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Abstract

Library preparation protocols for most sequencing technologies involve PCR ampli-
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fication of the template DNA, which open the possibility that a given template DNA

molecule is sequenced multiple times. Reads arising from this phenomenon, known

*Floragenex; Inc, Portland, Oregon, USA as PCR duplicates, inflate the cost of sequencing and can jeopardize the reliability of
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of its causes and of its impact on downstream statistical analyses remains essentially
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empirical. Here, we develop a general quantitative model of amplification distortions
in sequencing data sets, which we leverage to investigate the factors controlling the
occurrence of PCR duplicates. We show that the PCR duplicate rate is determined pri-
marily by the ratio between library complexity and sequencing depth, and that ampli-
Handling Editor: Paul A. Hohenlohe fication noise (including in its dependence on the number of PCR cycles) only plays a
secondary role for this artefact. We confirm our predictions using new and published
RAD-seq libraries and provide a method to estimate library complexity and amplifica-
tion noise in any data set containing PCR duplicates. We discuss how amplification-
related artefacts impact downstream analyses, and in particular genotyping accuracy.
The proposed framework unites the numerous observations made on PCR duplicates
and will be useful to experimenters of all sequencing technologies where DNA avail-

ability is a concern.
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1 | INTRODUCTION

preparation protocols often include a PCR step to improve yield or

create molecular species of interest, but this also introduces arte-

The occurrence of polymerase chain reaction (PCR) duplicates is
an artefact present in most current sequencing technologies, from
whole genome resequencing, to single-cell RNA (Marx, 2017),
and to reduced-representation methods such as Restriction site-
Associated DNA (RAD) sequencing (Table 1). Sequencing library

facts (Aird et al., 2011; Kebschull & Zador, 2015). In particular, since
these amplified libraries comprise multiple copies of each original
template molecule, it becomes possible to independently sequence
several reads that correspond to the same template; such reads are
known as PCR duplicates (Casbon et al., 2011).
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TABLE 1 PCR duplicate rates across sequencing technologies.

PCR duplicate

Method rate (%) Reference

Whole genome 1-5 Ebbert et al. (2016)
sequencing

Exome sequencing 3-15 Shigemizu et al. (2015)

Exome sequencing 2-13 Bonfiglio et al. (2016)

Exome sequencing 15-30 Borgstrém et al. (2017)

Linked-read DNA 11-59 Meier et al. (2021)
sequencing

Deep targeted DNA 3-63 Smith et al. (2014)
sequencing

Ancient DNA 2-80 Gamba et al. (2016)

Ancient DNA 2-42 Kapp et al. (2021)

Single-cell DNA 15-25 Gonzalez-Pena
sequencing et al. (2021)

Single-cell bisulfite 2-6 Farlik et al. (2015)
sequencing

RNA-seq 1-14 Fu et al. (2018)

RNA-seq 1-68 Parekh et al. (2016)

Single-cell RNA-seq 85-95 Ziegenhain et al. (2017)

Hi-C 14-64 Niu et al. (2019)

Micro-Capture-C 80-96 Hua et al. (2021)

PCR duplicates create a distorted view of the abundancies of
molecules in the original sample, which may bias or degrade down-
stream statistical analyses (Casbon et al., 2011; DePristo et al., 2011;
Fu et al., 2018; Niu et al., 2019). These concerns have motivated the
development of amplification-free methods (Kozarewa et al., 2009;
Niu et al., 2019), but such protocols come with substantial techni-
cal constraints, particularly with regard to input biological materials.
Most methods have instead accepted the artefact as an inherent
feature of sequencing data and focus on tracking and removing PCR
duplicates bioinformatically (Marx, 2017; Sims et al., 2014), which
can be done either based on read (or read pair) mapping coordinates
(DePristo et al., 2011; Li et al., 2009), by tagging template mole-
cules before amplification using unique molecular identifiers (UMIs)
(Casbon et al., 2011; Kivioja et al., 2011), or by combining both ap-
proaches (Islam et al., 2014; Smith et al., 2017).

Although a posteriori removal of PCR duplicates has proven ef-
fective to mitigate bias, it is not without limitations. This approach
can increase the cost of sequencing noticeably—up to severalfold
when duplicates represent most of the initial reads (Table 1). In the
worst case, after deduplication, coverage may become insufficient
for the intended purpose causing experiments to fail. The bioin-
formatic identification of duplicates is also imperfect. Coordinate-
based tracking is unsuitable for experiments in which coverage in
some genomic regions is high enough that they become saturated,
such as bulk RNA-seq (Fu et al., 2018; Parekh et al., 2016), ChlIP-seq
(Tian et al., 2019) or Pool-seq (Kofler et al., 2016). UMI-based track-
ing is confounded by sequencing errors, which must be rigorously
accounted for to avoid incomplete deduplication (Islam et al., 2014;

Marx, 2017; Smith et al., 2017). Lastly, and more fundamentally, re-
moving PCR duplicates is a pragmatic approach that targets the vis-
ible consequences of amplification, but distortions can be expected
to remain present even after deduplication.

Therefore, developing a better understanding of amplification-
related artefacts and gaining control of the rate of PCR duplicates
a priori by optimizing library preparation procedures remains highly
desirable. Despite the prevalence of these artefacts, we still lack a
realistic quantitative model for library amplification and the gener-
ation of PCR duplicates. As a result, our comprehension of the phe-
nomenon remains highly empirical (Marx, 2017), and there remains
some uncertainty and confusion regarding the precise experimen-
tal factors that control their occurrence, how these factors interact
with one another, and the consequences of PCR duplicates on down-
stream statistical analyses.

Among the factors believed to have an effect on the PCR dupli-
cate rate, the most important one is library complexity, which has
been alternatively defined as the complement of the duplicate rate
(Chen et al., 2012), as the information content of a library (Zhang
et al., 2015), or as the number of distinct molecular species rep-
resented in a sequencing library (Daley & Smith, 2013; following
Lander & Waterman, 1988). Insufficient library complexity is fre-
quently given as the probable cause of high duplicate rates (Chen
et al., 2012; Marx, 2017; Parekh et al., 2016; Smith et al., 2014; Tin
et al., 2015), and several studies have demonstrated that the amount
of starting biological material used, which presumably correlates with
library complexity, had a marked effect on PCR duplicates (Casbon
et al., 2011; Fu et al., 2018; Kapp et al., 2021; Smith et al., 2014).
A few authors have pointed out that sequencing depth should also
be considered (Daley & Smith, 2013; Fu et al., 2018; Marx, 2017;
Smith et al., 2014). Lastly, it is often claimed that PCR duplicate rates
depend on the number of PCR amplification cycles that the library
was subjected to (Andrews et al., 2016; Ebbert et al., 2016; Flanagan
& Jones, 2018; Marx, 2017; Orlando et al., 2021; Smith et al., 2017;
Stuart et al., 2018; Vargas-Landin et al., 2018). Some studies have
indeed found this to be the case (Lu et al., 2017; Niu et al., 2019;
Parekh et al., 2016), but others have concluded that no such relation-
ship existed (Fu et al., 2018; Tin et al., 2015). Thus, several factors
relevant to the phenomenon have been identified, but their precise
roles remain unclear. A more quantitative understanding of the PCR
duplicate artefact would help clarify which methodological alter-
ations are likely to suppress it.

Another question that has been particularly debated in the
context of RAD-seq —a restriction enzyme-based reduced-
representation sequencing approach that is widely used for popula-
tion genomics studies of nonmodel organisms (Andrews et al., 2016;
Catchen et al., 2017; Daley & Smith, 2013)—is the extent to which
PCR duplicates affect the reliability of genotyping. While Tin
et al. (2015) and Flanagan and Jones (2018) found it to be an import-
ant source of error, Euclide et al. (2019) did not. In any case, substan-
tial (>60%) PCR duplicate rates have been reported in some data sets
(Andrews et al., 2016; Davey et al., 2013; Diaz-Arce & Rodriguez-
Ezpeleta, 2019; Hoffberg et al., 2016; Schweyen et al., 2014), which
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is especially concerning as some popular protocols do not allow the
monitoring of this artefact (e.g., double-digest RAD-seq without
UMls). In addition, as sample availability is often a limiting factor in
nonmodel organisms (Andrews et al., 2016; Peterson et al., 2012;
Tin et al., 2015), better understanding the extent to which observed
PCR duplicate patterns result from the use of reduced amounts of
DNA would be of great experimental interest. Finally, missing data
and allelic dropout in RAD-seq has been attributed to restriction site
polymorphism (a RAD-seq-specific artefact in which alleles carry-
ing mutations in the restriction enzyme recognition sequence are
absent from the data set; Andrews et al., 2016), but this may also
reflect an incomplete understanding of the consequences of PCR
duplicates.

Here, we develop a general quantitative framework able to
realistically model amplification-related artefacts in sequencing
experiments based on library complexity, sequencing depth, and
amplification noise. We provide a method, Decoratio, to estimate
these factors for any sequencing data set based on PCR duplicate
patterns. We apply this method to new and previously published
RAD-seq data sets to demonstrate that amplification artefacts are
often an important feature of this sequencing approach and that the
model recapitulates the main properties of these experiments. We
show that our model reconciles the numerous earlier observations
made on PCR duplicate rates, and we discuss how amplification-
related artefacts increase variance in downstream analyses, with
particular application to genotyping accuracy. Overall, this work
furthers our understanding of the properties and consequences of
amplification artefacts and will facilitate the optimization and de-
ployment of novel sequencing technologies.

