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Recent statistics reveal an alarming increase in accidents involving pedestrians (especially children) 
crossing the street. A common philosophy of existing pedestrian detection approaches is that this task 
should be undertaken by the moving cars1 themselves. In sharp departure from this philosophy, we 
propose to enlist the help of cars parked along the sidewalk to detect and protect crossing pedestrians. 
In support of this goal, we propose ADOPT: a system for Alerting Drivers to Occluded Pedestrian Traffic. 
ADOPT lays the theoretical foundations of a system that uses parked cars to: (1) detect the presence of 
a group of crossing pedestrians – a crossing cohort; (2) predict the time the last member of the cohort 
takes to clear the street; (3) send alert messages to those approaching cars that may reach the crossing 
area while pedestrians are still in the street; and, (4) show how approaching cars can adjust their speed, 
given several simultaneous crossing locations. Importantly, in ADOPT all communications occur over very 
short distances and at very low power. Our extensive simulations using SUMO-generated pedestrian and 
car traffic have shown the effectiveness of ADOPT in detecting and protecting crossing pedestrians.

 2023 Elsevier Inc. All rights reserved.

1. Introduction and motivation

According to the National Highway Traffic Safety Administra-
tion, 6,301 pedestrians were hit and killed by drivers in the first 
half of 2021, a 17% increase over 20202 [1]. Recent studies [2,3]
concluded that one of the main causes of crashes involving pedes-
trians is occlusion: the driver is unaware of the presence of pedes-
trians because some object partially or fully occludes them. There-
fore, detecting occluded pedestrians reliably and in a timely man-
ner is key to promoting pedestrian safety [4].

A glance at the recent literature reveals an increasing number 
of publications that leverage the on-board sensing and commu-
nication capabilities of present-day cars to increase the drivers’ 
awareness of surrounding pedestrians. On-board cameras, short-
and long-range laser devices, and Light Detection and Ranging (Li-
DAR) are part of the arsenal of sensors employed to detect pedes-
trians [5]. One common characteristic of these sensors is that they 
require Line-of-Sight (LoS) to enable detection [6]. Because of this, 
partially or totally occluded pedestrians go undetected most of the 
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time [7]. In addition to the LoS challenge, weather and lighting 
conditions (e.g., glinting sun or other reduced visibility conditions) 
are apt to thwart the ability of on-board sensors to detect pedes-
trians [8,9].

One approach for detecting pedestrians that does not require 
LoS involves leveraging wireless communication technologies such 
as WiFi, Dedicated Short Range Communication (DSRC), Zigbee or 
Bluetooth. While this approach mitigates the LoS challenge, it has 
serious scalability problems. Indeed, reporting pedestrians within 
a large radio coverage area tends to be unreliable due to known 
impairments of radio transmission, various forms of interference, 
message propagation delays, and security concerns [10].

Recently, a number of researchers have suggested supplement-
ing the data collected by on-board sensors with information col-
lected by pre-deployed roadside infrastructure [11]. Aligned with 
this idea, several projects have been implemented at signalized 
intersections to promote pedestrian safety [12]. These projects 
involve installing sensors, cameras, and communication units in 
roadside infrastructure, such as light poles, to detect pedestri-
ans and to alert approaching cars [13]. Although this approach 
enables the detection of occluded pedestrians, it focuses on sig-
nalized intersections, while the majority of pedestrian accidents 
tend to occur mid-block [14–16]. Moreover, this approach is prob-
lematic since roadside infrastructure may not be available when 
needed [9].
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Recently, the potential of using parked vehicles as alternative 
road-side infrastructure in support of sensing and networking has 
been recognized by a number of researchers. For example, [17]
and [18] suggested that the parked cars can be used as relying 
nodes in the network when they retransmit the received messages 
to the incoming cars to enhance the connectivity in VANET.

More recently, it was suggested to aggregate information col-
lected by several moving vehicles in an effort to enable a collab-
orative perception of surrounding pedestrians [8]. The idea is that 
when a moving vehicle has a LoS connection to a group of pedes-
trians, it alerts neighboring vehicles, making them aware of the 
presence of potentially occluded pedestrians. Alternatively, using 
Vehicle-to-Pedestrian (V2P) communications [11], the pedestrians 
are alerted to the presence of approaching cars by pushing mes-
sages to their hand-held or wearable devices. Collaborative per-
ception is a promising technology for enhancing pedestrian safety. 
However, in order to work effectively, the collaborative pedestrian 
detection methodology requires sophisticated sensing resources 
and communication protocols and may not scale well to a large 
number of pedestrians [19]. Furthermore, it is rather inaccurate 
since it relies on inaccurate GPS coordinates to estimate the dis-
tance between the pedestrian detected and the vehicle, not to 
mention the potentially high power consumption [20]. Most im-
portantly, the alert messages sent via DSRC can easily overwhelm 
the network with unnecessary alerts [21].

1.1. Our contributions

The underlying design philosophy of all the approaches men-
tioned above is that pedestrian detection is to be undertaken by 
moving cars with all the complications that this entails. In sharp 
departure from this philosophy, we propose ADOPT: a system for 
Alerting Drivers to Occluded Pedestrian Traffic that runs on cars parked
along the sidewalk.

By design, ADOPT is a low-power system whose stated goal 
is to alert approaching vehicles to the presence of possibly oc-
cluded pedestrians in the street. To implement this functionality, in 
ADOPT, all communications occur over very short distances and at 
very low power. Piezo-electric cells implanted in pedestrians’ shoes 
power rudimentary radio transmitters that operate by closing a 
circuit as the pedestrian’s shoes touch the ground. The resulting 
signals (essentially, radio noise) allow low-power transceivers, in-
stalled close to the four corners of parked cars, and integrated into 
the Controller Area Network (CAN) intra-vehicle network [22], to 
classify pedestrians as on the sidewalk or in the street. As long as the 
pedestrians stay on the sidewalk, ADOPT remains in a low-power 
vigilant state. When one or several pedestrians step into the street, 
ADOPT wakes up, locates the crossing pedestrians (a.k.a. crossing 
cohort), and estimates the time it takes the last member of the co-
hort to cross the street. By multi-hopping this information through 
a chain of parked cars along the sidewalk, ADOPT shares with the 
drivers of approaching cars (a) the location, on a digital map, of 
the crossing cohort ahead of them; and, (b) the estimated time it 
takes the cohort to cross the street.

To summarize, the main contributions of ADOPT are related to 
pedestrian safety and driver assistance. Specifically, this paper:

1. provides the theoretical foundations of a low-power and 
infrastructure-free occluded pedestrian detection system;

2. introduces a novel criterion for the binary classification of 
pedestrians as “on the sidewalk” or “in the street”;

3. offers a scheme for estimating the expected time it takes the 
crossing cohort to clear the street;

4. provides an algorithm that allows approaching cars to adjust 
dynamically their speed, given several simultaneous crossing 
locations.

The remainder of this work is structured as follows: Section 2
offers a succinct survey of relevant recent work. Section 3 estab-
lishes terminology and discusses system assumptions. A detailed 
discussion of how ADOPT works can be found in Sections 4–7. 
Specifically, Section 4 offer the details of pedestrian classification 
and localization. Section 5 offers the details of the way ADOPT esti-
mates the time it takes a cohort to cross the street. Next, Section 6
discusses the details of propagating alert messages to inform ap-
proaching cars of the presence of crossing pedestrians. In Section 7
we present an algorithm that can be used by approaching cars to 
adjust their speed as a result of receiving information about one 
or several crossing cohorts. The simulation models and the evalua-
tion results of ADOPT are presented in Section 8. Finally, Section 9
offers concluding remarks and maps out directions for future in-
vestigations.

2. Relevant related work

The main goal of this section is to offer a succinct overview 
of the latest pedestrian detection systems and relevant emerging 
technologies.

2.1. On-board LoS sensors

The literature on pedestrian detection by vehicle’s LoS on-board 
sensors such as various camera technologies, LiDAR, and Laser is 
quiet vast. LoS on-board sensors can detect pedestrians directly if 
they fully appear in the view. In [23], on-board infrared camera has 
been used to detect pedestrian on street. Laser has been also fused 
with the camera to detect pedestrians and calculate their speed 
in [24] while [25] fused thermal sensors with the stereo camera to 
detect pedestrians in low-visibility conditions.

