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1  |  INTRODUC TION

The occurrence of polymerase chain reaction (PCR) duplicates is 
an artefact present in most current sequencing technologies, from 
whole genome resequencing, to single-cell RNA (Marx,  2017), 
and to reduced-representation methods such as Restriction site-
Associated DNA (RAD) sequencing (Table  1). Sequencing library 

preparation protocols often include a PCR step to improve yield or 
create molecular species of interest, but this also introduces arte-
facts (Aird et al., 2011; Kebschull & Zador, 2015). In particular, since 
these amplified libraries comprise multiple copies of each original 
template molecule, it becomes possible to independently sequence 
several reads that correspond to the same template; such reads are 
known as PCR duplicates (Casbon et al., 2011).
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Abstract
Library preparation protocols for most sequencing technologies involve PCR ampli-
fication of the template DNA, which open the possibility that a given template DNA 
molecule is sequenced multiple times. Reads arising from this phenomenon, known 
as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of 
affected experiments. Despite the pervasiveness of this artefact, our understanding 
of its causes and of its impact on downstream statistical analyses remains essentially 
empirical. Here, we develop a general quantitative model of amplification distortions 
in sequencing data sets, which we leverage to investigate the factors controlling the 
occurrence of PCR duplicates. We show that the PCR duplicate rate is determined pri-
marily by the ratio between library complexity and sequencing depth, and that ampli-
fication noise (including in its dependence on the number of PCR cycles) only plays a 
secondary role for this artefact. We confirm our predictions using new and published 
RAD-seq libraries and provide a method to estimate library complexity and amplifica-
tion noise in any data set containing PCR duplicates. We discuss how amplification-
related artefacts impact downstream analyses, and in particular genotyping accuracy. 
The proposed framework unites the numerous observations made on PCR duplicates 
and will be useful to experimenters of all sequencing technologies where DNA avail-
ability is a concern.

K E Y W O R D S
allele dropout, bioinformatics, PCR duplicates, RAD-seq, sequencing library

www.wileyonlinelibrary.com/journal/men
https://orcid.org/0000-0001-9097-3241
mailto:
https://orcid.org/0000-0002-4798-660X
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:jcatchen@illinois.edu
http://crossmark.crossref.org/dialog/?doi=10.1111%2F1755-0998.13800&domain=pdf&date_stamp=2023-04-16


1300  |    ROCHETTE et al.

PCR duplicates create a distorted view of the abundancies of 
molecules in the original sample, which may bias or degrade down-
stream statistical analyses (Casbon et al., 2011; DePristo et al., 2011; 
Fu et al., 2018; Niu et al., 2019). These concerns have motivated the 
development of amplification-free methods (Kozarewa et al., 2009; 
Niu et al., 2019), but such protocols come with substantial techni-
cal constraints, particularly with regard to input biological materials. 
Most methods have instead accepted the artefact as an inherent 
feature of sequencing data and focus on tracking and removing PCR 
duplicates bioinformatically (Marx,  2017; Sims et al.,  2014), which 
can be done either based on read (or read pair) mapping coordinates 
(DePristo et al.,  2011; Li et al.,  2009), by tagging template mole-
cules before amplification using unique molecular identifiers (UMIs) 
(Casbon et al., 2011; Kivioja et al., 2011), or by combining both ap-
proaches (Islam et al., 2014; Smith et al., 2017).

Although a posteriori removal of PCR duplicates has proven ef-
fective to mitigate bias, it is not without limitations. This approach 
can increase the cost of sequencing noticeably—up to severalfold 
when duplicates represent most of the initial reads (Table 1). In the 
worst case, after deduplication, coverage may become insufficient 
for the intended purpose causing experiments to fail. The bioin-
formatic identification of duplicates is also imperfect. Coordinate-
based tracking is unsuitable for experiments in which coverage in 
some genomic regions is high enough that they become saturated, 
such as bulk RNA-seq (Fu et al., 2018; Parekh et al., 2016), ChIP-seq 
(Tian et al., 2019) or Pool-seq (Kofler et al., 2016). UMI-based track-
ing is confounded by sequencing errors, which must be rigorously 
accounted for to avoid incomplete deduplication (Islam et al., 2014; 

Marx, 2017; Smith et al., 2017). Lastly, and more fundamentally, re-
moving PCR duplicates is a pragmatic approach that targets the vis-
ible consequences of amplification, but distortions can be expected 
to remain present even after deduplication.

Therefore, developing a better understanding of amplification-
related artefacts and gaining control of the rate of PCR duplicates 
a priori by optimizing library preparation procedures remains highly 
desirable. Despite the prevalence of these artefacts, we still lack a 
realistic quantitative model for library amplification and the gener-
ation of PCR duplicates. As a result, our comprehension of the phe-
nomenon remains highly empirical (Marx, 2017), and there remains 
some uncertainty and confusion regarding the precise experimen-
tal factors that control their occurrence, how these factors interact 
with one another, and the consequences of PCR duplicates on down-
stream statistical analyses.

Among the factors believed to have an effect on the PCR dupli-
cate rate, the most important one is library complexity, which has 
been alternatively defined as the complement of the duplicate rate 
(Chen et al.,  2012), as the information content of a library (Zhang 
et al.,  2015), or as the number of distinct molecular species rep-
resented in a sequencing library (Daley & Smith,  2013; following 
Lander & Waterman,  1988). Insufficient library complexity is fre-
quently given as the probable cause of high duplicate rates (Chen 
et al., 2012; Marx, 2017; Parekh et al., 2016; Smith et al., 2014; Tin 
et al., 2015), and several studies have demonstrated that the amount 
of starting biological material used, which presumably correlates with 
library complexity, had a marked effect on PCR duplicates (Casbon 
et al., 2011; Fu et al., 2018; Kapp et al., 2021; Smith et al., 2014). 
A few authors have pointed out that sequencing depth should also 
be considered (Daley & Smith,  2013; Fu et al.,  2018; Marx,  2017; 
Smith et al., 2014). Lastly, it is often claimed that PCR duplicate rates 
depend on the number of PCR amplification cycles that the library 
was subjected to (Andrews et al., 2016; Ebbert et al., 2016; Flanagan 
& Jones, 2018; Marx, 2017; Orlando et al., 2021; Smith et al., 2017; 
Stuart et al., 2018; Vargas-Landin et al., 2018). Some studies have 
indeed found this to be the case (Lu et al., 2017; Niu et al., 2019; 
Parekh et al., 2016), but others have concluded that no such relation-
ship existed (Fu et al., 2018; Tin et al., 2015). Thus, several factors 
relevant to the phenomenon have been identified, but their precise 
roles remain unclear. A more quantitative understanding of the PCR 
duplicate artefact would help clarify which methodological alter-
ations are likely to suppress it.

Another question that has been particularly debated in the 
context of RAD-seq —a restriction enzyme-based reduced-
representation sequencing approach that is widely used for popula-
tion genomics studies of nonmodel organisms (Andrews et al., 2016; 
Catchen et al., 2017; Daley & Smith, 2013)—is the extent to which 
PCR duplicates affect the reliability of genotyping. While Tin 
et al. (2015) and Flanagan and Jones (2018) found it to be an import-
ant source of error, Euclide et al. (2019) did not. In any case, substan-
tial (>60%) PCR duplicate rates have been reported in some data sets 
(Andrews et al., 2016; Davey et al., 2013; Díaz-Arce & Rodríguez-
Ezpeleta, 2019; Hoffberg et al., 2016; Schweyen et al., 2014), which 

TA B L E  1  PCR duplicate rates across sequencing technologies.

Method
PCR duplicate 
rate (%) Reference

Whole genome 
sequencing

1–5 Ebbert et al. (2016)

Exome sequencing 3–15 Shigemizu et al. (2015)

Exome sequencing 2–13 Bonfiglio et al. (2016)

Exome sequencing 15–30 Borgström et al. (2017)

Linked-read DNA 
sequencing

11–59 Meier et al. (2021)

Deep targeted DNA 
sequencing

3–63 Smith et al. (2014)

Ancient DNA 2–80 Gamba et al. (2016)

Ancient DNA 2–42 Kapp et al. (2021)

Single-cell DNA 
sequencing

15–25 Gonzalez-Pena 
et al. (2021)

Single-cell bisulfite 
sequencing

2–6 Farlik et al. (2015)

RNA-seq 1–14 Fu et al. (2018)

RNA-seq 1–68 Parekh et al. (2016)

Single-cell RNA-seq 85–95 Ziegenhain et al. (2017)

Hi-C 14–64 Niu et al. (2019)

Micro-Capture-C 80–96 Hua et al. (2021)
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    |  1301ROCHETTE et al.

is especially concerning as some popular protocols do not allow the 
monitoring of this artefact (e.g., double-digest RAD-seq without 
UMIs). In addition, as sample availability is often a limiting factor in 
nonmodel organisms (Andrews et al.,  2016; Peterson et al.,  2012; 
Tin et al., 2015), better understanding the extent to which observed 
PCR duplicate patterns result from the use of reduced amounts of 
DNA would be of great experimental interest. Finally, missing data 
and allelic dropout in RAD-seq has been attributed to restriction site 
polymorphism (a RAD-seq-specific artefact in which alleles carry-
ing mutations in the restriction enzyme recognition sequence are 
absent from the data set; Andrews et al., 2016), but this may also 
reflect an incomplete understanding of the consequences of PCR 
duplicates.