2 | MATERIALS AND METHODS
2.1 | PCRduplicate model

We identify three stages of library preparation and sequencing
as being critical to the modelling of PCR duplicates: (1) the pre-
amplification pool of template molecules; (2) the pool of amplified
molecules; and (3) the pool of molecules that are sampled for se-
quencing into digital reads (Figure 1). Accordingly, our model for the
occurrence of PCR duplicates comprises two disjoint steps that re-
spectively connect the first and second, and the second and third of
these stages.

In the first step, we model the amplification of template mol-
ecules. Namely, given a pool of template molecules, we determine
a probability distribution for their individual amplification factors.
As the precise method used to determine the distribution does not
matter, this approach is highly flexible; we propose two amplification
models. First, a distribution of amplification factors can be obtained
using forward simulations. For instance, we implemented the PCR
model developed empirically by Best et al. (2015): starting with one
molecule, we apply the amplification model, then record the final
number of molecules in the resulting clone (i.e. the amplification

MOLECULAR ECOLOGY 1301
RESOURCES __ IMAALBOAS

factor), and repeat the amplification process independently, one
molecule at a time, to obtain an estimate of the distribution of clone
sizes. Alternatively, the distribution of amplification factors can be
set to some relevant parametric distribution, such as the log-normal
distribution.

In the second step, we model the sequencing of reads from the
amplified pool of molecules. Crucially, we treat the pool of amplified
molecules as infinite, and use the distribution of amplification fac-
tors (i.e. of amplification clone sizes) as a statistical description of
this pool. This assumption is always reasonable because in practice
the amplified pool has to be much larger than the number of reads
derived from it—for instance, in the case of lllumina sequencing,
only a small fraction of the PCR product is eventually loaded onto a
flow cell and bridge-amplified. In addition, for simplicity, we assume
that there is no sequencing bias, that is all clones and all molecules
within a clone have an equal probability to be sequenced (we note,
however, that under the proposed framework it is also reasonable to
let the amplification factor distribution aggregate the variance intro-
duced during both amplification and sequencing). Under these as-
sumptions, the occurrence of PCR duplicates can be modelled using
a Poisson mixture model, as follows.

We refer to the set of duplicate molecules that were amplified
from a particular template molecule as an ‘amplification clone,” and
to the set of reads that derive from a particular template molecule
(i.e. duplicate reads) as a ‘sequencing clone.’ Importantly, for a given
read data set, the PCR duplicate rate r is a function of the distribu-
tion of sequencing clone sizes. For each clone, we count one read as
unique and the rest as duplicates, which gives the formula

r:l—i
=1

PES = k)

==

where P(S = k) is the distribution of sequencing clone sizes. The distri-

bution of sequenced clone sizes can be modelled as

pS=k= Y p(A=apS=k|AC=a)

a=1

where P(A = a) is the distribution of amplification clone sizes (i.e. the

distribution of amplification factors), and

PS=kl|A=a)~ Binomial(Nr, Nan)
m

where N, is the number of read pairs that were sequenced, N, is the
number of template molecules in the pre-amplification pool of DNA,
and a is the mean amplification factor, so that N, x a is the number of
molecules in the amplified pool of DNA. Assuming N, is large and all
individual species frequencies are low, this can alternatively be written

as

Q

N,
P(S =k|A=a)”Poisson<N—r X =>.

m

Q
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FIGURE 1 Overview of the PCR duplicate rate model. (a) Schematic representation of the processes involved in the occurrence of PCR
duplicates. During library preparation, template DNA molecules are amplified, so that for each initial molecule a clone (coloured circles)

of amplified molecules (dots) is generated. Since PCR is a stochastic and biased process, amplification efficiency is heterogenous across
templates and amplification clones vary in size. Subsequently, a small fraction of amplified molecules are randomly sampled for sequencing
and become reads (solid dots). Reads that correspond to the same template, that is, that belong to the same clone, are known as PCR
duplicates. Duplicate reads are more likely to be sampled from large clones (i.e. templates whose amplification was most successful) than
from small clones. (b, ¢) In practice, what can be observed in sequencing data is the size of clones at the read level (i.e. the number of
singletons, of pairs of two duplicate reads, etc.). This serves as the main empirical input for the model. The histograms show the distribution
of read clone sizes respectively for the schematic in the first panel (b) and for the brown anole data set (c), either as the number of clones
of each size (dark grey) or as the number of reads that belong to clones of a particular size (dark and light grey combined). These views are
equivalent by definition, as for instance the number of reads in clones of size two (duplicate pairs) must be twice the number of such clones.
Furthermore, as the light grey bars represent redundant reads, the PCR duplicate rate can be calculated from such histograms by taking the
ratio of the light grey area over the total area; in this case respectively 56% (18 reads in 8 distinct clones) and 61%. (d) Amplification noise is
modelled as the distribution of relative amplification factors among templates. Histograms show the amplification factor distributions for (i)
and bias parameters set to ‘low noise’ and ‘high noise’ values, respectively m=0.7,s=0.01, 12cycles, and m=0.45, s=0.1, 18 cycles; and (iv)
for the log-skew normal distribution fitted to the brown anole data set. These distributions are used to model sequencing data as a mixture
of Poisson distributions (see Section 2).

The PCR duplicate rate then depends on two separate parame-
ters: (i) the ratio between the number of sequenced read pairs and
the number of pre-amplification template molecules (i.e. the number
of unique species in the library, its absolute complexity), which we
hereafter refer to as the ‘depth-complexity ratio,” and (ii) the distri-
bution of amplification factors relative to the mean amplification

factor, that is the noisiness of the amplification (Figure 1d). It can

be noted that in the model the absolute value of the average ampli-
fication factor has no effect; this results from our assumption that
the pool of amplified molecules is infinite, which, as argued above,
is always realistic, and from the independent parametrization of the
amplification variance.

Importantly, it is possible to re-write the depth-complexity ratio

in terms of coverage. Specifically, if we consider a particular read
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(or read pair) length I, and a set of target genomic regions (e.g. the
whole genome) of total length L; from which the reads derive, then

nucleotide-wise coverage can be written as

Ny xl,

C=—

Similarly, we can define molecular coverage—hereafter ‘molecu-

lar density’ to avoid confusion around the term coverage—as

_ Ny xl,

M=

This allows us to re-write the depth-complexity ratio as

/o

Molecular density defined above is fundamentally a locus-wise
measure of library complexity and corresponds to the number of
unamplified template molecules that cover an average position of
the sequencing target. We note that when coverage is tallied at the
nucleotide level, the complexity of a library depends on the read
length that is used to sequence it and is maximized when the full
length of the molecules is sequenced. This is expected, because
the read length influences the number of useful nucleotides within

each molecule, and therefore the information content of the library.

2.2 | Implementation

In the model described above, the PCR duplicate rate depends on
two parameters: the depth-complexity ratio, and the distribution of
amplification factors. We provide a method, Decoratio (for ‘depth-
complexity ratio’), to jointly estimate these two parameters based
on the distribution of PCR clone sizes observed in a sequencing data
set. Given that the experimenter already knows the sequencing
depth, the depth-complexity ratio also corresponds to an estimate
of library complexity.

The program requires two inputs, a distribution of PCR clone
sizes and a class of PCR models, and outputs the optimized depth-
complexity ratio and PCR model parameters, as well as a plot of the
input distribution and fitted model. An example of the expected
input, command line call, and outputs of the program is shown in
Figure S1. The distribution of PCR clone sizes should be formatted
as a TSV table giving the number of clones of each size, and can be
obtained using programs such as SAMtools-Markdup (Li et al., 2009),
Picard-MarkDuplicates (McKenna et al., 2010), UMiltools (Smith
et al., 2017), or Stacks-gstacks (Rochette et al., 2019), as described
in Decoratio's online manual. If an experiment comprises multiple
libraries, we stress that clone size distributions should be derived
on a per-library basis, rather than on an aggregated data set, as the
properties of the data are likely to vary across libraries.

MOLECULAR ECOLOGY 1303
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For the PCR model, the program currently implements log-
normal and log-skew-normal distributions of amplification factors,
as well as the empirical ‘inherited efficiency’ model class of Best
et al. (2015) which we described above. The model may be fully
specified or only partly so, in which case the program will optimize
the model parameters. For most users, using the default log-skew-
normal model should work well and the program will fit the standard
deviation and skew parameters (Figure 1). For the inherited effi-
ciency model, the distribution of amplification factors is obtained by
forward simulation. Each clone is assigned a duplication probability
drawn from a normal distribution, and then amplified by a succession
of binomial samplings. In practice, the parameter space is binned to
increase computational efficiency, and by default 1 million simula-
tions are performed. We added a slightly modified variant of this
model that uses a Beta distribution instead of the normal distribu-
tion (Figure S2) so as to avoid parametrization issues related to the
need to truncate the normal distribution between 0 and 1. The pro-
gram jointly optimizes the depth-complexity ratio and amplification
model by minimizing the sum of squared residuals to the observed
distribution of the fraction of reads in each clone size class, using
simplicial homology global optimization (SHGO) as implemented in
SciPy.

2.3 | RAD-seq data generation and analysis

We tested the PCR model in Decoratio on five empirical RAD-
seq data sets. Three of these data sets are from previously pub-
lished studies: (1) stickleback (Gasterosteus aculeatus) (Nelson
& Cresko, 2018), (2) yellow warbler (Setophaga petechia) (Bay
et al., 2018), and (3) Emperor penguin (Aptenodytes forsteri)
(Cristofari et al., 2016). These are hereafter referred to as the
stickleback, warbler, and penguin data sets, respectively. For
these data sets, we split and separately analysed according to
their respective libraries, for example the warbler data set was
constructed as three separate RAD-seq libraries, each com-
prised of multiple individuals, and was thus analysed as Warbler-1,
Warbler-2, and Warbler-3 (see Supplementary Methods).