However, if pedestrians are partially occluded, additional effort 
is needed to recognize them by on-board camera utilizing deep 
learning and convolutional networks [26–29]. In addition, sensor 
fusion approaches have been leveraged to detect partially occluded 
pedestrians. Recently, [30] used on-board thermal infrared sen-
sors to detect pedestrians partially occluded by parked cars. [31]
suggested fusing on-board LiDAR and radar to detect pedestrians 
partially occluded by. While on-board LoS sensors can detect par-
tially occluded pedestrians, fully occluded pedestrians cannot be 
detected using the same sensors. Furthermore, relying on LoS sen-
sors for occluded pedestrian detection must involve extensive vi-
sion algorithms that may not perform the task in a timely manner.

While on-board LoS sensors can detect partially occluded 
pedestrians, fully occluded pedestrians cannot be detected using 
the same sensors. Furthermore, relying on LoS sensors for occluded 
pedestrian detection must involve complicated computer vision al-
gorithms that may not perform the task in a timely manner.

2.2. Vehicle-to-Pedestrian communications

In order to mitigate the problem of occluded pedestrian detec-
tion with LoS sensors, Vehicle-to-Pedestrians (V2P) wireless com-
munication was leveraged to detect the presence of pedestrians. 
WiFi, Zigbee, and Ultra-Wideband (UWB) were used in [32–35]
for V2P communication and alerting either drivers or pedestrians 
about anticipated collisions. [36] have proposed a framework for 
V2P communications via DSRC units with the goal of alerting both 
the pedestrians and the vehicle to a possible collision. The fusion 
of the car’s perception and V2P communications was leveraged by 
[37]. Their solution relies on recognizing the occlusion by a moving 
vehicle and sending an alert to the pedestrian’s device if detected 
via V2P communications.

Although V2P communications enhance the safety of occluded 
pedestrians by improving the detection rate, their main drawback 
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is that they are usually power-hungry and are apt to drain the 
battery of the pedestrian’s device if used for extended periods of 
time. Yet another drawback is that V2P communications rely on 
inaccurate GPS readings to determine the distance between the 
pedestrian and approaching vehicles. Additionally, V2P communi-
cations do not scale well when multiple pedestrians are found in 
the street.

2.3. Collaborative perception

Collaborative perception in Vehicular Ad Hoc Networks (VANET) 
is used in pedestrian safety systems when a moving car fails to 
detect pedestrians using its on-board sensors and relies on remote 
sensors such as other cars’ on-board cameras or street monitor-
ing cameras to provide additional perception. Information is shared 
between vehicles in VANET using Vehicle-to-Vehicle (V2V) com-
munication or through communication with Road Side Unit (RSU). 
[38] proposed a collaborative system that shares pedestrians’ in-
formation when they are detected by another car’s camera. The 
detecting car exchanges pedestrian location and speed with the 
blinded car(s). Their system has the advantage of enabling collab-
oration between cars to prevent pedestrian/car collisions.

Several projects attempt to enhance pedestrian detection at in-
tersections by installing cameras and ranging sensors on light poles 
or RSUs. Once the pedestrians are detected, approaching vehicles 
are alerted to their presence. For example, [39–41] installed a 
camera in an RSU to detect pedestrians and to alert approach-
ing vehicles. [42] and [43] suggested fusing input from installed 
cameras with thermal and LiDAR sensors to detect pedestrians at 
day and night. In lower cost mechanism, [44] installed piezoelec-
tric elements at the beginning and end of crossing lines to detect 
pedestrians and to alert approaching vehicles through RSUs. The 
aforementioned approaches are expensive to deploy and, conse-
quently, municipalities usually do not have the resources to install 
them at all locations. Besides, they only cover controlled inter-
sections while many pedestrians are known to roads mid-block. 
Additionally, the alert messages are exchanged between RSU and 
approaching vehicles via DSRC which covers a large area caus-
ing network load and impairments of radio transmissions, various 
forms of interference, message propagation delays, and security 
concerns.

2.4. Putting parked cars to work

Parked cars have been used in VANET to relay safety message 
dissemination in areas with low traffic density. As an example, [45]
proposed the idea of using parked cars as RSUs to improve VANET 
connectivity. Similarly, [17] showed that parked cars are useful to 
work as relay nodes in support of VANET communications. To in-
crease road safety, [18] proposed that parked cars communicate 
with their moving counterparts as relay nodes to increase safety 
in low-density areas by multi-hopping the Cooperative Awareness 
Messages. Yet another technology that leverages the potential of 
parked cars is the recently proposed Vehicular Clouds [65].

Due to the vast panoply of their on-board sensors, parked cars 
can also be used as a sensing resource. [46] showed that parked 
cars can be used as sensing resources and that the CAN bus can be 
used to provide power to the sensors. Parked cars have been also 
used for detecting missing objects by [47] by instrumenting cars 
with RFID readers to detect tags attached to missing objects, then 
share the detection information with administrative centers. One 
of the drawbacks of RFID-based detection approaches is that they 
need a secure communication medium to protect users’ privacy. 
Undoubtedly, using parked cars as a sensing resource is beneficial 
in terms of providing accurate and timely information.

2.5. Energy harvesting wearables

Energy harvesters such as piezoelectric elements were used in 
shoes to activate sensors from mechanical energy generated dur-
ing walking [48]. Moreover, [49] developed a shoe module that 
can communicate with a smart-phone held by the user. Their work 
showed that the power produced by a single shoe is sufficient to 
transmit data from a Bluetooth module to the smart-phone. Such 
a module can be used to enable pedestrians to generate signals 
to be received by nearby receivers that operate on the same fre-
quency as we proposed in this paper. Most importantly, they can 
transmit signals while harvesting power from their own motion 
rather than external batteries.

2.6. Short-range Received Signal Strength localization

Due to their simplicity and efficiency in terms of power con-
sumption, Received Signal Strength (RSS) ranging approaches are 
commonly used in wireless localization [50]. However, because 
of its limited accuracy, RSS-based ranging is used mostly as a 
coarse-grain indicator, especially in long-range localization efforts. 
As pointed out by [51], the accuracy of RSS localization is surpris-
ingly good at short ranges (within 1-3 meters) which makes it a 
good candidate to be used in ADOPT.

3. ADOPT: system assumptions

The main goal of this section is to spell out the basic system 
assumptions that underlie ADOPT. ADOPT relies on detecting radio 
frequency (RF) signals transmitted at each step while a pedes-
trian is walking. Many wearable devices, including smart-phones, 
wrist-bands, and shoes can detect human steps [52]. Since we aim 
to design a low-power and low-cost system, we focus on lever-
aging wearables that harvest energy from body motion. Specifi-
cally, we assume that the pedestrians (who might be children) are 
wearing shoes fitted with piezoelectric elements that provide a ro-
bust, lightweight, and inexpensive source of power for an in-shoe, 
battery-free, power generator [48,49]. As already mentioned, when 
a pedestrian’s shoes touch the ground, a circuit is closed and a 
rudimentary transmitter embedded in the pedestrian’s shoe is ac-
tivated for a fraction of a second. The transmission range in this 
paper is assumed to be up to 3 meters.

We assume that the parked cars know their exact geographic 
location by interfacing with a digital map. In support of detecting 
the presence of pedestrians, cars are fitted with four low-power 
radio transceivers placed at the front and rear axles on each side 
of the car. These transceivers detect and measure the strength of 
RF signals transmitted by pedestrians’ shoes. The detection range 
of each transceiver is assumed to be 3 meters in this paper. Re-
call that the four transceivers mentioned above, are integrated into, 
powered by, and synchronized to the intra-vehicle CAN bus [22].

The cars parked along the sidewalk are assumed to be aware 
of the distance between their right transceivers and the sidewalk. 
This distance can be estimated by using any on-board proximity 
sensor before stopping. The cars are assumed to be parked parallel 
to the sidewalk. This is assumed for convenience only. Indeed, if 
the cars are parked orthogonal to the sidewalk, they are assumed 
to be aware of the distance between their front or rear transceivers 
and the sidewalk. Notice that a car can detect its orientation with 
respect to the sidewalk using any rudimentary on-board navigation 
system or its inertial sensors.

The cars parked along the sidewalk self-organize into a linear 
vehicular network [53]. In this work, we refer to the resulting net-
work as a chain of parked cars. Refer to Fig. 1 for an illustration. 
By consulting its on-board digital map, each car in the chain deter-
mines the width of the street and the speed limit. It also identifies 
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Fig. 1. Illustrating ADOPT: Parked cars detect occluded crossing pedestrians and alert 
approaching cars.

its position in the chain and the pseudonyms of its two adjacent 
neighbors. When a car is departing or joining the chain, a simple 
maintenance operation is performed to maintain the network [54].