Here, we develop a general quantitative framework able to 
realistically model amplification-related artefacts in sequencing 
experiments based on library complexity, sequencing depth, and 
amplification noise. We provide a method, Decoratio, to estimate 
these factors for any sequencing data set based on PCR duplicate 
patterns. We apply this method to new and previously published 
RAD-seq data sets to demonstrate that amplification artefacts are 
often an important feature of this sequencing approach and that the 
model recapitulates the main properties of these experiments. We 
show that our model reconciles the numerous earlier observations 
made on PCR duplicate rates, and we discuss how amplification-
related artefacts increase variance in downstream analyses, with 
particular application to genotyping accuracy. Overall, this work 
furthers our understanding of the properties and consequences of 
amplification artefacts and will facilitate the optimization and de-
ployment of novel sequencing technologies.

2  |  MATERIAL S AND METHODS

2.1  |  PCR duplicate model

We identify three stages of library preparation and sequencing 
as being critical to the modelling of PCR duplicates: (1) the pre-
amplification pool of template molecules; (2) the pool of amplified 
molecules; and (3) the pool of molecules that are sampled for se-
quencing into digital reads (Figure 1). Accordingly, our model for the 
occurrence of PCR duplicates comprises two disjoint steps that re-
spectively connect the first and second, and the second and third of 
these stages.

In the first step, we model the amplification of template mol-
ecules. Namely, given a pool of template molecules, we determine 
a probability distribution for their individual amplification factors. 
As the precise method used to determine the distribution does not 
matter, this approach is highly flexible; we propose two amplification 
models. First, a distribution of amplification factors can be obtained 
using forward simulations. For instance, we implemented the PCR 
model developed empirically by Best et al. (2015): starting with one 
molecule, we apply the amplification model, then record the final 
number of molecules in the resulting clone (i.e. the amplification 

factor), and repeat the amplification process independently, one 
molecule at a time, to obtain an estimate of the distribution of clone 
sizes. Alternatively, the distribution of amplification factors can be 
set to some relevant parametric distribution, such as the log-normal 
distribution.

In the second step, we model the sequencing of reads from the 
amplified pool of molecules. Crucially, we treat the pool of amplified 
molecules as infinite, and use the distribution of amplification fac-
tors (i.e. of amplification clone sizes) as a statistical description of 
this pool. This assumption is always reasonable because in practice 
the amplified pool has to be much larger than the number of reads 
derived from it—for instance, in the case of Illumina sequencing, 
only a small fraction of the PCR product is eventually loaded onto a 
flow cell and bridge-amplified. In addition, for simplicity, we assume 
that there is no sequencing bias, that is all clones and all molecules 
within a clone have an equal probability to be sequenced (we note, 
however, that under the proposed framework it is also reasonable to 
let the amplification factor distribution aggregate the variance intro-
duced during both amplification and sequencing). Under these as-
sumptions, the occurrence of PCR duplicates can be modelled using 
a Poisson mixture model, as follows.

We refer to the set of duplicate molecules that were amplified 
from a particular template molecule as an ‘amplification clone,’ and 
to the set of reads that derive from a particular template molecule 
(i.e. duplicate reads) as a ‘sequencing clone.’ Importantly, for a given 
read data set, the PCR duplicate rate r is a function of the distribu-
tion of sequencing clone sizes. For each clone, we count one read as 
unique and the rest as duplicates, which gives the formula

where P(S = k) is the distribution of sequencing clone sizes. The distri-
bution of sequenced clone sizes can be modelled as

where P(A = a) is the distribution of amplification clone sizes (i.e. the 
distribution of amplification factors), and 

 where Nr is the number of read pairs that were sequenced, Nm is the 
number of template molecules in the pre-amplification pool of DNA, 
and a is the mean amplification factor, so that Nm × a is the number of 
molecules in the amplified pool of DNA. Assuming Nr is large and all 
individual species frequencies are low, this can alternatively be written 
as

r = 1 −

∞∑

k=1

1

k
P(S = k)

p(S = k) =

∞∑

a=1

p(A = a)p(S = k |AC = a)

P(S = k|A = a)∼Binomial

(
Nr,

a

Nm × a

)

P(S = k|A = a)∼ Poisson

(
Nr

Nm

×
a

a

)
.
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1302  |    ROCHETTE et al.

The PCR duplicate rate then depends on two separate parame-
ters: (i) the ratio between the number of sequenced read pairs and 
the number of pre-amplification template molecules (i.e. the number 
of unique species in the library, its absolute complexity), which we 
hereafter refer to as the ‘depth-complexity ratio,’ and (ii) the distri-
bution of amplification factors relative to the mean amplification 
factor, that is the noisiness of the amplification (Figure  1d). It can 

be noted that in the model the absolute value of the average ampli-
fication factor has no effect; this results from our assumption that 
the pool of amplified molecules is infinite, which, as argued above, 
is always realistic, and from the independent parametrization of the 
amplification variance.

Importantly, it is possible to re-write the depth-complexity ratio 
in terms of coverage. Specifically, if we consider a particular read 

F I G U R E  1  Overview of the PCR duplicate rate model. (a) Schematic representation of the processes involved in the occurrence of PCR 
duplicates. During library preparation, template DNA molecules are amplified, so that for each initial molecule a clone (coloured circles) 
of amplified molecules (dots) is generated. Since PCR is a stochastic and biased process, amplification efficiency is heterogenous across 
templates and amplification clones vary in size. Subsequently, a small fraction of amplified molecules are randomly sampled for sequencing 
and become reads (solid dots). Reads that correspond to the same template, that is, that belong to the same clone, are known as PCR 
duplicates. Duplicate reads are more likely to be sampled from large clones (i.e. templates whose amplification was most successful) than 
from small clones. (b, c) In practice, what can be observed in sequencing data is the size of clones at the read level (i.e. the number of 
singletons, of pairs of two duplicate reads, etc.). This serves as the main empirical input for the model. The histograms show the distribution 
of read clone sizes respectively for the schematic in the first panel (b) and for the brown anole data set (c), either as the number of clones 
of each size (dark grey) or as the number of reads that belong to clones of a particular size (dark and light grey combined). These views are 
equivalent by definition, as for instance the number of reads in clones of size two (duplicate pairs) must be twice the number of such clones. 
Furthermore, as the light grey bars represent redundant reads, the PCR duplicate rate can be calculated from such histograms by taking the 
ratio of the light grey area over the total area; in this case respectively 56% (18 reads in 8 distinct clones) and 61%. (d) Amplification noise is 
modelled as the distribution of relative amplification factors among templates. Histograms show the amplification factor distributions for (i) 
a perfect, noiseless amplification; (ii, iii) for the empirically developed amplification model of Best et al. with mean amplification efficiency 
and bias parameters set to ‘low noise’ and ‘high noise’ values, respectively m = 0.7, s = 0.01, 12 cycles, and m = 0.45, s = 0.1, 18 cycles; and (iv) 
for the log-skew normal distribution fitted to the brown anole data set. These distributions are used to model sequencing data as a mixture 
of Poisson distributions (see Section 2).

(a)

(b)

(c)

(d)
(i)

(ii)

(iii)

(iv)
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    |  1303ROCHETTE et al.

(or read pair) length lr and a set of target genomic regions (e.g. the 
whole genome) of total length LT from which the reads derive, then 
nucleotide-wise coverage can be written as

Similarly, we can define molecular coverage—hereafter ‘molecu-
lar density’ to avoid confusion around the term coverage—as

This allows us to re-write the depth-complexity ratio as

Molecular density defined above is fundamentally a locus-wise 
measure of library complexity and corresponds to the number of 
unamplified template molecules that cover an average position of 
the sequencing target. We note that when coverage is tallied at the 
nucleotide level, the complexity of a library depends on the read 
length that is used to sequence it and is maximized when the full 
length of the molecules is sequenced. This is expected, because 
the read length influences the number of useful nucleotides within 
each molecule, and therefore the information content of the library.

2.2  |  Implementation

In the model described above, the PCR duplicate rate depends on 
two parameters: the depth-complexity ratio, and the distribution of 
amplification factors. We provide a method, Decoratio (for ‘depth-
complexity ratio’), to jointly estimate these two parameters based 
on the distribution of PCR clone sizes observed in a sequencing data 
set. Given that the experimenter already knows the sequencing 
depth, the depth-complexity ratio also corresponds to an estimate 
of library complexity.

The program requires two inputs, a distribution of PCR clone 
sizes and a class of PCR models, and outputs the optimized depth-
complexity ratio and PCR model parameters, as well as a plot of the 
input distribution and fitted model. An example of the expected 
input, command line call, and outputs of the program is shown in 
Figure S1. The distribution of PCR clone sizes should be formatted 
as a TSV table giving the number of clones of each size, and can be 
obtained using programs such as SAMtools-Markdup (Li et al., 2009), 
Picard-MarkDuplicates (McKenna et al.,  2010), UMItools (Smith 
et al., 2017), or Stacks-gstacks (Rochette et al., 2019), as described 
in Decoratio's online manual. If an experiment comprises multiple 
libraries, we stress that clone size distributions should be derived 
on a per-library basis, rather than on an aggregated data set, as the 
properties of the data are likely to vary across libraries.

