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1. Introduction

Local numerical methods such as Newton iterations have proved their efficiency to approximate
and certify the existence of simple roots. However, for multiple roots they dramatically fail to provide
fast numerical convergence and certification. The motivation for this work is to find a method with
fast convergence to an exact singular point and its multiplicity structure for a small perturbation of
the input polynomials, and to give numerical tests that can certify it. The knowledge of the multi-
plicity structure together with a high precision numerical approximation of a singular solution can be
valuable information in many problems.

In Mourrain (1997) a method called later integration method is devised to compute the so-called
inverse system or multiplicity structure at a multiple root. It is used in Mantzaflaris and Mourrain
(2011) to compute an approximation of the inverse system, given an approximation of that root and
to obtain a perturbed system that satisfies the duality property. However, this method did not give
a way to improve the accuracy of the initial approximation of the root and the corresponding in-
verse system. In Hauenstein et al. (2016) a new one-step deflation method is presented that gives
an overdetermined polynomial system in the coordinates of the roots and the corresponding inverse
system, serving as a starting point for the present paper. However, for certification, (Hauenstein et al.,
2016) refers to the symbolic-numeric method in Ayyildiz Akoglu et al. (2018) that only works if the
input system is given exactly with rational coefficients and have a multiple root with the prescribed
multiplicity structure.

In the present paper we give a solution for the following problem:

Problem 1.1. Given a polynomial system f= (f,..., fy) € C[x]V and a point & € C", deduce an
iterative method that converges quadratically to the triple (§*, u*, €*) such that £* € C", u* defines
the coefficients of a basis A* = {A},..., A} C C[dg+] dual to the set Bz = {(x — NP (x—
£*)Pr} c C[x] and €* defines a perturbed polynomial system fe: := f + €*Bgx with the property that
&* is an exact multiple root of fe+ with inverse system A*. Furthermore, certify this property and give
an upper bound on the size of the perturbation ||€*||.

The difficulty in solving Problem 1.1 is that known polynomial systems defining the coordinates
of the roots and the inverse system are overdetermined, and we need a square subsystem of it in
the Newton iterations to guarantee the existence of a root (and not merely a local minimum of the
norm of the function value), which at the same time ensures a quadratic convergence to the root.
Thus, roots of this square subsystem may not be exact roots of the complete polynomial system, and
we cannot certify numerically that they are approximations of a root of the complete system. This is
the reason why we introduce the variables € that allow perturbation of the input system. One of the
goals of the present paper is to understand what kind of perturbations are needed and to bound their
magnitude.

Certifying the correctness of the multiplicity structure that the numerical iterations converge to
poses a more significant challenge: the set of parameter values describing an affine point with mul-
tiplicity r forms a projective variety called the punctual Hilbert scheme. The goal is to certify that we
converge to a point on this variety. We study an affine subset of the punctual Hilbert scheme and
give a new description using multilinear quadratic equations that have a triangular structure. These
equations appear in our deflated polynomial system, have integer coefficients, and have to be satisfied
exactly without perturbation, otherwise the solution does not define a proper inverse system, closed
under derivation. Fortunately, the structure allowed us to define a rational parametrization of a strata
of the punctual Hilbert scheme, called the regular strata. In turn, this rational parametrization allows
certification when converging to a point on this regular strata.

Our method comprises three parts: first, we apply the Integration Method (Algorithm 1) with
input f and & to compute an approximation of the multiplicity structure, second, an analysis and
certification part (see Section 6 and Algorithm 2), and third, a numerical iteration part converging to
the exact multiple root with its multiplicity structure for an explicit perturbation of the input system
(see Section 5).
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This paper is an extended version of the paper (Mantzaflaris et al., 2020). The present version
contains a new result, presented in Subsection 5.2, on how the updates of our Newton iteration can
be evaluated efficiently from the previous iterates, without resorting to the symbolic expression of
the dual basis in terms of parameters. Furthermore, we give a more detailed explanation of our ex-
amples and numerical experimentation in Section 7. Moreover, in the present version we included all
proofs that were left aside in the proceedings version (Proofs of Propositions 2.3 and 4.4; Lemma 2.5;
Theorems 2.8, 3.3, 5.1 and 6.1).

Related work There are many works in the literature studying the certification of isolated singular
roots of polynomial systems. One approach is to give separation bounds for isolated roots, i.e. a bound
that guarantees that there is exactly one root within a neighborhood of a given point. Worst case
separation bounds for square polynomial systems with support in given polytopes and rational co-
efficients are presented in Emiris et al. (2010). In the presence of singular roots, turned into root
clusters after perturbations, these separation bounds separate the clusters from each other and bound
the cluster size. Yakoubsohn (2000, 2002); Giusti et al. (2005) give separation bounds and numerical
algorithms to compute clusters of zeroes of univariate polynomials. (Dedieu and Shub, 2001) extends
«-theory and gives separation bounds for simple double zeroes of polynomial systems, Giusti et al.
(2007) extend these results to zeroes of embedding dimension one.

Another approach, called deflation, comprises of transforming the singular root into a regular root
of a new system and to apply certification techniques on the new system. Kanzawa et al. (1997) uses
a square deflated system to prove the existence of singular solutions. Leykin et al. (2006) devises
a deflation technique that adds new variables to the systems for isolated singular roots that accel-
erates Newton’s method and Leykin et al. (2008) modifies this to compute the multiplicity structure.
Rump and Graillat (2010) computes error bounds that guarantee the existence of a simple double root
within that error bound from the input, Li and Zhi (2013, 2014) generalizes Rump and Graillat (2010)
to the breadth one case and give an algorithm to compute such error bound. Li and Sang (2015) gives
verified error bounds for isolated and some non-isolated singular roots using higher order deflations.
Dayton and Zeng (2005); Wu and Zhi (2008a); Zeng (2009); Wu and Zhi (2008b); Dayton et al. (2011);
Hao et al. (2013) give deflation techniques based on numerical linear algebra on the Macaulay ma-
trices that compute the coefficients of the inverse system, with improvements using the closedness
property of the dual space. Giusti and Yakoubsohn (2013, 2020) give a new deflation method that
does not introduce new variables and extends «-theory to general isolated multiple roots for the cer-
tification to a simple root of a subsystem of the overdetermined deflated system. In Hauenstein et
al. (2016) a new deflated system is presented, its simple roots correspond to the isolated singular
points with their multiplicity structure. A somewhat different approach is given in Ayyildiz Akoglu
et al. (2018), where they use a symbolic-numeric certification techniques that certify that polynomial
systems with rational coefficients have exact isolated singular roots. More recently, Lee et al. (2019)
design a square Newton iteration and provide separation bounds for roots when the deflation method
of Leykin et al. (2006) terminates in one iteration, and give bounds for the size of the clusters.

The certification approach that we propose is based on an algebraic analysis of some strata of the
punctual Hilbert scheme. Some of its geometric properties have been investigated long time ago, for
instance in Briancon (1977); larrobino (1977); Briangon and larrobino (1978) or more recently in the
plane (Bejleri and Stapleton, 2017). However, as far as we know, the effective description that we
use and the rational parametrization of the regular strata that we compute have not been developed
previously.

The paper is structured as follows. In the next Section we recall the main definitions and algo-
rithms regarding isolated multiple points. In Section 3 we define the punctual Hilbert Scheme and
in Section 4 we show that it admits a rational parametrization for its regular part, which can be ob-
tained algorithmically. Then in Sections 5 and 6 we describe the construction and the certification of
a Newton procedure for computing a multiple point to high accuracy. Finally in Section 7 we develop
some examples and benchmarks of the proposed approach.
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2. Preliminaries

Let f:=(f1,..., fn) € C[x]N with x= (x1, ..., %p). Let £ = (&1, ..., &) € C" be an isolated multiple
root of f. Let I = (f1,..., fn), mg be the maximal ideal at £ and Q be the primary component of I
at & so that «/Q = mg. The shifted monomials at & will be denoted for « = (o1, ..., o) € N" by

Xg 1= (X1 — &)Y -+ (x1 — &)™
2.1. Duality and differential polynomials

Consider the ring of power series C[[d;]]:= C[[d1,...,dne]] and we denote dg = df}s df”é
with 8= (B1, ..., Bn) € N". We identify C[[d¢]] with the dual space C[x]* by considering the action
of d? on polynomials as derivations and evaluations at &, defined as

518l
@ =0 = D)= L@ TorpeClx, (1)

xf L
More generally, for A =), Ay dg‘ € C[[d:]] and p € C[x], we denote (A|p)s := A(dg)(p) =
Yoo Aa 3"‘(p)|5. Hereafter, we reserve the notation d and d; for the dual variables while 9 and 9y,
for derivation. We indicate the evaluation at & € C" by writing d; ; and dg, and for £ =0 it will be
denoted by d. The derivation with respect to the variable d; ¢ in C[[d¢]] is denoted 0d; ¢ i=1,...,n).
Observe that

1 ifa=4,

1 5
—d g\ —
5((X % 0 otherwise,

B!
where 8! = g1!--- Byl.