It is important to note that since in an on-street parking situa-
tion, adjacent parked cars are, typically, a short distance away from 
each other [55], the tasks inherent to self-organization and main-
tenance of the chain of parked cars can be performed at low power 
using a suitable subset of transceivers such as Bluetooth Low En-
ergy (BLE) or Zigbee.

We assume that when ADOPT is booted, there are no pedes-
trians in the street – pedestrians, if any, are all on the sidewalk. 
This assumption is non-essential and is made for convenience only. 
Similarly, we assume that pedestrians step into the street from the 
sidewalk in front of a parked car. If the pedestrians step into the 
street behind a given parked car, but in front of the next parked 
car in the chain, the latter will be responsible for undertaking the 
alerting actions. If there is no car parked behind, then the origi-
nal parked car will undertake the alerting actions, as described in 
Section 6, using its rear transceivers instead of the front ones.

Alert messages indicating the presence of a crossing cohort are 
propagated backward along the chain of parked cars, as illustrated 
in Fig. 1. As they pass cars in the chain of parked cars, approach-
ing cars will be alerted, using low-power communications, to the 
reported location (or locations) of crossing pedestrians.

Although not specifically designed with self-driving cars in 
mind, ADOPT can be easily implemented to run on self-driving 
cars. When such a car receives an ADOPT “Caution – pedestrian 
in the street” message, it complies by reducing its speed without 
delay using a control system such as the system proposed by [56]. 
However, at the moment, self-driving cars are not very common, 
and so ADOPT alerts human drivers by displaying appropriate mes-
sages on a dashboard digital map, attempting to minimize distrac-
tion. For this purpose, we assume an ADOPT app that is running 
in approaching cars. The app determines the speed reduction nec-
essary to avoid collision with the crossing cohorts and displays the 
suggested speed on the dashboard.

4. Pedestrian classification and localization

The first task that parked cars need to undertake is to deter-
mine if there are pedestrians in the street. If no pedestrians are 
in the street all is well. Otherwise, the pedestrians have to be 
accurately localized and their crossing time estimated. Once this 
information is in hand, approaching cars are alerted to the pres-
ence of the crossing cohort. The main goal of this section is to 
provide the details of pedestrian classification and localization.

4.1. Pedestrian detection

Recall that, as mentioned in Section 3, with each step the 
pedestrians’ shoes generate, for a fraction of a second, an RF sig-
nal with a known power T and a known frequency f [49]. When 
a pedestrian walks near a parked car, the transceivers in the car 
receive the signals generated by the pedestrian’s shoes. We calcu-
late the Received Signal Strength R S S(Rx) at a generic transceiver 
Rx using the Free Space propagation model [57]:

Fig. 2. Illustrating the proof of Lemma 1.

R S S(Rx) = Tγ

δ2
Rx

, (1)

where T is the power of the transmitted signal, γ is an environ-
mental constant, and δRx is the distance between the pedestrian 
who transmits the signal and the transceiver Rx. The pedestrian is 
assumed to be detected if her δRx is less than or equal the detec-
tion range of Rx.

4.2. Pedestrian classification

An important task that ADOPT undertakes is the binary classifi-
cation of detected pedestrians: on the sidewalk or in the street. We 
begin by stating and proving a technical result, of an independent 
interest, that provides a simple criterion for classifying pedestrians.

Lemma 1. Consider two points L and R in the plane and assume that the 
line segment LR they determine has length w > 0. Let # be an arbitrary 
line perpendicular to LR. # is the locus of all the points P for which

δ2
L (P ) − δ2

R(P ) = constant, (2)

where δL(P ) and δR(P ) are, respectively, the distance from P to the end-
points of the segment LR.

Proof. Let Q be the intersection of the (infinite) line through L and 
R with # and refer to Fig. 2. Assume, without loss of generality, 
that Q lies to the right of R. Denote by d the length of the segment 
PQ and by x the length of the segment RQ.

By applying the Pythagorean theorem to triangles LPQ and RPQ 
we write
{

δ2
L (P ) = (w + x)2 + d2 and

δ2
R(P ) = x2 + d2

and consequently,

δ2
L (P ) − δ2

R(P ) = (w + x)2 + d2 − x2 − d2 = w2 + 2wx. (3)

Observe that the line # determines uniquely x and conversely. 
Specifically, for a given line #, x is a constant (that depends on 
#) and so the expression w2 + 2wx is a constant implying that 
δ2

L (P ) − δ2
R(P ) is itself a constant.

Conversely, assume that

δ2
L (P ) − δ2

R(P ) = c

for some constant c. By (3), this implies that w2 + 2wx = c where-
upon, solving for x yields

x = c − w2

2w
.
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In turn, this uniquely determines the line #, and the proof of 
Lemma 1 is complete.

Lemma 1 justifies a simplification of notation. Specifically, when 
the line # is clear from the context, the expression δ2

L (P ) − δ2
R(P )

will be written, simply, as δ2
L − δ2

R as its value is independent of 
the choice of the point P on #.

We now state and prove an important consequence of Lemma 1
that will be used as a building block of our binary classification of 
pedestrians: on the sidewalk or in the street. In order to state our 
result, we find it convenient to inherit the notation of Lemma 1.

Theorem 2. Consider an arbitrary line # and assume a transmitter 
placed at an arbitrary point P on #. Let R S S(L) and R S S(R) be, respec-
tively, the Received Signal Strength received by two transceivers placed 
at L and R. Then, regardless of the location of P on #, we have

1
R S S(L)

− 1
R S S(R)

= c(#) (4)

where c(#) is a constant that depends on #.

Proof. By (1) the Received Signal Strengths R S S(L) and R S S(R)

received by two transceivers placed at L and R are, respectively,

R S S(L) = Tγ

δ2
L

and R S S(R) = Tγ

δ2
R

, (5)

where T is the power of the transmitted signal and γ is an envi-
ronmental constant.

Now, equations (2) and (5), combined allow us to write

1
R S S(L)

− 1
R S S(R)

= δ2
L

Tγ
− δ2

R

Tγ

= δ2
L − δ2

R

Tγ

= w2 + 2wx
Tγ

[by (3)]

= c(#), (6)

where the last step of the derivation follows because there is a 
one-to-one correspondence between # and x.

Discussion. Assume a car parked parallel with the edge of the 
sidewalk. Theorem 2 establishes a one-to-one correspondence be-
tween a subset of real numbers and the set of lines in the plane 
parallel to the edge of the sidewalk. This is to say, to each line 
# in the plane parallel to the edge of the sidewalk, there corre-
sponds a unique real number c(#) and, conversely, to each real 
number there corresponds exactly one line in the plane parallel to 
the edge of the sidewalk. One of these lines is of a special inter-
est: this is the edge of the sidewalk. As the next result shows, the 
resulting constant, c0 acts as a discriminant between locations on 
the sidewalk and in the street.

Corollary 3. Let the line #0 coincide with the edge of sidewalk, assumed 
rectilinear. There is a unique constant c0 such that the pedestrian (as-
sumed to carry a transmitter) is on the sidewalk or in the street depend-
ing on whether w2+2wx

Tγ > c0 or w2+2wx
Tγ < c0 .

Proof. Let x0 be the distance between R and the edge of the side-
walk and write

c0 = w2 + 2wx0

Tγ
(7)

Fig. 3. Illustrating the notation for the proof of Lemma 4.

Let # be a vertical line passing through an arbitrary point on the 
sidewalk and let x be the distance between R and the intersection 
point of the line LR with #. Clearly, x > x0 and, consequently,

w2 + 2wx
Tγ

> c0.

Thus, for points on the sidewalk the expression w2+2wx
Tγ is larger 

than c0. The proof is similar for points in the street.

The one-to-one correspondence discussed above is a very useful 
property because in order to determine if a pedestrian is on the 
sidewalk, all we have to do is to evaluate the left-hand side of (4)
and to compare the result to the value of c0 from (7). This, in fact, 
is tantamount to a coarse-grain binary localization of pedestrians: 
on the sidewalk, or else in the street.

