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Abstract

Cryo-electron microscopy data is becoming more prevalent and accessible at higher

resolution levels, leading to the development of new computational tools to determine

the atomic structure of macromolecules. However, while existing tools adapted from

X-ray crystallography are suitable for the highest-resolution maps, new tools are needed

for lower-resolution levels and to account for map heterogeneity. In this paper, we in-

troduce CryoFold 2.0, an integrative physics-based approach that combines Bayesian

inference and the ability to handle multiple data sources with the molecular dynamics

flexible fitting (MDFF) approach to determine the structures of macromolecules using

cryo-EM data. CryoFold 2.0 is incorporated in the MELD (Modeling Employing Lim-

ited Data) plugin, resulting in a more computationally efficient and accurate pipeline

than running MELD or MDFF alone. The approach requires fewer computational

resources and shorter simulation times than the original Cryofold, and minimizes man-

ual intervention. We demonstrate the effectiveness of the approach on eight different

systems, highlighting its various benefits.
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Introduction

Cryo-electron microscopy (cryo-EM) is now a well-established experimental technique for

determining the structures and assemblies of biomolecules in atomistic detail. As of Febru-

ary 2023, the number of cryo-EM structures deposited in the Protein Data Bank (PDB,

https://www.rcsb.org)1,2 has surpassed those deposited using nuclear magnetic resonance

(NMR). This progress can be attributed to advancements in both hardware and software

components for data collection, image processing, and 3D map reconstruction. These in-

novations have enabled researchers to determine single-particle structures at subnanometer

resolution.3 When the resolution is better than 2 Å, structure-building workflows originally

developed for X-ray crystallography, such as Coot,4 Phenix,5 CNS6 or REFMAC,7 can be

applied to determining atomic positions in the map.8 For samples with resolutions higher

than 3.5 Å, recent developments in deep learning-based tools, such as DeepTracer9and Mod-

elAngelo,10 have been instrumental to reduce the need for demanding human intervention.

Despite the significant progress made in pushing the resolution limit of cryo-EM, a con-

siderable portion of the cryo-EM maps in the Electron Microscopy Data Bank (EMDB,

www.emdatabank.org) have lower resolutions and lack structural models.11 Additionally,

the resolution heterogeneity that reflects diverse structural ensembles presents a challenge

for traditional approaches developed for more homogeneous samples (e.g. from X-ray crys-

tallography). Several physics-based approaches combine molecular simulations with electron

density maps to identify the structures and other properties of the system. For instance,

molecular dynamics flexible fitting (MDFF),12 self-guided Langevin dynamics,13 correlation-

driven Molecular Dynamics,14 and normal mode molecular dynamics (NMMD)15 have been

implemented in popular MD packages to help in the fitting and refinement of molecular

models guided by cryo-EM density maps.

CryoFold16 was recently introduced as a computational pipeline synergizing the MAIN-

MAST,17 ReMDFF,18 and MELD19 approaches to overcome the limitations of each indi-

vidual program. CryoFold begins with MAINMAST, which generates an initial backbone

2



model of a protein given an electron density map. ReMDFF is then employed to fit the all

atom structure to the cryo-EM map, refining backbone and sidechain orientations. However,

ReMDFF cannot correct misfolded secondary structures. In the third step, we select an

initial model from ReMDFF and calculate existing contacts between residues which are then

provided as a noisy dataset to MELD – since MELD is not directly aware of the cryoEM

density map. In the fourth step, MELD samples through multiple partial unfolding and

refolding events that satisfy different interpretations of the contacts and is able to sample

alternative secondary structures. MELD ensmbles are then analyzed to identify the models

with highest cross correlation coefficient to the experimental density map and MDFF is used

to refine the agreement of the model with the density map. Thus, Cryofold requires several

iterations between MELD and MDFF to arrive at the best agreement with the density map.

CryoFold16 has demonstrated its ability to build high-resolution structures for both small

and large protein systems and in the 2019 EMDataResourse Challenge competition.20 How-

ever, one challenge of the CryoFold pipeline is the need of human intervention in changing

format between MAINMAST, MDFF and MELD, as well as choosing guiding information

and its uncertainty to use in the MELD stage. The lack of integration limits the usability

and performance of the pipeline. Several recent papers21–23 highlight the need for integrated

platforms in the community to reduce problems associated with formatting and software

interoperability. The integrative modeling platform (IMP),24 is a prime example of an inte-

grative approach.

