find �rt−1+1, . . . , �rt of the form

�i =
rt−1
∑

j=1

n
∑

k=1

μβi ,β j+ek∫
k

� j(μt−1) i = rt−1 + 1, . . . , rt ,

satisfying the system of equations (13) and (14), i.e. such that

�i ∈ ker Ht(μt−1) for i = rt−1 + 1, . . . , rt,

where Ht(μt−1) = Ht

(

�t−1(μt−1)
)

and Equations (12) are satisfied. Since B is a regular basis, the 
kernel of Ht(μt−1) over Q(μt−1) contains a subspace D[t] of dimension ht = |B[t]| with 
B[t] (D[t]) �=
0. Therefore, the systems Ht(μt−1) ν = 0 with ν = [νk

j : j = 1, . . . , rt−1, k = 1, . . . , n]T can be decom-

posed as

[

A(μt−1) B(μt−1) C(μt−1)
]

⎡

⎣

ν ′

ν ′′

ν

⎤

⎦= 0, (18)

where ν ′ is associated to a maximal set of independent columns of Ht (μt−1), ν
′′ = {νk

j : xβ j+ek ∈ B[t]}
and ν is associated to the remaining set of columns. Note that |ν| = dim(ker Ht(μt−1)) − ht . Thus, 
ν ′′ ∪ν is the set of free variables of the homogeneous system Ht(μt−1) ν = 0 and a general solution is 
such that the variables in ν ′ are linear functions of the variables in ν ′′ and ν , with rational coefficients 
in μt−1 .

We obtain the coefficients of �rt−1+1, . . . , �rt that satisfy equations (13) and (14) and (12) from 
the general solutions of Ht(μt−1) ν = 0 by further specializing the variables in ν ′′ to 0’s and 1’s, 
according the duality conditions. Define
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μ[t],i :=
{

μβi ,β j+ek : ν j,k ∈ ν
}

⊂ μ[t] .

Thus, the parameters in μ[t] are linear functions of μ[t],i with rational coefficients in μt−1 . The de-
nominator in these coefficients is a factor of the numerator of a maximal non-zero minor of A(μt−1). 
Note that the rest of the coefficients of �i are polynomial functions of the parameters μt−1 ∪ μ[t] by 
Lemma 4.1. Define

μt := μt−1 ∪
rt
⋃

i=rt−1+1

μ[t],i .

Thus, we get a parametrization of the coefficients of �rt−1+1(μt), . . . , �rt (μt) in terms of μt , which 
defines the degree t part of the map �t : μt 	→ (qβ j ,α(μt))|β j |≤t,|α|<r . For Dt ∈ HBt , the coefficients of 
its basis dual to Bt can be parametrized by �t for parameter values μt such that a maximal non-zero 
minor of A(μt−1) in Q(μt−1) does not vanish.

Note that the number of new parameters introduced is

|μt \ μt−1| = (rt − rt−1) · |μ[t],i| = ht
(

dimker Ht(μt−1) − ht
)

which is equal to γ[t] = dimGht (ker Ht(μt−1)) = dimGht (ker Ht(Dt−1)) for Dt−1 generic in Ut−1 as 
claimed.

To prove that �t parametrizes a dense subset of the projective variety H reg
ht

, note that the image 
im(�t) of �t is a subset of Hht

, the Zariski closure V t of im(�t) is an irreducible subvariety of 
Hht

. Furthermore, its projection πt−1(V t) ⊂ Hht−1
is the closure of the image of im(�t−1) since if 

Dt = im�t(μ
∗
t ) then Dt−1 =Dt ∩ C[d]t−1 = �t−1(μ

∗
t−1). By induction hypothesis,

πt−1(V t) = im�t−1 = H
reg
ht−1

.

Thus, V t is the irreducible component of Hht
which projects onto H reg

ht−1
, that is H reg

ht
. �

Definition 4.5. We denote by Ht(μ) a maximal square submatrix of A in (17) such that det(Ht(μt−1))

�= 0.

The size of Ht(μ) is the size of ν ′ in (17), that is the maximal number of independent columns 
in Ht(μt−1). Given an element D = �1 ∧ · · · ∧ �r ∈ Gr(C[d]r−1), in order to check that D is regular 
for B , it is sufficient to check first that 
B(D) �= 0 and secondly that |Ht(μ)| �= 0 for all t = 0, . . . , δ, 
where μ = (μβ,α) is the ratio of Plücker coordinates of D defined by the formula (16).

5. Newton’s iterations

In this section we describe the extraction of a square, deflated system that allows for a Newton’s 
method with quadratic convergence. We assume that the sole input is the equations f = ( f1, . . . , fN) ∈
C[x]N , an approximate point ξ ∈ Cn and a tolerance ε > 0.

5.1. Extracting a square system

Using this input we first compute an approximate primal-dual pair (B, �) by applying the iterative 
Algorithm 1. The rank and kernel vectors of the matrices Kt (see Algorithm 1) are computed numeri-
cally within tolerance ε, using SVD. Note that here and in Section 6 we do not need to certify the SVD 
computation but we are only using SVD to certify that some matrices are full rank by checking that 
the distance to the variety of singular matrices is bigger than the perturbation of the matrix. Thus we 
need a weaker test, which relies only on a lower bound of the smallest singular value.