4.3. Pedestrian localization

Pedestrians that are classified as in the street have to be lo-
calized more accurately, as we are about to explain. Referring to 
Fig. 3, consider a pedestrian P and let point Q be the projection of 
P onto the line determined by L and R. We assume, without loss of 
generality, that Q lies between L and R. We assume that the pedes-
trian crosses the street by walking in a straight line parallel to the 
front of the parked car (i.e., perpendicular to the sidewalk). Let d
be the length of the line segment PQ (that is, the vertical distance 
between the location of the pedestrian and the line LR. Further, 
let w be the width of the parked car, let x be the length of the 
line segment QR, let z be the distance from R to the sidewalk, and 
write y = x + z.

Now, elementary geometry confirms that y has the following 
expression

Lemma 4.

y = w
2

+ z − Tγ

2w

[
1

R S S(L)
− 1

R S S(R)

]
. (8)

Proof. By using the Pythagorean theorem in the triangles PQL and 
PRQ we can write:
{

δ2
L = (w − x)2 + d2 and

δ2
R = x2 + d2

and so:

δ2
L − δ2

R = (w − x)2 − x2 = w2 − 2wx. (9)

From (1),
{

δ2
L = Tγ

R S S(L) and

δ2
R = Tγ

R S S(R)
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by plugging these values into (9), we obtain

Tγ

R S S(L)
− Tγ

R S S(R)
= w2 − 2wx.

Solving for x yields

x = w2

2w
− Tγ

2w

[
1

R S S(L)
− 1

R S S(R)

]

= w
2

− Tγ

2w

[
1

R S S(L)
− 1

R S S(R)

] (10)

Finally,

y = x + z

= w
2

+ z − Tγ

2w

[
1

R S S(L)
− 1

R S S(R)

]
,

(11)

as claimed.

Now, referring again to Fig. 3, it is clear that since the pedes-
trians are crossing the street in a direction perpendicular to the 
sidewalk, in order to specify the location of a crossing pedestrian, 
it suffices to specify the value of y, as above, along with the value 
of d, the vertical distance to the front of the parked car.

In order to determine d, we compute the area of the triangle 
PLR in two different ways:

• First, evidently, Area(P LR) = w·d
2 ;

• Second, writing p = δL+δR +w
2 , the same area can be expressed 

as

Area(P LR) =
√

p(p − δR)(p − δL)(p − w)

Consequently,

w · d
2

=
√

p(p − δR)(p − δL)(p − w),

which, upon solving for d, yields:

d = 2
w

√
p(p − δR)(p − δL)(p − w). (12)

5. Estimating the time to cross

Recall that a crossing cohort is a group of pedestrians crossing 
together at the same location. Instead of dealing with each mem-
ber of the cohort individually, we only concern ourselves with the 
tail of the cohort, defined as the last pedestrian in the cohort. It 
is clear that if the tail of the cohort has crossed safely, then all 
pedestrians in the cohort have crossed safely, too. It is important 
to note that ADOPT is privacy-aware as we are only interested in 
the location of the tail of the cohort, and not in the actual person 
that happens to be the last in the cohort.

We now define the tail of a crossing cohort more formally. Re-
call that the parameter y, defined in Lemma 4 keeps track of the 
current distance of a crossing pedestrian to the sidewalk she just 
departed. Formally, then, at each moment in time, the tail of the 
crossing cohort is the pedestrian with

min{y| pedestrian classified as in the street}. (13)

Notice that the tail may change dynamically, either because new 
pedestrians joined the cohort, a pedestrian turns back after start-
ing crossing or, simply, because some folks in the cohort walk 
faster than others. ADOPT updates the tail of the crossing cohort 
every second.

To manage the tail of a cohort, ADOPT needs to process signals 
from several pedestrians simultaneously. To accomplish this, the 
transceivers in the parked car sample frequency f on which the 
pedestrians’ shoes are transmitting signals, m times per second. 
Conceptually, this means that each second is partitioned into m
slots. Assume that each pedestrian takes one step per second, and 
that each step generates one transmission. For all practical pur-
poses, this transmission occurs, randomly, in one of the m slots 
discussed above. Now, suppose that there are k, (k ≥ 1), pedestri-
ans in the crossing cohort. We have just set up a “balls-into-bins” 
model involving k balls and m bins. If two or more pedestrians 
are transmitting in the same time slot, a collision occurs and the 
outcome cannot be disambiguated.

We are interested to assess the expected number of “clear” 
transmissions, where one single transmission occurs in a given 
time slot. For arbitrary i, (1 ≤ i ≤ k), let Xi be the indicator ran-
dom variable that takes on the value 1 if, in a given second, slot i
sees a clear transmission and 0 otherwise. It is easy to see that

Pr[Xi = 1] =
(

1 − 1
m

)k−1

and that the expected number, E[M], of clear transmissions is

E[M] = E[X1 + X2 + · · · + Xk]
= E[X1] + E[X2] + · · · + E[Xk]
= Pr[X1] + Pr[X2] + · · · + Pr[Xk]

= k
(

1 − 1
m

)k−1

.

As an illustration, if a given cohort were to contain k = 8 pedes-
trians, and assuming that frequency f is sampled 50 times per sec-
ond, we would expect to see E[M] = 8 ×

(
1 − 1

50

)7 = 8 × ( 49
50 )7 ≈

6.9 clear transmissions each second.
With this in mind, consider the time ruled into seconds and 

assume that in second t , the tail of the current crossing cohort was 
located at y(t) and its current speed, v(t), has been estimated. The 
remaining time to cross at time t , $(t), can be estimated as

$(t) = W − y(t)
v(t)

, (14)

where W is the width of the street that the pedestrians are cross-
ing.

We need to show how these parameters are updated in the 
next second, t + 1. We begin by identifying all clear transmissions 
in second t + 1 and, using equation (13), we obtain the location, 
y(t + 1), of the current tail. We distinguish between the following 
cases:
Case 1: y(t) < y(t + 1).

Evidently, in this case, the new tail is closer to the opposite 
sidewalk. It follows that no new pedestrian has joined the cohort 
in this second. In this case, it is natural to update the cohort pa-
rameters as follows:

• v(t + 1) = y(t + 1) − y(t) m/s;
• $(t + 1) = W −y(t+1)

v(t+1) .

Case 2: y(t) > y(t + 1).
In this case, it is clear that one or more pedestrians have joined 

the cohort and, consequently, the new tail must be selected from 
among the pedestrians who have just joined the cohort. There is a 
complication: we cannot update the speed of the tail, because the 
tail is new. Instead, we assign to the new tail, tentatively, the aver-
age crossing speed. The cohort parameters are updated as follows:

6
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• v(t + 1) = v0, where v0 is an estimate of the average pedes-
trian speed;

• $(t + 1) = W −y(t+1)
v(t+1) .

6. Safety zone and message propagation

ADOPT involves two types of car-to-car messages, each with its 
own semantics:

• Alert messages: are sent by the parked car that detects a cross-
ing cohort with the intention of establishing a Safety Zone, as 
we are about to describe;

• Caution messages: are messages sent by the parked cars in the 
Safety Zone to alert approaching cars to the presence of cross-
ing pedestrians.

These to types of messages will be discussed in Subsections 6.1
and 6.2, respectively.

6.1. Alert messages

Referring to Fig. 4, assume, without loss of generality, that car 
A detects a crossing cohort at time t . Proceeding as discussed in 
Section 5, car A estimates the remaining time, $(t) (see (14)), it 
takes the tail of the cohort to cross the street. Using this informa-
tion, car A determines the distance, D(t), the alert messages will 
have to be propagated along the chain as follows:

D(t) = [$(t) + r] · vmax, (15)

where r is the driver reaction time, estimated to be between 1.24 
seconds and 2 seconds [58]. If self-driving cars are considered, 
then r is set to zero, since the driver reaction time is a human 
factor and does not affect self-driving cars. Finally, car A propa-
gates the alert message containing: its own location, x(A), on the 
digital map, the current time, t , and the Distance-to-Live D(t) of 
the alert message in meters.

Referring to Fig. 4 again, the area of length D(t), defined in (15), 
starting at car A and running down the chain of parked cars is 
called the Safety Zone associated with the crossing cohort detected 
by car A. Each parked car in the chain of parked cars, upon re-
ceiving the alert message originated by car A, compares its own 
location with that of A and determines if the distance from A is 
smaller than or equal to D(t). If so, it marks itself as being in the 
Safety Zone and propagates the alert message further along the 
chain. In the case that the distance between two consecutive cars 
is large, the low-power communication cannot be used to deliver 
the alert message. Instead, DSRC is assumed to deliver it to the 
next parked car.

