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Abstract

A goal of structural biology is to understand how macromolecules carry out
their biological roles by identifying their metastable states, mechanisms of ac-
tion, pathways leading to conformational changes, and the thermodynamic and
kinetic relationships between those states. Integrative modeling brings struc-
tural insights into systems where traditional structure determination approaches
cannot help. We focus on the synergies and challenges of integrative modeling
combining experimental data with molecular dynamics simulations.

1. Introduction

Techniques like x-ray crystallography[1] provide an exquisite picture of the
average structure of stable conformations. But challenges remain for many
systems including those unsuitable for crystallization, characterizing ensembles,
states with low populations, and the transition pathways between these states.
Fortunately, many experimental techniques such as NMR, FRET, DEER, PREs,
chemical crosslinking, and others o↵er indirect structural information that can
be obtained even in challenging situations[2, 3].

When enough information is available (data-rich regime), the system is
highly constrained, and the data typically defines a narrow uncertainty en-
semble[4], which is in some cases deposited in the protein data bank (PDB)[5].
Choices such as the computational method and how the data is modeled can
a↵ect this ensemble. Increasingly, however, researchers operate in the data-poor
regime, where the system is only weakly constrained so that the data alone is
insu�cient to fully define the structural ensemble. By integrating data from
multiple experiments, it is possible to narrow down the possible structures[6].
Even in such scenarios, distinguishing between multiple models requires a hybrid
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approach involving computational software to explore conformational space and
identify possible solutions compatible with the data.

Recently, the wwPDB-dev[7] was developed to accept models originating
from integrative/hybrid approaches. Whereas the PDB contains over 200,000
structures, the wwPDB-dev holds just 112 entries as of January 2023. The
stark di↵erence arises from di�culty in identifying pipelines to model these
challenging systems and the need for better assessment tools to validate the
quality of the models[8]. This review focuses on integrative/hybrid modeling
in which Molecular Dynamics (MD) techniques are used to generate models.
Excellent reviews focus on other aspects of integrative/hybrid modeling[9, 6,
10•, 1, 11, 12].

MD is seeing a resurgence[13] thanks to improved force fields [14] and en-
hanced sampling techniques [15] leading to excellent agreement between exper-
iments and simulation techniques [3]. E↵orts to synergize with new sources of
experimental data provide optimism for their role in integrative approaches[6,
12, 1]. However, as each experimental technique provides di↵erent outputs and
uncertainties, there is no unique recipe for hybrid modelling[8, 16]. For in-
stance, density maps can be used to restrain residue/atomic positions[17, 9],
many techniques provide distance or orientation information between parts of
the molecule[18, 19], and others provide average or ensemble information[20].
MD samples ensembles of conformations that, when processed using statistical
mechanics principles, provide insights about the relevant states of the system.
Experimental data can be used to bias the ensemble, a↵ecting the probability
of sampling di↵erent regions in the energy landscape. The resulting ensembles
can be processed to learn about states compatible with the data and physics
model. Alternatively, data can be used with unbiased MD ensembles to select
a subset of structures compatible with the experimental information. The chal-
lenges remain similar to other integrative pipelines: determining the number of
states represented by the data, how to model uncertainties, or how to validate
the ensembles

2. Sampling strategies

The large phase space available to biomacromolecules challenges the identi-
fication of important regions (states). Multiple approaches such as quasi-static
minimization, random tree forest, or normal mode analysis to name a few have
been used to sample phase space. What makes techniques such as MD and
Monte Carlo (MC) unique is the foundation of these sampling strategies on
physical principles, such as detailed balance, that relates the explored ensembles
to the relative importance of di↵erent regions of phase space through statistical
mechanics. It is this physical foundation that allows us to determine thermody-
namic (e.g., free energies) and kinetic (e.g., binding rates) properties. The more
accurate the underlying representation of the potential energy landscape (given
by the force field), the better agreement MD/MC-based sampling strategies will
have with experiments.
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In recent years, force field development e↵orts have increased, leading to a
variety of force fields suited for di↵erent systems [21]. The type of experimen-
tal data as well as the initial structural knowledge determine the type of MD
sampling strategy to use[15]. For example, describing the ensemble of confor-
mations available for a known folded structure that is compatible with FRET
data might not require access to all configuration space—only appropriate fluc-
tuations around the starting configuration need to be sampled. On the other
hand, processes like binding, folding, or describing IDP ensembles will require
extensive coverage of configuration space. In informed sampling approaches,
the data is directly used to bias sampling, leading to ensembles that satisfy the
data; whereas in uninformed sampling, the data is used in the post-analysis
stage to either select structures or reweight the ensemble to obtain agreement
with experimental measurements (see Figure 1).