For the PCR model, the program currently implements log-
normal and log-skew-normal distributions of amplification factors, 
as well as the empirical ‘inherited efficiency’ model class of Best 
et al.  (2015) which we described above. The model may be fully 
specified or only partly so, in which case the program will optimize 
the model parameters. For most users, using the default log-skew-
normal model should work well and the program will fit the standard 
deviation and skew parameters (Figure  1). For the inherited effi-
ciency model, the distribution of amplification factors is obtained by 
forward simulation. Each clone is assigned a duplication probability 
drawn from a normal distribution, and then amplified by a succession 
of binomial samplings. In practice, the parameter space is binned to 
increase computational efficiency, and by default 1 million simula-
tions are performed. We added a slightly modified variant of this 
model that uses a Beta distribution instead of the normal distribu-
tion (Figure S2) so as to avoid parametrization issues related to the 
need to truncate the normal distribution between 0 and 1. The pro-
gram jointly optimizes the depth-complexity ratio and amplification 
model by minimizing the sum of squared residuals to the observed 
distribution of the fraction of reads in each clone size class, using 
simplicial homology global optimization (SHGO) as implemented in 
SciPy.

2.3  |  RAD-seq data generation and analysis

We tested the PCR model in Decoratio on five empirical RAD-
seq data sets. Three of these data sets are from previously pub-
lished studies: (1) stickleback (Gasterosteus aculeatus) (Nelson 
& Cresko,  2018), (2) yellow warbler (Setophaga petechia) (Bay 
et al.,  2018), and (3) Emperor penguin (Aptenodytes forsteri) 
(Cristofari et al.,  2016). These are hereafter referred to as the 
stickleback, warbler, and penguin data sets, respectively. For 
these data sets, we split and separately analysed according to 
their respective libraries, for example the warbler data set was 
constructed as three separate RAD-seq libraries, each com-
prised of multiple individuals, and was thus analysed as Warbler-1, 
Warbler-2, and Warbler-3 (see Supplementary Methods).

In addition, we used two newly generated RAD-seq data sets 
to guarantee complete control of the library preparation process, 
allowing for a more detailed validation of the PCR model. First, the 
robin data set, comprised of 150 American robins (Turdus migratorius) 
collected from central Illinois, USA (A. B. Luro, A. G. Rivera-Colón, J. 
M. Catchen, M. E. Hauber, unpublished). Briefly, DNA was extracted 
from all individuals, prepared into a single-digest RAD-seq (sdRAD) 
library digested with SbfI (Baird et al., 2008; Etter et al., 2011) and 
sequenced on an Illumina NovaSeq-6000 SP 2 × 150 bp lane. Second, 
the anole data set, which was generated from 39 Anolis sagrei em-
bryos. All 39 individuals were sequenced in two separate single-
digest SbfI RAD-seq libraries (Baird et al., 2008; Etter et al., 2011): a 
high template (Anole-600) library in which a pool of 600 ng of DNA 
was used as template for the PCR, and a low template (Anole-30) 
library which instead used 30 ng of DNA as the PCR template. After 

C =
Nr × lr

LT
.

M =
Nm × lr

LT
.

Nr

Nm

=
C

M
.
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1304  |    ROCHETTE et al.

amplification, each library was sequenced 2 × 100 bp on an Illumina 
HighSeq-4000 (see Supplementary Methods for detail).

Sequencing data for each library were analysed separately using 
Stacks v2.5 (Rochette et al., 2019). Raw reads were processed and 
demultiplexed using the process_radtags program. RAD loci were as-
sembled de novo using the denovo_map.pl script. The mismatch 
parameters M and n were kept equal and set separately for each data 
set to account for differences in read length. We identified and re-
moved PCR duplicates (−-­rm-­pcr-­duplicates) and selected only 
loci present in over half the samples in the library (using the flag -­X 
‘gstacks: -­-­dbg-­min-­loc-­spls’). The final loci and variant 
sites were exported in VCF format using the populations program, 
keeping variants genotyped in at least 50% of samples (−r 0.5) (see 
Supplementary Methods for more detail).

2.4  |  qPCR quantification of library complexity

To obtain an empirical measure of the complexity of the robin library, 
the amount of template DNA was quantified using qPCR. During 
RAD-seq library preparation, this template is composed of the frac-
tion of the DNA molecules in the pool that have been successfully 
ligated with both P1 and P2 adapter sequences. This template DNA, 
which we obtained in the library preparation process after P2 liga-
tion, but prior to PCR, was amplified alongside a control made of 
the final RAD-seq library, which is cleaned and quantified prior to 
sequencing. The known concentration of the final library was used 
to then calculate an absolute concentration of template in the pre-
amplified library. To create a standard curve, five 1:10 sequential 
dilutions of the 0.1 nM control library were prepared and amplified 
in triplicate, alongside a negative control. Similarly, the library tem-
plate was diluted in two sequential 1:10 dilutions and amplified in 
triplicate. qPCR reactions were prepared using the KAPA Library 
Quantification Kit (KAPA Biosystems). While the KAPA kit by default 
uses primers compatible with Illumina's P5 and P7 oligo sequences, 

the complimentary sequence for these primers is not present in 
single-digest RAD-seq libraries until it is reconstructed during PCR 
amplification (Baird et al., 2008; Etter et al., 2011). Instead, we per-
formed qPCR amplification using the primers designed for sdRAD 
library enrichment PCR (see Supplementary Methods for primer se-
quences). For the reaction, the forward and reverse primers were 
combined into a single 10 μM primer mix. Each 20 μL reaction con-
sisted of 10.4 μL of KAPA SYBR FAST mix with ROX, 2 μL of standard 
Primer Mix, 3.6 μL of PCR-grade water, and 4 μL of DNA. The qPCR 
reactions were run on a QuantStudioTM 3 Real-Time PCR System 
(Applied Biosystems) using the default ΔΔCT protocol. This protocol 
consists of an initial denaturation step of 1 min at 95°C, 35 cycles of 
a 95°C 30 s denaturation followed by a 60°C annealing/extension/
data acquisition for 45 s, and a 65-95°C melting curve analysis.

The CT of a given sample was obtained by calculating the aver-
age across its replicates. The concentration of the library template 
in nM was obtained by regressing its average CT value against the 
standard curve obtained for all the known control.

3  |  RESULTS

3.1  |  PCR duplicate rates in RAD-seq data sets

To assess the general occurrence of PCR duplicates in RAD-seq 
studies, we reanalyzed a series of new and published data sets. 
Specifically, we generated two sdRAD (Baird et al.,  2008) paired-
end data sets, respectively, comprising 39 brown anole (A. sagrei) 
individuals and 150 American robin (T. migratorius) individuals. We 
also considered published paired-end data sets that use sdRAD in 
the Emperor Penguin (Cristofari et al., 2016) (3 libraries; Penguin-3, 
Penguin-4 and Penguin-81), sdRAD in the Threespine Stickleback 
(Nelson & Cresko, 2018) (1 library), and bestRAD (Ali et al., 2016) 
in the Yellow Warbler (Bay et al.,  2018) (3 libraries; Warbler-1 to 
Warbler-3). We did not include any libraries based on double-digest 

F I G U R E  2  PCR duplicate rates in reanalyzed sdRAD data sets. (a) Distribution of PCR duplicates for all samples in each data set. Coloured 
diamonds show the mean per-library duplicate rate. The PCR duplicate rate is consistent across all samples within a molecular library. For 
data sets comprised of multiple libraries, the duplicate rate can vary among the different libraries. (b) Non-redundant coverage distribution 
for all samples in each data set. Coloured diamonds show the mean non-redundant coverage. In contrast to PCR duplicate rate, coverage is 
highly variable within these libraries.

(a) (b)
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    |  1305ROCHETTE et al.

RAD (ddRAD; Peterson et al., 2012) as this protocol does not allow 
the tracking of PCR duplicates (but see Section 4). PCR duplicates 
were identified based on read mapping coordinates (Rochette 
et al., 2019). Given that in sdRAD the first read of a pair always maps 
to the restriction site (a fixed position), this approach may incorrectly 
flag independent reads as duplicates if they by chance map to the 
same coordinates. However, given the nonredundant depths (3–19×) 
and insert size distribution widths (100-300 bp) in the data sets con-
sidered, we expect that these coordinate collisions should be rare 
and amount to only 1%–5% of the estimated duplicate rates.

Overall, we found substantial PCR duplicate levels in all an-
alysed data sets. Mean per-library duplicate rates ranged from 
21% for the Robin library to 95% for Penguin-3 (Figure 2; Table 2). 
Unsurprisingly, because a 95% duplicate rate corresponds to a se-
quencing efficiency of just 5%, nonredundant coverage (i.e. cover-
age after removing PCR duplicates) was very low for the samples of 
the Penguin-3 library, ranging from 1.6 to 4.3×. However, even the 
better libraries were subject to an appreciable sequencing efficiency 
loss. The bestRAD protocol, yielding three libraries with low dupli-
cate rates, tended to perform better than the sdRAD protocol, which 
yielded libraries with both high and low duplicate rates, although our 
sample of data sets may be too small for generalization.

Perhaps most importantly for the purposes of this work, it ap-
peared very clearly that the relevant level at which to look at PCR 
duplicates was the library, rather than the individual sample or the 
study. Indeed, PCR duplicate rates varied greatly across libraries 
within each data set (for data sets comprising several libraries) but 
were highly consistent across samples within each molecular library 
(Figure 2; Table 2). Remarkably, quality differences between individ-
ual DNA samples are likely present in at least some of the tested 
libraries but did not appear to impact PCR duplicate rates.