Here, we introduce CryoFold 2.0, which builds upon the same principles as CryoFold but

integrates the functionality of ReMDFF directly into MELD, resulting in a single, integrated

platform for solving biomolecular structures with cryo-EM maps. This new approach offers

several advantages over the earlier version. First, we have eliminated the need for human

intervention between the different stages of CryoFold. Second, all components are now aware

of the cryo-EM density map. And third, this integration is compatible with MELD’s phi-

losophy to combine other sources of data in regions where cryo-EM data is limited such
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as crosslinking mass spectroscopy.25 MELD has already shown promising results in solv-

ing biomolecular structures using different sources of data, such as sparsely labeled NMR

samples26,27 or solid-state NMR Paramagnetic Relaxation Enhancements data.28 We have

tested CryoFold 2.0 on eight different systems using diverse starting models to highlight the

benefits of the current approach.

Methods

Modeling Employing Limited Data (MELD). MELD uses a Bayesian inference ap-

proach to accelerate physics-based molecular simulations guided by external ambiguous and

noisy information, while simultaneously determining the best interpretation of the data com-

patible with the physics model. Under the Bayes theorem formulation,

p(x | D) ⇠ p(D | x)p(x), (1)

the prior probability of a conformation x, p(x), is the Boltzmann probability distribution

determined by the selected force field such as Amber ff14SBside29,30 + ff99SB31 with a gen-

eralized Born implicit solvent model,32 e�EAmber(x)/kT . The external information enhances

Molecular dynamics sampling in regions compatible with the data (e.g., distances between

pairwise atoms). The likelihood of the guiding data D given x, p(D | x), is proportional to

e�Er(x)/kT , where T is the temperature and Er(x) is the restraint energy from MELD. To

avoid kinetic traps, MELD uses a flexible Hamiltonian and temperature replica exchange

molecular dynamics (H,T-REMD) scheme as the sampling engine.33,34 Additionally, MELD

can selectively activate only a subset of the restraints based on the ranking of their restraint

energies calculated from each sampled conformation given external information. MELD em-

ploys GPU-accelerated OpenMM35 for efficient computation.

Grid force from cryo-EM data. After processing the raw 2D images obtained from

cryo-EM data, a 3D density grid map is generated which can be used to fit the atomistic
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structure in various ways. One popular approach for this employs molecular dynamics to

achieve a flexible fitting (MDFF) of the model into the density map. In traditional MDFF,

an additional potential from the density map is generated for fitting the initial structure

using molecular dynamics as follows:

VEM(r) =

8
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where �(r) is the density value at position r, �thr is the threshold for the density dataset

to exclude solvent data with low density values. ⇣ is a scale factor to control the strength

of density map potential and also defines a flat potential for the solvent region. �max =

max(�(r)), which is designed to drive atoms into the high density region with low potential

energy. The total energy Ut of the system is given by Ut = U↵ + UEM + Uadd, where UEM =

P
i wiVEM (ri) with wi usually being the mass of atom i and Uadd can be additional restraints

such as secondary structure restraints to prevent overfitting to low resolution regions. For low

resolution maps, the density potential energy surface is smooth, an ensemble of conformations

can be sampled from MD with the density map potential. For high resolution maps, however,

the data describes structural features near atomistic level that can cause the initial structure

to be stuck in a local rather than global minima of the energy surface. This problem can be

alleviated by replica exchange sampling with density maps at different resolutions. Following

the resolution exchange methodology of Singharoy et al.,18 the potential energy at r can be

expressed by

VEM(r) =
X

n
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0
n) (3)

where r0n and �0
n are the centers (points on density map grid) and width of Gaussian com-

ponents, cn is the weighting factor. By applying a Gaussian blur kernel with width �, the

potential map becomes
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where cn is the grid potential given by the density map data and �02
n is the blurring scale.

This strategy is well-suited to the MELD methodology in that the cryo-EM density map can

serve as an additional restraint source and the resolution exchange can be easily handled by

the Hamiltonian replica exchange scheme. At certain times t during simulations, the systems

on replica i, j with blurring scale �i, �j, respectively, are exchanged under the Metropolis

acceptance criterion:

p (xi, �i,xj, �j) = min

 

1, exp

 
�U (xi, �j)� U (xj, �i) + U (xi, �i) + U (xj, �j)

kBT

!!

, (5)

where kB is the Boltzmann constant, U (x, �) is the total potential energy of the system at

position x determined by the density map with blurring scale �.

Thes updated MELD package with the implementation of grid force for structure model-

ing with cryo-EM data is open-source and available for download at https://github.com/

maccallumlab/meld.