2.1. Informed search

The general premise in informed search is that we know some properties
about the end-states and incorporate the knowledge as restraints to guide the
system. Often this data is evaluated on the fly on the structure that is being
sampled by using a forward model [22, 23, 24, 25]. However, experimental data
represents an ensemble average, thus, imposing restraints on a single structure
could inappropriately bias the results. Alternatively, some groups use time-
averaged restraints or ensemble average restraints[26] to represent the ensemble
nature of the data better[27]. For instance, XL-MS data might contain an
ensemble where a residue might be involved in a particular cross-link in one
conformation, and in an alternative cross-link in another conformation [28]. As
a second example, the mapping between single structures and NMR observables
(e.g. NOESY data) leads to well-known errors. Lindor↵-Larsen and his group
showed that when multiple states give rise to NOE observables, a consensus
structure that agrees with the data might not capture the complexity of the
system[29•].

In recent years, this type of informed search has been framed in terms of
Bayesian inference to account for the uncertainties arising from the force field,
data, and forward model used[8, 30, 31, 32]. Information-driven sampling can
thus overcome limitations in the force field, and supplement the experimental
data with a physics-based prior to identify structures and states that either
method alone could not[23, 33].

2.2. Uninformed search

These approaches yield the prior distribution based on the force field redand
work best when starting from a native-like structure. Enhanced sampling meth-
ods such as generalized ensemble, weighted ensemble, adaptive sampling, or ac-
celerated MD are also commonly used for higher e�ciency than conventional
MD[15]. The goal is to promote a broad exploration of the energy landscape.
The prior should reflect the Boltzmann distribution based on the force field used
– hence, removing any potential bias used in enhanced sampling simulations is
important. Failure to do so leads to poor priors.
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Figure 1: Schematic representation of integrative modelling. A. Initial models might
represent extended or native conformations in an all-atom or coarse representation. B.
Schematic of di↵erent types of information used to restrain simulations such as pair-wise
restraints or density maps. C. Informed search introduces energy penalties in regions incom-
patible with data, focusing exploration on a few energy basins (filled in red). In contrast,
Uninformed search (D) does not prioritize specific regions of the landscape. E. Analysis of
the population distribution of either the prior (uninformed search)) or posterior (informed

search) yields the relevant states. F. Alternatively, the distributions can be filtered in ac-
cordance to their agreement with experimental data. G. Final representative structure(s) or
ensembles that satisfy the data.
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3. Choosing Representative Models from MD ensembles

Traditionally, similarity measures and dimensionality reduction techniques
followed by clustering provide information about the relevant states in the
system and their relative importance. More recently, Markov State Models
(MSM)[34, 35] are becoming increasingly popular to provide kinetic informa-
tion on the relationships between states. The analysis is straightforward when
the ensembles are unbiased and requires prior reweighting otherwise[36].

The availability of data can then help choose the most compatible structures
from the ensemble. For instance, data is used to reweight ensembles and choose
representative structures or distribution of structures[37, 20]. The most popular
approaches use maximum entropy, maximum parsimony, or Bayesian inference
principles[38, 16, 39•, 40, 41]. In maxEnt approaches, the relative entropy with
respect to the original ensemble (typically measured as a Kullback-Leibler Di-
vergence, see eq. 1) is minimized. Thus, maintaining the original weights from
the simulation will have the minimum cross-entropy – while selecting a single
structure (cherry � picking)[42] will have the maximum relative entropy. The
latter was preferred when limited sampling and force field inaccuracies were
prevalent. However, with improved force field and sampling, there has been a
shift towards ensemble-based methods to represent the system.

S(p1|p0) =
NX

i

p1(xi) ln
p1(xi)

p0(xi)
(1)

Having a good overlap between the model and experimental evidence for
the relevant regions of configuration is key to successful reweighting. A recent
work describing IDP ensembles finds that the quality of the force field (prior
distribution) is more important than the re-weighting method[43]. In other
words, reweighting techniques can never recover information about a region that
has not been sampled. These approaches are also useful to study conformational
transitions through a two-step process which first involves the construction of
an MSM, followed by a refinement with FRET data through an unsupervised
learning model[44].