For p € C[x] and A € C[[d:]] = C[x]*, let px A : q+— A(pq). We check that p = (x; — &;) acts as a
derivation on C[[d¢]]: (x; — &) % df =0y, (d?) = ﬂid?_e‘. Throughout the paper we use the notation
eq,...,e, for the standard basis of C" or for a canonical basis of any vector space V of dimension
n. We will also use integrals of polynomials in C[[d¢]] as follows: for A € C[[d¢]] and k=1, ...,n,

J'A denotes the polynomial A* € C[[d¢]] such that adkg(A*) = A and A* has no constant term. We
k '
introduce the following shorthand notation

JA:=[Adg, ... die,0, ..., 0). (2)
k k

For an ideal | c C[x], let [+ ={A € Clld:11| Vp € I, A(p) = 0}. The vector space I+ is naturally
identified with the dual space of C[x]/I. We check that [+ is a vector subspace of Cl[d¢]] which is
closed under the derivations ad,.ys fori=1,...,n.

Lemma 2.1.If Q is a mg-primary isolated component of I, then Q+ = I+ N C[d¢].

This lemma shows that to compute Q -+, it suffices to compute all polynomials of C[d¢] which are
in I+, Let us denote this set D=1+nN Cld¢]. It is a vector space stable under the derivations adi’s. Its
dimension is the dimension of Q- or C[x]/Q, that is the multiplicity of &, denoted re(I), or simply r
if £ and I is clear from the context.

For an element A(d;) € C[d;] we define the degree or order ord(A) to be the maximal || s.t. df
appears in A(dg) with non-zero coefficient.

For t € N, let D; be the elements of D of order <t. As D is of dimension r, there exists a smallest
t >0 s.t. Dyy1 =Dy Let us call this smallest t, the nil-index of D and denote it by 8¢ (I), or simply by
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8. As D is stable by the derivations 0d; . » We easily check that for t > 8¢ (I), Dy =D and that §¢(I) is
the maximal degree of elements of D.

Let B = {xgl,...,xf'} be a basis of C[x]/Q. We can identify the elements of C[x]/Q with the
elements of the vector space spanc (B). We define the normal form N(p) of a polynomial p in C[x]
as the unique element b of spanc (B) such that p — b € Q. Hereafter, we are going to identify the
elements of C[x]/Q with their normal form in spanc (B). For o € N", we will write the normal form
of x‘g as

)
N =Y g axt. (3)
i=1

2.2. The multiplicity structure

We start this subsection by recalling the definition of graded primal-dual pairs of bases for the
space C[x]/Q and its dual. The following lemma defines the same dual space as in e.g. (Dayton and
Zeng, 2005; Dayton et al., 2011; Li and Zhi, 2014), but we emphasize on a primal-dual basis pair to
obtain a concrete isomorphism between the factor ring and the dual space.

Lemma 2.2 (Graded primal-dual basis pair). Let £, I, §, Q, D, r =r¢(I) and § = 8¢ (I) be as above. Then there
exists a primal-dual basis pair (B, A) of the local ring C[x]/Q with the following properties:

1. The primal basis of the local ring C[x]/Q has the form
B::{x?l,xgz,...,x?]. (4)

We can assume that 81 = 0 and that the ordering of the elements in B by increasing degree. Define the set
of exponentsin B as E := {f1, ..., fr} C N™.
2. The unique dual basis A = {A1, Az, ..., A} of D C C[d¢] dual to B has the form

1 Bi 1 .,

Aj= @dg + E Ko Edy
l|<|Bil
a¢E

3. We have 0 = ord(A1) < --- < ord(A,), and for all 0 <t < § we have D = span {A; : ord(Aj) <t},
where D; denotes the elements of D of order < t, as above.

A graded primal-dual basis pair (B, A) of D as described in Lemma 2.2 can be obtained from any
basis A of D by first choosing pivot elements that are the leading monomials with respect to a graded
monomial ordering on C[d], these leading monomials define B, then transforming the coefficient
matrix of A into row echelon form using the pivot leading coefficients, defining A.

A monomial set B is called a graded primal basis of f at & if there exists A C C[d¢] such that (B, A)
is a graded primal-dual basis pair and A is complete for f at &.

Next we describe the so-called integration method introduced in Mourrain (1997); Mantzaflaris and
Mourrain (2011) that computes a graded pair of primal-dual bases as in Lemma 2.2 if the root &
is given. The integration method performs the computation of a basis order by order. We need the
following proposition, a new version of (Mourrain, 1997, Theorem 4.2):

Proposition 2.3. Let A1, ..., As € C[d:] and assume that ord(A;) <t for some t € N. Suppose that the
subspace D := span(At, ..., As) C C[dg] is closed under derivation. Then A € C[dg] with no constant
term satisfies 94, (A) € D forallk =1, ..., nif and only if A is of the form

A=Y 3 kA (5)

i=1 k=1 k
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k . .
for some vt € C satisfying

N
> " vkag (M) — vjdg (A) =0 for 1<k<I<n. (6)
i=1

Furthermore, (5) and (6) implies that

S
04, (A) =Y VfA; fork=1,....n. (7)

i=1

Proof. Suppose A € C[d] with no constant term satisfies 3y, (A) € D for all k=1, ...,n. To prove (5),
we can proceed exactly as in the proof of (Mourrain, 1997, Theorem 4.2): we write A uniquely as
A=A1(d,....,dn) +A2(da,....dp) + -, +An(dy)
with A; € C[d;, ..., dn] \ Cldi41,...,dy]. Then [9dq,A;j = A;. Then we prove that by induction on k
i
that if o) := Ay 4+ --- + Ay then

N
Ak = Z ”?fAj — (0k-1 = k1la,=0)
=1 k

and

N
k
Ok = A+ 0k_1= E ijAj + Ok—1ldy=0
j=1 k

s s s
= ZV?IA]‘ + Zl)?_]j‘/\ﬂdk:o + -+ Z V}fAj|dk=O,--~d2=0-
j=1 k j=1 k j=1 k

Conversely, suppose that A € C[d] with no constant term is of the form (5) satisfying (6). Define
A =61:=), v}{Aj and for k=2, ...n define

N
Ag = Z vj?fAj — (0k-1 — Ok-1lg=0)
=1 k

and 6y := A1 +--- + Ag. Then in the proof of (Mourrain, 1997, Theorem 4.2) it is shown that Ay €
(C[dk, .. .,dn]\(C[dk+1, . ..,dn] and

N

N N
o=y V?{Aj +>° fol{l\jldk:o +ot Y V}fAjldk:O,--~d2:o
j=1

j=1 =1 k
so we get that 9y, (A) = 9y, (0k) = Zj-:1 U;CA]' € Dy as claimed. O
Let Q be a mg-primary ideal. Proposition 2.3 implies that if A ={A1,..., A;} C Cldg] with A =

1¢ is a basis of Q*, dual to the basis B = {xﬂl,...,xg'} c C[x] of C[x]/Q with ord(A;) = |B;l|, then
there exist vf j € C such that

g (A)= > VfjAj
|Bil<IBil

Therefore, the matrix M of the multiplication map My by x; — & in the basis B of C[x]/Q is
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My = [U ]]<1 Jj<r — [Mﬁl ﬂj+e/<]]<l j=<r

using the notation (3) and the convention that v:fj = g, pj+e =0 if |Bi| > |B;]. Consequently,

o= tppyre, 1 0=1.mk=1.n,

and we have

Z ZM,BI ﬁ]+ekaJ

1Bj1<IBil k=

where (g g;+e, is the coefficient of P in the normal form of x/* in the basis B of Cixl/Q.
Next we give a result that allows to simplify the linear systems involved in the integration method.
We first need a definition:

Definition 24. Let E C N" be a set of exponents. We say that E is closed under division if g =
(B1, ..., Bn) € E implies that B — e, € E as long as B, > 0 for all k=1,...,n. We also call the corre-
sponding primal basis B = {xfl, e x?’} closed under division.

The following lemma provides a simple characterization of dual bases of inverse systems closed
under derivation, that we will use in the integration algorithm.

Lemma 2.5.let B = {xgl,...,xgr} c CI[x] be closed under division and ordered by degree. Let A =
{A1,..., Ar} C C[d¢] be a linearly independent set such that

= > Zﬂﬂ, /3]+8ka1 (8)

1Bjl<1Bil k=1

Then D = span{Aq, ..., A} is closed under derivation iff for all i,s =1,...,r, |Bs| < |Bil and k #1 €
{1,...,n} we have

Z Kpi.pitechp;.pster — Ipi.pi+er gy fster = O- (9)
Ji1BsI<IBjl<lIBil

Furthermore, (B, A) is a graded primal-dual basis pair iff they satisfy (9) and

1 forBi=pBj+e

(10)
0 forpj+eccE, Bi#pBj+ey.