The algorithm returns a basis B = {xβ1

ξ , . . . , xβr

ξ } with exponent vectors E = {β1, . . . , βr}, as well 
as approximate values for the parameters μ = {μβi ,β j+ek : |β j | < |βi | ∈ E, k = 1, . . . , n}. These pa-
rameters will be used as a starting point for Newton’s iteration. Note that, by looking at B , we can 
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also deduce the multiplicity r, the maximal order δ of dual differentials, the sequences rt = |Bt |, and 
ht = |B[t]| for t = 0, . . . , δ.

Let F be the deflated system with variables (x, μ) defined by the relations (8) and Equations (9), 
(10) and (12) i.e.

F (x,μ)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∑

|βs|<|β j |<|βi |
μβi ,β j+ekμβ j ,βs+el − μβi ,β j+elμβ j ,βs+ek=0 (a)

for all i = 1, . . . , r, |βs| < |βi|,k �= l ∈ {1, . . . ,n}

μβi ,β j+ek =
{

1 for βi = β j + ek

0 for β j + ek ∈ E, βi �= β j + ek,
(b)

�i( f j) = 0, i = 1, . . . , r, j = 1, . . . ,N. (c)

Here �1 = 1x and �i =
∑

|β j |<|βi |
∑n

k=1 μβi ,β j+ek∫
k

� j ∈ C[μ][dx] denote dual elements with para-

metric coefficients defined recursively. Also, if �i =
∑

|α|≤|βi | μβi ,α
dα
x

α! then

�i( f j) =
∑

|α|≤|βi |
μβi ,α

∂α( f j)(x)

α!
(19)

which is in C[x, μ] by Lemma 4.1. Note, however, that (a) and (b) are polynomials in C[μ], only 
(c) depends on x and μ. Equations (b) define a simple substitution into some of the parameters μ. 
Hereafter, we explicitly substitute them and eliminate this part (b) from the equations we consider 
and reducing the parameter vector μ.

By Theorem 2.8, if B is a graded primal basis for f at the root ξ∗ then the above overdetermined 
system has a simple root at a point (ξ∗, μ∗).

To extract a square subsystem defining the simple root (ξ∗, μ∗) in order to certify the conver-
gence, we choose a maximal set of equations whose corresponding rows in the Jacobian are linearly 
independent. This is done by extracting first a maximal set of equations in (a) with linearly indepen-
dent rows in the Jacobian. For that purpose, we use the rows associated to the maximal invertible 
matrix Ht (Definition 4.5) for each new basis element �i ∈D[t] and t = 1, . . . , r. We denote by G0 the 
subsystem of (a) that correspond to rows of Ht .

We complete the system of independent equations G0 with equations from (c), using a numerical 
QR decomposition on the transposed Jacobian matrix of G0 and (c) at the approximate root. Let us 
denote by F0 the resulting square system, whose Jacobian, denoted by J0 , is invertible.

For the remaining equations F1 of (c), not used to construct the square system F0 , define � =
{(i, j) : �i( f j) ∈ F1}. We introduce new parameters ǫi, j for (i, j) ∈ � and we consider the perturbed 
system

f i,ǫ = f i −
∑

j|(i, j)∈�

ǫi, j x
β j

ξ .

The perturbed system is fǫ = f − ǫ B , where ǫ is the N × r matrix with [ǫ]i, j = ǫi, j if (i, j) ∈ � and 
[ǫ]i, j = 0 otherwise. Denote by F (x, μ, ǫ) obtained from F (x, μ) by replacing � j( f i) by � j( f i,ǫ) for 
j = 1, . . . , r, i = 1, . . . , N . Then the equations used to construct the square Jacobian J0 are unchanged. 
The remaining equations are of the form

� j( f i,ǫ) = � j( f i) − ǫi, j = 0 (i, j) ∈ �.

Therefore the Jacobian of the complete system F (x, μ, ǫ) is a square invertible matrix of the form

Jǫ :=
(

J0 0
J1 Id

)

where J1 is the Jacobian of the system F1 of polynomials � j( f i) ∈ C[x, μ] with (i, j) ∈ �.
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Since Jǫ is invertible, the square extended system F (x, μ, ǫ) has an isolated root (ξ∗, μ∗, ǫ∗) cor-

responding to the isolated root (ξ∗, μ∗) of the square system F0 . Furthermore, �∗
j ( f i) = ǫ∗

i, j = 0 for 
(i, j) ∈ �. Here �∗

1, . . . , �
∗
r ∈ C[dξ∗ ] are defined from (ξ∗, μ∗) recursively by

�∗
1 = 1ξ∗ and �∗

i =
∑

|β j |<|βi |

n
∑

k=1

μ∗
βi ,β j+ek

∫
k

�∗
j . (20)

We have the following property:

Theorem 5.1. If the Newton iteration

(ξk+1,μk+1) = (ξk,μk) − J0(ξk,μk)
−1F0(ξk,μk),

starting from a point (ξ0, μ0) converges when k → ∞, to a point (ξ∗, μ∗) such that B is a regular basis for 
the inverse system D∗ associated to (ξ∗, μ∗) and D∗ is complete for f, then there exists a perturbed system 

f i,ǫ∗ = f i −
∑

j|(i, j)∈� ǫ∗
i, j x

β j

ξ∗ with ǫ∗
i, j = �∗

j ( f i) such that ξ∗ is a multiple root of f i,ǫ∗ with the multiplicity 
structure defined by μ∗ .