4. Challenges in hybrid modeling

4.1. Number of states to represent the system

Proteins are dynamic molecules, accessing multiple states that explain struc-
ture/function relationships. While the information in the PDB typically yields
information about a single state (either as a single structure or narrow ensem-
ble), there are multiple computational tools and experimental approaches that
can then use the initial structure to identify other relevant states that explain
function. A common challenge in integrative approaches is knowing if the mea-
sured experimental observables originating from di↵erent experiments represent
the same state, or if the observed signal arises from multiple states. When
signals between di↵erent states overlap, advanced methods such as those based
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Figure 2: Scheme for selecting structure(s) based on distributions of an arbitrary property
coming from experiments (black line) or simulations (blue line). The left panel represents an
scenario where the experimental data has a unimodal distribution around the average observ-
able (A). In this scenario, choosing a cherry-picked single structure (cyan) (C) or reweighting
the MD ensemble (orange) to identify the highest population cluster will provide similar re-
sults. On the right panel, the system has two conformations leading to a bimodal distribution
of the experimental observable (B). The cherry-picked average structure from the MD distribu-
tion is a bad representation of the system (D). However, reweighting the MD ensemble based
on the experimental data correctly represents the underlying experimental distribution.”
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on maximum entropy are needed to identify the di↵erent states present in the
distribution[45••, 46].

MD approaches, on the other hand, typically find hundreds or thousands of
states through clustering of their ensembles – further classification into metastable
states identifies a smaller set of states to compare with experiments[47, 48,
49]. When this process of classification benefits from experimental data, it
can further help in identifying multiple biological states[50, 51]. In this con-
text, it is hard to ignore the progress from machine learning methods such as
AlphaFold2[52] can also generate thousands of diverse structures of proteins by
making clever use of sub-sampled or clustered multiple sequence alignments[53].
As with MD, agreement with experimental data can be used to choose high-
accuracy structures representing di↵erent states from these ensembles. How-
ever, these ensembles lack the physics to relate thermodynamic/kinetic proper-
ties from the states, can only be used for systems trained on large databases
(e.g, the PDB), include implicit biases based on databases (e.g., holo vs apo
structures), and are not yet sensitive to small perturbations such as single point
mutations.

4.2. Uncertainty in the data

It remains challenging to separate errors in the physical models (force fields),
experiments, and how the data is modeled (e.g., forward models)[16, 8]. Con-
sequently, the error bars and uncertainties reported by di↵erent methods and
groups do not necessarily reflect the same information [45••] leading to signif-
icant discrepancies in the reported uncertainties and lack of robustness in pre-
dictions across methods[45••]. A blind study for modeling dynamical systems
using smFRET data assessed the performance of 19 participants. Participants
arrived at similar results, separating the experimental signal originating from
conformational dynamics and other sources that increase ambiguity. The study
helped to define standards for error analysis and propagation in the field[54]. A
similar community-wide assessment of the reproducibility of SAXS and SANS
data[55] for a set of proteins emphasizes current limitations in the field such as
accurate solvent subtraction.

4.3. The need for reference standards

Hybrid modeling is an umbrella term for many possible combinations of
computational methods and sources of experimental data. Clear protocols and
standards exist for determining structures using data-rich regime techniques,
such as X-ray crystallography, cryo-EM, or solution NMR. In contrast, the
number of tools and, therefore, the number of ways to perform hybrid mod-
eling has increased dramatically. Addressing some of the current limitations
will require coordination between scientists with di↵erent expertise[56] in or-
der to: 1) produce homogeneous and transferable protocols across research labs
(experimental and computational), 2) increase reproducibility across integrative
platforms given the same initial data, 3) reduce human intervention in model-
ing data, and 4) provide the protocols of how the data was modeled along with
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the original data and output structures. Blind studies have revealed concep-
tual oversights[45••, 18] due to misinterpretation of what the data represents.
These oversights often originate from the lack of standardized protocols, shared
expertise, and lack of communication across multiple labs.

The di↵erent PDB Task Forces (https://www.wwpdb.org/task/) play a fun-
damental role in developing and enforcing standards for the community. For
example, the NMR exchange format initiative (NEF) [57, 58] strives to create
a self-describing format that integrative modeling programs can learn to read
to model structures and write to incorporate information on how the data was
modeled. The Small Angle Scattering Task Force aims to test and benchmark
di↵erent methods that use SAXS profiles to model biomolecules. To further
these e↵orts, the experimental data and the associated structural models are de-
posited in the SAS Biological DataBase (SASBDB, www.sasbdb.org)[59]. More
initiatives and widespread adoption of data deposition in software-agnostic for-
mats are needed for other sources of data, including smFRET [60]. Task forces
further promote the deposition of centralized databases[59, 61, 62, 63], and mod-
els that contain information and unified protocols to promote reproducible and
transferable open science. These centralized databases are still limited in some
areas like mass spectroscopy[42], where increased awareness will help modelers
develop better integrative tools.