LB, Bj+e =

Proof. Assume A = {A1,..., A;} is linearly independent and D = span(A) is closed under deriva-
tion. For t € {0,..., 8} denote by {A1,...,Ar}=AN C[dg]t and D¢ = span(Aq, ..., Ar,). Then by
Proposition 2.3, A satisfy equations (7) for t =0,...,6 and for j=1,...,r, k=1,...,n, we have
g, (Aj) = Zlﬁs|<\ﬂj\ ;. ps+e Ns. Substituting this to (6) we get fori=1,....r

Z Ui, Bj+ex Z u‘ﬂj,ﬂerelAS

1Bjl<IBil 1BsI<18;]

—HBi Bite Z Mﬂjsﬁs""ekAS:O' (11)
1Bs1<1Bi]

Then using linear independence and collecting the coefficients of As we get (9).
Conversely, assume that (9) is satisfied. Then (11) is also satisfied. We use induction on t to prove
that Dy is closed under derivation. For t = 0 there is nothing to prove. Assume D;_1 is closed under
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derivation. Then by Proposition 2.3 if || <t then dg, (Aj) = Zlﬁs|<\ﬁj\ g psteAs for k=1,....n
Thus for |Bj| =t, (11) implies that

Z ;. pi+e0d (A ) — [p; piteda (Aj) =0
18j1<I6il

Again, by Proposition 2.3 we get that D; is closed under derivation.
Next, assume first that (B, A) is a graded primal-dual basis pair. This means that for i=1,...,r and
for [ such that |8 < |Bil

5i.l=Ai< ) Z Z Mﬁxﬁ]+ekIA]< )

k=1BjI<Iil
_Z > g, ﬂﬁekcoeff(ﬂ‘ fA )
k=11Bjl<IBil

Fix k to be the index of the last non-zero entry of f;. For all other k’s d? becomes zero when we

substitute O into dy1, ...,dy in fAj. Thus,
k

Aj (x ) Z Ug;, ﬂj+ekcoeff( fA i)

|ﬁ}|<‘ﬁx
Z it dﬁl*ek
LB, Bj+e, COE (—aAj)~
—ep)!
1B;1<Iil (B — ew)
Since E is closed under division, g — ey = By, € E for some m < . By duality, we have that

coeff(%, Aj) =6m,j, SO

Ai (xgl) = Mg, Bm+er = Mpi.p-
; (xPY = 5.
To satisfy A; (xE ) = 8;,; we must have

" 1 if Bi = Bm + €
Bi-Bm+ex = 0 ifBn+e=pBEbuti#l

Conversely, by induction on t =|g;| we have that deg(A') < |Bil. Then A; (xﬂ’) =0 when |5] > |Bil-

For |B| < |Bil, relations (10) imply that the coefficient of 4 , in Ajis 0ifi#1land 1 if i = 1. Therefore
(B, A) is a graded primal-dual basis pair. O

To compute the inverse system D of f at a point &, we will consider the additional systems of
equations in & and u = {ug «}:

Ai(fj)=0for1<i<r,1<j<N. (12)
Throughout the paper we use the following notation:

Notation 2.6. Let fq,..., fy € C[x], £ € C" and fix t € N. Let B;_1 = {x?‘,..., x?rf‘l} C Clx¢]i—1 be
closed under division and A;—1 ={A1,..., Ay} C C[dg];—1 dual to B;_; with

adk(l\j): Z Mﬂj,ﬂs+ek1\$ j=1,...,rt—1,k=1,...,n
1Bs1<1Bi]
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Algorithm 1 Integration Method - Iteration t.

Input: t >0, f=(fq,..., fN) €CIXIN, £ C", Bey = {xgl ..... x?r‘” } € C[x] closed under division and

A1 ={A1,...,Ar_,} C Cld;] a basis for D;_; dual to B;_q, of the form (8).

Output: Either “D; =D;_1" or B; = {xéil s ...,x?'f} for some r; > r;_1 closed under division and A; ={A1,..., Ay} with A; of
the form (8), satisfying (9), (10) and (12).

(1) Set up the coefficient matrix K; of the homogeneous linear system (13)-(15) in Notation 2.6 in the variables

{Uf}j:‘l‘_mnily[‘:] _____ n associated to an element of the form A = Z;’;} Y hed vj.‘TAj. Let h; := dimKker K;.
k

(2) If hy =0 then return “Dy = D¢_1". If hy > 0 define r; :=r;_1 + h;. Perform a triangulation of K; by row reductions with
row permutations and column pivoting so that the non-pivoting columns correspond to exponents f,_,1,..., B, with strict

divisors in B;_1. Let By = B;_1 U {xf'HH xP,

(3) Compute a basis Ar,_,+1,..., A, € C[dg] of ker K; from the triangular reduction of K; by setting the coefficients of the
non-pivoting columns to 0 or 1. This yields a basis A = A;—1 U{Ay_,41,..., Ay} dual to B;. The coefficients v,f‘_j of A; are
KB Bi+ey in (8) so that Eq. (12) are satisfied. Eq. (10) are satisfied, since A; is dual to By.

Consider the following homogeneous linear system of equations in the variables {vj.‘ c
1,...,1-1, k=1,...,n}:

Do Vikppere — Viltp pre =0, 1<k<l<n (13)
J:1BsI<|Bjl<t
v?:o if Bj + ey =P forsome 1 <l <rr_4 (14)
-1 n —
ZZ”HAJ (f)=0 I=1,...,N. (15)
j=1k=1 k

We will denote by H; the coefficient matrix of the equations in (13) and (14) and by K; the coefficient
matrix of the equations in (13)-(15).

By Proposition 2.3 and Lemma 2.5, if K;v =0 where v = [v;f :j=1,...,s, k=1,...,n], then
A= Zjﬂ > e v?lej e®in C[d¢]; = Dy. The main loop of the integration method described in
K

Algorithm 1 consists of computing the new basis elements in D; and the new basis monomials in B¢
of degree t from the primal-dual basis pair (B;—1, A¢—1) in degree t — 1.

Algorithm 1 produces incrementally a basis of D, similarly to Macaulay’s method. The algorithmic
advantage is the smaller matrix size in O(rn? + N) instead of N("Jrg*l), where § is the maximal
degree (depth) in the dual, cf. (Mantzaflaris and Mourrain, 2011; Hauenstein et al., 2016).

The full INTEGRATION METHOD consists of taking Aq :=1¢ for t =0, a basis of Dy and then iterating
algorithm INTEGRATION METHOD - ITERATION t until we find a value of t when D; = D;_1. This implies

that the order § =8¢ (f) =t — 1. This leads to the following definition.

Definition 2.7. We say that A C C[d;] is complete for f at £ if for § := ord(A) we have ker K51 = {0}.
Here the linear system K; is as in (13)-(15).

Notice that the full INTEGRATION METHOD constructs a graded primal-dual basis pair (B, A). The
basis A C (f) spans a space stable by derivation and is complete for f, so that we have span(A) =
(H+ NC[ds] = Q* where Q is the primary component of (f) at &.

To guarantee that B; is closed under division, one could choose a graded monomial ordering < of
Clds] and compute an auto-reduced basis of ker K; such that the initial terms for < are d’ . The set
B: constructed in this way would be closed under division, since D is stable under derivation. In the
approach we use in practice, we choose the column pivot taking into account the numerical values of
the coefficients and not according to a monomial ordering and we check a posteriori that the set of
exponents is closed under division (See Example 7.1).
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The main property that we will use for the certification of multiplicities is given in the next
theorem.

Theorem 2.8. If £* is an isolated solution of the system f(x) = 0 and B is a graded primal basis at &* closed
under division, then the system F (&, 1) = 0 of all equations (9), (10) and (12) admits (§*, u*) as an isolated
simple root, where p* defines the basis A* of the inverse system of (f) at & dual to B, due to (8).

Proof. This is a direct consequence of (Hauenstein et al., 2016, Theorem 4.11), since the system of
equations (9)-(12) is equivalent to the system (14) in (Hauenstein et al., 2016, Theorem 4.11). The
equations (9) express the commutation of the transposed of the parametric operator of multiplica-
tion in B, which are the same as the equations of commutation of the operators. By Lemma 2.5, the
equations (10) are equivalent to the fact that (B, A*) is a graded primal-dual basis pair. Finally, the
equations (12) are the same as AV(f;) =0, i=1,...,s where N is the parametric normal form de-
fined in Hauenstein et al. (2016)[see Definition 4.7 and following remark]. Therefore the two systems
are equivalent. By (Hauenstein et al., 2016, Theorem 4.11), they define the simple isolated solution
(&*, u*), where pu* defines the basis A* dual to B due to (8). O

3. Punctual Hilbert scheme

The results in Sections 3 and 4 do not depend on the point £ € C", so to simplify the notation, we
assume in these sections that & = 0. Let m = (x1,...,x;) be the maximal ideal defining &€ =0 ¢ C".
Let C[d] be the space of polynomials in the variables d = (dy, ..., d;) and C[d]; c C[d] the subspace
of polynomials in d of degree <t.

For a vector space V, let 4,(V) be the projective variety of the r dimensional linear subspaces
of V, also known as the Grassmannian of r-spaces of V. The points in % (V) are the projective
points of P(A"V) of the form v=vq{ A--- A v, for v;j € V. Fixing a basis eq, ..., es of V, the Pliicker
coordinates of v are the coefficients of A;, _; (v) of v= Z,-1<m<ir Ay, iy(V)ej A--- Aej.. When
V = C[d];_1, a natural basis is the dual monomial basis (da—a,)mkr. The Pliicker coordinates of an
element v € ¢4 (C[d],_;) for this basis are denoted Aqy,, . o, (v) where a; € N, |aj| <T.

If A={A1,..., A} is a basis of a r-dimensional space D in C[d],_; with A; = Z\a|<r ui,a%,

ticular, a monomial set B = {x%1,...,xfr} ¢ C[x],—1 has a dual basis in D iff Ag, 5 (D) #0. If
(B = {xFi T_1»A={A;}]_,) is a graded primal-dual basis pair, then Hi.g; = di j. To keep our notation
consistent with the previous sections, the coordinates of A; € A when A is dual to B will be denoted

by 1g; « instead of ;. By properties of the determinant, the Pliicker coordinates of D are such that

MUBia = i=1,...,r. (16)

If D is the dual of an ideal Q = D+ c C[x] and B = {x1,...,xP} is a basis of C[x]/Q so that
Ag, .5, (D) #0, the normal form of x* € C[x];—1 modulo Q = D+ in the basis B is

r r
A . .
N = 3P = 3 P
j=1 j=1 B, Br

,,,,,

(if deg(x*) >r, then N(x*) =0).
Definition 3.1. Let % C ¥%.(C[d],_1) be the set of linear spaces D of dimension r in C[d],_1 which

are stable by the derivations 9y, with respect to the variables d (i.e. 3;D C D for i=1,...,n). We
called 77 the punctual Hilbert scheme of points of multiplicity r.