These observations prompted us to investigate the causes un-
derlying the occurrence of PCR duplicates, the potential detrimental 
effects of their presence, and the steps that should be taken to re-
duce these rates.

3.2  |  A realistic model for PCR duplicates

We present a quantitative model that captures the steps of library 
preparation and sequencing that are critical with regard to PCR du-
plicates. Briefly, this model comprises two steps. First, we model 
how the relative molecule abundancies within a DNA library are dis-
torted by PCR amplification. Specifically, for a chosen PCR model, 
we derive a distribution of the relative amplification factors across 
molecules within a library (Figure 1c). Second, we derive expected 
patterns of PCR duplicates (i.e. the distribution of PCR clone sizes 
in the sequencing data; Figure 1b) by modelling the stochastic se-
quencing process—accounting for sequencing depth, the complex-
ity of the library, and amplification distortions—using a compound 
Poisson model. In practice, the model uses two parameters: a PCR 
model, and the ratio between the number of sequenced reads and 
the number of unique molecules in the library, which we refer to TA
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as the depth-complexity ratio. These parameters are fitted to indi-
vidual data sets by matching the predicted distribution of PCR clone 
sizes to the observed one.

Using this method, we were able to reproduce the clone size dis-
tributions that were observed experimentally in the data sets intro-
duced above (Figure 3a,b, Figure S3). Accounting for amplification 
led to considerably better fits than using a noiseless, simple Poisson 
model, especially in data sets that have more pronounced amounts 
of PCR duplicates (e.g. Figure 3a). Such data sets provide more infor-
mation on the underlying true distribution of amplification factors, 
whereas in data sets with low duplicate rates, most reads are sin-
gletons and are uninformative in this regard. In addition, even if the 
noiseless model may appear to be a reasonable fit for data sets with 
fewer duplicates (e.g. Figure 3b), ignoring amplification noise still led 
to skewed library complexity estimates (Table S1). For instance, for 
the 22%-duplicate Robin data set, the true library complexity was 
likely more than 60% larger than the estimate based on a noiseless 
model.

Remarkably, our model also captures one striking property of 
empirical RAD-seq libraries: that all samples within a library had 

almost identical PCR duplicate rates, regardless of any differences 
in coverage or DNA quality that may exist among them (Figure 2). 
The model suggests this happens because the primary determinant 
of the rate of PCR duplicates is the depth-complexity ratio. This ratio 
is expected to be identical for all samples within a library, because 
for each sample both the number of reads and the number of (ac-
tive) template molecules are measures of the relative abundancy of 
that sample in the library. For instance, a sample representing one 
percent of a library's template molecules can be expected to later 
receive one percent of the total sequencing coverage for this library, 
so that the depth-complexity ratio of that sample will be equal to the 
global depth-complexity ratio of the library.

Nevertheless, we note that there remained some within-library 
variation of the PCR duplicate rate (Figure 2), which attests to the 
presence of sample-specific effects. Some, but not all of this resid-
ual variation could be explained by differences in library representa-
tion (41% and 71% of the variance for the Anolis and Robin libraries 
respectively; Figure  S4). Conceivably, differences in DNA quality 
among samples may lead to different responses during PCR ampli-
fication or sequencing. For instance, the fragment size distribution 

F I G U R E  3  Expected relationship between the depth-complexity ratio and the PCR duplicate rate. (a, b) Histogram of the read clone 
sizes observed in the Anole-600ng and Robin data sets, respectively, overlaid with the fitted depth-complexity ratio and amplification 
noise model (solid red and blue lines respectively) or a noiseless amplification model (Poisson distribution; grey lines; Figure S7). (c, d) Same 
as (a) and (b) respectively, but for re-analyses of each data set after randomly discarding half the reads (twofold downsampling). The red 
(respectively blue) line shows the distribution predicted when halving the depth-complexity ratio in the model fitted on the full data set (i.e. 
the coloured lines in panels A and C respectively). In both panels, the thick black line shows the model fitted to the downsampled data set. 
(e) Expected relationship between the PCR duplicate rate, the sequencing depth, the library complexity, and the PCR itself. The solid, dotted, 
dashed and red amplification noise models are the same as in (Figure 1d), and the blue model is the best fit to the American robin data set. 
Large coloured dots mark the observed PCR duplicate rates and estimated depth-complexity ratios for the brown anole (red) and American 
robin (red) RAD-seq data sets, respectively, and small dots the values observed when considering only half the reads in those data sets, as 
shown in panels (A–D). PCR duplicate rates are determined primarily by the ratio between the sequencing depth and the complexity of the 
library, and modulated by the noisiness of the model used for the amplification. The curves shown in this panel may also be considered from 
the perspective of sequencing saturation (Figure S8).
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may vary across samples, and this could result in differences in mean 
amplification factor and/or sequencing efficiency.

3.3  |  PCR duplicate rates vary predictably with 
sequencing depth

While differences in coverage among the samples in a library due 
to unequal representation do not prevent them from exhibiting the 
same PCR duplicate rate, the dependence of PCR duplicate rates on 
the depth-complexity ratio nevertheless implies a more general de-
pendence between coverage and PCR duplicates. Specifically, for a 
given library, the ratio's denominator (i.e. complexity) is fixed once 
the library has been prepared, whereas the numerator depends on 
the sequencing effort that is subsequently applied. Consequently, 
for a given library, increasing the sequencing effort should increase 
the PCR duplicate rate by a predictable amount.

We tested this prediction using the Anolis data set by down-
sampling the original reads to reduce the sequencing coverage by 
half, with the expectation that the PCR duplicate rate would de-
crease accordingly. The original data set had a raw coverage of 49× 
and an observed PCR duplicate rate of 61% (Table  2). The fitted 
model predicted that the depth-complexity ratio in this experiment 
was 1.93, and that halving the coverage should decrease the PCR 
duplicate rate to 42%. After processing the down-sampled data set, 
a PCR duplicate rate of 42% was observed, exactly matching the pre-
diction. At a finer level, the change in the shape of the distribution 
of PCR clone sizes was also predicted precisely (Figure 3a–d). We 
conclude that our model captures essential properties of the PCR 
duplicate phenomenon and has predictive value.

3.4  |  PCR duplicate rates depend primarily on the 
complexity of a library

Next, we summarize the predictions of the model regarding the 
behaviour of PCR duplicate rates under a range of scenarios. As 
previously described, the model relies on two parameters: the 
depth-complexity ratio and a PCR model. The results obtained by 
varying these parameters are presented in (Figure 3e).

Importantly, while the PCR duplicate rate depends on both depth 
and complexity, it is only sensitive to the value of the ratio between 
the two, regardless of their respective absolute values. In the model, 
this property derives from assumptions on the sequencing sampling 
process, but it also holds for real data (see above results regarding 
the uniformity of duplicate rates within libraries). We thus only in-
vestigate variations of the depth-complexity ratio and did not assess 
the effects of coverage and complexity individually. Similarly, with 
regard to the PCR model parameter, the duplicate rate only depends 
on the distribution of relative amplification factors (Figure 1d), re-
gardless of the mean absolute amplification factor or of the precise 
mechanism generating the spread of amplification factors. What 
matters especially is the overall ‘noisiness’ of the PCR—whether all 

molecules are amplified equally or, on the contrary, whether some 
molecular species become much more abundant than others. For 
this reason, the results presented here, derived using the class of 
PCR models developed empirically by Best et al.  (2015), should be 
robust to the choice PCR model class, and specifically should gener-
ally hold for any PCR model producing an approximately log-normal 
distribution of amplification factors. We note that the amplification 
noisiness range assessed here is relevant for typical library ampli-
fication reactions; some specialized amplification techniques, such 
as multiple displacement amplification, are much noisier (Gawad 
et al., 2016) and may thus fall outside of the considered range.

Our central observation is that depth-complexity ratios much 
less than one always yield low duplicate rates, and that depth-
complexity ratios greater than one always yield high duplicate rates. 
The duplicate rate is significantly influenced by the PCR model only 
when the depth-complexity ratio is between one tenth and one 
(Figure 3e). Nevertheless, the duplicate rate is always in the 5%–15% 
range if the depth-complexity ratio is 0.1, or in the 35%–60% range 
if that ratio is 1, regardless of the noisiness of the PCR.

Thus, we find that the PCR duplicate rate depends primarily on 
the depth-complexity ratio, and only marginally on the PCR model. 
From an experimental perspective, it should be noted that the se-
quencing coverage is set according to experimental needs (e.g. to 
30×), whereas complexity is an intrinsic and difficult to control prop-
erty of the prepared library. Consequently, a high depth-complexity 
ratio typically occurs because the library has a molecular density 
that is too low with regards to experimental needs. Thus, the above 
result can most simply be understood as: high PCR duplicate rates 
occur when pre-amplification library complexity is insufficient, 
largely independently of the PCR protocol being used.

3.5  |  qPCR measurement of the molecular 
density of RAD-seq libraries suggests in silico 
estimates are realistic

It is notable that the library complexities measured above (Table 2) 
do not match the values expected from the physical mass of 
DNA used to prepare the libraries. For instance, the PCR of the 
150-sample Robin library used a total of 400 ng of DNA (Table 3). 
Given that the weight of one haploid American robin genome (i.e. its 
C-value) is 1.39 × 10−3 ng (Andrews et al., 2009), the DNA mass used 
is equivalent to 288,000 genome copies, so that the library could be 
expected to have a density of 288,000x (or 1918× per sample, on 
average). In contrast, our modelling of PCR duplicate patterns in the 
resulting sequencing data suggests a total density of 8500× (57× per 
sample). Thus, the diversity of molecules represented in sequence 
reads was 34 times less than the mass-based expectation.