As an illustration, in Fig. 4, assume that car C has just re-
ceived the alert message from the previous car in the chain. Let 
x(A) and x(C) be the x-coordinates of A and C, respectively. If 
|x(A) −x(C)| ≤ D(t) then C remembers that it belongs to the Safety 
Zone and propagates the message further down the chain. Contin-
uing in this way, the alert message will reach, eventually, car B. 
When car B receives the alert message, it finds that |x(A) − x(B)| >
D(t), and so it discards the message. As illustrated in Fig. 4, car B 
is not in the Safety Zone.

6.2. Caution messages

Each parked car inside the Safety Zone is tasked with broad-
casting a “Caution – pedestrians in the street” (Caution, for short) 
message to approaching cars. This broadcast must be done at low 
power, as illustrated in Fig. 4, using BLE or Zigbee, as passing cars 
are a short distance away from parked cars. The Caution message 
contains:

Fig. 4. Parked cars in the Safety Zone propagate alert messages within the estimated 
propagation distance to alert approaching cars.

Fig. 5. The Last car in the chain delivers the Caution message to the approaching 
car via DSRC if the chain length is less than D(t).

• the location x(A) +d of the crossing cohort, where d was com-
puted in (12);

• the time, t + $(t), at which the cohort is expected to have 
crossed the street.

• the direction of the alert message indicated by one bit. By 
convention, if the alert message is intended for cars moving 
northbound, the direction bit will be set.

In the unlikely event where many cars in the chain of parked 
cars depart, leaving big gaps in the chain, as shown in Fig. 5, 
the last car in the chain uses its DSRC transmitter to broadcast 
the Caution message to inform approaching cars of the location 
of the crossing cohort. As an illustrated in Fig. 5, car C with 
|x(A) − x(C)| < D(t) does not detect any car behind it. Hence, car 
C will use its DSRC transmitter to broadcast the “Caution” message 
at a distance of D(t) − x(C), where x(C) is the location of C.

In the next second, t + 1, a new estimate D(t + 1) is made as 
discussed in Section 5. If D(t + 1) > D(t) then an updated alert 
message is sent with Distance-to-Live D(t + 1). Otherwise, no ac-
tion is needed.

7. How approaching cars determine a safe speed

The main goal of this section is to show how approaching cars, 
alerted to the presence of crossing cohorts, adjust their speed in 
such a way that they avoid colliding with the crossing pedestrians.

Our approach is novel and is based of a new way of looking at 
the time-space diagram (see the Appendix for a refresher).

Referring to Fig. 6, consider a car moving North-bound along a 
street. At time s1, the car is inside the Safety Zone, and receives 
a “Caution – pedestrians in the street” message alerting it to a 
crossing cohort at location (0, L1). Upon receiving an alert mes-
sage, the car will compare the direction bit with its actual direction 
of movement. If the car is moving South-bound, it will ignore the 
alert message. Assume that the location of the car at time s1 is 
(s1, C) and that the cohort will finish crossing the street at time 
e1.

Proceeding as indicated in Subsection A.2 of the Appendix, the 
approaching car computes the maximum safe speed:

vsaf e = min
{

vmax,
L1 − C
e1 − s1

}
, (16)

where vmax is the speed limit along the street.
Traveling at this safe speed North-bound, the approaching car 

receives, at time s2, a second “Caution – pedestrians in the street” 
message alerting it to the presence of a second crossing cohort. 

7
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Fig. 6. Illustrating the computation of the safe average speed in the case of two 
crossing cohorts.

This cohort crosses the street at location (0, L2) and will finish 
crossing at time e2. How should the car change its speed to avoid 
an accident?

In order to answer this question, the first task is to determine 
the location, (s2, C ′) of the car at time s2. This can be done by 
noting that vsaf e in equation (16) can we written as

L1 − C
e1 − s1

= C ′ − C
s2 − s1

.

Solving for C ′ yields:

C ′ = C + (L1 − C)(s2 − s1)

e1 − s1
.

With C ′ firmly in hand, the car updates the current safe speed 
vsaf e in (16) as follows:

vsaf e = min
{

vsaf e,
L2 − C ′

e2 − s2

}

= min
{

vmax,
L1 − C
e1 − s1

,
L2 − C ′

e2 − s2

}
. (17)

The justification of (17) is simple. The car needs to select the 
largest average safe speed and this is the smallest of the slopes of 
the lines segments determined by the points (s2, C ′) and (e1, L1)
on the one hand, and the points (s2, C ′) and (e2, L2) on the other.

At time e1, the car realizes that the first cohort has finished 
crossing the street and will adjust its speed again:

vsaf e = min
{

vmax,
L2 − C ′

e2 − s2

}
. (18)

In Fig. 6,

min
{

vmax,
L1 − C
e1 − s1

,
L2 − C ′

e2 − s2

}
= min

{
vmax,

L2 − C ′

e2 − s2

}

and, consequently, the car continues driving at the same speed.
Next, at time e2, the car realizes that the second cohort has 

finished crossing and so it will adjust its speed again:

vsaf e = min {vmax} = vmax, (19)

essentially, reverting to the maximum allowed speed.
The same procedure is then continued, exactly as described, 

should other “Caution – pedestrians in the street” be received by 
the car in the future.

Fig. 7. An instance of the ADOPT simulation model.

Table 1
A summary of simulation parameters.

Parameter Value

RF signal frequency f 2.4 GHz

Transmission Power T 2 mW

Detection Range up to 3 meters

Street width W 12.8 m

Distance from R transceiver to the sidewalk z 0.4 m

Number of detected pedestrians/sec [µ,σ ] [1.8,1.4]

Pedestrians speeds [µ,σ ] [1.15, 0.13] m/sec

Average speed v0 1.2 m/sec

Number of crossing pedestrians/sec [µ,σ ] [0.11, 0.32]

Street speed limit vmax 15 m/sec

Simulation step length 1 sec

Simulation steps 3600 sec (1 hour)

8. Simulation and results

In this section, we describe how ADOPT simulation model is 
developed and how we evaluated ADOPT performance.

8.1. Simulation model

We validated the theoretical findings of ADOPT by testing them 
on simulated traffic data. For this purpose, we used Simulation of 
Urban MObility (SUMO) [59] to generate pedestrian and car traffic 
data for the ADOPT simulation model illustrated in Fig. 7.

Our simulation model consists of a one-way street with a road-
side parking lane on the right side of the street and sidewalks on 
both sides. Approaching cars enter at the end of the street and exit 
from the opposite end.

SUMO is also known as a microscopic simulation for pedes-
trian mobility. In our simulation model, the pedestrians are not 
restricted to crossing at intersections but, indeed, they may cross 
midblock a prevalent behavior [14]. In SUMO, pedestrian are set by 
default to slowdown their speed before crossing to make sure the 
street is clear and stop if there passing cars. We enforced pedes-
trians to ignore the approaching cars. Hence, they do not stop or 
hesitate before crossing the street. By this setting, we collect more 
data when the car approaches while a pedestrian start crossing 
the street. Moreover, SUMO has implemented a collision avoidance 
model to force vehicles to reduce their speed if there are crossing 
pedestrians. We disabled this mode before we generated the vehic-
ular traffic to measure the effect of receiving the caution message 
correctly.

For the reader’s convenience, we summarize the simulation pa-
rameters in Table 1.

We modeled pedestrians’ radio signals using equation (1) by 
setting a constant transmission power equals to 2 mW transmit-
ted from their actual locations. We then obtained the actual Eu-
clidean distances δRx between the pedestrian locations and the 
four transceivers located at the four corners of cars. We assumed 
that the pedestrian is detected by a transceiver if the distance be-
tween the transceiver and the pedestrian is less than or equal 3 
meters.

8
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Fig. 8. Absolute error of estimated distances δR and δL against the actual distances 
(a) δ̂R and (b) δ̂L .

For the communication between parked cars and approaching 
cars, we assume the cars are communicating using low-power 
communication modules such as BLE which has been proven to 
provide a reliable V2V communication [60]. Based on that, when 
the car enters the Safety Zone, we assume that it receives the “cau-
tion message” from the closest parked car.