In addition, we used two newly generated RAD-seq data sets
to guarantee complete control of the library preparation process,
allowing for a more detailed validation of the PCR model. First, the
robin data set, comprised of 150 American robins (Turdus migratorius)
collected from central Illinois, USA (A. B. Luro, A. G. Rivera-Colon, J.
M. Catchen, M. E. Hauber, unpublished). Briefly, DNA was extracted
from all individuals, prepared into a single-digest RAD-seq (sdRAD)
library digested with Sbfl (Baird et al., 2008; Etter et al., 2011) and
sequenced on an lllumina NovaSeq-6000 SP 2x 150bp lane. Second,
the anole data set, which was generated from 39 Anolis sagrei em-
bryos. All 39 individuals were sequenced in two separate single-
digest Sbfl RAD-seq libraries (Baird et al., 2008; Etter et al., 2011): a
high template (Anole-600) library in which a pool of 600ng of DNA
was used as template for the PCR, and a low template (Anole-30)
library which instead used 30ng of DNA as the PCR template. After
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FIGURE 2 PCR duplicate rates in reanalyzed sdRAD data sets. (a) Distribution of PCR duplicates for all samples in each data set. Coloured
diamonds show the mean per-library duplicate rate. The PCR duplicate rate is consistent across all samples within a molecular library. For
data sets comprised of multiple libraries, the duplicate rate can vary among the different libraries. (b) Non-redundant coverage distribution
for all samples in each data set. Coloured diamonds show the mean non-redundant coverage. In contrast to PCR duplicate rate, coverage is

highly variable within these libraries.

amplification, each library was sequenced 2x100bp on an Illumina
HighSeq-4000 (see Supplementary Methods for detail).

Sequencing data for each library were analysed separately using
Stacks v2.5 (Rochette et al., 2019). Raw reads were processed and
demultiplexed using the process_RADTAGS program. RAD loci were as-
sembled de novo using the denovo map.pl script. The mismatch
parameters M and n were kept equal and set separately for each data
set to account for differences in read length. We identified and re-
moved PCR duplicates (--rm-pcr-duplicates) and selected only
loci present in over half the samples in the library (using the flag -x
‘gstacks: --dbg-min-loc-spls”’). The final loci and variant
sites were exported in VCF format using the popuLATIONS program,
keeping variants genotyped in at least 50% of samples (-r 0.5) (see

Supplementary Methods for more detail).

2.4 | qPCR quantification of library complexity

To obtain an empirical measure of the complexity of the robin library,
the amount of template DNA was quantified using qPCR. During
RAD-seq library preparation, this template is composed of the frac-
tion of the DNA molecules in the pool that have been successfully
ligated with both P1 and P2 adapter sequences. This template DNA,
which we obtained in the library preparation process after P2 liga-
tion, but prior to PCR, was amplified alongside a control made of
the final RAD-seq library, which is cleaned and quantified prior to
sequencing. The known concentration of the final library was used
to then calculate an absolute concentration of template in the pre-
amplified library. To create a standard curve, five 1:10 sequential
dilutions of the 0.1nM control library were prepared and amplified
in triplicate, alongside a negative control. Similarly, the library tem-
plate was diluted in two sequential 1:10 dilutions and amplified in
triplicate. qPCR reactions were prepared using the KAPA Library
Quantification Kit (KAPA Biosystems). While the KAPA kit by default
uses primers compatible with lllumina's P5 and P7 oligo sequences,

the complimentary sequence for these primers is not present in
single-digest RAD-seq libraries until it is reconstructed during PCR
amplification (Baird et al., 2008; Etter et al., 2011). Instead, we per-
formed gPCR amplification using the primers designed for sdRAD
library enrichment PCR (see Supplementary Methods for primer se-
quences). For the reaction, the forward and reverse primers were
combined into a single 10pM primer mix. Each 20 uL reaction con-
sisted of 10.4 uL of KAPA SYBR FAST mix with ROX, 2 uL of standard
Primer Mix, 3.6 uL of PCR-grade water, and 4L of DNA. The gPCR
reactions were run on a QuantStudioTM 3 Real-Time PCR System
(Applied Biosystems) using the default AAC; protocol. This protocol
consists of an initial denaturation step of 1 min at 95°C, 35cycles of
a 95°C 30s denaturation followed by a 60°C annealing/extension/
data acquisition for 45s, and a 65-95°C melting curve analysis.

The C; of a given sample was obtained by calculating the aver-
age across its replicates. The concentration of the library template
in nM was obtained by regressing its average CT value against the
standard curve obtained for all the known control.

3 | RESULTS

3.1 | PCRduplicate rates in RAD-seq data sets

To assess the general occurrence of PCR duplicates in RAD-seq
studies, we reanalyzed a series of new and published data sets.
Specifically, we generated two sdRAD (Baird et al., 2008) paired-
end data sets, respectively, comprising 39 brown anole (A.sagrei)
individuals and 150 American robin (T.migratorius) individuals. We
also considered published paired-end data sets that use sdRAD in
the Emperor Penguin (Cristofari et al., 2016) (3 libraries; Penguin-3,
Penguin-4 and Penguin-81), sdRAD in the Threespine Stickleback
(Nelson & Cresko, 2018) (1 library), and bestRAD (Ali et al., 2016)
in the Yellow Warbler (Bay et al., 2018) (3 libraries; Warbler-1 to
Warbler-3). We did not include any libraries based on double-digest
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RAD (ddRAD; Peterson et al., 2012) as this protocol does not allow
the tracking of PCR duplicates (but see Section 4). PCR duplicates
were identified based on read mapping coordinates (Rochette
et al., 2019). Given that in sdRAD the first read of a pair always maps
to the restriction site (a fixed position), this approach may incorrectly
flag independent reads as duplicates if they by chance map to the
same coordinates. However, given the nonredundant depths (3-19x)
and insert size distribution widths (100-300bp) in the data sets con-
sidered, we expect that these coordinate collisions should be rare
and amount to only 1%-5% of the estimated duplicate rates.

Overall, we found substantial PCR duplicate levels in all an-
alysed data sets. Mean per-library duplicate rates ranged from
21% for the Robin library to 95% for Penguin-3 (Figure 2; Table 2).
Unsurprisingly, because a 95% duplicate rate corresponds to a se-
quencing efficiency of just 5%, nonredundant coverage (i.e. cover-
age after removing PCR duplicates) was very low for the samples of
the Penguin-3 library, ranging from 1.6 to 4.3x. However, even the
better libraries were subject to an appreciable sequencing efficiency
loss. The bestRAD protocol, yielding three libraries with low dupli-
cate rates, tended to perform better than the sdRAD protocol, which
yielded libraries with both high and low duplicate rates, although our
sample of data sets may be too small for generalization.

Perhaps most importantly for the purposes of this work, it ap-
peared very clearly that the relevant level at which to look at PCR
duplicates was the library, rather than the individual sample or the
study. Indeed, PCR duplicate rates varied greatly across libraries
within each data set (for data sets comprising several libraries) but
were highly consistent across samples within each molecular library
(Figure 2; Table 2). Remarkably, quality differences between individ-
ual DNA samples are likely present in at least some of the tested
libraries but did not appear to impact PCR duplicate rates.

These observations prompted us to investigate the causes un-
derlying the occurrence of PCR duplicates, the potential detrimental

effects of their presence, and the steps that should be taken to re-

3.2 | Arealistic model for PCR duplicates

We present a quantitative model that captures the steps of library
preparation and sequencing that are critical with regard to PCR du-
plicates. Briefly, this model comprises two steps. First, we model
how the relative molecule abundancies within a DNA library are dis-
torted by PCR amplification. Specifically, for a chosen PCR model,
we derive a distribution of the relative amplification factors across
molecules within a library (Figure 1c). Second, we derive expected
patterns of PCR duplicates (i.e. the distribution of PCR clone sizes
in the sequencing data; Figure 1b) by modelling the stochastic se-
quencing process—accounting for sequencing depth, the complex-
ity of the library, and amplification distortions—using a compound
Poisson model. In practice, the model uses two parameters: a PCR
model, and the ratio between the number of sequenced reads and