To explain this discrepancy, we hypothesized that only a small 
fraction of the molecules present could actually be amplified and 
subsequently sequenced, while most molecules would be degraded 
or otherwise inert for the purpose of amplification and sequencing 
(Meyer et al., 2008). To test this experimentally, we used qPCR to 
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1308  |    ROCHETTE et al.

quantify amplifiable DNA in the pre-PCR molecular library. We mea-
sured a template single-stranded DNA concentration of 0.192 nmol/L 
(Figure S5), which implies that the 40 μL used during library prepa-
ration corresponded to 7.68 × 10−6 nmol, that is 4.62 billion, single-
stranded template molecules. Owing to the design of adapters in the 
RAD-seq protocol used here, these molecules each corresponded 
to independent double-stranded molecules, that is contributed fully 
to library complexity. Additionally, the density of the library was 
bioinformatically measured over the 89,162 loci found in more than 
half the samples, and these loci collectively represented 57.5% of 
the reads in the library (with the rest of read pairs corresponding to 
repetitive RAD loci, to RAD loci that are only found in one or a few 

individuals, or to genomic DNA not flanked by a restriction site). As 
this proportion must also hold in the library at the molecule level, we 
distributed 57.5% of 4.62 × 109 molecules (i.e. 2.66 × 109 molecules) 

TA B L E  3  Library and bioinformatic statistics needed to 
contextualize an experiment's PCR duplicate rate. For sequencing 
approaches other than RAD-seq, the number of RAD loci should 
be substituted with a relevant measure of the size of the genomic 
target, and most libraries will only include one sample. The 
American Robin C-value was sourced from Andrews et al. (2009) 
and the Anole C-value (1.97) was calculated assuming a genome 
size of 1.93 Gbp (Geneva et al., 2022) and a DNA weight of 
1.023 pg/Gbp (Doležel et al., 2003).

Library Anole-600 Robin

DNA amplified (ng) 600 400

DNA amplified (C-value 
equivalents)

305,000 288,000

Total aligned read pairs 72,942,759 189,422,046

PCR duplicate rate 61% 21%

Number of filtered RAD loci 43,906 89,161

Samples in library 39 150

Mean non-redundant coverage 19.1× 12.8×

F I G U R E  4  Library complexity is much smaller than suggested 
by DNA mass. Library complexity for the American robin RAD-seq 
library, measured as the total molecular density for 150 pooled 
samples, obtained using proxies available at different stages of the 
experiment. Calculating library complexity by dividing the mass of 
DNA used for amplification by the C-value of the organism vastly 
over-estimates the value actually observed in downstream in silico 
analyses. Quantifying this same DNA using qPCR highlights that 
most molecules are indeed not amplifiable and therefore do not 
contribute to library complexity, owing to sample preservation and 
partial yield at earlier experimental steps.

F I G U R E  5  Consequences of low library complexity on 
genotyping. (a) Due to molecule sampling and noisy amplification, 
the alleles at a heterozygote locus may already be unequally 
represented in the library by the time it is sequenced, causing 
sequence data to be over-dispersed compared to the binomial 
distribution assumed by genotyping models. This artefact is 
expected to be particularly serious at low library complexities and 
can be mitigated by removing PCR duplicates (see Section 4). (b–d) 
Observed allelic counts at heterozygous sites of anole individual 
E35 that have a total depth of 20 reads, respectively in the Anole-
600ng data set with (b) or without (c) PCR duplicate removal, and 
in the low-complexity Anole-30ng data set without PCR duplicate 
removal (d). The solid line shows the binomial distribution. Peaks 
at x = 0 and x = 20 in (d) are due to allelic dropout, where one 
allele is entirely absent from the library. Heterozygous sites were 
annotated based on the Anole-600ng data set with PCR duplicate 
removal. No figure is presented for the Anole-30ng data set 
with PCR duplicate removal as the low non-redundant coverage 
leaves no heterozygous sites with a depth of 20. (e, f) Histograms 
showing apparent locus sharing among the 39 individuals of the 
Anole data set, respectively for the Anole-600ng and Anole-30ng 
libraries. The latter, Anole-30ng library, exhibits ‘locus dropout’ 
because most individuals have such a low molecular density that at 
any locus several individuals typically fail to sample even a single 
amplifiable molecule.

(a)

(b)
(e)

(f)

(c)

(d)
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    |  1309ROCHETTE et al.

over 89,162 loci, so that we obtained a qPCR-based library density 
estimate of 29,800×.

Thus, the experimental, qPCR-based library density estimate 
was much lower (9.7 times less) than the estimate based on the C-
value (288,000×) (Figure 4; Table 3). This confirmed that most of the 
DNA used for this amplification reaction was indeed inert, and that 
estimates of library complexity based on DNA mass alone may be 
inflated by more than an order of magnitude. Nevertheless, we note 
that the qPCR-based estimate remained 3.5 times higher than the 
in silico one; we cannot presently resolve this residual discrepancy.

3.6  |  Increasing library complexity reduces PCR 
duplicate rates experimentally

Finally, the comparison between our two A. sagrei RAD-seq libraries, 
Anole-600ng and Anole-30ng, illustrates the experimental impor-
tance of library complexity. These two libraries were prepared from 
the same 39 DNA samples using protocols that were identical except 
for the volume used at the amplification step, respectively 6000 and 
300 μL, which corresponded to 600 and 30 ng of template DNA. 
The yield of the smaller reaction was not technically limiting so that 
subsequent steps could be performed identically, and both libraries 
were then sequenced at the same depth of 49×.

As predicted, the observed library density was much higher for 
the Anole-600ng library than for the Anole-30ng one, respectively 
at 984× and 133×. Accordingly, the PCR duplicate rates were re-
spectively 61% and 93% (for a sequencing depth of 49×), resulting 
nonredundant coverages of 19.1× and 3.4× per sample, on average 
(Table 2). This adds to previously published evidence (see Section 4) 
to demonstrate the critical role of the total amount of DNA used for 
PCR amplification, independently of all other experimental factors, 
in determining library complexity and PCR duplicate rates.

In addition, further inspection of these two data sets high-
lighted that library density was an intrinsic and separate property 
of these data sets, rather than merely a parameter fitted so that the 
model replicates PCR duplicate patterns. Since a low per-sample 
library density indicates that only a few molecules are stochasti-
cally sampled and amplified at each locus, we can expect that the 
makeup of the library itself will have a pronounced stochastic com-
ponent, so that the resulting read data will be more variable than 
expected based on the randomness of the sequencing process alone 
(Figure 5a; and see Section 4).

This overdispersion is first apparent for coverage patterns at 
heterozygous sites. Considering the sequencing process alone, the 
number of reads observed for either allele should follow a binomial 
distribution. The Anole-600ng data approximately conforms to this 
expectation, especially when the effects of amplification stochas-
ticity are mitigated by removing PCR duplicates Figure 5b,c. In the 
Anole-30ng data set, however, the number of observations for the 
two alleles deviate much more from equal representation, and in 
many cases one allele simply is not observed (Figure 5d). The latter is 
explained by allelic dropout: given that the per-sample density of the 

library is very low, at only 3.4 molecules per locus or 1.7 molecules 
per allele, on average, frequently no molecules will be sampled for a 
particular allele.

Second, at such low densities, there is also a chance that neither 
of the two alleles of a locus will be sampled, so that an entire locus 
may be stochastically dropped. While in RAD-seq analyses, it is nor-
mal that loci are not perfectly shared across individuals due to poly-
morphisms in restriction sites, comparing the extent of locus sharing 
in the Anole-600ng and Anole-30ng data sets (Figure 5e,f) makes it 
clear that most of the variation in locus composition across individu-
als in the Anole-30ng data is caused by stochastic locus dropout due 
to low library density rather than genetic polymorphism.

4  |  DISCUSSION

4.1  |  Determinants of PCR duplicate occurrence

PCR duplicates are a pervasive sequencing artefact and a wealth 
of empirical observations on their occurrence have been reported. 
However, this knowledge accumulation has often happened as a 
by-product of the development and validation of new molecular 
protocols, and the lack of a theoretical framework within which to 
connect individual results has not allowed a complete understanding 
of the artefact's causes and of its seriousness in specific applica-
tions (Marx, 2017). We fill this gap by introducing a mechanistic and 
quantitative model for the occurrence of PCR duplicates. This allows 
us to unify earlier results, to further clarify the effects of various 
experimental factors, and to draw expectations about the statistical 
properties of duplicate-containing data sets.

Our first observation is that the PCR duplicate rate fundamen-
tally depends on the ratio between sequencing depth and library 
complexity (Figure  3). In particular, we stress the symmetry be-
tween depth and complexity, and that it is imperative to consider 
both when comparing PCR duplicate rates across experiments. 
The idea that PCR duplicates occur when a library is sequenced 
in excess relative to its complexity has been discussed in earlier 
works (Daley & Smith, 2013; Fu et al., 2018; Rao et al., 2014; Smith 
et al., 2017), and in principle could be extrapolated following Lander 
and Waterman (1988). However, these studies did not consider am-
plification artefacts or focused on a specific problem or application. 
For instance, the method of Daley and Smith (2013) proposed to es-
timate library complexity based on the species-saturation approach 
of Efron and Thisted (1976), which ultimately amounts to modelling 
amplification noise in the same way as presented here. However, as 
the authors' focus is solely on library complexity, this factor is then 
eliminated through nonparametric approximations and its effects 
are not discussed further.