The data we collected from SUMO are as follows: street and 
sidewalk dimensions, pedestrians’ locations, pedestrians’ speeds, 
parked cars’ locations and dimensions, and approaching cars’ speed 
and location at each time step. Data collected from SUMO is our 
ground truth, i.e., “actual”, information about pedestrians and cars 
traffic.

8.2. Modeling RSS noise

In real-life situations, RSS measurements experience random 
fluctuations due to hardware-based parameters such as thermal 
noise, or due to the natural behavior of the signal as it is re-
flected by the ground [61]. Being close to the ground, we assume 
that there are no obstacles between the pedestrians’ shoes and the 
transceivers.

We modeled the uncertainty in the R S S produced by receiving 
either more or less power than the original R S S as a Gaussian 
random variable &σ with zero mean and a standard deviation σ
as follows:

R S S ′(Rx) = R S S(Rx) + &σ

where R S S ′ is the noisy received signal strength at a generic 
transceiver Rx. We set σ to 0.3 mW since we only consider 
short transmission ranges and near-the-ground communication. 
The added noise affects the distance we estimate based on the 
R S S . We measured the impact of noise by calculating the abso-
lute error ξ of the estimated distance at each transceiver R S S(R)
and R S S(L) where ξδR = |δ̂R − δR | and ξδL = |δ̂L − δL |. Fig. 8 shows 
the distribution of the absolute errors in distance estimated from 
R S S ′(R) and R S S ′(L) plotted against the actual distances (a) δ̂R
and (a) δ̂L obtained from SUMO respectively. Note that the errors 
shown are observed at every 0.2-meters window. Results showed 
that the added noise causes minor distance estimation errors in 
ranges near the transceivers, but the errors increase as the pedes-
trians move away from the transceivers.

As the noise affects the R S S at both transceivers, it also affects 
the result of (6). Consequently, the noise impacts the one-to-one 
mapping, discussed in Section 4, between the set of lines parallel 
to the edge of the sidewalk and the c(#) values as each line will 
have many c(#) values. To determine the range of inaccuracy in 
c(#), we defined a 0.2-meters window of the horizontal position 
before and after the sidewalk and aggregated the calculated noisy 
c(#) from R S S ′(L) and R S S ′(R) at each window as we show in 
Fig. 9(a). To compare the noisy c(#) with the noise-free c(#), we 
show in the same figure the noise-free c(#). The results showed 

Fig. 9. Effect of noise on c(#).

that the noise impacts the c(#) if pedestrians are far from the 
main axis of the car (i.e. middle of the LR line segment), while it 
has a lower impact near the LR midpoint the pedestrians are close 
to both transceivers and c(#) is almost zero. This affected also the 
classification based on the threshold c0. Referring to Fig. 9(b), all 
c(#) values of pedestrians walking on sidewalk are greater than c0. 
Similarly, all c(#) values of pedestrians who are in the street are 
less than c0. The variation of c(#) values shows that even though 
pedestrian location varies inside the sidewalk, they are identified 
to be inside the sidewalk as long as their c(#) is greater than c0. 
This Also proofs that even though the pedestrian may not walk in 
straight lines, she will be classified correctly. On the other hand, 
with the noisy c(#), several c(#) values of pedestrians walking on 
the sidewalk are less than c0, and several c(#) values of pedestri-
ans walking in the street are greater than c0.

8.3. Evaluation results

We evaluated the performance of ADOPT in two scenarios:

• Scenario 1 – Noise-free mode: in which we performed pedes-
trian classification and crossing time estimation using the ac-
tual data generated by SUMO;

• Scenario 2 – Noisy mode: in which we performed pedestrian 
classification and crossing time estimation using noisy RSS to 
have a more realistic evaluation.

We demonstrate the performance of ADOPT in both scenarios 
above. The overall performance of pedestrian classification is pre-
sented in Table 2. The accuracy of pedestrian classification in the 
noise-free mode was 100% accuracy, while the accuracy dropped 
to 93.25% in the noisy mode.

The other metrics we use to empirically evaluate the perfor-
mance of ADOPT are: the accuracy of pedestrian localization, the 
accuracy of crossing time estimation, the accuracy of the remain-
ing crossing time, as well as the accuracy of the Safety Zone size. 
We use Root Mean Squared Error (RMSE) to measure the accuracy 
of these estimations. We show the overall result of the RMSE in 
Table 3. We notice here that the RMSE of ADOPT estimations in 
the noise-free mode is low. However, in noisy mode the RMSE in-
creases for the all estimations. The details of the evaluation will be 
explained later in this section.

In the following, we present the details of ADOPT evaluation 
and the results. Specifically, in Subsection 8.3.1 we discuss the 
accuracy of pedestrian classification; in Subsection 8.3.2 we dis-
cuss the accuracy of pedestrian localization, once they are in the 
street; the accuracy of pedestrian street traversal speed is dis-
cussed in Subsection 8.3.3; the accuracy of the remaining crossing 
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Table 2
Overall Accuracy of Pedestrian Classification.

Predicted Class (noise-free mode) Predicted Class (noisy mode)

in street (positive) on sidewalk (negative) in street (positive) on sidewalk (negative)

Actual Class
in street (positive) 340 (TP) 0 (FN) 316 (TP) 24 (FN)

on sidewalk (negative) 0 (FP) 1216 (TN) 81 (FP) 1135 (TN)

Accuracy 100% 93.25%

Table 3
ADOPT Estimation RMSE.

RMSE noise-free mode noisy mode

E y 0.00 m 0.26 m

Ed 0.00 m 0.24 m

E v 0.05 m/sec 0.11 m/sec

E$ 0.51 sec 1.21 sec

E D 12.79 m 42.23 m

Fig. 10. Aggregated classification accuracy at horizontal locations before and after 
the edge of the sidewalk.

time is discussed in Subsection 8.3.4; the accuracy of establishing 
the Safety Zone is discussed in Subsection 8.3.5. Finally, Subsection 
8.3.6 offers an end-to-end evaluation of ADOPT.

8.3.1. Accuracy of pedestrian classification
We evaluated the accuracy of pedestrian classification as on the 

sidewalk or in the street by using the following formula:

accuracy = T P + T N
T P + T N + F P + F N

× 100 (20)

where

• TP (True Positive): is the total number of pedestrians that were 
correctly identified to be in the street;

• TN (True Negative): is the total number of pedestrians that 
were correctly identified to be on the sidewalk;

• FP (False Positive): is the total number of pedestrians incor-
rectly classified as in the street; and,

• FN (False Negative): is the total number of pedestrians incor-
rectly identified as on the sidewalk.

We obtained the ground truth of pedestrians classes directly from 
SUMO generated data.

To investigate the impact of noise on the classification perfor-
mance in noisy mode, in Fig. 10 we plot the classification accuracy 
against the horizontal location (i.e. the position of lines that are 
parallel to the edge of the sidewalk) of the transmitted signal from 
the edge of the sidewalk that is indicated with value 0. Locations 

with negative values are in the street while locations with posi-
tive values are on the sidewalk. We noticed that the classification 
accuracy only drops when the transmitted signal is within few 
decimeters away from the edge of the sidewalk (i.e. location 0).

To better understand why the accuracy drops around the hori-
zontal location 0, we investigated the accuracy metrics TP, FP, TN, 
FN, defined above in more detail. Referring to Fig. 11(a), the ac-
curacy drops when we have FP and FN due to the noisy c(#)
(denoted by c(#)′). We noticed that FP classification occurs if c(#)
is less than c0 and, at the same time, c(#)′ is greater than c0. This 
means we have FPs if the noise generates c(#) above the thresh-
old c0 while the actual c(#) is lower than the threshold. Similarly, 
FN classifications occur if c(#) is greater than c0 and, at the same 
time, c(#)′ is less than c0. This means we have FN if the noise 
generated c(#)′ below the threshold c0 while the actual c(#) is 
above the threshold. From the figure, we can see that this hap-
pens only in a limited area around c0. To translate this to spatial 
data, in Fig. 11(b) we plotted c(#)′ corresponding to the horizontal 
location of the transmitted signal.