Proof. If the sequence (ξk, μk) converges to the fixed point (ξ∗, μ∗), then we have F0(ξ∗, μ∗) = 0
and in particular, G0(ξ

∗, μ∗) = 0 where G0(ξ
∗, μ∗) = 0 is the subset of equations selected from (a).

As μ∗ is regular for B , if it satisfies G0(ξ
∗, μ∗) = 0, it must satisfy all equations (a). Therefore μ∗

defines a point D∗ = �∗
1 ∧ · · · ∧ �∗

r ∈ H
reg
B .

As (�∗
i ) is a basis of D∗ dual to B and f i,ǫ∗ = f i −

∑

j:(i, j)∈� ǫ∗
i, j x

β j

ξ∗ with ǫ∗
i, j = �∗

j ( f i) for (i, j) ∈
�, we have that if (i, j) ∈ � then �∗

j ( f i,ǫ∗) = �∗
j ( f i) − ǫ∗

i, j = 0. Otherwise �∗
j ( f i,ǫ∗) = �∗

j ( f i), since it 
is one of the equations selected in (c) to construct the system F0 and F0(ξ∗, μ∗) = 0. This shows that

fǫ∗ = ( f i,ǫ∗)Ni=1 ⊂ (D∗)⊥ .

Since fǫ∗ is obtained from f by adding elements in B , the system (c), at order δ + 1 for fǫ∗ and f are 
equivalent. Thus D∗ is complete for f and fǫ and D∗ = (fǫ∗)⊥ ∩ C[dξ∗ ] is the inverse system at ξ∗ of 
the system fǫ∗ . �

5.2. Numerical Newton iteration

We describe now how Newton iterations can be performed efficiently on the (point, dual basis) 
pair, without resorting to the symbolic expression of the dual basis � in terms of the parameters μ. 
We assume that ξ ∈ Cn is an approximate singular point, that B = {b1, . . . , br} ⊂ C[x] with bi = x

βi

ξ

is the primal basis and that � = {�1, . . . , �r} ⊂ C[dξ ] is an (approximate) dual bases with

�k =
∑

i∈1:n, j<k

μk,i, j∫
i

� j

where

μk,i, j := 〈�k|xξ,ib j〉ξ = μβk,β j+ei . (21)

According to Lemma 2.5, the coefficients μk,i, j such that β j + ei = βl are fixed and the others are the 
free parameters μ. The system of equations, on which Newton iteration is applied, is of the form:

F0(ξ,μ) =
{

〈C i,i′,k(μ)|bl〉ξ = 0 for 1 ≤ i < i′ ≤ n,1 ≤ k ≤ r and 1 ≤ l < k,

〈�k(μ)| fm〉ξ = 0 for (k,m) ∈ I0,

where C i,i′,k(μ) =
(

∑

j<k μk,i, jxξ,i′ ⋆ � j

)

−
(

∑

j<k μk,i′, jxξ,i ⋆ � j

)

are the commutation relations.
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To perform a Newton step, we need to evaluate F0 at (ξ, μ), to compute the Jacobian J F0(ξ, μ) of 
F0 with respect to ξ and the free parameters μ = (μt,u,v), to solve the system J F0(ξ, μ)(δξ, δμ) =
−F0(ξ, μ) and to update the pair (ξ, �(μ)) to (ξ + δξ, �(μ + δμ)).

The evaluation of F0(ξ, μ) requires the evaluation of

〈C i,i′,k(μ)|bl〉ξ =

⎛

⎝

∑

j<k

μk,i, j〈� j|xξ,i′bl〉ξ

⎞

⎠−

⎛

⎝

∑

j<k

μk,i′, j〈� j|xξ,ibl〉ξ

⎞

⎠

=

⎛

⎝

∑

j<k

μk,i, jμ j,i′,l − μk,i′, jμ j,i,l

⎞

⎠ ,

which can be computed from the coefficients μk,i, j = 〈�k|xξ,ib j〉ξ . The evaluation of 〈�k(μ)| fm〉ξ is 
done using formula (19) evaluated at ξ .

To compute the Jacobian J F0(ξ, μ), we first compute the derivatives of � with respect to the free 
parameters μ = (μl

u,v), using the following formula:

∂μt,u,v�k(μ) =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

∑

i∈1:n, j<k μk,i, j∫
i

∂μt,u,v� j if t < k

∫
u

�v if t = k

0 if t > k

This shows that ∂μt,u,v �k(μ) can be computed by induction from the coefficients μk,i, j = 〈�k|xξ,ib j〉ξ , 
and the integration operators � 	→ ∫

i

� applied to ∂μt,u,v � j with j < k.

Similarly, we have

∂μt,u,v C i,i′,k(μ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

xξ,i′ ⋆ �v if t = k,u = i,

−xξ,i ⋆ �v if t = k,u = i′,
0 if t = k,u �= i,u �= i′,
(

∑

j<k μk,i, jxξ,i′ ⋆ ∂μt,u,v� j

)

if t < k,

−
(

∑

j<k μk,i′, jxξ,i ⋆ ∂μt,u,v� j

)

0 otherwise.