ROCHETTE €T AL.
X
GO N
o [N
< X S X +
5 S 4w @ x 0
z 9 o < X » )
3% © ¥ O N ™ -
X
2 <
a2 X ] X i
2 N
Y H 0 M x 0
2 o N X 0 ~N
o~ © ~N O < —
X
s @
3 X & X I
)
s 2 H R B ox o
z o n o € QO N
~ o « O n o —
-
= &
£ b N
oo X X +
s o +H o X
¢ un N o X & 0 o
o ™ ~ ~ i i i [ce]
< X
£ N “".
S A -
B X X
g S 19 & 4
s q < © < o 9 {
o N © © = < <
(3] < X
£ 8 o
% 3 o
o N
£ o H ooy x X :gl
wn () wn o wn o ~ A A
P - ®» o - ~N o o
©
e
o
O
s 3
©
< =9 3
)
o
£ 28 & S
=~ X X
£ 23 o485 3 9
%‘ h - - < O - - 0
&
9]
L
o]
c duce these rates.
© X
2 =~
(] < N
S e X S X +
= n
£ 2 n o H & n X ©
n o < n < o < 0 o
1] X o - N O 0 -~
=
X
<z ¥
Q X
<}
)
g P X X o
S 2 5 7 x 1
> o o H N éh X
- S © o o < o X <
© < < ™ o - — ™ ™
2
= o0
= c
& S &
1% %) 3 ™
L o X S % H
 ©° o H @ <+ X v!
o
o S o© o o 3 0 (o
= < < ™ 0 o N —
3
= [ = t
'g @ g > g % g
e
S F ziz £8ef
@) 3 5 o O z 20 5
& S =5 g8 T E2E Py
. 2 _ = &£ E s 0L cw©
TS o o T T a 0 f
[0} O 0 ()
w > 88 © 3 L5 > >E € 3
-} f§ =2 a8 5% 5 &8 <8
o I\ 2= g x a* C S v « O
2 T c O @ 2 2 L
|<_( O < wn a 0 O 3 >

the number of unique molecules in the library, which we refer to

:sdy) suonipuo)) pue swia 1 34y 235 “[£20¢/1 1/ 1] U0 A1eaqrT auiuQ Ao[1 “uBredwey BUEqin) 1y SIOUHI] JO ANSIOANN £G 008E1'8660-5SL1/1111°01/10p/Wod* K[1m AIpiqouIuoy/:sdiy woxj Papeofumod °9 ‘€207 ‘86605SL 1

101/w05 A1

P!

ASUBIIT SUOWIOY) dANEAI)) d[qeardde ay) Aq PauIoA0T o1k SA[OILIE V() $9sh JO SO 10J AIRIqIT duUI[UQ AJ[IA UO



ROCHETTE ET AL.

1306
MOLECULAR ECOLOGY
WILE Y- ——

as the depth-complexity ratio. These parameters are fitted to indi-
vidual data sets by matching the predicted distribution of PCR clone
sizes to the observed one.

Using this method, we were able to reproduce the clone size dis-
tributions that were observed experimentally in the data sets intro-
duced above (Figure 3a,b, Figure S3). Accounting for amplification
led to considerably better fits than using a noiseless, simple Poisson
model, especially in data sets that have more pronounced amounts
of PCR duplicates (e.g. Figure 3a). Such data sets provide more infor-
mation on the underlying true distribution of amplification factors,
whereas in data sets with low duplicate rates, most reads are sin-
gletons and are uninformative in this regard. In addition, even if the
noiseless model may appear to be a reasonable fit for data sets with
fewer duplicates (e.g. Figure 3b), ignoring amplification noise still led
to skewed library complexity estimates (Table S1). For instance, for
the 22%-duplicate Robin data set, the true library complexity was
likely more than 60% larger than the estimate based on a noiseless
model.

Remarkably, our model also captures one striking property of

empirical RAD-seq libraries: that all samples within a library had

almost identical PCR duplicate rates, regardless of any differences
in coverage or DNA quality that may exist among them (Figure 2).
The model suggests this happens because the primary determinant
of the rate of PCR duplicates is the depth-complexity ratio. This ratio
is expected to be identical for all samples within a library, because
for each sample both the number of reads and the number of (ac-
tive) template molecules are measures of the relative abundancy of
that sample in the library. For instance, a sample representing one
percent of a library's template molecules can be expected to later
receive one percent of the total sequencing coverage for this library,
so that the depth-complexity ratio of that sample will be equal to the
global depth-complexity ratio of the library.

Nevertheless, we note that there remained some within-library
variation of the PCR duplicate rate (Figure 2), which attests to the
presence of sample-specific effects. Some, but not all of this resid-
ual variation could be explained by differences in library representa-
tion (41% and 71% of the variance for the Anolis and Robin libraries
respectively; Figure S4). Conceivably, differences in DNA quality
among samples may lead to different responses during PCR ampli-

fication or sequencing. For instance, the fragment size distribution
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FIGURE 3 Expected relationship between the depth-complexity ratio and the PCR duplicate rate. (a, b) Histogram of the read clone
sizes observed in the Anole-600ng and Robin data sets, respectively, overlaid with the fitted depth-complexity ratio and amplification

noise model (solid red and blue lines respectively) or a noiseless amplification model (Poisson distribution; grey lines; Figure S7). (c, d) Same
as (a) and (b) respectively, but for re-analyses of each data set after randomly discarding half the reads (twofold downsampling). The red
(respectively blue) line shows the distribution predicted when halving the depth-complexity ratio in the model fitted on the full data set (i.e.
the coloured lines in panels A and C respectively). In both panels, the thick black line shows the model fitted to the downsampled data set.
(e) Expected relationship between the PCR duplicate rate, the sequencing depth, the library complexity, and the PCR itself. The solid, dotted,
dashed and red amplification noise models are the same as in (Figure 1d), and the blue model is the best fit to the American robin data set.
Large coloured dots mark the observed PCR duplicate rates and estimated depth-complexity ratios for the brown anole (red) and American
robin (red) RAD-seq data sets, respectively, and small dots the values observed when considering only half the reads in those data sets, as
shown in panels (A-D). PCR duplicate rates are determined primarily by the ratio between the sequencing depth and the complexity of the
library, and modulated by the noisiness of the model used for the amplification. The curves shown in this panel may also be considered from
the perspective of sequencing saturation (Figure S8).
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may vary across samples, and this could result in differences in mean

amplification factor and/or sequencing efficiency.

3.3 | PCRduplicate rates vary predictably with
sequencing depth

While differences in coverage among the samples in a library due
to unequal representation do not prevent them from exhibiting the
same PCR duplicate rate, the dependence of PCR duplicate rates on
the depth-complexity ratio nevertheless implies a more general de-
pendence between coverage and PCR duplicates. Specifically, for a
given library, the ratio's denominator (i.e. complexity) is fixed once
the library has been prepared, whereas the numerator depends on
the sequencing effort that is subsequently applied. Consequently,
for a given library, increasing the sequencing effort should increase
the PCR duplicate rate by a predictable amount.

We tested this prediction using the Anolis data set by down-
sampling the original reads to reduce the sequencing coverage by
half, with the expectation that the PCR duplicate rate would de-
crease accordingly. The original data set had a raw coverage of 49x
and an observed PCR duplicate rate of 61% (Table 2). The fitted
model predicted that the depth-complexity ratio in this experiment
was 1.93, and that halving the coverage should decrease the PCR
duplicate rate to 42%. After processing the down-sampled data set,
a PCR duplicate rate of 42% was observed, exactly matching the pre-
diction. At a finer level, the change in the shape of the distribution
of PCR clone sizes was also predicted precisely (Figure 3a-d). We
conclude that our model captures essential properties of the PCR
duplicate phenomenon and has predictive value.

3.4 | PCRduplicate rates depend primarily on the
complexity of a library

Next, we summarize the predictions of the model regarding the
behaviour of PCR duplicate rates under a range of scenarios. As
previously described, the model relies on two parameters: the
depth-complexity ratio and a PCR model. The results obtained by
varying these parameters are presented in (Figure 3e).

Importantly, while the PCR duplicate rate depends on both depth
and complexity, it is only sensitive to the value of the ratio between
the two, regardless of their respective absolute values. In the model,
this property derives from assumptions on the sequencing sampling
process, but it also holds for real data (see above results regarding
the uniformity of duplicate rates within libraries). We thus only in-
vestigate variations of the depth-complexity ratio and did not assess
the effects of coverage and complexity individually. Similarly, with
regard to the PCR model parameter, the duplicate rate only depends
on the distribution of relative amplification factors (Figure 1d), re-
gardless of the mean absolute amplification factor or of the precise
mechanism generating the spread of amplification factors. What
matters especially is the overall ‘noisiness’ of the PCR—whether all
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molecules are amplified equally or, on the contrary, whether some
molecular species become much more abundant than others. For
this reason, the results presented here, derived using the class of
PCR models developed empirically by Best et al. (2015), should be
robust to the choice PCR model class, and specifically should gener-
ally hold for any PCR model producing an approximately log-normal
distribution of amplification factors. We note that the amplification
noisiness range assessed here is relevant for typical library ampli-
fication reactions; some specialized amplification techniques, such
as multiple displacement amplification, are much noisier (Gawad
et al., 2016) and may thus fall outside of the considered range.

Our central observation is that depth-complexity ratios much
less than one always vyield low duplicate rates, and that depth-
complexity ratios greater than one always yield high duplicate rates.
The duplicate rate is significantly influenced by the PCR model only
when the depth-complexity ratio is between one tenth and one
(Figure 3e). Nevertheless, the duplicate rate is always in the 5%-15%
range if the depth-complexity ratio is 0.1, or in the 35%-60% range
if that ratio is 1, regardless of the noisiness of the PCR.

Thus, we find that the PCR duplicate rate depends primarily on
the depth-complexity ratio, and only marginally on the PCR model.
From an experimental perspective, it should be noted that the se-
quencing coverage is set according to experimental needs (e.g. to
30x), whereas complexity is an intrinsic and difficult to control prop-
erty of the prepared library. Consequently, a high depth-complexity
ratio typically occurs because the library has a molecular density
that is too low with regards to experimental needs. Thus, the above
result can most simply be understood as: high PCR duplicate rates
occur when pre-amplification library complexity is insufficient,
largely independently of the PCR protocol being used.