If D c C[d] is stable by the derivations 9y, then by duality I = DL c C[x] is a vector space of
C|[x] stable by multiplication by x;, i.e. an ideal of C[x].
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Proposition 3.2. D € 7 iff D+ = Q is an m-primary ideal such that dimC[x]/Q =T.

Proof. Let D € /7. We prove that D = Q is an m-primary ideal. As D is stable by derivation, Q =
D+ is an ideal of C[x]. This also implies that 1 € D, so that Q c m. As dimD =dimC[x]/Q =r, § =
ord(D) is finite and m®*! ¢ D+ = Q. Therefore, Q is m-primary, which shows the first implication.

Conversely, let Q be a m-primary ideal such that dim C[x]/Q =r. Then by Lemma 2.1, D= Q' C
C|[d]; is stable by derivation and of dimension r = dim C[x]/Q. Thus D € J#. This concludes the
proof of the proposition. O

For D € 7, for t > 0 we denote by D; the vector space of elements of D of order <t. We verify
that DIJ- =D + mf*1, The next theorem follows from Proposition 2.3 and Lemma 2.5.

Theorem 3.3. For B C C[x] closed under division such that |B| =r and § = deg(B), the following points are
equivalent:

1. D € % and B, is a basis of C[X]/(D+ + m!*) fort =1,...,6.
2. The dual basis A = {A1, ..., Ay} of B satisfies A1 = 1 and the equations (8), (9) and (10).

Proof. (1) = (2) Assume that D € . and that B is a basis of C[x]/(D' + m!*1). Let A, =
{A1,..., Ay} be a basis of D; dual to B; with r; = |B¢|. Then, for j=r_1 +1,...,1, Aj € Dy is
such that

Tt—1

3 (Aj) =Y VikAi

j=1

for t=1,...,0. By Proposition 2.3, Equations (8) and (9) are satisfied. As By is dual to Aq,..., A,
Equation (10) are satisfied.

(2) = (1) Let Aj € C[d];_1 for i=1,...,r be elements of C[d],_; dual to B, which satisfies
Equations (8), (9) and (10). By induction on t =0, ..., § = deg(B), we prove that if A¢ ={A1,..., Ar}
is dual to B, then Aq,..., Ay, € C[d];. The property is true for t =0 since A; = 1. If it is true
for t — 1, for Aj with j=r._14+1,...,1r we have by (8), (9) and Proposition 2.3, that 3, (Aj) =
Z;‘;} vikAi, k=1,...,n. Thus Aj € C[d];. This shows that D; is stable by derivation where D; C
CId]; is the vector space spanned At,...,Ar, € C[d];. Let D = D;s. Since, by (10), B; is dual to
A1,..., Ay, € C[d];, we see that D N C[d]; = D;. By Proposition 3.2, Q = D+ is a m-primary ideal
such that dim C[x]/Q =dimD = |B| =r. Moreover, since B; is dual to the basis {A1,..., Ay} of D,
B; is a basis C[x]/(D+ + mi*1). This proves the reverse inclusion. O

For a sequence h = (hg, h1,...,hs) € Nf_“ and 0 <t <§é, let hy = (hg, ..., ht), 1t = Zfzohi. For
r>1 we denote by S" the set of sequences h of some length § <r with h; #0, hg=1 and rs =r. For
h €S, we consider the following subvarieties of /7, :

, ={D e s, |dmD; =dimDNC[d]; <r;,i=0,...,t}

These are projective varieties in 7%, defined by rank conditions on the linear spaces D N C[d]; for
D € 2, that can be expressed in terms of homogeneous polynomials in the Pliicker coordinates of D.
In particular, the varieties J#, := J#,, are projective subvarieties of #. They may not be irreducible
or irreducible components of 777, but we have % = Upcsr 7.

We will study a particular component of .74, that we call the regular component of .74,, denoted
A3 1t is characterized as follows. Let %roeg ={(1)} ={C[d]o} = %4 (C[d]p) and assume that %’ilrigl
has been defined as an irreducible component of %, ,. Let

Wi ={(Dt-1,&) | De—1 € Sy, & € %, (Cld]r), De—1 C &, Vi 0g;E C De—1}
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The constraints D;_1 C & and 0g,& C Dy—q for i =1,...,n define a linear system of equations in
the Pliicker coordinates of & (see e.g. Doubilet et al, 1974), corresponding to the equations (5),
(6). By construction, the projection of W; C J#4, , x %,(CId];) on the second factor %, (C[d];) is
w2 (We) = 74, and the projection on the first factor is w1 (W) = 74, ;.

There exists a dense subset U;_; of the irreducible variety /fhr:f (with U, = %:‘igl) such
that the rank of the linear system corresponding to (5) and (6) defining & is maximal. Since

’](Dt 1) is irreducible (in fact linear) of fixed dimension for D;_q1 € Ut 1 C j?”reg there is a
unique irreducible component W¢ ez of W such that m1(W¢ reg) = g (see e.g. Shafarevich,
2013[Theorem 1.26]). We define j{ﬁ:[eg = (W reg). It is an irreducible component of J#,, since

otherwise W reg = ;' (c%‘i;eg) would not be a component of W; but strictly included in one of the
irreducible components of W;.

Definition 3.4. Let 7, : ¢, — J%, ,, D — DN C[d];_ be the projection in degree t — 1. We define
by induction on ¢, jfreg = {(1)} and jfi:teg is the irreducible component 71[1(3?1:"_%) of /4, for
t=1,....4.

4. Rational parametrization

Let B={xf1,...,x%} ¢ C[x],—1 be a monomial set. In this section we assume that B is closed
under division and its monomials are ordered by increasing degree. For t € N, we denote by B; =
B N C[xI;, by By the subset of its monomials of degree t. Let he = |B[yl, 1t = Y _g-;j< ht = |B¢| and
8 = deg(B). T

Let

Ay :={D € # | B is a basis of C[x]/(D* + m!*1), t=0,...,6).

By Theorem 3.3, 73 is the set of linear spaces D € %4 such that D; = DN C[d]; satisfy Equations (8)
and (9). It is the open subset of D e /4, such that A, (Dy) #0 fort=1,...,8, where Ap, := Ag, ., Bre
denotes the Pliicker coordinate for 4, (C[d];) corresponding to the monomlals in Bg.

Since for D € s we have Ap(D) # 0, we can define the affine coordinates of .73 using the
coordinates of the elements of the basis A = {Aq, ..., A;} dual to B:

{uﬁj,a= "AB’ ' cj=1,....r1, |a|<r}.

The following lemma shows that the values of the coordinates {ug g;+e, : i.J=1,...1,1Bj| <
|Bil, k=1, ...,n} uniquely define A.

Lemma4.l. Let B = {xP1, ... xP} closed under division, D € 7% and A = {A1, ..., A;} be the unique basis
of D dual to B with A,-=Z‘a|§‘ﬁiluﬁi,ag—‘§fori=1,...,r. Then Ay =1andfori=2,...,r

Z Z/"Lﬂl /3]+9ka]

1Bjl<1Bil k=

Thus, g, o is a polynomial function of {{Lg; p;+e. : 1Bs| < 1Bil, 1Bjl <1Bsl.k=1,....,n}fori=1,....1, ||
<Bil-

Proof. Since D is closed under derivation, by Proposition 2.3 there exist ¢; 5 € C such that 9g, (A;) =
2 ipsl<Ip] CiskAs. Then

1p pire, = NPT =g (AP = Y~ ciskAsx) =ci i
1BsI<IBil
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The second claim follows from obtaining the coefficients in A recursively from A; =1 and

n —
Ai: Z Z[,L,gi,ﬂﬁekf[\jfO[‘i:Z,...,T. [}

1Bj1<1Bil k=1 k

We define (= {itp;,pj+eti.j=1...r.18;1<Igilk=1...n» Kt = {Lp;,pj+e, € L @ |Bil <t} C p and wye :=
{1p;.pj+e, € 1 @ 1Bjl =t} C pr. The next definition uses the fact that Equations (13) and (14) are

linear in vgf with coefficients depending on f¢—1:

Definition 4.2. Given D;_1 € J¢,_, with a unique basis A1 = {A1,...,Ar_,} with A; =
Z|a|<t uﬂi,ada—a! for j=1,...,r1 that is dual to B¢, uniquely determined by ft—1 = {ip; ;+e, :
|Bil <t —1,]Bjl < |Bil} as above. Recall from Notation 2.6 that H; is the coefficient matrix of the
homogeneous linear system (13) and (14) in the variables {v;? s j=1,...,r-1, k=1,...,n}. To
emphasize the dependence of its coefficients on D;_1 or w1 we use the notation H¢(D;_1) or
H¢(tte—1). For D € % in an open subset, the rank p; of H¢(D—1) is maximal.

The next definition describes a property of a monomial set B such that it will allow us to give a
rational parametrization of .773.

Definition 4.3. For t =1, ..., 8 = deg(B) we say that D; € 4, (C[d];) is regular for B; if,

o dim(Dy) =rt = |By|,

o rank Hy(D¢—1) = pr the generic rank of He on %,

o Ap, (D)) # 0 where Ag, (Dyr) is the Pliicker coordinate of Dyt € %, (C[d];) corresponding to
the monomials in By.