It also shows that ∂μt,u,v C i,i′,k(μ) can be computed by induction, from the coefficients μk,i, j =
〈�k|xξ,ib j〉ξ and the derivation operators � 	→ xξ,i ⋆ � applied to ∂μt,u,v � j with j < k.

Using (19), we have

∂ξi 〈�k(μ)| fm〉ξ =
∑

α

1

α!
μk,α∂α∂i fm(ξ) = 〈�k(μ)|∂ξ,i fm〉ξ . (22)

Therefore the differential of F0(ξ, μ) is of the form

J F0

(

dξ

dμ

)

=
{ ∑

〈∂μt,u,v C i,i′,k|bl〉ξdμt,u,v

∑

i〈�k|∂xi fm〉ξdξ i +
∑

〈∂μt,u,v�k| fm〉ξdμt,u,v

The Jacobian J F0 can thus be computed from ξ, �k , ∂xi fm, ∂μt,u,v �k and μk,i, j = 〈�k|xξ,ib j〉ξ .
Solving the Jacobian system, we obtain a new (point, parameter) pair (ξ ′, μ′) = (ξ, μ) −

J−1
F0

(ξ, μ)F0(ξ, μ). To update the new inverse system �′ corresponding to the parameters μ′ , we 
compute

�′
k =

∑

i∈1:n, j<k

μ′
k,i, j∫

i

�′
j
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also by induction, since �′
k
depends on μ′

k,i, j
and ∫

i

�′
j for j < k.

This provides an algorithm to perform numerically the Newton iterations from a fixed primal basis 
B = {b1, . . . , br} ⊂ C[x], an (approximate) singular point ξ ∈ Cn and an (approximate) dual bases 
� = {�1, . . . , �r} ⊂ C[dξ ]. We will illustrate it in the experimentation.

6. Certification

In this section we describe how to certify that the Newton iteration defined in Section 5 quadrat-
ically converges to a point that defines an exact root with an exact multiplicity structure of a per-
turbation of the input polynomial system f. More precisely, we are given f = ( f1, . . . , fN) ∈ C[x]N , 
B = {xβ1 , . . . , xβr } ⊂ C[x] in increasing order of degrees and closed under division, δ := |βr |. We 
are also given the deflated systems F (x, μ), its square subsystem F0(x, μ) defined in Section 5 and 
F1(x, μ) the remaining equations in F (x, μ). Finally, we are given ξ0 ∈ Cn and μ0 = {μ(0)

βi ,β j+ek
∈ C :

i, j = 1, . . . , r, |β j| < |βi |, k = 1, . . . , n}. Our certification will consist of a symbolic and a numeric part:

6.1. Regularity certification

We certify that B is regular (see Definition 4.3). This part of the certification is purely symbolic 
and inductive on t . Suppose for some t − 1 < δ we certified that Bt−1 is regular and computed the 
parameters μt−1 and the parametrization

�t−1 : μt−1 	→
(

qβi ,α(μt−1)
)

|βi |≤t−1,|α|≤t−1

(Algorithm 2). Then to prove that Bt is regular, we consider the coefficient matrix Ht of equations 
(13) and (14). We substitute the parametrization �t−1 to get the matrices Ht(μt−1). We symboli-
cally prove that the rows of Ht(μt−1) (Definition 4.5) are linearly independent and span all rows of 
Ht(μt−1) over Q(μt−1). If that is certified, we compute the parameters μt and the parametrization 
�t : μt 	→

(

qβi ,α(μt)
)

|βi |≤t,|α|≤t
as in Algorithm 2 inverting the square submatrix Ht of Ht such that 

the denominators of qβi ,α for |βi| = t divide det(Ht(μt−1)) �= 0.

6.2. Singularity certification

(C1) We certify that the Newton iteration for the square system F0 starting from (ξ0, μ0) quadrati-
cally converges to some root (ξ∗, μ∗) of F0 , such that ‖(ξ0, μ0) − (ξ∗, μ∗)‖2 ≤ β̃ , using α-theory.

(C2) We certify that D∗ = span(�∗) is regular for B (see Definition 4.3), by checking that |Ht(μ
∗)| �= 0

for t = 1, . . . , δ (See Definition 4.5), using the Singular Value Decomposition of Ht(μ0) and the 
distance bound β̃ between μ∗ and μ0 .

(C3) We certify that �
∗ is complete for f at ξ∗ (see Definition 2.7), where �

∗ ⊂ C[dξ∗ ] is 
the dual systems defined from (ξ∗, μ∗) recursively as in (20). This is done by checking 
that ker Kδ+1(ξ

∗, μ∗) = {0} (See Definition 2.7), using the Singular Value Decomposition of 
Kδ+1(ξ0, μ0) and the distance bound β̃ between (ξ∗, μ∗) and (ξ0, μ0).