3.5 | gPCR measurement of the molecular
density of RAD-seq libraries suggests in silico
estimates are realistic

It is notable that the library complexities measured above (Table 2)
do not match the values expected from the physical mass of
DNA used to prepare the libraries. For instance, the PCR of the
150-sample Robin library used a total of 400ng of DNA (Table 3).
Given that the weight of one haploid American robin genome (i.e. its
C-value) is 1.39 x 10 ng (Andrews et al., 2009), the DNA mass used
is equivalent to 288,000 genome copies, so that the library could be
expected to have a density of 288,000x (or 1918x per sample, on
average). In contrast, our modelling of PCR duplicate patterns in the
resulting sequencing data suggests a total density of 8500x (57x per
sample). Thus, the diversity of molecules represented in sequence
reads was 34 times less than the mass-based expectation.

To explain this discrepancy, we hypothesized that only a small
fraction of the molecules present could actually be amplified and
subsequently sequenced, while most molecules would be degraded
or otherwise inert for the purpose of amplification and sequencing
(Meyer et al., 2008). To test this experimentally, we used gPCR to
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TABLE 3 Library and bioinformatic statistics needed to
contextualize an experiment's PCR duplicate rate. For sequencing
approaches other than RAD-seq, the number of RAD loci should
be substituted with a relevant measure of the size of the genomic
target, and most libraries will only include one sample. The
American Robin C-value was sourced from Andrews et al. (2009)
and the Anole C-value (1.97) was calculated assuming a genome
size of 1.93 Gbp (Geneva et al., 2022) and a DNA weight of
1.023pg/Gbp (Dolezel et al., 2003).

Library Anole-600 Robin
DNA amplified (ng) 600 400
DNA amplified (C-value 305,000 288,000
equivalents)
Total aligned read pairs 72,942,759 189,422,046
PCR duplicate rate 61% 21%
Number of filtered RAD loci 43,906 89,161
Samples in library 39 150
Mean non-redundant coverage  19.1x 12.8x
300 —
B
£E%
7 2 200
° 3
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[oRs]
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FIGURE 4 Library complexity is much smaller than suggested
by DNA mass. Library complexity for the American robin RAD-seq
library, measured as the total molecular density for 150 pooled
samples, obtained using proxies available at different stages of the
experiment. Calculating library complexity by dividing the mass of
DNA used for amplification by the C-value of the organism vastly
over-estimates the value actually observed in downstream in silico
analyses. Quantifying this same DNA using qPCR highlights that
most molecules are indeed not amplifiable and therefore do not
contribute to library complexity, owing to sample preservation and
partial yield at earlier experimental steps.

quantify amplifiable DNA in the pre-PCR molecular library. We mea-
sured a template single-stranded DNA concentration of 0.192 nmol/L
(Figure S5), which implies that the 40uL used during library prepa-
ration corresponded to 7.68x 10 ®nmol, that is 4.62billion, single-
stranded template molecules. Owing to the design of adapters in the
RAD-seq protocol used here, these molecules each corresponded
to independent double-stranded molecules, that is contributed fully
to library complexity. Additionally, the density of the library was
bioinformatically measured over the 89,162 loci found in more than
half the samples, and these loci collectively represented 57.5% of
the reads in the library (with the rest of read pairs corresponding to
repetitive RAD loci, to RAD loci that are only found in one or a few
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FIGURE 5 Consequences of low library complexity on
genotyping. (a) Due to molecule sampling and noisy amplification,
the alleles at a heterozygote locus may already be unequally
represented in the library by the time it is sequenced, causing
sequence data to be over-dispersed compared to the binomial
distribution assumed by genotyping models. This artefact is
expected to be particularly serious at low library complexities and
can be mitigated by removing PCR duplicates (see Section 4). (b-d)
Observed allelic counts at heterozygous sites of anole individual
E35 that have a total depth of 20 reads, respectively in the Anole-
600ng data set with (b) or without (c) PCR duplicate removal, and
in the low-complexity Anole-30ng data set without PCR duplicate
removal (d). The solid line shows the binomial distribution. Peaks
at x=0and x=20 in (d) are due to allelic dropout, where one
allele is entirely absent from the library. Heterozygous sites were
annotated based on the Anole-600ng data set with PCR duplicate
removal. No figure is presented for the Anole-30ng data set

with PCR duplicate removal as the low non-redundant coverage
leaves no heterozygous sites with a depth of 20. (e, f) Histograms
showing apparent locus sharing among the 39 individuals of the
Anole data set, respectively for the Anole-600ng and Anole-30ng
libraries. The latter, Anole-30ng library, exhibits ‘locus dropout’
because most individuals have such a low molecular density that at
any locus several individuals typically fail to sample even a single
amplifiable molecule.

individuals, or to genomic DNA not flanked by a restriction site). As
this proportion must also hold in the library at the molecule level, we
distributed 57.5% of 4.62x 10° molecules (i.e. 2.66x 10’ molecules)
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over 89,162 loci, so that we obtained a qPCR-based library density
estimate of 29,800x.

Thus, the experimental, gPCR-based library density estimate
was much lower (9.7 times less) than the estimate based on the C-
value (288,000x) (Figure 4; Table 3). This confirmed that most of the
DNA used for this amplification reaction was indeed inert, and that
estimates of library complexity based on DNA mass alone may be
inflated by more than an order of magnitude. Nevertheless, we note
that the gPCR-based estimate remained 3.5 times higher than the
in silico one; we cannot presently resolve this residual discrepancy.

3.6 | Increasing library complexity reduces PCR
duplicate rates experimentally

Finally, the comparison between our two A.sagrei RAD-seq libraries,
Anole-600ng and Anole-30ng, illustrates the experimental impor-
tance of library complexity. These two libraries were prepared from
the same 39 DNA samples using protocols that were identical except
for the volume used at the amplification step, respectively 6000 and
300puL, which corresponded to 600 and 30ng of template DNA.
The yield of the smaller reaction was not technically limiting so that
subsequent steps could be performed identically, and both libraries
were then sequenced at the same depth of 49x.

As predicted, the observed library density was much higher for
the Anole-600ng library than for the Anole-30ng one, respectively
at 984x and 133x. Accordingly, the PCR duplicate rates were re-
spectively 61% and 93% (for a sequencing depth of 49x), resulting
nonredundant coverages of 19.1x and 3.4x per sample, on average
(Table 2). This adds to previously published evidence (see Section 4)
to demonstrate the critical role of the total amount of DNA used for
PCR amplification, independently of all other experimental factors,
in determining library complexity and PCR duplicate rates.

In addition, further inspection of these two data sets high-
lighted that library density was an intrinsic and separate property
of these data sets, rather than merely a parameter fitted so that the
model replicates PCR duplicate patterns. Since a low per-sample
library density indicates that only a few molecules are stochasti-
cally sampled and amplified at each locus, we can expect that the
makeup of the library itself will have a pronounced stochastic com-
ponent, so that the resulting read data will be more variable than
expected based on the randomness of the sequencing process alone
(Figure 5a; and see Section 4).

This overdispersion is first apparent for coverage patterns at
heterozygous sites. Considering the sequencing process alone, the
number of reads observed for either allele should follow a binomial
distribution. The Anole-600ng data approximately conforms to this
expectation, especially when the effects of amplification stochas-
ticity are mitigated by removing PCR duplicates Figure 5b,c. In the
Anole-30ng data set, however, the number of observations for the
two alleles deviate much more from equal representation, and in
many cases one allele simply is not observed (Figure 5d). The latter is
explained by allelic dropout: given that the per-sample density of the
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library is very low, at only 3.4 molecules per locus or 1.7 molecules
per allele, on average, frequently no molecules will be sampled for a
particular allele.

Second, at such low densities, there is also a chance that neither
of the two alleles of a locus will be sampled, so that an entire locus
may be stochastically dropped. While in RAD-seq analyses, it is nor-
mal that loci are not perfectly shared across individuals due to poly-
morphisms in restriction sites, comparing the extent of locus sharing
in the Anole-600ng and Anole-30ng data sets (Figure 5e,f) makes it
clear that most of the variation in locus composition across individu-
als in the Anole-30ng data is caused by stochastic locus dropout due
to low library density rather than genetic polymorphism.

4 | DISCUSSION
4.1 | Determinants of PCR duplicate occurrence

PCR duplicates are a pervasive sequencing artefact and a wealth
of empirical observations on their occurrence have been reported.
However, this knowledge accumulation has often happened as a
by-product of the development and validation of new molecular
protocols, and the lack of a theoretical framework within which to
connect individual results has not allowed a complete understanding
of the artefact's causes and of its seriousness in specific applica-
tions (Marx, 2017). We fill this gap by introducing a mechanistic and
quantitative model for the occurrence of PCR duplicates. This allows
us to unify earlier results, to further clarify the effects of various
experimental factors, and to draw expectations about the statistical
properties of duplicate-containing data sets.

Our first observation is that the PCR duplicate rate fundamen-
tally depends on the ratio between sequencing depth and library
complexity (Figure 3). In particular, we stress the symmetry be-
tween depth and complexity, and that it is imperative to consider
both when comparing PCR duplicate rates across experiments.
The idea that PCR duplicates occur when a library is sequenced
in excess relative to its complexity has been discussed in earlier
works (Daley & Smith, 2013; Fu et al., 2018; Rao et al., 2014; Smith
etal.,, 2017), and in principle could be extrapolated following Lander
and Waterman (1988). However, these studies did not consider am-
plification artefacts or focused on a specific problem or application.
For instance, the method of Daley and Smith (2013) proposed to es-
timate library complexity based on the species-saturation approach
of Efron and Thisted (1976), which ultimately amounts to modelling
amplification noise in the same way as presented here. However, as
the authors' focus is solely on library complexity, this factor is then
eliminated through nonparametric approximations and its effects
are not discussed further.