Let U; :={D; € jfl’lrreg : Dy is regular for B;}. Then U, is either an open dense subset of the irre-
ducible variety jfi:teg or empty if Ap, (D) =0 for all D e Jé‘i;eg . We say that B is a regular basis if
U[:%rfg (or Us#@) fort=1,...,6.

We denote by yj = dim %, (ker He(D;—1)) for Dy_1 € Ur—q and y = Zf:o Vel

If the basis B is regular and closed under division, then y“fi{eg can be parametrized by rational
functions of free parameters . We present hereafter Algorithm 2 to compute such a parametrization
iteratively.

Proposition 4.4. Let B = {x/1, ... xP} ¢ C[x],_1 be closed under division and assume that B is a regular
basis. There exist a subset & C p with |ft| =y and rational functions qg;,« (i) € Q@) for j=1,...,rand
|| <, such that the map @ : CY — 3 defined by

Qi (qﬁj’o‘(ﬁ))]’=1 ,,,,, rleel<r

parametrizes a dense subset of 7, ©.

Proof. Let us define, by induction on t, parameters ft, with [f;| = Zle ¥, and a rational
parametrization of a basis A1(tt,), ..., Ar,(ty) of a generic element of L%gfg. For t =0, we de-
fine A1 =1 and g = . Assume that there exist ;_; C (r—1 and a rational parametrization
A1(H—1)s -+, Ar,_; (Jty_q) of a basis dual to B;—; for a generic element .73, , defined by the map

Br1: g > (qﬁjva(ﬁf—1))\ﬁj\§t7],\a|<r'
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Algorithm 2 Rational Parametrization - Iteration t.

Input: t > 0, B, = {xf1, ..., xPt} c C[x]; closed under division and regular, The_q C pe—1 and
Drq g > (qﬂj»“(ﬁf—l))w]\sr—1,\a\<r with qg; ¢ € Q(fE;_;) parametrizing a dense subset of 7.

Output: 1, C (r and ¢ : [, (qﬁf'a)lﬁj‘§[~‘a|<r' qﬂj.aEQ(ﬁ[) extending ®;_; and parametrizing a dense subset of %freg.

(1) Let H; be as in Notation 2.6, v = [u;? :j=1,....,r_1,k=1,...,n]". Decompose He(®¢_1(;_1))-v=0as

/

[AG_y) | B | C@_» ]| v | =0, (17)

< ST

where V' is associated to a maximal set of independent columns of H¢(®¢—1 (1)), V' = {u‘]?

the rest of the columns. If no such decomposition exists, return “B; is not regular”.
(2) For vK €V express v}f = (pj? @, v") € Q(It;_1)[V, v"]1 as the generic solution of the system H¢(®¢—1(iX;_1)) - v =0.
(3)Fori=ri_1+1,...,1; do:

. xPite e By} and v refers to

(3.1) Define iy ; := {ruﬂ,v,ﬁﬁek DYk €V iy = g e Vﬁ-‘ €V}, iy = Hppyve V;-‘ e v}, and
— — t —
Hei=Heq U Ui:rHH Hey,i-

(3.2) For [ug, p;+e, € Mipy; S€t Ap,.p;+e, = g pi+e, = 1 if Bi = B + e, and O otherwise.
(3.3) For [ug, p;+e; € My, define

ag.pj+e; ‘= (ﬂ?(ﬁ[t],i‘ /*Lﬁ],i) € Q)
(34) For |a| <r and g o ¢ pe find qg, o using Lemma 4.1.

This means that im ®;_1 = J#3,_,. Denote by
Di—1(e—1) € %, (Q;_1)[d]i—1) the space spanned by {A1(tt;_1). ..., Ar,_, (t;—_1)} over the frac-
tion field Q(1t;_1).

By Theorem 3.3 and Lemma 2.5, to define 11, and to extend D;_1(it;_;) to D;(it;), we need to

find Ar,_,+1,..., Ay, of the form
-1 n _
Ai= Z Zﬂﬁi,ﬁjJrekaj(Et—l) i=ra+1l...m
j=1k=1 k

satisfying the system of equations (13) and (14), i.e. such that

AjekerHi(u,_q) fori=r_1+1,...,r1,

where H;(it;_1) = H; (CDt_](ﬁt,l)) and Equations (12) are satisfied. Since B is a regular basis, the
kernel of H¢(ft;_;) over Q(ft,_;) contains a subspace Dy of dimension h; = |B{s| with Apy, (Dpy) #

0. Therefore, the systems H;(it;_;) v =0 with v = [vj? cj=1,...,rr—1,k=1,...,n]7 can be decom-
posed as
1)/
[A(E—1) | BGEG_1) | CE—) ] | V" | =0, (18)
v

where V' is associated to a maximal set of independent columns of H;(tt;_q), v/ = {vz? : xPite ¢ B}
and V is associated to the remaining set of columns. Note that V| = dim(ker H;(tt;_1)) — ht. Thus,
V" UV is the set of free variables of the homogeneous system H;(i;_;) v =0 and a general solution is
such that the variables in v’ are linear functions of the variables in v” and v, with rational coefficients
in g _q.

We obtain the coefficients of Ar,_,4+1,..., Ay, that satisfy equations (13) and (14) and (12) from
the general solutions of H;(u,_;)v =0 by further specializing the variables in v” to 0’s and 1s,
according the duality conditions. Define
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Hiei = {I’L/gi~ﬂj+ek P Vjk eV} C Kyt -

Thus, the parameters in ;) are linear functions of it ; with rational coefficients in f,_;. The de-
nominator in these coefficients is a factor of the numerator of a maximal non-zero minor of A(tt;_;).
Note that the rest of the coefficients of A; are polynomial functions of the parameters p;—1 U s by
Lemma 4.1. Define

It

Be=me Y | Mg
i=re_1+1

Thus, we get a parametrization of the coefficients of Ar,_,4+1 (&), ..., Ar,(fty) in terms of 1, which
defines the degree t part of the map &, : 11, > (@p;.0 (W) 18j1<t, || <r- For Dy € 3, the coefficients of
its basis dual to B; can be parametrized by ®; for parameter values 1z, such that a maximal non-zero
minor of A(it;_q) in Q(ft;_;) does not vanish.

Note that the number of new parameters introduced is

[T \ W1 | = (re — 1e—1) - |[Agey i1 = he (dimker He (72, 1) — hy)
which is equal to y = dim%,, (ker He(ft;_1)) = dim%, (ker H¢(D;_1)) for D;_q generic in U;_q as
claimed.

To prove that ®; parametrizes a dense subset of the projective variety jfhrteg , note that the image
im(®¢) of &, is a subset of J4,, the Zariski closure V; of im(®;) is an irreducible subvariety of
ty, - Furthermore, its projection m;_1(V¢) C J4,_, is the closure of the image of im(®;_1) since if
D; = im®; (7)) then Di_q =Dy N C[d);—1 = $—1(;_;)- By induction hypothesis,

1 (Vo) =imPe g = 4,7

Thus, V¢ is the irreducible component of 4, which projects onto %”hrigl ,that is s, O

Definition 4.5. We denote by H; (1) a maximal square submatrix of A in (17) such that det(H;(t;_1))
#0.

The size of H(w) is the size of v’ in (17), that is the maximal number of independent columns
in H¢(ft;_1). Given an element D = A1 A --- A Ar € %(C[d];—1), in order to check that D is regular
for B, it is sufficient to check first that Ag(D) # 0 and secondly that |H;(u)| #0 for all t=0,...,4,
where = (4g,o) is the ratio of Pliicker coordinates of D defined by the formula (16).

5. Newton'’s iterations

In this section we describe the extraction of a square, deflated system that allows for a Newton’s
method with quadratic convergence. We assume that the sole input is the equations f= (f1,..., fn) €
C[x]", an approximate point & € C" and a tolerance & > 0.

5.1. Extracting a square system

Using this input we first compute an approximate primal-dual pair (B, A) by applying the iterative
Algorithm 1. The rank and kernel vectors of the matrices K; (see Algorithm 1) are computed numeri-
cally within tolerance ¢, using SVD. Note that here and in Section 6 we do not need to certify the SVD
computation but we are only using SVD to certify that some matrices are full rank by checking that
the distance to the variety of singular matrices is bigger than the perturbation of the matrix. Thus we
need a weaker test, which relies only on a lower bound of the smallest singular value.

The algorithm returns a basis B = {xgl,...,xgr} with exponent vectors E = {81, ..., Br}, as well
as approximate values for the parameters p = {itg, g;+e, : 18l <|Bil € E, k=1,...,n}. These pa-
rameters will be used as a starting point for Newton’s iteration. Note that, by looking at B, we can
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also deduce the multiplicity r, the maximal order § of dual differentials, the sequences r; = |B;|, and
hy = |Bm| fort=0,...,8.

Let F be the deflated system with variables (x, ;) defined by the relations (8) and Equations (9),
(10) and (12) i.e.

> Kgi.piteclLp;.ps+ey — Kpi.pi+ellp; ps+e=0 ()
[BsI<1Bjl<IBil
foralli=1,...,r, [Bs| <|Bil.k#le{l,...,n}
F(x,u)= _J1 forBi=pj+e (b)
Hpi.pjtex = 0 forpBj+exckE, Bi#pj+e,
Ai(fj):O, i=1,...,r,j=1,...,N. ©

Here A1 =1 and A; = Z\ﬁj\<|ﬂil ZZ:] Mﬁi’ﬂjJreJAj € C[u][dx] denote dual elements with para-
k
metric coefficients defined recursively. Also, if Aj=3,,<4, Mﬁi,ai—% then

3 (f;
Ailfp= ) At DY (19)

o!
lee|<|Bil

which is in C[x, ] by Lemma 4.1. Note, however, that (a) and (b) are polynomials in C[u], only
(c) depends on x and w. Equations (b) define a simple substitution into some of the parameters u.
Hereafter, we explicitly substitute them and eliminate this part (b) from the equations we consider
and reducing the parameter vector (.