Obviously, high FN puts pedestrians at the risk as they enter 
the street and ADOPT does not alert the approaching cars. On the 
other hand, high FP results in flooding the approaching vehicles 
with incorrect alert messages while the pedestrians are on the 
sidewalk. To assess where ADOPT has miss-classification, we define 
our metric False Positive Per Location FPPL and False Negative Per 
Location FNPL where FPPL is the percentage of FP per horizontal 
location aggregated at each 0.2 meters, and FNPL is the percentage 
of FN per horizontal location aggregated at each 0.2 meters as well. 
Fig. 11(c) shows that FNPL is high only at locations situated a few 
decimeters away from the edge of the sidewalk. Moreover, ADOPT 
has higher FPPL a few decimeters away from the edge of the side-
walk. In conclusion, the ADOPT pedestrian classification scheme is 
able to classify pedestrians accurately even in the presence of noisy 
signals.

8.3.2. Accuracy of pedestrian localization
To measure the overall accuracy of pedestrian localization, we 

evaluated Ed and E y , where Ed is the RMSE of location of pedes-
trians in front of the parked car (the vertical distance of the pedes-
trian) and E y is the RMSE in estimating the pedestrian’s distance 
from the edge of the sidewalk (the horizontal distance of crossing 
pedestrians). We evaluated Ed as follows:

Ed =

√
(M

j=1(d̂ j − d j)2

M

where M is the total number of received signals and d̂ j and d j

are, respectively, the actual and estimated vertical distances of the 
received signal. Similarly, we evaluated E y as follows:

E y =

√
(

Ms
j=1( ŷ j − y j)2

Ms

where Ms is the total number of received signals that are actu-
ally detected in the street. ŷ j and y j are the actual and estimated 
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Fig. 11. ADOPT performance in pedestrian classification.

horizontal distances. Recall that y is only calculated when a pedes-
trian is classified as in the street. ADOPT estimation errors Ed and 
E y were 0 meter in the noise-free mode, and less than 0.3 meters 
in the noisy mode as we show in Table 3.

To show the result in detail, we determined a 0.2-meters win-
dow of d̂. Fig. 12(a) shows that the aggregated absolute error 
ξd = |d̂ − d| is zero in the noise-free mode and does not exceeds 
1.5 meters in the noisy mode.

Similarly, we determined a 0.2-meters window of ŷ to observe 
the absolute error at each window. The absolute error of y is ξy =
| ŷ − y|. Fig. 12(b) shows that the estimation of y in the noise-free 
mode is accurate since we have zero aggregated error. However, 
the aggregated error increases in noisy mode. The errors are lower 
as pedestrians start crossing the street because they are closer to 

Fig. 12. Distribution of localization error against the actual location.

Fig. 13. ECDF of Pedestrian Speeds.

the main axis of the car (i.e. around y = 1.3) and the noise is low 
in this area as we showed previously in Fig. 9(a).

8.3.3. Accuracy of crossing speed estimation
We used RMSE to measure the overall accuracy of estimating 

the pedestrian’s speed v as follows:

E v =

√
(N

i=1(v̂ i − vi)2

N

where N is the total number of pedestrians generated in the sim-
ulation, and v̂ i and vi are, respectively, the actual and the esti-
mated speed of each pedestrian who was actually in the street. 
We chose to average the speed of each pedestrian individually be-
cause one pedestrian may vary her speed in SUMO. The results 
show that ADOPT RMSE in crossing speed estimation E v was less 
than 1 meter/sec in noise-free mode while it has higher error in 
the noisy mode. Fig. 13(a) shows the Empirical Distribution Cumu-
lative Function ECDF of the actual speeds, that are retrieved from 
SUMO, and the speeds that we estimate in noise-free and lastly 
the speed estimate in the noisy mode. The results showed that the 
noise affects the speed estimation as we can see from the differ-
ence between the actual and the noisy estimates in the figure. In 
addition, we noticed that the difference between the actual and 
noise-free estimates is due to the change of the crossing cohort 
size, and this happens only when a new pedestrian joins the co-
hort. We show in Fig. 13(b) the ECDF after removing the samples 
where a new pedestrian joins the cohort. As it can be seen in the 
figure, the difference between the noise-free estimated speed and 
the actual speed is lower when the cohort size is fixed.
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Fig. 14. ECDF of remaining crossing time.

Fig. 15. ECDF of propagation distance.

8.3.4. Accuracy of the remaining crossing time
We used the same RMSE formula to measure the accuracy of 

the remaining crossing time:

E$ =

√
(N

i=1($̂i − $i)2

N

where $̂i and $i are, respectively, the actual and estimated re-
maining time to cross for each pedestrian. The results show that
ADOPT RMSE in crossing time estimation E$ was less than 1 sec 
in noise-free mode while it has higher error in the noisy mode. 
Fig. 14(a) shows the ECDF of the average crossing time for each 
pedestrian in the street. We calculated the actual remaining cross-
ing time based on the actual speed retrieved from SUMO. As the 
noise affects the speed, it also affects the remaining crossing time 
as we show in the figure. We noticed also that the difference be-
tween the actual and noise-free estimation is due to the change of 
the crossing cohort size, and this happens only the first time a new 
signal is detected in the crossing cohort. We show in Fig. 14(b) the 
ECDF after removing the samples where a new pedestrian joins the 
cohort. As it can be seen from the figure, the difference between 
the noise-free estimate and the actual time to cross is lower.

8.3.5. Accuracy of Safety Zone size
The RMSE of estimating the Safety Zone size, which is deter-

mined by the propagation distance D(t), for each pedestrian is 
calculated as follows:

E D =

√
(N

i=1(D̂i − Di)2

N

where D̂i and Di are, respectively, the actual and estimated prop-
agation distances. D̂i is calculated based on the actual remaining 
time to cross $̂i . Fig. 15 shows the ECDF for the propagation dis-
tance estimation averaged for each pedestrian in the dynamic and 
fixed cohort sizes. We noticed that the difference between the ac-
tual and the noise-free estimate is less in the fixed cohort size. 
The difference between them increases based on the error of $
estimation.

To justify the difference between the actual and estimated 
propagation distance, we measured the relative error of estimat-
ing $ and D in noise-free mode for fixed size cohort compared 
to their actual values where the relative error = actual value −
estimated value. The results showed that there is a high correla-
tion between the relative error of estimating $ and D as we show 
in Fig. 16. The figure also shows that the majority of $ errors are 
less than 3 seconds and cause about additional 40 meters of D . We 
see a high error in D since each ±1 second of error in $ is multi-
plied by the car’s speed and the added r, so this second produces 
about ±15 meters of D error. If the error is positive then ADOPT 
estimates a larger safety zone and the pedestrian is safe. Indeed, 
the risk may increase if the estimation is less than needed.

In conclusion, the ADOPT classification accuracy depends on the 
amount of RSS noise that affects the c(#) values near the edge 
of the sidewalk. For localization, the accuracy of ADOPT depends 
on the RSS noise and the distance of the pedestrian from the 
transceiver receiving the strongest signals. ADOPT accuracy in es-
timating the speed, remaining crossing time and Safety Zone size 
depends on the noise and changes in cohort size.

8.3.6. Evaluation of occluded pedestrian protection
To evaluate the performance of ADOPT as an end-to-end system 

to protect occluded crossing pedestrians, we calculated the speed 
of the approaching car upon reaching the pedestrian crossing area. 
We assumed that the driver or the automated vehicle react to the 
“Caution” message promptly upon receiving it from the ADOPT app 
running in the car.

Referring to Fig. 17, the approaching cars generated in SUMO 
adopt the new speed vsaf e upon receiving the “Caution” mes-
sages as they approach the crossing pedestrians. We observed and 
aggregated the speeds at every 13-meters of car-to-pedestrians 
distances. As it can be seen also in the figure, the cars start main-
taining their safe speeds gradually while they are approaching the 
crossing pedestrians which allows a smooth speed reduction with-
out the need for a sudden stop.

To compare the speed reduction caused by ADOPT with the 
speed of cars without ADOPT, we plotted their cruising speeds 
vcruising from SUMO in the same figure. We called it vcruising since 
SUMO cars do not maintain a fixed speed while moving, and also 
each car has its own speed random distribution with a determined 
maximum speed equal to the street’s speed limit vmax .

In the following, we show some examples from the simula-
tion of approaching cars receiving ADOPT “Caution” message and 
changing their speed accordingly. In Fig. 18(a), the approaching car 
with speed vmax receives a “Caution” message at location C and 
time s1 for a pedestrian crossing at location L1. The car reduces 
its speed to vsaf e as a response to the alert message. We noticed 
that the car may intersect slightly before (L1, e1) due to the er-
ror in estimating d and the crossing time $. In another example 
Fig. 18(b), the car receives another “Caution” message at location 
C ′ as a new pedestrian joins the cohort from the same location of 
L, and finishes crossing at e2 > e1. In this case, the car finds that 
the new speed (denoted by vsaf e′ ) is lower than vsaf e , so it adopts 
the new speed vsaf e′ to avoid the collision. The expected reaction 
of the approaching car is to reduce its speed because the crossing 
time now becomes longer as a new pedestrian joins the cohort.