The central role of library complexity and sequencing depth is
experimentally supported by the RAD-seqg-based results presented
here, as well as by observations from earlier studies. The amount
of material used as input for library preparation has been shown
to strongly impact duplicate rates in RNA-seq (Fu et al., 2018) and
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ancient DNA (Kapp et al., 2021). Very high duplicate rates are also
apparent in whole genome resequencing libraries prepared from
minute amounts of DNA (e.g. Bruinsma et al., 2018), and there is
evidence that this parameter is also important in ATAC-seq and
Hi-C (see below). As for the effect of sequencing depth, it is im-
plicit in experiments where sequencing is performed to saturation
(Daley & Smith, 2013; Farlik et al., 2015; Niu et al., 2019; Ziegenhain
et al., 2017) and should generally be immediately apparent in any
data set containing substantial levels of duplicates if the read data is
down-sampled (Figure 3).

Second, since our model explicitly accounts for amplification, we
were able to explore its behaviour across a range of amplification pa-
rameters. We find that PCR itself only plays a secondary role in the
rate of occurrence of PCR duplicates. Although a greater variance
in relative amplification factors across templates (i.e. a ‘noisier’ am-
plification) does elevate PCR duplicate rates, it only does so within
a narrow range determined primarily by the depth-complexity ratio
(Figure 3c).

This conclusion is in contrast with the frequent assertion
that PCR duplicates are due to an excessive number of PCR cy-
cles (Ebbert et al., 2016; Marx, 2017; Orlando et al., 2021; Smith
et al., 2017; Stuart et al., 2018; Tin et al., 2015; Vargas-Landin
et al., 2018). The absence of a major effect of PCR is neverthe-
less in agreement with published experimental results. In particu-
lar, Fu et al. (2018) specifically tested this interaction in RNA-seq
and found none. Similarly, Tin et al. (2015) observed no change
in RAD-seq duplicate rates when increasing the number of cy-
cles. And while several studies have reported a strong effect of
the number of cycles, in RNA-seq (Parekh et al., 2016), ATAC-seq
(Luetal.,2017), RAD-seq (Diaz-Arce & Rodriguez-Ezpeleta, 2019),
and Hi-C (Niu et al., 2019), in each case the amount of starting
material for the protocol was made to vary concurrently, so that
either factor could be responsible for the observed differences.
In fact, Fu et al. (2018) also made this observation, but subse-
quently found that amplification was not the causal factor. Thus,
given theoretical expectations and other empirical results in this
direction, these studies can more parsimoniously be interpreted
as further evidence that library complexity plays a pivotal role in a
wide range of sequencing approaches.

Although from an experimental perspective it makes sense to
think jointly of the amount of material available and the number of
amplification cycles to perform, confounding their effects hinders
the formulation of clear and effective recommendations to improve
experiments compromised by PCR duplicates. In particular, numer-
ous authors have suggested that limiting the number of cycles was
critical to minimize duplicates (Marx, 2017; Orlando et al., 2021;
Stuart et al., 2018). Using fewer cycles should indeed lead to fewer
PCR duplicates because it forces experimenters to use more starting
material to achieve necessary yields. But the reverse is not true: if
enough starting material is used, excess amplification should not ap-
preciably impact the resulting duplicate rate. Thus, we find that with
regard to PCR duplicates, in both RAD-seq and other experimental
applications, experimenters should not be excessively concerned

with the amplification protocol and should instead focus primarily on
increasing the amount of (active) starting material for the amplifica-
tion, even if this is the hardest thing to do as it may call for substan-
tial alterations to the protocol (e.g. Kapp et al., 2021). Nevertheless,
general optimization of the amplification is still advisable because a
higher efficiency is directly associated to a lower amplification noise

(see ‘Amplification overdispersion’ below).

4.2 | Measuring library complexity

Although library complexity and sequencing depth have exactly op-
posite roles in determining the PCR duplicate rate, this symmetry is
only mathematical as in practice these two factors come with very
different constraints. Sequencing depth is an experimental choice
and is set by the experimenter to a level called for by the intended
application (e.g. upwards of 30x for single-individual germline geno-
typing (Sims et al., 2014), 1x for low-coverage population genotyping
(Lou et al., 2021), or 10-30M reads for RNA-seq in mammals (Stark
et al., 2019)) and can be adjusted a posteriori by sequencing again if
required. Library complexity, in contrast, is established permanently
during library preparation so that the only way around insufficient
library complexity is to prepare new libraries (Rao et al., 2014). In
this context, it is critical for experimenters to achieve an appropriate
complexity at the time of library preparation. A complexity at least
one order of magnitude higher than the required sequencing depth
is ideal for most approaches, although an interesting exception is
linked-read approaches (Meier et al., 2021; Zheng et al., 2016) where
a high sequencing saturation is necessary to sample multiple frag-
ments associated with each tag, so that library complexity should
instead be matched to the intended sequencing depth (Weisenfeld
et al., 2017).

The experimental number which is most relevant to library com-
plexity is the number of initial molecules that effectively undergo
amplification. Once a library has been amplified, each unique mo-
lecular species is present in many copies and is therefore unlikely
to be lost, so that the complexity then remains essentially constant
at later steps of the library preparation protocol. In other words, li-
brary complexity is fundamentally determined by the amount and
quality of DNA that is input into the PCR. Consequently, reducing
PCR duplicate levels primarily amounts to amplifying more template
DNA. However, it is important to stress that only a fraction of a pool
of DNA is usually amplifiable, so that mass is a poor proxy for the
amount of useful DNA (Gansauge & Meyer, 2013; Kapp et al., 2021;
Meyer et al., 2008) and the complexity of libraries prepared using
the same input mass but from samples differing in quality or using
distinct protocols may greatly differ. A more direct estimate of li-
brary complexity can be obtained by qPCR quantification of the
library before it is amplified, as this directly measures the concentra-
tion of active molecules. This assay also informs on the percentage
yield of the protocol that was used (Gansauge & Meyer, 2013; Kapp
et al., 2021), which ultimately is what determines how complex a li-
brary derived from a given finite sample can be.

sdyy) SuonIpuoy) pue swId L oy 38 “[€20z/1 1/€ 1] U0 Areiqry uiuQ A2]1 A “UBredwiey ) BURGIN 1V SIOUIIT JO ANSIOAIUN £q 00SE ['8660-SSL1/111101/10p/Ww00 A1 AIeaqi[out|uoy/:sdny woiy papeoumod 9 ‘€707 ‘86605SL1

101/w05 A1

P!

ASUBIIT SUOWIOY) dANEAI)) d[qeardde ay) Aq PauIoA0T o1k SA[OILIE V() $9sh JO SO 10J AIRIqIT duUI[UQ AJ[IA UO



ROCHETTE €T AL.

4.3 | Measuring library complexity as a
molecular density

As noted above, the minimum acceptable library complexity—
measured as an absolute number of distinct molecules—may vary
by several orders of magnitude depending on the intended appli-
cation. This definition of library complexity is thus only meaning-
ful to compare closely related experiments, rather than in a general
sense, making it difficult to establish guidelines. Here, we argue that
measuring library complexity in terms of the number of molecules
per locus will often be more informative than the above ‘absolute’
library complexity. In the context of sequencing approaches aiming
for a homogenous coverage (e.g. whole-genome, exome, bisulfide,
or RAD-seq), scaling absolute library complexity by the size of the
genomic regions considered leads to a measure that can be directly
compared to coverage, and which we refer to as the molecular den-
sity of a library. As this measure considers the sequencing target,
it becomes possible to provide quantitative recommendations. For
instance, for single-individual genotyping at 30x coverage, library
molecular density should ideally be greater than 300x, assuming a
one-order-of-magnitude margin. This target value applies regardless
of whether the sequencing target is a whole genome or an exome, or
if the organism considered has a genome size substantially different
from that of mammals, as is the case for many species of medical, ag-
ricultural, or ecological interest (e.g. Drosophila melanogaster, Danio
rerio, and Arabidopsis thaliana).

In addition, the molecular density of alibrary is more relevant than
absolute complexity both when considering amplification-related
statistical error patterns in downstream computational analyses (see
below) and when evaluating experimental yield. The latter is because
it is directly related to units that are used for experimental inputs,
such as number of cells (Brind'Amour et al., 2015; Butler, 2015; Lu
etal., 2017), genome equivalents (Lander & Waterman, 1988; Zheng
et al., 2016) (i.e. mass expressed in units of the C-value), or template
DNA units (Taberlet et al., 1996) (equal to two genome equivalents).
The relationship with yield is most obvious when the input is mea-
sured in number of cells: if one starts an experiment with 1000 dip-
loid cells, comprising 2000 genomes copies, the maximum number
of unique molecules that may be sequenced for any genomic region
is also 2000. Molecular density measures how many molecules per
locus (on average across the genome) are present in the final library,
and therefore represents the overall yield. Taking this logic to the
limit highlights that molecular density is also closely related to the
‘genome coverage’ yield statistic used in single-cell whole-genome
sequencing experiments (Daley & Smith, 2014; Zhang et al., 2015):
especially, for haploid cells sequenced to saturation, the two become
identical.