By Theorem 2.8, if B is a graded primal basis for f at the root £* then the above overdetermined
system has a simple root at a point (£§*, u*).

To extract a square subsystem defining the simple root (£*, u*) in order to certify the conver-
gence, we choose a maximal set of equations whose corresponding rows in the Jacobian are linearly
independent. This is done by extracting first a maximal set of equations in (a) with linearly indepen-
dent rows in the Jacobian. For that purpose, we use the rows associated to the maximal invertible
matrix Hy (Definition 4.5) for each new basis element A; € Dy and t =1, ..., r. We denote by Go the
subsystem of (a) that correspond to rows of H;.

We complete the system of independent equations Go with equations from (c), using a numerical
QR decomposition on the transposed Jacobian matrix of Gy and (c) at the approximate root. Let us
denote by Fy the resulting square system, whose Jacobian, denoted by Jo, is invertible.

For the remaining equations F; of (c), not used to construct the square system Fg, define Q =
{(, j) : Ai(fj) € F1}. We introduce new parameters ¢; ; for (i, j) € 2 and we consider the perturbed
system

ﬂ.
fie=Ffi— Y €jx.
jlG, e
The perturbed system is fc =f — € B, where € is the N x r matrix with [€]; j =¢; j if (i, j) € Q and
[€]i,j = 0 otherwise. Denote by F(X, , €) obtained from F(x, ) by replacing A;(fi) by Aj(fie) for

j=1,...,r,i=1,...,N. Then the equations used to construct the square Jacobian Jo are unchanged.
The remaining equations are of the form

Aj(fie)=Aj(fi)—€ ;=0 (1, ])) €.

Therefore the Jacobian of the complete system F(X, i, €) is a square invertible matrix of the form

_(Jo O
JG'—<]1 Id)

where J; is the Jacobian of the system F; of polynomials A;(f;) € C[x, u] with (i, j) € Q.
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Since J. is invertible, the square extended system F (X, i, €) has an isolated root (§*, /,L* e*) cor-
responding to the isolated root (¢§*, w*) of the square system Fp. Furthermore, A*( fi) = e =0 for
(i, j) € Q. Here A}, ..., A¥ € C[dg+] are defined from (£*, u*) recursively by

Aj=1gand AT = Z Z”ﬁ, ﬂj+eka (20)
1Bjl<IBil k=1

We have the following property:

Theorem 5.1. If the Newton iteration

(€15 i) = G 1) — JoGi 1) ™" Fo (ks 14k,
starting from a point (&, (o) converges when k — oo, to a point (§*, u*) such that B is a regular basis for
the inverse system D* associated to (§*, u*) and D* is complete for £, then there exists a perturbed system
fier=fi— Z”(, j)eQ e, i ?* with ei"‘j = Ajf(f,-) such that £* is a multiple root of f; + with the multiplicity
structure defined by ju*.

Proof. If the sequence (&, () converges to the fixed point (¢§*, u*), then we have Fo(§*, u*) =0
and in particular, Go(§*, u*) =0 where Go(§*, u*) =0 is the subset of equations selected from (a).
As u* is regular for B, if it satisfies Go(£*, u*) =0, it must satisfy all equations (a). Therefore u*
defines a point D* = AT A--- A AF € 55,
As (A}) is a basis of D* dual to B and fj e = fi — Z] (0. ])eQ el*J x?i with E*] —A*(f,) for (i, j) €
Q, we have that if (i, j) € Q then A% (f, ex) =A% (f,) —€f —0 Otherwise A% (f, ) = A (f,) since it
is one of the equations selected in (c) to construct the system Fo and Fo(&*, pL *)=0. ThlS shows that

for = (fien, € (D*)*

Since f¢+ is obtained from f by adding elements in B, the system (c), at order § + 1 for fc« and f are
equivalent. Thus D* is complete for f and f. and D* = (f+)1 N Cldg+] is the inverse system at £* of
the system fe+. O

5.2. Numerical Newton iteration

We describe now how Newton iterations can be performed efficiently on the (point, dual basis)
pair, without resorting to the symbolic expression of the dual basis A in terms of the parameters (.
We assume that & € C" is an approximate singular point, that B = {bq, ..., b;} C C[x] with b; =x§i
is the primal basis and that A = {A1,..., A;} C C[d¢] is an (approximate) dual bases with

A= Z Mk,i,jTAj
iel:n,j<k i

where

Miij = (AklXe ibj)e = Up,.pj+e;- (21)

According to Lemma 2.5, the coefficients p ; j such that 8; 4+ e; = g are fixed and the others are the
free parameters p. The system of equations, on which Newton iteration is applied, is of the form:

Fo(. j1) = (Ci,ir k(Wb g 0 fori<i<i'<nl1<k<randl<lI<k,
0 =1 (A fm)e = 0 for (k,m) €I,

where C; i (1) = <Zj<k ki, jXe it * Aj> - (Zj<k Hk,ir, jXe, i * Aj) are the commutation relations.
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To perform a Newton step, we need to evaluate Fo at (£, u), to compute the Jacobian Jfr, (€, u) of
Fo with respect to & and the free parameters (& = (ti¢,u,v), to solve the system Jp, (&, ) (8&,8u) =
—Fo(&, ) and to update the pair (&, A(u)) to (§ +8&, A( +81)).

The evaluation of Fo(&, i) requires the evaluation of

(Ciir k()b = ZMk,i,j(AjIXg,i/bl)s - ZMk,i’,j(AjIXs,ibl)s

j<k j<k

= ZMk,i,ij,i',l = Mk,i' jl4jil | >
Jj<k
which can be computed from the coefficients piy ; j = (Aklxz ibj)e. The evaluation of (Ax()|fm)e is
done using formula (19) evaluated at &.
To compute the Jacobian Jf,(§, 1), we first compute the derivatives of A with respect to the free
parameters [ = (//Llu’v), using the following formula:

Ziel:n,j<k /’Lk.i.j./_‘auf.u.vAj ift <k
i
aﬂt.u.vAk(M) = fAV ift =k
u
0 ift >k

This shows that 9, , , Ax(u) can be computed by induction from the coefficients iy ; j = (Aklxg,ibj)e,
and the integration operators A+ [A applied to 9y, ,A; with j <k.

1
Similarly, we have

Xg,i’*Av ift=k,u=i,
_xf,i*AV ift:k,u:i/,
0 ift=ku#£i,u#t,
ey Ciir k(W) = (Z;<k ki, jXg, it * 3uf,u.v1\j) ift <k,
- (Zj<k Mk,i, jXe i * a#t,u,vAf>
0 otherwise.

It also shows that 9y, ,Ciy k() can be computed by induction, from the coefficients py;; =
(Aklxg ibj)e and the derivation operators A + xg; » A applied to 9, ,Aj with j <k.
Using (19), we have

1
05, (A ()| fm)e = Z aﬂk,aaaaifm@) = (Ap()19g,i fm)e- (22)

Therefore the differential of Fo(&, ) is of the form

J (dé > { D Oy Cii kIb) gdibe u,v
F =
*\du i Akldx fm)edEi 4+ (O Akl fmded e n,v

The Jacobian Jf, can thus be computed from &, Ay, dx; fim, O, , Ak and py i j = (AxlXg,ibj)e.

Solving the Jacobian system, we obtain a new (point, parameter) pair (¢, ') = (&, u) —
];01 (&, W)Fo(&, ). To update the new inverse system A’ corresponding to the parameters ', we
compute

;o ;A
A= 30 A
iel:n,j<k 1
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also by induction, since A} depends on i and TA; for j <k.
i

This provides an algorithm to perform numerically the Newton iterations from a fixed primal basis
B = {bq,...,b;} Cc C[x], an (approximate) singular point & € C" and an (approximate) dual bases
A={A1,...,Ar} C Cldg]. We will illustrate it in the experimentation.

6. Certification

In this section we describe how to certify that the Newton iteration defined in Section 5 quadrat-
ically converges to a point that defines an exact root with an exact multiplicity structure of a per-
turbation of the input polynomial system f. More precisely, we are given f= (fi,..., fy) € C[x]V,
B ={xP1,... xP} c C[x] in increasing order of degrees and closed under division, & := |8;|. We
are also given the deflated systems F (X, u), its square subsystem Fo(x, 1) defined in Section 5 and
F1(x, 1) the remaining equations in F(x, ). Finally, we are given & € C" and uo = {/L;??ﬂj+ek eC:
i,j=1,...,r,1Bjl <|Bil.k=1,...,n}. Our certification will consist of a symbolic and a numeric part:

6.1. Regularity certification

We certify that B is regular (see Definition 4.3). This part of the certification is purely symbolic
and inductive on t. Suppose for some t — 1 < § we certified that B;_1 is regular and computed the
parameters t;_; and the parametrization

Pe1: et = (o Fe1)) 1 <01 ot <1

(Algorithm 2). Then to prove that B; is regular, we consider the coefficient matrix H; of equations
(13) and (14). We substitute the parametrization ®;_; to get the matrices H;(ft;,_;). We symboli-
cally prove that the rows of H;(it;_;) (Definition 4.5) are linearly independent and span all rows of
H¢(ft;_1) over Q(u,_q). If that is certified, we compute the parameters [, and the parametrization
[T (qﬁf""(ﬁt))lﬁi\<t,lal<t as in Algorithm 2 inverting the square submatrix H; of H; such that
the denominators of qg, o for |i| =t divide det(H;(&Z;_;)) # 0.