Let us now consider for a point-multiplicity structure pair (ξ0, μ0) γ̃ := supk≥2 ‖DF−1
0 (ξ0,

μ0)
Dk F0(ξ0,μ0)

k! ‖
1

k−1 , β̃ := 2‖DF−1
0 (ξ0, μ0) F0(ξ0, μ0)‖, α̃ := β̃ γ̃ and for a matrix function A(ξ, μ), 

let L1(A; ξ0, μ0; b) be a bound on its Lipschitz constant in the ball Bb(ξ0, μ0) of radius b around 
(ξ0, μ0) such that ‖A(ξ, μ) − A(ξ0, μ0)‖ ≤ L1(A; ξ0, μ0; b) ‖(ξ, μ) − (ξ0, μ0)‖ for (ξ, μ) ∈ Bb(ξ0, μ0). 
For a matrix M , let σmin(M) be its smallest singular value. We have the following result:

Theorem 6.1. Let B = {xβ1 , . . . , xβr } ⊂ C[x] be closed under division and suppose B is regular. Suppose 
that α̃ < α̃0 := 0.26141, L1(Kδ+1; ξ0, μ0; β̃) β̃ < σmin(Kδ+1(ξ0, μ0)) and for t = 2, . . . , δ it holds that 
L1(Ht; μ0; β̃) β̃ < σmin(Ht(μ0)). Then the Newton iteration on the square system F0 starting from (ξ0, μ0)

converges quadratically to a point (ξ∗, μ∗) corresponding to a multiple point ξ∗ with multiplicity structure 
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μ∗ of the perturbed system fǫ∗ = f − ǫ∗Bξ∗ such that ‖ǫ∗‖ ≤ ‖F1(ξ0, μ0)‖ + L1(F1; ξ0, μ0; β̃) β̃ , where 

Bξ∗ = {xβ1

ξ∗ , . . . , x
βr

ξ∗}.

Proof. By the α-theorem (Blum et al., 1998)[Chap. 8, Thm. 1], the Newton iteration on F0 starting 
from (ξ0, μ0) converges quadratically to a point (ξ∗, μ∗) such that

‖(ξ∗,μ∗) − (ξ0,μ0)‖ < β̃ .

We deduce that

‖Kδ+1(ξ
∗,μ∗) − Kδ+1(ξ0,μ0)‖ ≤ L1(Kδ+1; ξ0,μ0; β̃)‖(ξ∗,μ∗) − (ξ0,μ0)‖

< σmin(Kδ+1(ξ0,μ0)).

Therefore Kδ+1(ξ
∗, μ∗) is within a ball around Kδ+1(ξ0, μ0) of matrices of maximal rank, since 

σmin(Kδ+1(ξ0, μ0)) is the distance between Kδ+1(ξ0, μ0) and the set of matrices not of maximal 
rank.

Thus ker Kδ+1(ξ
∗, μ∗) = {0}. A similar argument shows that |Ht(μ

∗)| �= 0 for t = 1, . . . , δ. By Theo-
rem 5.1, (ξ∗, μ∗) defines a multiple root ξ∗ with multiplicity structure μ∗ for the perturbed system 
fǫ∗ = f − ǫ∗Bξ∗ with

‖ǫ∗‖ = ‖F1(ξ∗,μ∗)‖ ≤ ‖F1(ξ0,μ0)‖ + ‖F1(ξ∗,μ∗) − F1(ξ
∗,μ∗)‖

≤ ‖F1(ξ0,μ0)‖ +L1(F1; ξ0,μ0; β̃)‖(ξ∗,μ∗) − (ξ∗
0 ,μ∗

0)‖
≤ ‖F1(ξ0,μ0)‖ +L1(F1; ξ0,μ0; β̃) β̃. �

7. Experimentation

In this section we work out some examples with (approximate) singularities. The experiments are 
carried out using Maple, to get the symbolic expressions of the inverse system and of the Jacobian 
in terms of the parameters μ. The symbolic stage based on simple algebraic computations is carried 
out rigorously for all our tests in Maple, computing the parametric inverse system, the commutation 
rules and the maximal subsystems at each step. For the numerical part, in particular the numerical 
Newton iterations, we use Julia code. All these codes and examples are publicly available at https://
gitlab .inria .fr /AlgebraicGeometricModeling /certified -singularities.1

Example 7.1. We consider the equations

f1 = x31 + x22 + x23 − 1, f2 = x32 + x21 + x23 − 1, f3 = x33 + x21 + x22 − 1,

the approximate root ξ0 = (0.002, 1.003, 0.004) and threshold ε = 0.01. In the following we use 32-
digit arithmetic for all computations.

We shall first compute a primal basis using Algorithm 1. In the first iteration we produce the 3 ×3

Jacobian

K1 = K1(ξ0) =

⎡

⎢

⎣

ν1
1 ν2

1 ν3
1

�( f1) 0.00001 2.00600 0.00800

�( f2) 0.00400 3.01803 0.00800

�( f3) 0.00400 2.00600 0.00005

⎤

⎥

⎦
.

1 Software Heritage permalink: https://archive .softwareheritage .org /swh :1 :dir:d35ad5db291637bf71a532aff334d9e8dfe70838 ;origin =https :
/ /gitlab .inria .fr /AlgebraicGeometricModeling /certified -singularities ;visit =swh :1 :snp :256e9f0fb2921c983d685e98b199a819ef4be9e8 ;anchor =swh :1 :rev:
9bb034e298b17a6cce1dd945c12522d8f386c5dc.
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The elements in the kernel of this matrix are of the form � = ν1
1d1 + ν2

1d2 + ν3
1d3 . The singular 

values of K1(ξ0) are (4.1421, 0.0064, 0.0012), which implies a two-dimensional kernel, since two of 
them are below threshold ε. The (normalized) elements in the kernel are �̃2 = d1 − 0.00117d2 and 
�̃3 = d3 − 0.00235d2 . Note that d2 was not chosen as a leading term. This is due to pivoting used 
in the numeric process, in order to avoid leading terms with coefficients below the tolerance ε. The 
resulting primal basis B1 = {1, x1, x3} turns out to be closed under derivation.