For the same reason, comparable library densities may be
achieved from a given amount of input sample for whole-genome,
exome, or RAD-seq, even though the absolute library complexities
will vary by orders of magnitude (with no effect on the success of
the experiment, as proportionately less molecules are needed to
describe an exome than a whole genome). And remarkably, this

MOLECULAR ECOLOGY 1311
RESOURCES __ IMAALBOAS

rationale also applies to heterogenous-coverage approaches. For in-
stance, when performing ChlP-seq on a histone mark for which few
peaks exist, for a given number of input cells the resulting yield and
absolute library complexity can be expected to be lower than for
a more frequent mark, but this does not necessarily imply that the
local molecular density (which determines the statistical properties
of the data, see below) will be lower at the rare-mark peaks, because
the molecules in the library are spread out over fewer loci.

Thus, when examining the yield of a library preparation protocol,
we recommend expressing input sample amounts in number of cells
or in genome equivalents (i.e. multiples of the C-value mass), and to
measure library complexity as a molecular density rather than as an

absolute number of unique molecular species.

4.4 | Modelling amplification-related
overdispersion

Amplification-related artefacts cause increased technical variance
(Casbon et al., 2011), which has been demonstrated for instance in
RNA-seq (Castel et al., 2015; Fu et al., 2018; Parekh et al., 2016),
single-cell RNA-seq (Griin et al., 2014; Islam et al., 2014; Ziegenhain
et al., 2017), iCLIP (Smith et al., 2017), or Hi-C (Niu et al., 2019).
These artefacts have also been reported to cause genotyping er-
rors (Andrews & Luikart, 2014; Bresadola et al., 2020; Diaz-Arce
& Rodriguez-Ezpeleta, 2019; Taberlet et al., 1996; Tin et al., 2015).
The conceptual framework presented here provides insights on the
mechanisms that give rise to these error patterns.

Essentially, underlying our model is the view that technical vari-
ance in sequencing data is the result of three successive sampling
steps: (i) the acquisition of actually amplifiable molecules from the
biological sample, (ii) the noisy amplification of these molecules and
(iii) the selection of amplified molecules for sequencing to gener-
ate reads (Figures 1a and 5a). In many methods of sequence data
analysis, variance is modelled primarily after read depth, thus only
the third step above is accounted for. This may lead to inaccurate
variance estimations, particularly if the magnitude of amplification-
related artefacts varies among libraries in the considered data set,
or worse, this may cause methods that do not estimate residual
variance (e.g. genotyping, see below) to produce unreliable results
by failing to acknowledge the overdispersion of the data. How mis-
specified a model is for a particular data set depends on the relative
scales of the variances introduced at each of the three steps, and
especially whether the third step—sequencing—is actually the pre-
dominant source of variance in the data set.

Both the first and the third steps are Poisson processes, with
means respectively equal to the molecular density of the library
and to the sequencing coverage. The second step, amplification, is
a complex process, but generally its variance (i.e. the unequal am-
plification of templates) can be partitioned in two components:
systematic bias and stochasticity (Best et al., 2015; Kebschull &
Zador, 2015). Systematic bias is caused by differences in amplifica-
tion efficiency among templates (e.g. due to differences in molecule
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length) and simply increases geometrically with the number of cy-
cles. In contrast, stochasticity, which can represent most of the vari-
ance (Kebschull & Zador, 2015), is due to the partial efficiency of
amplification at each cycle (some molecules are amplified and some
are not) which is magnified by the exponential nature of PCR. This
stochasticity is strongest during the first few cycles when clone
sizes are still small, then subsides as clones grow and clone-wise ef-
ficiency becomes predictable (Kebschull & Zador, 2015). Figure S6
shows how these components combine to yield the overall amplifi-
cation variance distribution. Importantly for experimental purposes,
mechanisms underlying both variance components depend on am-
plification efficiency, so that amplification noisiness is minimal when
per-cycle efficiency is high.

The PCR duplicate phenomenon intersects this three-step vari-
ance model in several ways. First, as discussed above, an absence
of PCR duplicates is an indication that the molecular density of the
library is much greater than the sequencing coverage. This directly
implies that the variance of the first step's Poisson sampling (of am-
plifiable DNA molecules) is negligible in comparison with that of the
third step's Poisson sampling (of reads). In addition, the presence of
alarge number of molecules for each locus causes stochastic amplifi-
cation effects to average out, so that the relative variance of the sec-
ond step is also reduced. Thus, if the PCR duplicate rate is negligible,
the first and second steps can be neglected. On the contrary, a high
PCR duplicate rate implies that sequencing coverage is comparable
to or greater than the molecular density of the library. In this case,
the variances associated with molecule sampling and noisy amplifi-
cation can be comparable to or exceed the variance associated with
sequencing itself, leading to increased technical variance and model
mis-specification.

In addition, while PCR duplicates can indicate serious underly-
ing amplification artefacts, at the same time they offer the opportu-
nity to monitor and reduce these artefacts. Tracking PCR duplicates
allows one to unwind the three-step process a posteriori. In the
extreme case, sequencing a library to saturation while removing
duplicates should lead to an apparent sequencing coverage equal
to the library's molecular density and a complete reduction of am-
plification noise, essentially simplifying the entire sampling process
to only its first step—the sampling of amplifiable molecules. This
saturation effect has been observed in single-cell RNAseq (Islam
etal., 2014).

In data sets with intermediate duplication levels, the effects of
removing PCR duplicates are less straightforward. However, if we as-
sume no systematic differences in amplification efficiency between
templates, and considering that removing PCR duplicates is equiv-
alent to keeping track of which amplification clones have received
at least one read, then it becomes possible to merge all three steps
into a single Poisson process with mean equal to the nonredundant
coverage. This re-emergence of the Poisson distribution after PCR
duplicate removal suggests that the common practice of using bioin-
formatic methods designed around the sequencing process alone to

process de-duplicated data sets is reasonable.

4.5 | Effects of PCR duplicates on genotyping

We will now focus on genotyping, but we note that the mecha-
nistic framework described here should also be useful to better
understand technical noise in other sequencing technologies. For in-
stance, in RNA-seq, it represents a possible explanation for the non-
linear relationships between technical noise, input starting material,
and gene abundancy (Brennecke et al., 2013)—technical variance at a
particular gene should be determined by the local molecular density,
which is proportional to both the absolute complexity of the library
and to the gene's expression level. In single-cell RNA-seq, it could
inform how the occurrence of a major technical noise feature, gene
dropout (Kiselev et al., 2019), is influenced by the complexities of the
sub-libraries for each cell, the noisiness of the amplification, and the
relative sequencing effort.

Amplification artefacts have long been known to be a source of
error for genotyping (Pompanon et al., 2005; Taberlet et al., 1996),
and itis standard practice to remove PCR duplicates before genotyp-
ing. As discussed above, this approach should suppress model mis-
specification and yield reliable genotypes, even in cases where initial
PCR duplicates rates are high—provided that duplication clones can
be identified accurately and that the resulting coverage is sufficient.

However, several recent studies have interrogated the degree
to which retaining PCR duplicates impacted the accuracy of geno-
type calls (Andrews & Luikart, 2014; Bresadola et al., 2020; Diaz-
Arce & Rodriguez-Ezpeleta, 2019; Euclide et al., 2019; Flanagan &
Jones, 2018; Tin et al., 2015) as certain RAD-seq approaches do
not permit the identification and removal of duplicates (reviewed
in Andrews et al., 2016). Surprisingly, while some studies have con-
firmed the intuitive expectation that PCR duplicates negatively
impact genotyping, others have recently reported convincing evi-
dence that genotyping could be reliable even in data sets contain-
ing substantial duplicate rates (Bresadola et al., 2020; Diaz-Arce &
Rodriguez-Ezpeleta, 2019; Euclide et al., 2019; Tin et al., 2015).

Our three-step model allows us to make specific predictions on
the effects of amplification-related artefacts on genotyping and to
reconcile these apparently contradictory results. The model sug-
gests that amplification-related artefacts impact genotype calls by
causing overdispersion of the allelic ratios observed at heterozy-
gous sites. Genotyping models are based on the binomial distribu-
tion, with modifications to account for sequencing errors (DePristo
et al., 2011; Li, 2011; Maruki & Lynch, 2017; Rochette et al., 2019).
This, however, assumes that the allelic ratio is balanced in the final
library being sequenced, which can be incorrect in amplified libraries
(Figure 5a). Genotyping models thus underestimate the likelihood
of imbalanced allelic ratios when the underlying genotype is a het-
erozygote. This leads to bias against heterozygotes, which manifests
itself either as a loss of power to call heterozygotes, or in the worst
case as calling a heterozygote site as homozygote.

Remarkably, how incorrect genotyping becomes if PCR dupli-
cates are not removed does not just depend on the duplicate rate
(itself determined by the depth-complexity ratio), but also on the

sdyy) SuonIpuoy) pue swId L oy 38 “[€20z/1 1/€ 1] U0 Areiqry uiuQ A2]1 A “UBredwiey ) BURGIN 1V SIOUIIT JO ANSIOAIUN £q 00SE ['8660-SSL1/111101/10p/Ww00 A1 AIeaqi[out|uoy/:sdny woiy papeoumod 9 ‘€707 ‘86605SL1

101/w05 A1

P!

ASUBIIT SUOWIOY) dANEAI)) d[qeardde ay) Aq PauIoA0T o1k SA[OILIE V() $9sh JO SO 10J AIRIqIT duUI[UQ AJ[IA UO



ROCHETTE €T AL.

absolute values of sequencing coverage and library density. This is
because calling discrete genotypes involves a strong threshold ef-
fect. Indeed, a heterozygote site will be called correctly as long as
the heterozygote likelihood is significantly larger than the homozy-
gote one. This of course depends on the model, but also on the data
itself: if coverage and density are large enough that several reads are
consistently observed for both alleles, homozygote likelihoods will
be consistently small, so that correct calls can be made regardless of
model mis-specification.