The central role of library complexity and sequencing depth is 
experimentally supported by the RAD-seq-based results presented 
here, as well as by observations from earlier studies. The amount 
of material used as input for library preparation has been shown 
to strongly impact duplicate rates in RNA-seq (Fu et al., 2018) and 

 17550998, 2023, 6, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13800 by U

niversity O
f Illinois A

t U
rbana C

ham
paign, W

iley O
nline Library on [13/11/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



1310  |    ROCHETTE et al.

ancient DNA (Kapp et al., 2021). Very high duplicate rates are also 
apparent in whole genome resequencing libraries prepared from 
minute amounts of DNA (e.g. Bruinsma et al.,  2018), and there is 
evidence that this parameter is also important in ATAC-seq and 
Hi-C (see below). As for the effect of sequencing depth, it is im-
plicit in experiments where sequencing is performed to saturation 
(Daley & Smith, 2013; Farlik et al., 2015; Niu et al., 2019; Ziegenhain 
et al.,  2017) and should generally be immediately apparent in any 
data set containing substantial levels of duplicates if the read data is 
down-sampled (Figure 3).

Second, since our model explicitly accounts for amplification, we 
were able to explore its behaviour across a range of amplification pa-
rameters. We find that PCR itself only plays a secondary role in the 
rate of occurrence of PCR duplicates. Although a greater variance 
in relative amplification factors across templates (i.e. a ‘noisier’ am-
plification) does elevate PCR duplicate rates, it only does so within 
a narrow range determined primarily by the depth-complexity ratio 
(Figure 3c).

This conclusion is in contrast with the frequent assertion 
that PCR duplicates are due to an excessive number of PCR cy-
cles (Ebbert et al., 2016; Marx, 2017; Orlando et al., 2021; Smith 
et al.,  2017; Stuart et al.,  2018; Tin et al.,  2015; Vargas-Landin 
et al.,  2018). The absence of a major effect of PCR is neverthe-
less in agreement with published experimental results. In particu-
lar, Fu et al. (2018) specifically tested this interaction in RNA-seq 
and found none. Similarly, Tin et al.  (2015) observed no change 
in RAD-seq duplicate rates when increasing the number of cy-
cles. And while several studies have reported a strong effect of 
the number of cycles, in RNA-seq (Parekh et al., 2016), ATAC-seq 
(Lu et al., 2017), RAD-seq (Díaz-Arce & Rodríguez-Ezpeleta, 2019), 
and Hi-C (Niu et al.,  2019), in each case the amount of starting 
material for the protocol was made to vary concurrently, so that 
either factor could be responsible for the observed differences. 
In fact, Fu et al.  (2018) also made this observation, but subse-
quently found that amplification was not the causal factor. Thus, 
given theoretical expectations and other empirical results in this 
direction, these studies can more parsimoniously be interpreted 
as further evidence that library complexity plays a pivotal role in a 
wide range of sequencing approaches.

Although from an experimental perspective it makes sense to 
think jointly of the amount of material available and the number of 
amplification cycles to perform, confounding their effects hinders 
the formulation of clear and effective recommendations to improve 
experiments compromised by PCR duplicates. In particular, numer-
ous authors have suggested that limiting the number of cycles was 
critical to minimize duplicates (Marx,  2017; Orlando et al.,  2021; 
Stuart et al., 2018). Using fewer cycles should indeed lead to fewer 
PCR duplicates because it forces experimenters to use more starting 
material to achieve necessary yields. But the reverse is not true: if 
enough starting material is used, excess amplification should not ap-
preciably impact the resulting duplicate rate. Thus, we find that with 
regard to PCR duplicates, in both RAD-seq and other experimental 
applications, experimenters should not be excessively concerned 

with the amplification protocol and should instead focus primarily on 
increasing the amount of (active) starting material for the amplifica-
tion, even if this is the hardest thing to do as it may call for substan-
tial alterations to the protocol (e.g. Kapp et al., 2021). Nevertheless, 
general optimization of the amplification is still advisable because a 
higher efficiency is directly associated to a lower amplification noise 
(see ‘Amplification overdispersion’ below).

4.2  |  Measuring library complexity

Although library complexity and sequencing depth have exactly op-
posite roles in determining the PCR duplicate rate, this symmetry is 
only mathematical as in practice these two factors come with very 
different constraints. Sequencing depth is an experimental choice 
and is set by the experimenter to a level called for by the intended 
application (e.g. upwards of 30× for single-individual germline geno-
typing (Sims et al., 2014), 1× for low-coverage population genotyping 
(Lou et al., 2021), or 10–30 M reads for RNA-seq in mammals (Stark 
et al., 2019)) and can be adjusted a posteriori by sequencing again if 
required. Library complexity, in contrast, is established permanently 
during library preparation so that the only way around insufficient 
library complexity is to prepare new libraries (Rao et al., 2014). In 
this context, it is critical for experimenters to achieve an appropriate 
complexity at the time of library preparation. A complexity at least 
one order of magnitude higher than the required sequencing depth 
is ideal for most approaches, although an interesting exception is 
linked-read approaches (Meier et al., 2021; Zheng et al., 2016) where 
a high sequencing saturation is necessary to sample multiple frag-
ments associated with each tag, so that library complexity should 
instead be matched to the intended sequencing depth (Weisenfeld 
et al., 2017).

The experimental number which is most relevant to library com-
plexity is the number of initial molecules that effectively undergo 
amplification. Once a library has been amplified, each unique mo-
lecular species is present in many copies and is therefore unlikely 
to be lost, so that the complexity then remains essentially constant 
at later steps of the library preparation protocol. In other words, li-
brary complexity is fundamentally determined by the amount and 
quality of DNA that is input into the PCR. Consequently, reducing 
PCR duplicate levels primarily amounts to amplifying more template 
DNA. However, it is important to stress that only a fraction of a pool 
of DNA is usually amplifiable, so that mass is a poor proxy for the 
amount of useful DNA (Gansauge & Meyer, 2013; Kapp et al., 2021; 
Meyer et al., 2008) and the complexity of libraries prepared using 
the same input mass but from samples differing in quality or using 
distinct protocols may greatly differ. A more direct estimate of li-
brary complexity can be obtained by qPCR quantification of the 
library before it is amplified, as this directly measures the concentra-
tion of active molecules. This assay also informs on the percentage 
yield of the protocol that was used (Gansauge & Meyer, 2013; Kapp 
et al., 2021), which ultimately is what determines how complex a li-
brary derived from a given finite sample can be.
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    |  1311ROCHETTE et al.

4.3  |  Measuring library complexity as a 
molecular density

As noted above, the minimum acceptable library complexity—
measured as an absolute number of distinct molecules—may vary 
by several orders of magnitude depending on the intended appli-
cation. This definition of library complexity is thus only meaning-
ful to compare closely related experiments, rather than in a general 
sense, making it difficult to establish guidelines. Here, we argue that 
measuring library complexity in terms of the number of molecules 
per locus will often be more informative than the above ‘absolute’ 
library complexity. In the context of sequencing approaches aiming 
for a homogenous coverage (e.g. whole-genome, exome, bisulfide, 
or RAD-seq), scaling absolute library complexity by the size of the 
genomic regions considered leads to a measure that can be directly 
compared to coverage, and which we refer to as the molecular den-
sity of a library. As this measure considers the sequencing target, 
it becomes possible to provide quantitative recommendations. For 
instance, for single-individual genotyping at 30× coverage, library 
molecular density should ideally be greater than 300×, assuming a 
one-order-of-magnitude margin. This target value applies regardless 
of whether the sequencing target is a whole genome or an exome, or 
if the organism considered has a genome size substantially different 
from that of mammals, as is the case for many species of medical, ag-
ricultural, or ecological interest (e.g. Drosophila melanogaster, Danio 
rerio, and Arabidopsis thaliana).

In addition, the molecular density of a library is more relevant than 
absolute complexity both when considering amplification-related 
statistical error patterns in downstream computational analyses (see 
below) and when evaluating experimental yield. The latter is because 
it is directly related to units that are used for experimental inputs, 
such as number of cells (Brind'Amour et al., 2015; Butler, 2015; Lu 
et al., 2017), genome equivalents (Lander & Waterman, 1988; Zheng 
et al., 2016) (i.e. mass expressed in units of the C-value), or template 
DNA units (Taberlet et al., 1996) (equal to two genome equivalents). 
The relationship with yield is most obvious when the input is mea-
sured in number of cells: if one starts an experiment with 1000 dip-
loid cells, comprising 2000 genomes copies, the maximum number 
of unique molecules that may be sequenced for any genomic region 
is also 2000. Molecular density measures how many molecules per 
locus (on average across the genome) are present in the final library, 
and therefore represents the overall yield. Taking this logic to the 
limit highlights that molecular density is also closely related to the 
‘genome coverage’ yield statistic used in single-cell whole-genome 
sequencing experiments (Daley & Smith, 2014; Zhang et al., 2015): 
especially, for haploid cells sequenced to saturation, the two become 
identical.