Similarly, in degree 2 we compute the matrix

K2 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ν2
1 ν1

2 ν2
2 ν3

2 ν1
3 ν2

3 ν3
3

(9) 0 0 0 0.00117 0 1.00000 0.00235

(9) 0 0 0 −1.00000 1.00000 0 0

(9) 0 −0.00117 −1.00000 0 −0.00235 0 0

�( f1) 2.00600 0.00600 −0.00117 0 0. −0.00235 1.00000

�( f2) 3.01803 1.00000 −0.00353 0 0. −0.00707 1.00000

�( f3) 2.00600 1.00000 −0.00117 0 0. −0.00235 0.01200

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

and we obtain one element in its kernel �̃4 = d1d3 − 0.00002d21 − 0.00235d1d2 + 5.5 · 10−6d22 −
0.00117 ·d2d3 − 0.00002d23 + 5.9 · 10−6d2 . In the final step we produce a matrix K3 of size 12 × 9. We 
stop the iteration due to assuming ker K3 = {0}, since the minimum singular value is σmin = 0.21549, 
therefore we stop the process, since the computed dual is approximately complete (cf. Definition 2.7). 
We derive that the approximate multiple point has multiplicity r = 4 and one primal basis is 
B = {1, x1, x3, x1x3}.

The full parametric form of a basis of D1 is ker K1 = 〈�2 = d1 +μ2,2,1d2, �3 = d3 +μ3,2,1d2〉. Here 
we incorporated (10), thus fixing some of the parameters according to primal monomials x1 and x3 .

The parametric form of the matrix K2(ξ , µ) of the integration method in degree 2 is

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

ν1
1 ν2

1 ν3
1 ν1

2 ν2
2 ν3

2 ν1
3 ν2

3 ν3
3

(9) 0 0 0 0 0 −μ2,2,1 0 1 −μ3,2,1

(9) 0 0 0 0 0 −1 1 0 0

(9) 0 0 0 μ2,2,1 -1 0 µ3,2,1 0 0

�( f1) 3ξ2
1 2ξ2 2ξ3 3ξ1 μ2,2,1 0 3ξ1 μ3,2,1 1

�( f2) 2ξ1 3ξ2
2 2ξ3 1 3μ2,2,1ξ2 0 0 3μ3,2,1ξ2 1

�( f3) 2ξ1 2ξ2 3ξ2
3 1 μ2,2,1 0 0 μ3,2,1 3ξ3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,

where the columns correspond to the parameters in the expansion (5):

�4 = ν1
1d1 + ν2

1d2 + ν3
1d3 + ν1

2d
2
1 + ν2

2 (d1d2 + μ2,2,1d
2
2) + ν3

2 (d1d3

+ μ2,2,1d3d2) + ν1
3 (μ3,2,1d1d2) + ν2

3 (μ3,2,1d
2
2) + ν3

3 (d23 + μ3,2,1d2d3)

Setting �4(x1x3) = 1 and �4(x1) = �4(x3) = �4(1) = 0, we obtain ν1
1 = ν3

1 = 0 and ν3
2 = 1. Note that 

ν1
1 and ν3

1 are removed in advance from the numeric version of K2 above. The dual element of order 
2 is has the parametric form

�4 = d1d3 + μ4,2,1d2 + μ4,1,2d
2
1 + μ4,2,2d1d2 + μ4,3,3d

2
3

+ (μ2,2,1 + μ3,2,1μ4,3,3)d2d3 + (μ2,2,1μ4,1,3 + μ3,2,1μ4,2,3)d
2
2

(ν2
1 = μ4,2,1, ν1

2 = μ4,1,2, ν2
2 = μ4,2,2, ν1

3 = μ4,1,3, ν2
3 = μ4,2,3 , ν3

3 = μ4,3,3). Overall 8 parameters are 
used in the representation of D2 . The highlighted entries of K2(ξ , µ) form the non-singular matrix 
H2 in Definition 4.5, therefore D2 is regular for B (cf. Definition 4.3). We obtain the polynomial 
parameterization μ4,2,2 = μ2,2,1μ4,1,2 + μ3,2,1, μ4,1,3 = 1, μ4,2,3 = μ2,2,1 + μ3,2,1μ4,3,3 with the free 
parameters μ̄ = (μ2,2,1, μ3,2,1, μ4,2,1 , μ4,1,2, μ4,3,3). There is no denominator since detH2 = 1.
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We now setup the numerical scheme. The overdetermined and deflated system F (x, µ) consists of 
15 polynomials in the variables x, µ:

F (x,µ)=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

μ2,2,1μ4,1,2 + μ3,2,1 − μ4,2,2 ,−μ4,1,3 + 1 ,−μ2,2,1μ4,1,3

− μ3,2,1μ4,3,3 + μ4,2,3,

�1( f1)=x31 + x22 + x23 − 1, �1( f2)=x32 + x21 + x23 − 1, �1( f3)