In practice, the key statistic is the nonredundant coverage—the
apparent coverage after duplicates have been removed, which de-
pends on both sequencing coverage and library density. If the nonre-
dundant coverage is high enough for reliable genotype calls to be
made, for instance >20x, it can be expected that calls made with-
out removing duplicates should also be reasonable. This seemingly
was the case in the data of Euclide et al. (2019), which may explain
why they found, in apparent contradiction with other studies, that
removing PCR duplicates had little influence on genotyping. The ar-
gument also applies to the results of Ebbert et al. (2016), whose data
featured a PCR duplicate rate of just 2%.

In contrast, if the nonredundant coverage is too low for reli-
able genotype calling, attempting to genotype samples without
removing PCR duplicates will lead to important biases. The strong
overdispersion of the allelic ratios observed at heterozygous sites
implies that genotyping models underestimate the chance that all
the sampled reads come from the same allele and may thus confi-
dently (but wrongly) call homozygous genotypes at sites that are
actually heterozygous. This is essentially a theory of the occurrence
of allelic dropout (Broquet & Petit, 2004; Taberlet et al., 1996) in
high-throughput sequence data and explains the main error pat-
terns reported in the literature, namely miscalled heterozygotes
and deflated heterozygosity (Bresadola et al., 2020; Diaz-Arce &
Rodriguez-Ezpeleta, 2019; Flanagan & Jones, 2018; Tin et al., 2015).

This allelic dropout phenomenon is most obvious and most pro-
nounced in low complexity libraries, that have a density smaller than
10x. For instance, if a heterozygote locus is represented by just three
molecules, chances are high that all three will represent the same al-
lele. If 20 reads are then sequenced and presented to a genotyping
model, this model will confidently infer a homozygote, because it
sees a single allele in a relatively large sample size. Assuming the
three molecules have each been sequenced at least once, remov-
ing PCR duplicates would leave three reads, and the model would
correctly conclude that such a small sample size comprises too little
information to make a reliable genotype call.

We conclude that genotypes reported without information
about the PCR duplicate rate may be unreliable, and therefore that it
is crucial to monitor PCR duplicate rates in genotyping experiments.
We confirm that removing PCR duplicates is a simple and efficient
strategy to mitigate the detrimental effects of amplification-related
artefacts on genotyping, and that it comes at a very small cost in
power since the information that is discarded is mostly redundant.
Although data sets with relatively high PCR duplicate rates can
sometimes produce acceptable genotypes even without removing
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duplicates (Euclide et al., 2019), this happens, perhaps frustratingly,
precisely when the nonredundant coverage is high and avoiding this
filter presents little appeal. Nevertheless, removing PCR duplicates
is preferable even in these cases, as full-coverage genotypes should
still be expected to suffer from lesser artefacts such as biased geno-
typing confidence scores.

4.6 | Implications for RAD-seq studies

Our results and those of others (Schweyen et al., 2014; Tin
et al., 2015) demonstrate that PCR duplicates are present at sub-
stantial levels in both single-digest and double-digest RAD-seq
experiments (Table 1). Given that genotyping quality is primarily de-
termined by non-redundant coverage (see above), and consequently
that genotype calling is unreliable in experiments where PCR du-
plicates are not monitored, controlling for PCR duplicates in RAD-
seq experiments is critical. We thus advocate the systematic use of
protocols that allow their identification, that is either single-digest
protocols (Ali et al., 2016; Baird et al., 2008) combined with paired-
end sequencing, or double-digest protocols combined with UMIs
(Hoffberg et al., 2016; Schweyen et al., 2014; Tin et al., 2015). This
is essential for demographic analyses, as they tend to be more sensi-
tive to genotyping errors than population structure analyses, and are
sensitive in particular to biased estimates of heterozygosity and/or
of the number of singleton alleles.

In addition, these results highlight that PCR duplicate rates vary
extensively across experiments. This variation must be partly due
to differences in library complexity, but we stress that sequencing
depth also plays an important role (Figure 3). In comparing RAD-seq
libraries, the measure of choice for library complexity should be li-
brary density, which determines both the maximum achievable non-
redundant coverage and the cost-efficiency of sequencing (i.e. the
number of reads required to achieve a given nonredundant cover-
age). Importantly, most studies do not report enough information to
estimate the complexities of their libraries. We therefore encourage
researchers to report all the technical values relevant to understand-
ing the occurrence of PCR duplicates in RAD-seq, namely: the num-
ber of samples that were pooled in each library, the mass of DNA
that was amplified, the number of RAD loci kept in the analysis, the
per-library number of (possibly paired) reads aligning to these loci,
the per-library average PCR duplicate rate, and the per-library aver-
age number of non-redundant reads per locus.

Nevertheless, the widespread occurrence of PCR duplicates
suggests that RAD-seq experiments would typically benefit from
libraries with higher densities. As discussed above, this involves
amplifying greater quantities of template DNA whenever pos-
sible. How much DNA should ideally be amplified depends on
the mass of the haploid genome of the study organism (i.e. its
C-value), on the quality of the input DNA and percentage yield
of the protocol, as well as—crucially for pooled libraries such as
those typically seen in RAD-seg—on the number of individuals in
the library. Importantly, pooling does not change the per-sample
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library complexity requirements for genotyping. Pooled libraries
therefore require handling considerable amounts of DNA (at least
before amplification) to achieve similar per-sample complexities.
For instance, amplifying 1 microgram of genomic DNA should not
be out of the ordinary for a 100-sample library, as this represents
10 nanograms per sample. This logic is not directly applicable
to bestRAD (Ali et al., 2016) because amplification is performed
on purified (restriction-site digested, ligated and bead-captured)
DNA rather than on genomic DNA; however, all numbers above
can instead be applied to the genomic DNA input to the bead-
capture step.

Importantly, insufficient library densities can explain allelic
dropout, which is another error pattern that has been exten-
sively discussed in the context of RAD-seq, often in combina-
tion with concern about restriction site polymorphism (Andrews
et al., 2016; Davey et al., 2011; Gautier et al., 2013). However, as
underlined by the heterozygosity deficit caused by amplification-
related artefacts, allelic dropout can also result from the purely
stochastic non-sampling of one of the two alleles of a heterozy-
gote, which is particularly likely to happen in libraries that have a
low molecular density. This is in fact the mechanism that the orig-
inal definition of allelic dropout refers to (Broquet & Petit, 2004;
Taberlet et al., 1996).

Moreover, population genetics simulations suggest that re-
striction site polymorphism should have little consequences unless
genetic diversity is very high (Gautier et al.,, 2013; Rivera-Colén
et al., 2021). In contrast, insufficient library density can create
dramatic allelic dropout, and can even result in locus dropout for
densities so low that it becomes likely that neither allele is sampled
(Figure 5). Thus, we suggest that in the absence of PCR duplicate
tracking, evidence for allelic dropout in a data set should be consid-
ered indicative of a low library density (and of a high duplicate rate)
rather than of restriction site polymorphism. Finally, we note that
stochastic allelic dropout is a non-issue in data sets where duplicates
have been removed, as using nonredundant reads prompts the geno-
typing models to account for the phenomenon.

5 | CONCLUDING REMARKS

We propose a realistic and predictive model for the distortions that
amplification introduces in sequencing libraries. This establishes
a conceptual framework within which the numerous observations
made on PCR duplicates can be united, the causes of the artefact
can be quantified, and their consequences on downstream analyses

understood. In particular, we find that:

e PCR duplicate rates are determined mainly by the ratio between
sequencing depth and library complexity. Nevertheless, as most
experiments target a particular sequencing depth, amplifying
a large enough DNA pool is critical to maintain a low depth-

complexity ratio and limit PCR duplicates; thus, the amount of

active DNA input into the amplification reaction during library
preparation is key.

e In most cases, it is advantageous to measure library complex-
ity not as an absolute number of molecules, but as a molecular
coverage—molecular density—as this statistic is more transferable
between experiments, more relatable to experimental yield, and
more directly interpretable into expected error patterns in statis-
tical analyses.

e Because PCR duplicate rates depend on both library complex-
ity and sequencing depth, the reporting and interpretation of
PCR duplicate rates should always be accompanied by depth
considerations.

e PCR amplification is stochastically uneven, and this has an effect
on the statistical properties of libraries, including a secondary role
in determining duplicate rates and a lowering of the apparent li-
brary complexity. However, the number of cycles can be expected
to only have a marginal effect on duplicate rates, which is in con-
trast with a widespread conception, but in agreement with the
experimental results that exist in the literature. It is important to
maximize per-cycle amplification efficiency, as this reduces sto-
chasticity and bias.

e Our framework can be leveraged to better understand the error
patterns that amplification noisiness creates in downstream sta-
tistical analyses. We demonstrate this for the case of genotyping,
which makes us able to propose recommendations to improve the
effectiveness of RAD-seq experiments.

e For RAD-seq and other molecular applications, researchers
should focus on maximizing the quantity of input DNA that is used
for library preparation, particularly the amounts used as template
for PCR. They should be aware of how larger genome sizes, a high
number of individuals per library, and/or the presence of low-
quality samples reduce the effective library complexity and mod-

ify molecular protocols accordingly.
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