Simulation protocols and benchmark systems. In this study, we performed cryo-EM

guided simulation for eight systems. The Amber ff14SBside force field with a Generalized

Born implicit solvent model were choosed for parameterizing the system and the Langevin

integrator implemented in OpenMM with friction coefficient 1 ps˘1 was used to run the

simulation. For adenylate kinase (ADK), carbon monoxide dehydrogenase (CODH), MAJIN,

CdiA and Cdil, we generated the synthetic density map using the target structure at varying

resolutions. For SARS-CoV-2 spike protein, NSP2 and ATPase NSF, the corresponding

experimental maps were used during simulation. The simulation details for each system are

summarized in Table S1.

Results

Cryo-EM data drives global conformational transitions in adenylate kinase and

carbon monoxide dehydrogenase. We first examined the efficacy of the grid force fea-
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ture in MELD on two widely used systems, namely ADK and CODH. For both systems, two

conformations that exhibit global conformational changes between a closed and open state

have been crystallized (Table S1). To assess the fitting process for ADK, a simulated density

map of the open conformation was generated at 5 Å resolution using Chimera.36 The closed

conformation was then fitted into the density map as the starting conformation (Fig. 1A).

To prevent overfitting in the density map, the secondary structure restraints were also en-

forced in addition to the grid force from density map.18 The fitting process was evaluated by

calculating the RMSD and correlation coefficient (C.C.) between the simulation and target

conformation, which converged to a structure less than 1 Å against the native after 0.4 ns

(Fig. 1A). In the case of CODH, we generated a 3 Å synthetic density map of the open form

using the same tool. Directly fitting the closed conformation into this density map would

lead to trapping in local minima due to the increased ruggedness of the energy landscape

derived from the high-resolution density map (see Fig. 1B inset).18 We adopted the reso-

lution exchange strategy to fit the closed conformation, using eight replicas for which the

density maps had an incremental Gaussian blurring (scaled from 0 to 2, see Methods). The

simulation quickly converged from the closed form to within 1 Å of the open conformation.

Refinement using Hamiltonian and temperature replica exchange improves the

local structure. A good starting conformation as in the above two cases is not always

available for performing structure fitting against cryo-EM data. Recent advances in struc-

ture prediction largely enriches the protein structure database, however, these methods are

typically not capable of generating accurate predictions in regions lacking co-evolution in-

formation or adopting alternative conformations. We present results for a set of systems to

demonstrate the benefit of combining temperature and resolution exchange with cryo-EM

data to improve local structure refinement. Two systems that require fitting the flexible re-

gions into the density map are shown in Fig. 2. In the case of the SARS-CoV-2 Spike protein,

the starting conformation comes from the top-ranked structure prediction from AlphaFold.

7



Figure 1: Global conformational transition of (A) adenylate kinase and (B) carbon monox-
ide dehydrogenase between a closed (blue) and open (yellow) conformation driven by the
synthetic density map. Left: starting conformation (blue), fitted conformation (yellow) and
native (grey). Right: (A) Time evolution of RMSD (yellow) and cross correlation (blue)
between simulation and native structure; (B) Comparison of flexible fitting simulation with
density map at only the original resolution (inset) and the lowest replica of resolution ex-
change simulation with a series density maps of incremental resolutions.
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Figure 2: Structure representation (top) and RMSD measure (bottom) of local structure
refinement improvement for SARS-CoV-2 spike protein (A) and MAJIN (B) with the starting
conformation (red), refined structure with a single replica (blue) and replica exchange based
refinement (yellow).

It is clear that direct fitting with the experimental density map can already effectively pull

most of the regions into the native conformation, while we can further obtain structures

within 1 Å to the deposited model by fitting with temperature and resolution exchange (Fig.

2A). For the MAJIN system, we generated the starting conformation by running simulations

at high temperature with positional restraints applied to regions with well-defined secondary

structures in the native form. Direct fitting with the synthetic density map of the native

structure tends to force regions far from native to the closest region with low potential en-

ergy. Better result are obtained by promoting larger exploration of the energy landscape

using replica exchange simulations with varying resolutions and temperatures (Fig. 2B).