=x33 + x21 + x22 − 1, �2( f1)=2μ2,2,1x2 + 3x21,

�2( f2)=3μ2,2,1x
2
2 + 2x1,�2( f3)=2μ2,2,1x2 + 2x1,�3( f1)=2μ3,2,1x2 + 2x3,

�3( f2)=3μ3,2,1x
2
2 + 2x3, �3( f3)=2μ3,2,1x2 + 3x23,

�4( f1)=μ2,2,1μ4,2,2+μ3,2,1μ4,2,3+2μ4,2,1x2+3μ4,1,2x1+μ4,3,3,

�4( f2)=3μ2,2,1μ4,2,2x2+3μ3,2,1μ4,2,3x2+3μ4,2,1x
2
2+μ4,1,2+μ4,3,3,

�4( f3)=μ2,2,1μ4,2,2+μ3,2,1μ4,2,3+2μ4,2,1x2+3μ4,3,3x3+μ4,1,2

We now consider J F (ξ0, µ0). This Jacobian is of full rank, and we can obtain a maximal minor by 
removing �1( f2), �1( f3), �2( f3) and �3( f3) from F . We obtain the square 11 × 11 system denoted 
by F0 . The general form of J F0(x, µ) is

∂μ2,2,1 ∂μ3,2,1 ∂μ4,2,1 ∂μ4,1,2 ∂μ4,2,2 ∂μ4,1,3 ∂μ4,2,3 ∂μ4,3,3 ∂x1 ∂x2 ∂x3
(9)
(9)
(9)

�1( f1)

�2( f1)

�2( f2)

�3( f1)

�3( f2)

�4( f1)

�4( f2)

�4( f3)

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

μ4,1,2 1 0 μ2,2,1 −1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0 0 0

−μ4,1,3 −μ4,3,3 0 0 0 −μ2,2,1 1 −μ3,2,1 0 0 0

0 0 0 0 0 0 0 0 3x21 2x2 2x3
2x2 0 0 0 0 0 0 0 6x1 2μ2,2,1 0

3x22 0 0 0 0 0 0 0 2 6μ2,2,1x2 0
0 2x2 0 0 0 0 0 0 0 2μ3,2,1 2

0 3x22 0 0 0 0 0 0 0 6μ3,2,1x2 2
μ4,2,2 μ4,2,3 2x2 3x1 μ2,2,1 0 μ3,2,1 1 3μ4,1,2 2μ4,2,1 0

3μ4,2,2x2 3μ4,2,3x2 3x22 1 3μ2,2,1x2 0 3μ3,2,1x2 1 0 ∂x2�4( f2) 0
μ4,2,2 μ4,2,3 2x2 1 μ2,2,1 0 μ3,2,1 3x3 0 2μ4,2,1 3μ4,3,3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

where ∂x2�4( f2) = 3(μ2,2,1μ4,2,2+μ3,2,1μ4,2,3+2μ4,2,1x2). The blocks in this matrix can be com-

puted recursively using the formulas in Section 5.2. The initial point of the Newton iterations is ξ 0 =
(0.002, 1.003, 0.004) and the approximation of the variables μi, j provided by the numerical integra-
tion method: µ0 = (−0.00117,−0.00235,5.9 ·10−6,−0.00002,−0.00235,1.0,−0.00117,−0.00002).

We use Theorem 6.1 to certify the convergence to a singular system. We can compute (see 
e.g. Hauenstein and Sottile, 2012) for (ξ 0, µ0):

β̃ ≈ 0.01301544 , γ ≤ 18.58366113 ,

which leads to β̃γ < α̃0 . The Lipschitz constants can be estimated by means of interval arithmetic as:

L1(K3; ξ0,µ0; β̃) ≤ 9.66542 , L1(H2;µ0; β̃) ≤ 4.08068 , L1(H3;µ0; β̃) ≤ 9.66542

as well as the singular values:

σmin(K3(ξ0,µ0)) = 0.21549.. , σmin(H2(µ0)) = 0.21550.. , σmin(H3(µ0)) = 0.21550..

The assumptions of Theorem 6.1 are satisfied for guaranteed convergence. In the next iterations we 
observe that the sequence of β̃ ’s tends to zero (0.01302, 1.1 · 10−4, 7 · 10−9, 2.4 · 10−17), which con-
firms that we are in the region of convergence: Indeed, the successive residuals for 4 iterations are 
0.00603, 4.0 · 10−5, 2.07 · 10−9, 8.6 · 10−18, 3.55 · 10−35 . Clearly, the residual shrinks with a quadratic 
rate.2 We obtain ξ4 = (1.8 · 10−37, 1.0, 2.8 · 10−36) and the overdetermined system is satisfied by this 
point: ‖F (ξ4, µ4)‖∞ = 8 · 10−35; the resulting dual structure is D∗

2 = {1, d1, d3, d1d3}.

2 The convergence is seen up to machine error. If we increase the accuracy to 150 digits the rate remains quadratic for 7 
iterations: . . .3.55 · 10−35, 6.78 · 10−70, 4.15 · 10−140, 5.1 · 10−281 .
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Table 1

Size of required matrices and parameters for deflation.