For the same reason, comparable library densities may be 
achieved from a given amount of input sample for whole-genome, 
exome, or RAD-seq, even though the absolute library complexities 
will vary by orders of magnitude (with no effect on the success of 
the experiment, as proportionately less molecules are needed to 
describe an exome than a whole genome). And remarkably, this 

rationale also applies to heterogenous-coverage approaches. For in-
stance, when performing ChIP-seq on a histone mark for which few 
peaks exist, for a given number of input cells the resulting yield and 
absolute library complexity can be expected to be lower than for 
a more frequent mark, but this does not necessarily imply that the 
local molecular density (which determines the statistical properties 
of the data, see below) will be lower at the rare-mark peaks, because 
the molecules in the library are spread out over fewer loci.

Thus, when examining the yield of a library preparation protocol, 
we recommend expressing input sample amounts in number of cells 
or in genome equivalents (i.e. multiples of the C-value mass), and to 
measure library complexity as a molecular density rather than as an 
absolute number of unique molecular species.

4.4  |  Modelling amplification-related 
overdispersion

Amplification-related artefacts cause increased technical variance 
(Casbon et al., 2011), which has been demonstrated for instance in 
RNA-seq (Castel et al.,  2015; Fu et al.,  2018; Parekh et al.,  2016), 
single-cell RNA-seq (Grün et al., 2014; Islam et al., 2014; Ziegenhain 
et al.,  2017), iCLIP (Smith et al.,  2017), or Hi-C (Niu et al.,  2019). 
These artefacts have also been reported to cause genotyping er-
rors (Andrews & Luikart,  2014; Bresadola et al.,  2020; Díaz-Arce 
& Rodríguez-Ezpeleta, 2019; Taberlet et al., 1996; Tin et al., 2015). 
The conceptual framework presented here provides insights on the 
mechanisms that give rise to these error patterns.

Essentially, underlying our model is the view that technical vari-
ance in sequencing data is the result of three successive sampling 
steps: (i) the acquisition of actually amplifiable molecules from the 
biological sample, (ii) the noisy amplification of these molecules and 
(iii) the selection of amplified molecules for sequencing to gener-
ate reads (Figures  1a and 5a). In many methods of sequence data 
analysis, variance is modelled primarily after read depth, thus only 
the third step above is accounted for. This may lead to inaccurate 
variance estimations, particularly if the magnitude of amplification-
related artefacts varies among libraries in the considered data set, 
or worse, this may cause methods that do not estimate residual 
variance (e.g. genotyping, see below) to produce unreliable results 
by failing to acknowledge the overdispersion of the data. How mis-
specified a model is for a particular data set depends on the relative 
scales of the variances introduced at each of the three steps, and 
especially whether the third step—sequencing—is actually the pre-
dominant source of variance in the data set.

Both the first and the third steps are Poisson processes, with 
means respectively equal to the molecular density of the library 
and to the sequencing coverage. The second step, amplification, is 
a complex process, but generally its variance (i.e. the unequal am-
plification of templates) can be partitioned in two components: 
systematic bias and stochasticity (Best et al.,  2015; Kebschull & 
Zador, 2015). Systematic bias is caused by differences in amplifica-
tion efficiency among templates (e.g. due to differences in molecule 
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length) and simply increases geometrically with the number of cy-
cles. In contrast, stochasticity, which can represent most of the vari-
ance (Kebschull & Zador,  2015), is due to the partial efficiency of 
amplification at each cycle (some molecules are amplified and some 
are not) which is magnified by the exponential nature of PCR. This 
stochasticity is strongest during the first few cycles when clone 
sizes are still small, then subsides as clones grow and clone-wise ef-
ficiency becomes predictable (Kebschull & Zador, 2015). Figure S6 
shows how these components combine to yield the overall amplifi-
cation variance distribution. Importantly for experimental purposes, 
mechanisms underlying both variance components depend on am-
plification efficiency, so that amplification noisiness is minimal when 
per-cycle efficiency is high.

The PCR duplicate phenomenon intersects this three-step vari-
ance model in several ways. First, as discussed above, an absence 
of PCR duplicates is an indication that the molecular density of the 
library is much greater than the sequencing coverage. This directly 
implies that the variance of the first step's Poisson sampling (of am-
plifiable DNA molecules) is negligible in comparison with that of the 
third step's Poisson sampling (of reads). In addition, the presence of 
a large number of molecules for each locus causes stochastic amplifi-
cation effects to average out, so that the relative variance of the sec-
ond step is also reduced. Thus, if the PCR duplicate rate is negligible, 
the first and second steps can be neglected. On the contrary, a high 
PCR duplicate rate implies that sequencing coverage is comparable 
to or greater than the molecular density of the library. In this case, 
the variances associated with molecule sampling and noisy amplifi-
cation can be comparable to or exceed the variance associated with 
sequencing itself, leading to increased technical variance and model 
mis-specification.

In addition, while PCR duplicates can indicate serious underly-
ing amplification artefacts, at the same time they offer the opportu-
nity to monitor and reduce these artefacts. Tracking PCR duplicates 
allows one to unwind the three-step process a posteriori. In the 
extreme case, sequencing a library to saturation while removing 
duplicates should lead to an apparent sequencing coverage equal 
to the library's molecular density and a complete reduction of am-
plification noise, essentially simplifying the entire sampling process 
to only its first step—the sampling of amplifiable molecules. This 
saturation effect has been observed in single-cell RNAseq (Islam 
et al., 2014).

In data sets with intermediate duplication levels, the effects of 
removing PCR duplicates are less straightforward. However, if we as-
sume no systematic differences in amplification efficiency between 
templates, and considering that removing PCR duplicates is equiv-
alent to keeping track of which amplification clones have received 
at least one read, then it becomes possible to merge all three steps 
into a single Poisson process with mean equal to the nonredundant 
coverage. This re-emergence of the Poisson distribution after PCR 
duplicate removal suggests that the common practice of using bioin-
formatic methods designed around the sequencing process alone to 
process de-duplicated data sets is reasonable.

4.5  |  Effects of PCR duplicates on genotyping

We will now focus on genotyping, but we note that the mecha-
nistic framework described here should also be useful to better 
understand technical noise in other sequencing technologies. For in-
stance, in RNA-seq, it represents a possible explanation for the non-
linear relationships between technical noise, input starting material, 
and gene abundancy (Brennecke et al., 2013)—technical variance at a 
particular gene should be determined by the local molecular density, 
which is proportional to both the absolute complexity of the library 
and to the gene's expression level. In single-cell RNA-seq, it could 
inform how the occurrence of a major technical noise feature, gene 
dropout (Kiselev et al., 2019), is influenced by the complexities of the 
sub-libraries for each cell, the noisiness of the amplification, and the 
relative sequencing effort.

Amplification artefacts have long been known to be a source of 
error for genotyping (Pompanon et al., 2005; Taberlet et al., 1996), 
and it is standard practice to remove PCR duplicates before genotyp-
ing. As discussed above, this approach should suppress model mis-
specification and yield reliable genotypes, even in cases where initial 
PCR duplicates rates are high—provided that duplication clones can 
be identified accurately and that the resulting coverage is sufficient.

However, several recent studies have interrogated the degree 
to which retaining PCR duplicates impacted the accuracy of geno-
type calls (Andrews & Luikart, 2014; Bresadola et al.,  2020; Díaz-
Arce & Rodríguez-Ezpeleta, 2019; Euclide et al., 2019; Flanagan & 
Jones,  2018; Tin et al.,  2015) as certain RAD-seq approaches do 
not permit the identification and removal of duplicates (reviewed 
in Andrews et al., 2016). Surprisingly, while some studies have con-
firmed the intuitive expectation that PCR duplicates negatively 
impact genotyping, others have recently reported convincing evi-
dence that genotyping could be reliable even in data sets contain-
ing substantial duplicate rates (Bresadola et al., 2020; Díaz-Arce & 
Rodríguez-Ezpeleta, 2019; Euclide et al., 2019; Tin et al., 2015).

Our three-step model allows us to make specific predictions on 
the effects of amplification-related artefacts on genotyping and to 
reconcile these apparently contradictory results. The model sug-
gests that amplification-related artefacts impact genotype calls by 
causing overdispersion of the allelic ratios observed at heterozy-
gous sites. Genotyping models are based on the binomial distribu-
tion, with modifications to account for sequencing errors (DePristo 
et al., 2011; Li, 2011; Maruki & Lynch, 2017; Rochette et al., 2019). 
This, however, assumes that the allelic ratio is balanced in the final 
library being sequenced, which can be incorrect in amplified libraries 
(Figure  5a). Genotyping models thus underestimate the likelihood 
of imbalanced allelic ratios when the underlying genotype is a het-
erozygote. This leads to bias against heterozygotes, which manifests 
itself either as a loss of power to call heterozygotes, or in the worst 
case as calling a heterozygote site as homozygote.

Remarkably, how incorrect genotyping becomes if PCR dupli-
cates are not removed does not just depend on the duplicate rate 
(itself determined by the depth-complexity ratio), but also on the 
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absolute values of sequencing coverage and library density. This is 
because calling discrete genotypes involves a strong threshold ef-
fect. Indeed, a heterozygote site will be called correctly as long as 
the heterozygote likelihood is significantly larger than the homozy-
gote one. This of course depends on the model, but also on the data 
itself: if coverage and density are large enough that several reads are 
consistently observed for both alleles, homozygote likelihoods will 
be consistently small, so that correct calls can be made regardless of 
model mis-specification.