In a more complex example, cars report pedestrians at different 
locations L1 and L2 as in Fig. 18(c). When the car receives a new 
“Caution” message at time s2 and location C ′ , it calculates the new 
speed and finds that it is less than its current speed because L2
is closer than L1. Thus, it adopts the new speed vsaf e′ until the 
pedestrian finish crossing.

In conclusion, approaching cars were able to maintain low 
speeds to avoid collision with the occluded crossing pedestrian ac-
curately and in a timely manner based on the “Caution” messages 

12



A. Alali, S. Olariu and S. Jain Vehicular Communications 41 (2023) 100601

Fig. 16. Correlation between the estimation error of D and $.

Fig. 17. All approaching cars maintained safe speeds upon receiving the “Caution” message from ADOPT while they keep their cruising speeds without ADOPT “Caution” 
messages.

received from ADOPT. This proves that ADOPT works end-to-end to 
effectively protect crossing pedestrians.

9. Concluding remarks and future work

The common philosophy of all the pedestrian detection ap-
proaches of which we are aware is that this task should be under-
taken by the moving cars themselves. In sharp departure from this 
philosophy, we proposed to employ cars parked along the sidewalk 
to detect and protect crossing pedestrians.

In support of this goal, we have proposed ADOPT: a system for 
Alerting Drivers to Occluded Pedestrian Traffic. ADOPT lays the the-
oretical foundations of a system that uses the on-board resources 
of parked cars to:

• Detect the presence of a group of crossing pedestrians – a 
crossing cohort;

• Predict the time the last member of the cohort takes to cross 
the street;

• Send alert messages to those approaching cars that may reach 
the crossing area while pedestrians are still in the street;

• Show how approaching cars can adjust their speed to avoid 
crashing into crossing pedestrians.

Importantly, in ADOPT communications occur over very short dis-
tances and at very low power. Our extensive simulations using 
SUMO-generated pedestrian and car traffic, have shown the effec-
tiveness of ADOPT in detecting and protecting crossing pedestrians.

In spite of this, there are a number of topics that need more 
work:

• First, it is important to consider cars that are not parked par-
allel to the sidewalk, e.g., cars that are parked at an angle;

• Second, we will investigate the problem of information over-
load. The problem arises when the (human) driver of an ap-
proaching car is alerted to the presence of various crossing 
cohorts. We are planning to design an app that minimized the 
information overload and, consequently, driver distraction;

• Third, it is of interest to optimize the process of disseminating 
alert messages as a function of the residual crossing time. In 
the current version of the paper “All clear” messages inform-
ing approaching cars that the cohort has finished crossing are 
not used. Incorporating them into ADOPT is targeted for future 
work;

• Fourth, it is important to investigate the additional fuel con-
sumption, if any, attributable to ADOPT. We conjecture that 
ADOPT does not result in increased fuel consumption. Along 
the same line of thought, it is important to investigate the ef-
fect of ADOPT on pollution and gas emissions;

• Fifth, in this paper we have assumed that the sidewalk is 
modeled by a straight line. In many cases, however, the geom-
etry of the street is vastly different, with curvilinear sidewalks 
prevailing. Naturally, this general sidewalk geometry presents 
more opportunities for occluded pedestrian traffic. It is impor-
tant to extend ADOPT to handle gracefully this general sce-
nario;

• Last, but certainly not least, security and privacy are very im-
portant and are getting active attention as discussed in the 
next subsection.

9.1. Security and privacy in ADOPT

ADOPT involves two types of wireless communications: V2P 
and V2V. In the following, we discuss the security aspects of our 
communication types.

• Pedestrian to parked vehicle communications: In the pedes-
trian detection and localization process, the system reads 
transmitted signals and makes decisions based solely on the 
signal strength and not on the identity of the pedestrians. 
These decisions are based on anonymous received signal 
strengths that do not require unique identifiers. Also, ADOPT 
detects and localizes pedestrians in short-range communica-
tions that do not require transmitting the pedestrians’ private 
data. With the proposed mechanism of pedestrian localization, 
ADOPT preserves pedestrians’ privacy and security. In spite of 
this, we may consider a potential attack that may be mounted 
against ADOPT such as a Denial of Service (DoS) attack. In 
this attack, a group of pedestrians may stomp their feet on 
the ground to activate the system. Our approach to pedestrian 
classification can distinguish if the signal is coming from the 
sidewalk or the street. If this group of people is generating 
signals from the street, they are at risk and the system should 
notify approaching cars regardless of their intent.

• Parked vehicle to approaching vehicle communication: This 
type of communication involves the known security threats in 
V2V communications [62]. However, the short-range commu-
nication used in our system should allow the use of frequency 
hopping [63] to prevent attackers from sniffing or injecting 
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Fig. 18. Moving vehicle reduces its speed upon receiving “Caution” message from 
ADOPT in many cases.

fake information into V2V network. Moreover, short-range V2V 
communications have their security advantages [10] that are 
not present in long-range V2V communications. It is of great 
interest to develop security primitive that leverage the type of 
short-rage communications that are used throughout the sys-
tem [64].
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Appendix A

A.1. The time-space diagram

One of the basic tools in the tool-box of traffic engineers is the 
time-space diagram that allows one to plot the trajectories of vehi-
cles as curves in a Cartesian plane with axes labeled “time” and 
“space”. Referring to Fig. 19, the vehicle’s coordinates at time t are 
(t, s). The projection of this point on the vertical axis, (0, s), in-
dicates the position, at time t , of a vehicle that moves along the 
space axis North-bound (i.e. from bottom to top).

Assume that the same vehicle has continued moving along its 
trajectory in such a way that at time t′, (t′ > t), its coordinates in 
the time-space coordinate system are (t′, s′). Equivalently, in the 
time interval [t, t′], the vehicle has moved along the space axis 
from location (0, s) to location (0, s′).

One of the nice features of the time-space diagram is that it 
allows one to compute and to visualize the average speed of the ve-
hicle. Indeed, referring again to Fig. 19, elementary physics indicate 
that the average speed, vavg , of the vehicle in the time interval 
[t, t′] is the ratio

vavg = s′ − s
t′ − t

. (21)

This is the same as the slope of the line segment connecting 
the points of coordinates (t, s) and (t′, s′). Equivalently, the average 
speed vavg is tan(θ), where θ is the angle determined by the line 
segment connecting the points of coordinates (t, s) and (t′, s′) and 
the positive direction of the time axis.

Finally, it is not hard to see that the instantaneous speed of the 
vehicle at an arbitrary time τ , (t ≤ τ ≤ t′) turns out to be the 
slope of the tangent to the trajectory at time τ . In particular, if the 
trajectory happens to be a straight line, then the average speed 
matches the instantaneous speed, as expected.

A.2. Time-space diagram of a crossing cohort

Let us turn our attention to the time-space diagram corre-
sponding to a crossing cohort. Referring to Fig. 20, imagine a cross-
ing cohort at location L that starts crossing the street at time s1
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Fig. 20. Illustrating the time-space diagram of a crossing pedestrian.

and clears the street by time e1. Since the “space” coordinate of 
the cohort does not change, the corresponding time-space diagram 
is captured by a horizontal line segment with endpoints (s1, L) and 
(e1, L).

Now, consider an approaching car and assume that the coor-
dinates of the car when it receives the “Caution – pedestrian in 
the street” message are (s1, C). What is the largest average speed 
that the approaching car should adopt to avoid crashing into the 
cohort? The answer is simple: the car should not reach the point 
(0, L) while the crossing is in progress, namely in the time interval 
[s1, e1). However, the car may reach (0, L) at time e1, as by that 
time the cohort has finished crossing safely. Thus, using (21), the 
car should adopt the following safe average speed:

vsaf e = min
{

vmax,
L − C

e1 − s1

}
(22)

where vmax is the speed limit on the road considered. Assum-
ing that L−C

e1−s1 ≤ vmax , this safe speed is visualized in Fig. 20 as 
the slope of the blue segment connecting the points (s1, C) and 
(e1, L).
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