System r/n IM SC #μ OS r0 r N

cmbs1 11/3 27 × 23 75 74 108 × 77 8.814e-01 2.361e-31 3

cmbs2 8/3 21× 17 21 33 45× 36 3.630e-01 1.464e-16 5

mth191 4/3 10× 9 3 9 15 × 12 2.344e-01 3.181e-31 4

decker2 4/2 5× 5 4 8 12× 10 7.958e-02 1.033e-22 3

Ojika2 2/3 6× 5 0 2 6× 5 3.954e-01 2.025e-17 5

Ojika3 4/3 12× 9 15 14 27× 17 3.198e-01 2.238e-16 6

KSS 16/5 155× 65 510 362 590 × 367 4.364e-01 2.914e-11 4

Caprasse 4/4 22 × 13 6 15 22× 19 1.528e+02 1.410e-05 5

Cyclic-9 4/9 104× 33 36 40 72× 49 3.958e+00 9.058e-15 4

Example 7.2. We demonstrate how our method handles inaccuracies in the input, and recovers a 
nearby system with a true multiple point. Let

f1 = x1
2 + x1 − x2 + 0.003 , f2 = x2

2 + 1.004x1 − x2.

There is a cluster of three roots around ξ0 = (0.001, −0.002). Our goal is to squeeze the cluster down 
to a three-fold real root. We use 32 digits for the computation. Starting with ξ 0 , and a tolerance equal 
to 10−2 Algorithm 1 produces an approximate dual 1, d1 + 1.00099651d2, d21 + 1.00099651d1d2 +
1.00266222d22 + 0.99933134d2 and identifies the primal basis B = {1, x1, x21} using pivoting on the 
integration matrix. The sole condition of type (13) reads μ2,1,2 − μ3,2,2 = 0, and �1 = 1, �2 = d1 +
μ2,1,2d2, �3 = d21 + μ2,1,2d1d2 + μ3,2,1d2 + μ3,2,2μ2,1,2d

2
2 .

The nearby system that we shall obtain is deduced by the residue in Newton’s method. In partic-
ular, starting from ξ0 , we consider the square system given by removing the equations �1( f1) = 0

and �2( f2) = 0. The rank of the corresponding Jacobian matrix remains maximal, therefore such a 
choice is valid. Newton’s iterations converge quadratically to the point (ξ 5, µ5) = (1.1 · 10−33, 1.2 ·
10−33, 1, 1, 1). The full residual is now

F (ξ5,µ5) = (0,0.003,−10−32,10−32,0.004,0,0) .

This yields a perturbation f̃1 ≈ f1 − 0.003 and f̃2 ≈ f2 − 0.004(x1 − ξ∗
1 ) to obtain a system with an 

exact multiple root at the origin (cf. Th. 6.1). Of course, this choice of the square sub-system is not 
unique. By selecting to remove equations �1( f1) = 0 and �1( f2) = 0 instead, we obtain (ξ5, µ5) =
(0.00066578, −0.00133245, 1.001, 1.0, 1.001) and the residual F (ξ5, µ5) = (0, 0.005, 0.002, 0, 0, 0, 0), 
so that the nearby system

f ∗
1 ≈ x1

2 + x1 − x2 + 0.008, f ∗
2 ≈ x2

2 + 1.004x1 − x2 + 0.002

has a singularity at the limit point ξ ∗ ≈ (0.00066578, −0.00133245) described locally by the coeffi-
cients µ∗ ≈ (1.001, 1.0, 1.001).

Finally, consider the two square sub-systems as above, after changing f1, f2 to define an exact 
three-fold root at the origin (i.e. f1 = x1

2 + x1 − x2, f2 = x2
2 + x1 − x2). Newton’s iteration with initial 

point ξ0 on either deflated system converges quadratically to (ξ , µ) = (0, 1). This is a general prop-
erty of the method: exact multiple roots and their structure are recovered by this process if ξ0 is a 
sufficiently good initial approximation (cf. Section 5).

Example 7.3. We show some execution details on a set of benchmark examples in taken from Dayton 
and Zeng (2005), see also Mantzaflaris and Mourrain (2014). For this benchmark, we are given systems 
and approximate singular points. We compute the approximate inverse system using the integration 
method, analyze the matrices involved in the computation and apply Newton iterations to obtain 
better approximation of the singular points and its multiplicity structure.

In Table 1, “IM” is the maximal size of the (numeric) integration matrix that is computed to obtain 
the multiplicity, “#μ” is the number of new parameters that are needed for certified deflation, “SC” 
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is the number of constraints of type (13) that were computed and “OS” stands for the size of the 
overdetermined system (equations × variables). This is the size of the Jacobian matrix that must be 
computed and inverted in each Newton’s iteration. r0 and r stand respectively for the norm of residual 
vector at the initial approximate solution and approximate inverse system and after the last Newton 
iteration, N is the number of iterations, where the iterations are stopped when the ratio of the norm 
of two consecutive Newton steps is less than 10. The initial inverse system is computed from the 
given approximate singular point, using the integration method with an adapted threshold for the 
numerical rank of the matrices Ht . For the numerical Newton iterations, we apply the formulas given 
in Section 5.2. The computations are performed with double (64 bit) arithmetic. For Caprasse and 
Cyclic-9 examples, the singular root has complex non-real coordinates.

We can observe that the number of parameters required can grow significantly. Moreover, these 
parameters induce non-trivial denominators in the rational functions qβ j ,α(μ) of Proposition 4.4, for 
the instances cmbs1, cmbs2 and KSS. The quadratic convergence of Newton method is observed on 
all the examples. For Caprasse example, we observe a high initial residual error and a final residual 
which is not close to the machine precision, due to an early stop of Newton iterations.
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