In practice, the key statistic is the nonredundant coverage—the 
apparent coverage after duplicates have been removed, which de-
pends on both sequencing coverage and library density. If the nonre-
dundant coverage is high enough for reliable genotype calls to be 
made, for instance >20×, it can be expected that calls made with-
out removing duplicates should also be reasonable. This seemingly 
was the case in the data of Euclide et al. (2019), which may explain 
why they found, in apparent contradiction with other studies, that 
removing PCR duplicates had little influence on genotyping. The ar-
gument also applies to the results of Ebbert et al. (2016), whose data 
featured a PCR duplicate rate of just 2%.

In contrast, if the nonredundant coverage is too low for reli-
able genotype calling, attempting to genotype samples without 
removing PCR duplicates will lead to important biases. The strong 
overdispersion of the allelic ratios observed at heterozygous sites 
implies that genotyping models underestimate the chance that all 
the sampled reads come from the same allele and may thus confi-
dently (but wrongly) call homozygous genotypes at sites that are 
actually heterozygous. This is essentially a theory of the occurrence 
of allelic dropout (Broquet & Petit,  2004; Taberlet et al.,  1996) in 
high-throughput sequence data and explains the main error pat-
terns reported in the literature, namely miscalled heterozygotes 
and deflated heterozygosity (Bresadola et al.,  2020; Díaz-Arce & 
Rodríguez-Ezpeleta, 2019; Flanagan & Jones, 2018; Tin et al., 2015).

This allelic dropout phenomenon is most obvious and most pro-
nounced in low complexity libraries, that have a density smaller than 
10×. For instance, if a heterozygote locus is represented by just three 
molecules, chances are high that all three will represent the same al-
lele. If 20 reads are then sequenced and presented to a genotyping 
model, this model will confidently infer a homozygote, because it 
sees a single allele in a relatively large sample size. Assuming the 
three molecules have each been sequenced at least once, remov-
ing PCR duplicates would leave three reads, and the model would 
correctly conclude that such a small sample size comprises too little 
information to make a reliable genotype call.

We conclude that genotypes reported without information 
about the PCR duplicate rate may be unreliable, and therefore that it 
is crucial to monitor PCR duplicate rates in genotyping experiments. 
We confirm that removing PCR duplicates is a simple and efficient 
strategy to mitigate the detrimental effects of amplification-related 
artefacts on genotyping, and that it comes at a very small cost in 
power since the information that is discarded is mostly redundant. 
Although data sets with relatively high PCR duplicate rates can 
sometimes produce acceptable genotypes even without removing 

duplicates (Euclide et al., 2019), this happens, perhaps frustratingly, 
precisely when the nonredundant coverage is high and avoiding this 
filter presents little appeal. Nevertheless, removing PCR duplicates 
is preferable even in these cases, as full-coverage genotypes should 
still be expected to suffer from lesser artefacts such as biased geno-
typing confidence scores.

4.6  |  Implications for RAD-seq studies

Our results and those of others (Schweyen et al.,  2014; Tin 
et al.,  2015) demonstrate that PCR duplicates are present at sub-
stantial levels in both single-digest and double-digest RAD-seq 
experiments (Table 1). Given that genotyping quality is primarily de-
termined by non-redundant coverage (see above), and consequently 
that genotype calling is unreliable in experiments where PCR du-
plicates are not monitored, controlling for PCR duplicates in RAD-
seq experiments is critical. We thus advocate the systematic use of 
protocols that allow their identification, that is either single-digest 
protocols (Ali et al., 2016; Baird et al., 2008) combined with paired-
end sequencing, or double-digest protocols combined with UMIs 
(Hoffberg et al., 2016; Schweyen et al., 2014; Tin et al., 2015). This 
is essential for demographic analyses, as they tend to be more sensi-
tive to genotyping errors than population structure analyses, and are 
sensitive in particular to biased estimates of heterozygosity and/or 
of the number of singleton alleles.

In addition, these results highlight that PCR duplicate rates vary 
extensively across experiments. This variation must be partly due 
to differences in library complexity, but we stress that sequencing 
depth also plays an important role (Figure 3). In comparing RAD-seq 
libraries, the measure of choice for library complexity should be li-
brary density, which determines both the maximum achievable non-
redundant coverage and the cost-efficiency of sequencing (i.e. the 
number of reads required to achieve a given nonredundant cover-
age). Importantly, most studies do not report enough information to 
estimate the complexities of their libraries. We therefore encourage 
researchers to report all the technical values relevant to understand-
ing the occurrence of PCR duplicates in RAD-seq, namely: the num-
ber of samples that were pooled in each library, the mass of DNA 
that was amplified, the number of RAD loci kept in the analysis, the 
per-library number of (possibly paired) reads aligning to these loci, 
the per-library average PCR duplicate rate, and the per-library aver-
age number of non-redundant reads per locus.

Nevertheless, the widespread occurrence of PCR duplicates 
suggests that RAD-seq experiments would typically benefit from 
libraries with higher densities. As discussed above, this involves 
amplifying greater quantities of template DNA whenever pos-
sible. How much DNA should ideally be amplified depends on 
the mass of the haploid genome of the study organism (i.e. its 
C-value), on the quality of the input DNA and percentage yield 
of the protocol, as well as—crucially for pooled libraries such as 
those typically seen in RAD-seq—on the number of individuals in 
the library. Importantly, pooling does not change the per-sample 
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library complexity requirements for genotyping. Pooled libraries 
therefore require handling considerable amounts of DNA (at least 
before amplification) to achieve similar per-sample complexities. 
For instance, amplifying 1 microgram of genomic DNA should not 
be out of the ordinary for a 100-sample library, as this represents 
10 nanograms per sample. This logic is not directly applicable 
to bestRAD (Ali et al., 2016) because amplification is performed 
on purified (restriction-site digested, ligated and bead-captured) 
DNA rather than on genomic DNA; however, all numbers above 
can instead be applied to the genomic DNA input to the bead-
capture step.

Importantly, insufficient library densities can explain allelic 
dropout, which is another error pattern that has been exten-
sively discussed in the context of RAD-seq, often in combina-
tion with concern about restriction site polymorphism (Andrews 
et al., 2016; Davey et al., 2011; Gautier et al., 2013). However, as 
underlined by the heterozygosity deficit caused by amplification-
related artefacts, allelic dropout can also result from the purely 
stochastic non-sampling of one of the two alleles of a heterozy-
gote, which is particularly likely to happen in libraries that have a 
low molecular density. This is in fact the mechanism that the orig-
inal definition of allelic dropout refers to (Broquet & Petit, 2004; 
Taberlet et al., 1996).

Moreover, population genetics simulations suggest that re-
striction site polymorphism should have little consequences unless 
genetic diversity is very high (Gautier et al.,  2013; Rivera-Colón 
et al.,  2021). In contrast, insufficient library density can create 
dramatic allelic dropout, and can even result in locus dropout for 
densities so low that it becomes likely that neither allele is sampled 
(Figure 5). Thus, we suggest that in the absence of PCR duplicate 
tracking, evidence for allelic dropout in a data set should be consid-
ered indicative of a low library density (and of a high duplicate rate) 
rather than of restriction site polymorphism. Finally, we note that 
stochastic allelic dropout is a non-issue in data sets where duplicates 
have been removed, as using nonredundant reads prompts the geno-
typing models to account for the phenomenon.

5  |  CONCLUDING REMARKS

We propose a realistic and predictive model for the distortions that 
amplification introduces in sequencing libraries. This establishes 
a conceptual framework within which the numerous observations 
made on PCR duplicates can be united, the causes of the artefact 
can be quantified, and their consequences on downstream analyses 
understood. In particular, we find that:

•	 PCR duplicate rates are determined mainly by the ratio between 
sequencing depth and library complexity. Nevertheless, as most 
experiments target a particular sequencing depth, amplifying 
a large enough DNA pool is critical to maintain a low depth-
complexity ratio and limit PCR duplicates; thus, the amount of 

active DNA input into the amplification reaction during library 
preparation is key.

•	 In most cases, it is advantageous to measure library complex-
ity not as an absolute number of molecules, but as a molecular 
coverage—molecular density—as this statistic is more transferable 
between experiments, more relatable to experimental yield, and 
more directly interpretable into expected error patterns in statis-
tical analyses.

•	 Because PCR duplicate rates depend on both library complex-
ity and sequencing depth, the reporting and interpretation of 
PCR duplicate rates should always be accompanied by depth 
considerations.

•	 PCR amplification is stochastically uneven, and this has an effect 
on the statistical properties of libraries, including a secondary role 
in determining duplicate rates and a lowering of the apparent li-
brary complexity. However, the number of cycles can be expected 
to only have a marginal effect on duplicate rates, which is in con-
trast with a widespread conception, but in agreement with the 
experimental results that exist in the literature. It is important to 
maximize per-cycle amplification efficiency, as this reduces sto-
chasticity and bias.

•	 Our framework can be leveraged to better understand the error 
patterns that amplification noisiness creates in downstream sta-
tistical analyses. We demonstrate this for the case of genotyping, 
which makes us able to propose recommendations to improve the 
effectiveness of RAD-seq experiments.

•	 For RAD-seq and other molecular applications, researchers 
should focus on maximizing the quantity of input DNA that is used 
for library preparation, particularly the amounts used as template 
for PCR. They should be aware of how larger genome sizes, a high 
number of individuals per library, and/or the presence of low-
quality samples reduce the effective library complexity and mod-
ify molecular protocols accordingly.
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