6.2. Singularity certification

(C1) We certify that the Newton iteration for the square system Fg starting from (&o, (o) quadrati-
cally converges to some root (£*, u*) of Fg, such that ||(£9, to) — (€%, *)|l2 < B, using «-theory.

(C2) We certify that D* = span(A*) is regular for B (see Definition 4.3), by checking that |H;(*)| # 0
for t =1,...,8 (See Definition 4.5), using the Singular Value Decomposition of H;(i4o) and the
distance bound B between p* and L.

(C3) We certify that A* is complete for f at &* (see Definition 2.7), where A* C C[dg+] is
the dual systems defined from (&%, u*) recursively as in (20). This is done by checking
that ker Ksy1(&§*, u*) = {0} (See Definition 2.7), using the Singular Value Decomposition of
Ks41(£0, pto) and the distance bound 8 between (£*, u*) and (£, fLo).

Let us now consider for a point-multiplicity structure pair (&, /o) ¥ := SUPg>3 ||DF0’1($0,
K ~ ~ ~ . .
HO)D<F0%0~MO) ”ﬁ‘ B :=2|IDFy " (%0. 10) Fo(%0. o)ll, @ := B7 and for a matrix function A(&, p),

let £1(A; &, Mo;b) be a bound on its Lipschitz constant in the ball By (&g, ;o) of radius b around

(80, o) such that |[A(§, ) — Ao, o) ll < L1(A; &o, fos b) 1§, ) — (8o, o)l for (&, ) € By (%o, o).
For a matrix M, let ommin(M) be its smallest singular value. We have the following result:

Theorem 6.1. Let B = {x%1 ... x} c C[x] be closed under division and suppose B is regular. Suppose
that & < & := 0.26141, L1(Ks+1; &0, o3 B),g < Omin(Ks+1(0, (o)) and for t = 2,...,8 it holds that
L1(Ht; 1o 5) ,5 < Omin(He (o)). Then the Newton iteration on the square system Fg starting from (&g, Lo)
converges quadratically to a point (§*, u*) corresponding to a multiple point &* with multiplicity structure
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w* of the perturbed system fex = f — €*Bg« such that |€*|| < ||F1(&o, o)l + £1(F1: &o, to; B) B, where
Bee = {x[1. ... x[).

Proof. By the a-theorem (Blum et al., 1998)[Chap. 8, Thm. 1], the Newton iteration on Fy starting
from (&g, (o) converges quadratically to a point (§*, u*) such that

IE*, n*) — (%o, mo)ll < B.
We deduce that

K51 (8%, 1) — Ksi1(Eo, o)l < L1(Ksi1: €0, oi B) 1 (E*, *) — (Eo, 1o |
< Omin(Ks11(%0, Ho))-

Therefore Ksiq(§*, u*) is within a ball around Kjsiq(&o, (o) of matrices of maximal rank, since
Omin(Ks+1(60, o)) is the distance between Ksi1(&o, o) and the set of matrices not of maximal
rank.

Thus ker K51 (§*, u*) = {0}. A similar argument shows that |H;(u*)| #0 for t =1, ..., 3. By Theo-
rem 5.1, (§*, u*) defines a multiple root £* with multiplicity structure w* for the perturbed system
for =f— G*Bg* with

le* = I1F1(&*, wHIl < IIF1(Eo, o)l + IIF1(E*, u*) — F1(&*, u*)||
< |IF1(&0, o) |l + £1(F1; &0, po; B) IE*, 1*) — (&5, 1)
< |IF1(%0, o) ll + £1(F1; &0, jo; f) B. O

7. Experimentation

In this section we work out some examples with (approximate) singularities. The experiments are
carried out using Maple, to get the symbolic expressions of the inverse system and of the Jacobian
in terms of the parameters . The symbolic stage based on simple algebraic computations is carried
out rigorously for all our tests in Maple, computing the parametric inverse system, the commutation
rules and the maximal subsystems at each step. For the numerical part, in particular the numerical
Newton iterations, we use Julia code. All these codes and examples are publicly available at https://
gitlab.inria.fr/AlgebraicGeometricModeling/certified-singularities.!

Example 7.1. We consider the equations

fi=8+X3+8 -1, =0+ +x -1, =X+ +x -1,

the approximate root &, = (0.002, 1.003, 0.004) and threshold ¢ = 0.01. In the following we use 32-
digit arithmetic for all computations.

We shall first compute a primal basis using Algorithm 1. In the first iteration we produce the 3 x 3
Jacobian

1
Yy

A(f1) | 0.00001 2.00600  0.00800
K1 =K1(§p) = A(f2) | 0.00400 3.01803 0.00800
A(f3) |.0.00400 2.00600  0.00005

2

3
Vi

Vi

1 Software Heritage permalink: https://archive.softwareheritage.org/swh:1:dir:d35ad5db291637bf71a532aff334d9e8dfe70838;origin=https:
//gitlab.inria.fr/AlgebraicGeometricModeling/certified-singularities;visit=swh:1:snp:256e9f0fb2921c983d685e98b199a819ef4be9e8;anchor=swh:1:rev:
9bb034e298b17a6cce1dd945¢12522d8386¢5dc.
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The elements in the kernel of this matrix are of the form A = vlldl + vlzdz + v13d3. The singular
values of K1(£q) are (4.1421,0.0064, 0.0012), which implies a two-dimensional kernel, since two of
them are below threshold e. The (normalized) elements in the kernel are A, =d; — 0.00117d; and
Az =d; — 0.00235d;. Note that d, was not chosen as a leading term. This is due to pivoting used
in the numeric process, in order to avoid leading terms with coefficients below the tolerance &. The
resulting primal basis By = {1, x1, x3} turns out to be closed under derivation.

Similarly, in degree 2 we compute the matrix

2 3

vi v v v Vs V3 V3
9) 0 0 0 0.00117 0 1.00000 0.00235
(9) 0 0 0 —1.00000 1.00000 0 0
= (9) 0 —0.00117 -1.00000 0 —0.00235 0 0
A(f1) | 2.00600 0.00600 —0.00117 0 0. —0.00235 1.00000 |’
A(f2) | 3.01803 1.00000 —0.00353 0 0. —0.00707 1.00000
A(f3) L2.00600 1.00000 —0.00117 0 0. —0.00235 0.01200

and we obtain one element in its kernel A4 = dids — 0.0000Zd% — 0.00235dd; + 5.5 - 10*6d% —
0.00117 - dd3 — 0.00002d3 + 5.9 - 10~5d,. In the final step we produce a matrix K3 of size 12 x 9. We
stop the iteration due to assuming ker K3 = {0}, since the minimum singular value is opj, = 0.21549,
therefore we stop the process, since the computed dual is approximately complete (cf. Definition 2.7).
We derive that the approximate multiple point has multiplicity r = 4 and one primal basis is
B ={1, x1, X3, X1X3}.

The full parametric form of a basis of Dy is ker K1 = (Ay =d1+ p@2.2,1d2, A3 =d3+ 3,2,1d2). Here
we incorporated (10), thus fixing some of the parameters according to primal monomials x; and xs.

The parametric form of the matrix K, (&, w) of the integration method in degree 2 is

viov2ov ] v2 V3 v v2 v3
9) [0 o0 o0 0 0 —H2,2.1 0 1 —H321 |
9) 0 0 0 0 0 -1 1 0 0
9) 0 0 0 oo - 0 M3y O 0
A |38 28 28 381 a2a 0 381 w3 1
A(fo) | 26 382 2% 1 32,2152 0 0 3usz21% 1
A(f3) L2& 28 388 1 H2.2.1 0 0 "3.2.1 383

where the columns correspond to the parameters in the expansion (5):

Ag=vidi +vidy +vids + vidd + v3(didy + 112,21d3) + v (dids
+ W2,2,1d3d2) + 13 (13,2,1d1d2) + V3 (3 2,1d5) + 13 (d5 + w3 2,1d2d3)

Setting A4(x1x3) =1 and A4(x1) = A4(x3) = A4(1) =0, we obtain v} = vf =0 and vg = 1. Note that
vll and v13 are removed in advance from the numeric version of K, above. The dual element of order
2 is has the parametric form

Ag=dids + pa21ds + a1 2d3 + a2 2d1dy + pna33d5
+ (U221 + 1321 /44,3,3)dads + (22114413 + U3.2,1104.2,3)d5

(V2 =421, V3 = a2, V3 =422, VI =413, V3 =[L423,V; = [433). Overall 8 parameters are
used in the representation of D;. The highlighted entries of K,(&, u) form the non-singular matrix
Hy in Definition 4.5, therefore D, is regular for B (cf. Definition 4.3). We obtain the polynomial
parameterization fi4,22 = (2,2,1M44,1,2 + 13,2,1, 44,13 = 1, 0423 = 42,2,1 + [43,2,1144,3,3 With the free
parameters [t = (4221, 43,2,1, 44,2.1, L4.1,2, [44,3,3). There is no denominator since detH, = 1.
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We now setup the numerical scheme. The overdetermined and deflated system F(x, i) consists of
15 polynomials in the variables x, w:

M22,1M41,2 + 1321 — U422, —MHa13+1,—U221144,1,3

— M3,2,114,3,3 + 14,23,
A= +x3+x3 =1, Ai(f)=x3 + X2+ — 1, A1(f3)

=x3 + X7 +x5 — 1, Aa(f1)=222,1X2 + 3%,
F(X, )= A2(f2)=312,2,1%5 + 2x1, A2 (f3)=2p42,21%2 + 2X1, A3(f1)=2/432,1X2 + 2X3,
A3(f2)=3u321%5 +2x3, A3(f3)=24321X2 + 3X3,
Aa(f1)=W22,1 442,232, 1144,2 3242 1X2+3 L4 1,2X1+ 14,33,
A4(f2)=32,2,114,2,2X2+343,2,1/44,2,3X2+3144,2,1X5+ [La, 1,2+ L4 33,
A4(f3)=p2,2,1144,2,2+13,2,1144,2,3+204,2,1X2+3 (4,3 3X3+ 04,12

We now consider Jr (&g, o). This Jacobian is of full rank, and we can obtain a maximal minor by
removing A1(f2), A1(f3), A2(f3) and A3(f3) from F. We obtain the square 11 x 11 system denoted
by Fo. The general form of Jr,(x, p) is

_ Op221 0321 OpMa21  OMa12  OH422 0413 0423 0433 0x1 X2 0x3
9) Ha1.2 1 0 H2.2.1 -1 0 0 0 0 0 0
(9 0 0 0 0 0 -1 0 0 0 0 0
9) —H1413 —H1433 0 0 0 —HM2.2.1 1 —M13.2,1 0 0 0
A1(f1) 0 0 0 0 0 0 0 0 3x2 2Xy 2x3
A2(f1) 2xy 0 0 0 0 0 0 0 6x1 202,21 0
Az(f2) 32 0 0 0 0 0 0 0 2 62212 0
A3(f1) 0 2X2 0 0 0 0 0 0 0 2/13,2_1 2
A3(f2) 0 3X§ 0 0 0 0 0 0 0 6/432,1X2 2
Aa(f1) 4,22 423 2x) 3x1 M2.2.1 0 3,21 1 3pan2  2M421 0
Aa(f2) 3p422% 3H423X% 3% 1 32,212 0 343,212 1 0 A, Aa(f2) 0
Aa(f3) | paza Hap23 2% 1 H2.2.1 0 3.2,1 3x3 0 2421 3pMa33

where 9y, A4(f2) = 3(142,2,144,2,2+143,2,1/44,2,3+2[L4,2,1X2). The blocks in this matrix can be com-
puted recursively using the formulas in Section 5.2. The initial point of the Newton iterations is £y =
(0.002,1.003,0.004) and the approximation of the variables p; j provided by the numerical integra-
tion method: wy = (—0.00117, —0.00235,5.9-10~%, — 0.00002, —0.00235,1.0, —0.00117, — 0.00002).

We use Theorem 6.1 to certify the convergence to a singular system. We can compute (see
e.g. Hauenstein and Sottile, 2012) for (¢, ig):

B ~0.01301544, y <18.58366113,

which leads to By < &g. The Lipschitz constants can be estimated by means of interval arithmetic as:

L1(K3; &0, ig; B) <9.66542, Lq1(Hp; Mo; B) <4.08068, L1(H3; ig; B) < 9.66542

as well as the singular values:

Omin(K3(Eg, o)) =0.21549..,  Omin(H2 (o)) = 0.21550..,  omin(H3(fg)) = 0.21550..

The assumptions of Theorem 6.1 are satisfied for guaranteed convergence. In the next iterations we
observe that the sequence of §’s tends to zero (0.01302,1.1-1074,7-102,2.4-10~17), which con-
firms that we are in the region of convergence: Indeed, the successive residuals for 4 iterations are
0.00603,4.0-107°,2.07-1072,8.6 - 10718, 3.55 . 1035, Clearly, the residual shrinks with a quadratic
rate.” We obtain £, = (1.8-10737,1.0,2.8 - 10~3%) and the overdetermined system is satisfied by this
point: [|F (&4, fty)lloo =8 - 1073%; the resulting dual structure is D} = {1, dy, d3, d1ds3}.

2 The convergence is seen up to machine error. If we increase the accuracy to 150 digits the rate remains quadratic for 7
iterations: ...3.55-10735,6.78-10770,4.15. 107140, 5.1 . 107281,
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Table 1

Size of required matrices and parameters for deflation.
System r/n IM SC #0 oS o r N
cmbs1 11/3 27 x 23 75 74 108 x 77 8.814e-01 2.361e-31 3
cmbs2 8/3 21 x 17 21 33 45 x 36 3.630e-01 1.464e-16 5
mth191 4/3 10x9 3 9 15x 12 2.344e-01 3.181e-31 4
decker2 4/2 5x5 4 8 12x 10 7.958e-02 1.033e-22 3
Ojika2 2/3 6x5 0 2 6 x5 3.954e-01 2.025e-17 5
Ojika3 4/3 12x9 15 14 27 x 17 3.198e-01 2.238e-16 6
KSS 16/5 155 x 65 510 362 590 x 367 4.364e-01 2.914e-11 4
Caprasse 4/4 22x13 6 15 22 x19 1.528e+02 1.410e-05 5
Cyclic-9 4/9 104 x 33 36 40 72 x 49 3.958e+00 9.058e-15 4

Example 7.2. We demonstrate how our method handles inaccuracies in the input, and recovers a
nearby system with a true multiple point. Let

fi=x124+%x —x240.003 , fo=2x%+1.004x; — xo.

There is a cluster of three roots around &, = (0.001, —0.002). Our goal is to squeeze the cluster down
to a three-fold real root. We use 32 digits for the computation. Starting with &, and a tolerance equal
to 1072 Algorithm 1 produces an approximate dual 1, d; + 1.00099651d>, d% + 1.00099651dd, +
].00266222d§ + 0.99933134d, and identifies the primal basis B = {],x1,x%} using pivoting on the
integration matrix. The sole condition of type (13) reads 2,12 —m322=0,and A1 =1, Ay =d; +
W2,1,202, A3 =d? + wo12d1ds + pu32,1d2 + 32,2 42,1,2d5.

The nearby system that we shall obtain is deduced by the residue in Newton’s method. In partic-
ular, starting from &, we consider the square system given by removing the equations A{(f1) =0
and A»(f2) = 0. The rank of the corresponding Jacobian matrix remains maximal, therefore such a
choice is valid. Newton'’s iterations converge quadratically to the point (&5, s) = (1.1-10733,1.2.
10733,1, 1, 1). The full residual is now

F(&s, s) = (0,0.003, —10732,10732,0.004, 0, 0) .

This yields a perturbation ]‘1 ~ f1 —0.003 and ]‘2 ~ fr —0.004(x; — &) to obtain a system with an
exact multiple root at the origin (cf. Th. 6.1). Of course, this choice of the square sub-system is not
unique. By selecting to remove equations A1(f1) =0 and A;(f2) =0 instead, we obtain (&5, its) =
(0.00066578, —0.00133245, 1.001, 1.0, 1.001) and the residual F (&5, us) = (0, 0.005, 0.002, 0, 0, 0, 0),
so that the nearby system

fi~x124x1 —x +0.008, f;~x?+1.004x; — xp +0.002

has a singularity at the limit point &* ~ (0.00066578, —0.00133245) described locally by the coeffi-
cients u* ~ (1.001, 1.0, 1.001).

Finally, consider the two square sub-systems as above, after changing fi, f, to define an exact
three-fold root at the origin (i.e. fi = X124+ X1 — X2, f2 =X2% + X1 — x2). Newton’s iteration with initial
point &, on either deflated system converges quadratically to (¢, u) = (0, 1). This is a general prop-
erty of the method: exact multiple roots and their structure are recovered by this process if &, is a
sufficiently good initial approximation (cf. Section 5).

Example 7.3. We show some execution details on a set of benchmark examples in taken from Dayton
and Zeng (2005), see also Mantzaflaris and Mourrain (2014). For this benchmark, we are given systems
and approximate singular points. We compute the approximate inverse system using the integration
method, analyze the matrices involved in the computation and apply Newton iterations to obtain
better approximation of the singular points and its multiplicity structure.

In Table 1, “IM” is the maximal size of the (numeric) integration matrix that is computed to obtain
the multiplicity, “#u” is the number of new parameters that are needed for certified deflation, “SC”
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is the number of constraints of type (13) that were computed and “OS” stands for the size of the
overdetermined system (equations x variables). This is the size of the Jacobian matrix that must be
computed and inverted in each Newton'’s iteration. ro and r stand respectively for the norm of residual
vector at the initial approximate solution and approximate inverse system and after the last Newton
iteration, N is the number of iterations, where the iterations are stopped when the ratio of the norm
of two consecutive Newton steps is less than 10. The initial inverse system is computed from the
given approximate singular point, using the integration method with an adapted threshold for the
numerical rank of the matrices H;. For the numerical Newton iterations, we apply the formulas given
in Section 5.2. The computations are performed with double (64 bit) arithmetic. For Caprasse and
Cyclic-9 examples, the singular root has complex non-real coordinates.

We can observe that the number of parameters required can grow significantly. Moreover, these
parameters induce non-trivial denominators in the rational functions qg; o () of Proposition 4.4, for
the instances cmbs1, cmbs2 and KSS. The quadratic convergence of Newton method is observed on
all the examples. For Caprasse example, we observe a high initial residual error and a final residual
which is not close to the machine precision, due to an early stop of Newton iterations.
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