As modelers develop software to integrate di↵erent types of data, there is
a lack of compatibility across tools. Ideally, a method developed by one lab
for integrating data from experiment A and a method from another lab for
experiment B could be used in a plug-and-play style. In practice, di↵erent
formats and other incompatibilities prevent combining such pipelines into a
single workflow[64••].

4.4. How is an ensemble validated?

One major question yet to be resolved is how to validate an ensemble pre-
diction appropriately. Most methods measure ensemble average properties of
some type, but many di↵erent distributions can produce the same average. The
well-known Anscombe quartet[65] illustrates di↵erent distributions that have
identical descriptive statistics (mean of both variables, variance of both vari-
ables, correlation between x and y, linear regression and R2 between x and y).
It is not possible to use the goodness of fit to assess which distribution is correct,
as all four distributions agree with the available statistics equally well.

This phenomenon is widespread in integrative and hybrid modeling, where
there can be many—typically infinitely many!—di↵erent ensembles that are in
equally good agreement with the available data. Choosing some ensembles as
more correct than others typically boils down to using physical models, and
regularization principles like maximum entropy or maximum parsimony [30] as
naively forcing a fit to the average quantity can often time lead to incorrect
inferences (see Figure 2).

A major challenge facing the field is comparing the outputs of di↵erent tools.
If two methods predict di↵erent ensembles and both ensembles are in equal
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agreement with the data, how do we say which one is more correct than an-
other? Certain modeling tools may make di↵erent assumptions with data, and
understanding how that influences an ensemble remains challenging. On a sim-
ilar note, the noise associated with di↵erent data types should be considered
when validating an ensemble. All of this must be communicated to users of
these tools and consumers of these models in a transparent and accessible way.

Finally, there are few or insu�cient databases to view ensembles produced
by hybrid or integrative modeling. Generally, the PDB database is not an
appropriate venue for these models, and PDBdev lacks su�cient validation tests
for the ensembles (like proCheck for X-ray crystal structures) [10•, 66]. In
recent years, the number of deposited models and experimental data in the
SASBDB has increased rapidly, making it useful for validating models. However,
this database is dedicated only to SAXS/SANS data, highlighting the need for
similar databases to other types of experimental data. For IDPs even these
might not be good enough, requiring databases that consider ensembles[67].

5. Emerging applications of integrative modeling

5.1. Integrative/Hybrid approaches will provide insights into cellular assemblies

As new sources of experimental data and their uncertainties become more
prevalent, we see a wide range of spatiotemporal scales that dictates the need
for atomistic, Coarse-grained (CG), or ultra-CG approaches[68, 69•, 70]. For
instance, Hi-C restraint data is used to model genome assemblies [71, 72, 73].
With growing interest in these areas, new computational methods arise for de-
veloping and assessing benchmark sets [74]. Ultimately, the goal is to assemble
large teams with overlapping expertise and a unified protocol to tackle the struc-
tural biology of whole cells (metamodeling)[75, 76, 77].

5.2. Advances in describing intrinsically disordered systems

Intrinsically disordered proteins (IDP) or proteins featuring intrinsically dis-
ordered regions (IDR) make up approximately 20% of eukaryotic proteomes [11].
IDPs are particularly di�cult to model accurately, with force fields failing to
reproduce the radius of gyration for completely disordered proteins. Most of the
force fields fail to reproduce several experimental observables simultaneously[78].
E↵orts to improve force field descriptions of IDPs is an ongoing area of research;
however, improved descriptions of disordered proteins often come at the expense
of modeling ordered proteins[79].

Force fields are often most e↵ective at describing the local structure of or-
dered proteins. Hybrid approaches utilizing long-distance-based restraints o↵er
an avenue to overcome the limitations of force fields (e.g., compact structures).
For example, combining replica exchange discrete molecular dynamics (DMD)
with restraints derived from FRET and DEER experiments [80] overcomes the
accuracy limitations of DMD and samples helix-coil transitions in SNAP-25, an
IDP. Similarly, using NMR-based Bayesian reweighting [81], SAXS-based en-
semble optimization methods[82], or combining multiple experiments such as
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NMR, SAXS, and single molecule FRET[83•] capture the ensembles of IDP
conformations. A recent review discusses approaches to studying IDP confor-
mational ensembles in detail[84].

6. Our current opinion: the ongoing e↵orts to standardize experimen-

tal outputs and computational pipelines will lead to a flourishing

integrative structural biology community

Hybrid modeling holds the promise to solve problems in structural biology
that other methods alone could not. With increased standardization, we expect
better modeling tools and more e�cient workflows that will lead to a dramatic
increase in wwPDB-dev depositions over the next decade.
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