We also tested the protocol on two other systems, CdiA and Cdil, which require large

conformational changes (e.g., ↵-helix to �-strand transition). Both systems served as pre-

diction targets in the NMR-assisted prediction category of the CASP13.26,37 The starting

conformations were generated by running simulations at high temperature with positional

restraints applied to part of the protein. The helical region becomes partially disordered for

the first system, and a register-shifted hairpin needs to be corrected (Fig. 3A left). Correct
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Figure 3: Structure representation (left) and RMSD-C.C. measure (right) of local structure
refinement for CdiA (A) and Cdil (B). The starting conformation is colored from blue (low
C↵ displacement) to red (high C↵ displacement) aligned with the native structure (grey).
The refined structure is chosen based on the cross-correlation score (yellow, labeled as a star
in the right panel).

determination of the second system requires a structural shift in one of the �-sheet layers

and an ↵-helix needs to be converted to a �-strand (Fig. 3B left). Not surprisingly, direct

fitting with the density map can only sample narrow ensembles near the starting confor-

mation, resulting in poorly fitted structures (see Fig. S1,2). However, we obtained sub-1

Å structures by applying temperature and resolution exchange in both cases (Fig. 3 center

and right panels).

Integrative structure determination from cryo-EM with MELD and AI tools.

Cryo-EM density maps can be heterogeneous with varying resolutions in different parts of

the system. For regions solved with high resolutions (e.g. less than 3 Å), automatic structure-

building tools such as DeepTracer9 and ModelAngelo10 can be used to directly predict the
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atomic positions. However, such methods are currently not reliable when the resolution

decreases. Integrated approaches are usually necessary at this stage to synergize information

from several sources to build high-quality structural models. We first demonstrate it in

the ATP-bound N-ethylmaleimide sensitive factor (NSF). The cryo-EM map of ATP-bound

NSF was initially solved at 4.2 Å with local resolution varying from 4.0 to 8.0 Å, and

the structure depicting a six-fold symmetry.38 The top-ranked model from AF matches the

overall structure of a single domain well but requires further refinement to be high accuracy

(Fig. 4A). Using it as the starting conformation in the resolution exchange enhanced fitting

approach can quickly improve the agreement with the density map, however, the short

helix indicated in Fig. 4C largely deviates from the native conformation because it was

trapped in the density of a neighboring domain. With the premise of automatic structure-

building tools, we used ModelAngelo with the density map and sequence as input to obtain

additional structural information. We then extracted positional information by aligning the

AF prediction with the fragment output from ModelAngelo using TM-align39 (Fig. 4B).

Combining the positional restraints from the predicted fragments with the density map

potential further improves the structural agreement with the native structure and reduces

simulation time (Fig. 4C,D).

The SARS-CoV-2 protein NSP2 serves as a final example of the resolution heterogene-

ity in cryo-EM data. The structural model deposited for the density map was built with

DeepTracer and AF predictions, followed by a series of refinement steps.40 Here, we first run

ModelAngelo with the density map, which performs well on the high-resolution region but is

not able to provide any information at the C-terminal domain (Fig. 5A). It has been shown

that AF can predict subregions of NSP2 well, including the C-terminal region. To combine

the structural information from ModelAngelo and AF, we converted their structure output

into templates for AF (Fig. S3). Although the C-terminal domain remains distant from

other parts in the template, AF can predict a structure resembling the deposited model.

The resulting structure was exploited as the initial conformation to perform density map
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Figure 4: Refinement of ATPase NSF (native structure and cryo-EM data are shown in
grey) starting from the AF prediction (yellow in A, B) with fragment predictions from
ModelAngelo (B, cyan). The structures of the highest cross-correlation from (D) are shown
in blue (refinement without fragment information) and yellow (refinement with fragment
information) together with the native domain in (C).
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Figure 5: (A) Cryo-EM full map of NSP2 colored by local resolution with fragment prediction
from ModelAngelo traced inside. (B) Refined structure with the highest cross-correlation
(yellow) aligned with native structure (grey). (C) FSC curve of simulated density map from
both structures in (B) against two experimental half maps.

fitting with MELD. In addition to the density map potential, we also used the positional

restraints derived from the structure output of ModelAngelo as guidance. It is clear that the

representative structure after fitting matches the density map well compared to the deposited

model (Fig. 5C), and they differ mostly in the low-resolution regions (Fig. 5B).

Discussion and Conclusion

Advances in experimental and computational approaches to structural biology yield insight

into the structures of proteins and their assemblies in larger complexes. The establishment

of task forces and data deposition repositories such as the pdb-dev (https://pdb-dev.

wwpdb.org/) is further promoting the homogenization, transparency, and transferability of

data across multiple laboratories. Blind competition studies, including CASP,41 CAPRI,42

SAMPL,43 and others, have contributed to increased insight into methodological advances,

the current state of the field, and provided an unbiased look at areas of significant progress.

Likewise, the establishment of the cryo-EM structure determination challenge (https://

challenges.emdataresource.org/) presents a great opportunity to gauge the advances
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in determining structures from cryo-EM maps. In the 2019 EMDataResource challenge,

the CryoFold approach emerged as one of the top performing groups in determining the

structures for different systems given the initial density maps.20

The success of CryoFold stemmed from combining three pipelines: MAINMAST,17 MDFF,18

and MELD19 into the structure determination. MAINMAST proposed initial amino acid po-

sitions based on the density map, and the resulting contacts were used in MELD to guide

sampling. MDFF was then employed to fit the structures rapidly into the density map,

and by iterating through MELD and MDFF, optimal structures were obtained. However, in

the original CryoFold, the different programs did not integrate seamlessly, necessitating the

reformatting of outputs from one program to be used as inputs for the next. Moreover, the

MELD stage did not directly utilize the density map, resulting in the exploration of numer-

ous regions of conformational space that would have been inaccessible. Sali’s group44 has

already highlighted that the interoperability and compatibility of various computational soft-

ware platforms remain significant obstacles in structure determination efforts, particularly

in integrative or hybrid approaches.

The current version, CryoFold 2.0, incorporates the MDFF methodology into the MELD

approach, allowing for the simultaneous exploitation of the benefits of both methods. This

integration reduces the amount of sampling required to identify the native state since simula-

tions are guided by the cryo-EM density map while simultaneously benefiting from MELD’s

ability to sample different secondary structures. This reduction affects both simulation

length and the number of replicas needed in MELD. While in the initial CryoFold we typi-

cally employed 30 replicas running for hundreds of nanoseconds, the current approach uses

8 (ReMDFF) or 16 (T, ReMDFF) replicas running for up to tens of nanoseconds. Fur-

thermore, the method can seamlessly integrate all other types of data that MELD already

models, such as NOESY peaks, chemical shift perturbation, chemical crosslinking mass spec-

troscopy, FRET, and EPR, along with the associated noise and ambiguity in the dataset.19

CryoFold 2.0 still necessitates an initial model that can be generated from any of the other
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automatic structure building and prediction tools, such as MAINMAST,17 DeepTracer,9

ModelAngelo,10 or AlphaFold,45 among others.

In the results section, we demonstrated the efficacy of our new approach for various

problems in which neither MDFF nor MELD alone would suffice. We also highlighted the

advantages of utilizing a Hamiltonian exchange approach, wherein the cryo-EM density map

is modified. By artificially decreasing the resolution of the density map, we reduce the

frustration in the restraint energy landscape imposed by the density map. As a result, large

rearrangements of side chains and backbone are more likely at lower resolutions, provided

they are compatible with the force field. These conformations are then further refined at lower

replicas where the resolution of the density map is increased. In contrast, such conformational

changes are not feasible when using a single high-resolution map (see Fig. 2). Furthermore,

results in Fig. S1 and S2 show that further improvement in sampling efficiency can be

accomplished by coupling temperature and resolution exchange to the replica ladder. This

combination increases the amount of high-accuracy structures sampled (see Fig. S1) and

also increases the ability to sample them in cases where resolution exchange alone is not

enough (see Fig. S2). Previous observations with other methods regarding overfitting to low-

resolution density maps46 also apply to CryoFold 2.0. For example, we observe that enforcing

secondary structure restraints for sampling a conformational transition (e.g., open/close)

using resolution maps with less than 4 Å resolution increases the quality of the resulting

model.

In conclusion, by integrating the MDFF and MELD components of CryoFold into a

single platform (MELD), we have increased the performance and accuracy of the method.

Furthermore, this will reduce the barrier of entry to new users, and reduce the amount of

human intervention needed. We believe the current version will be more suitable to address

future challenges of structure determination with cryo-EM, as well as more complex systems

that benefit from the utilization of multiple experimental datasets.
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Data Availability

The source code can be accessed from https://github.com/maccallumlab/meld. A tuto-

rial for running cryo-EM guided simulation in MELD can be found here (http://meldmd.

org/tutorial/cryofold_tutorial/cryofold.html).

Author Information

Corresponding Author:

21



*perez@chem.ufl.edu

Orcid:

Liwei Chang: 0000-0001-5847-0820

Arup Mondal: 0000-0002-8970-3380

Justin L. MacCallum: 0000-0001-7917-7068

Alberto Perez: 0000-0002-5054-5338

Notes

The authors declare no competing financial interest.

Acknowledgements

The research was sponsored by the NSF Career award CHE-2235785. The authors are

thankful for computational resources from the HiPerGator supercomputer at the University

of Florida.

22



TOC Graphic

23


