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ABSTRACT 

Structural, regulatory, and enzymatic proteins interact with DNA to maintain a healthy and functional 

genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present 

MELD-DNA, a novel computational approach to predict the structures of protein-DNA complexes. The 

method combines molecular dynamics simulations with general knowledge or experimental information 

through Bayesian inference. The physical model is sensitive to sequence-dependent properties and 

conformational changes required for binding, while information accelerates sampling of bound 

conformations. MELD-DNA can: i) sample multiple binding modes, ii) identify the preferred binding 

mode from the ensembles, and iii) provide qualitative binding preferences between DNA sequences. 

We first assess performance on a dataset of 15 protein-DNA complexes and compare it to state-of-the-

art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects 

of binding in MELD predictions.  We expect the results presented herein, together with the freely 

available software, will impact structural biology (by complementing DNA structural databases) and 

molecular recognition (by bringing new insights into aspects governing protein-DNA interactions). 

 

INTRODUCTION 

Understanding and predicting how proteins and nucleic acids interact is key to deciphering the 

mechanisms regulating gene expression, genome repair, and storage; with applications in fields such 

as nanomedicine(1), transition metal chemistry(2), or clinical diagnosis(3) to name a few. Predicting 

such molecular recognition problems typically fall under molecular docking, machine learning, and 

molecular dynamics-based studies, which have been broadly successful in understanding how proteins 

recognize small molecules, peptides, and other proteins(4–6). However, the nature of protein-DNA 

interactions introduces several nuances that have challenged standard approaches. First, whereas 

proteins come in diverse shapes and sizes, the double-stranded B-DNA structure is common to most 

DNA sequences leading for many years to the concept of proteins “reading” DNA. Second, the highly 

charged interactions from the repeating phosphate backbone lead to a particular protein interacting with 

high affinity with many different DNA sequences. Despite the high affinity, specificity(7) to different 

sequences can span several orders of magnitude, leading to a preferential binding for certain 

sequences. Transcription factor (TF) proteins regulate gene expression by binding DNA sequences 



between 6 and 12 base pairs in length, statistically found thousands to millions of times along the 

genome. Still, most of these sites are never experimentally occupied(8, 9). TF binding has received 

particular attention due to its biological role; thus, we will focus on those. Understanding TF protein-

DNA interactions requires answering three distinct questions : 1) what structure will a particular protein-

DNA complex adopt, 2) what sequence will a particular TF preferentially bind (e.g., where along the 

genome will the complex form), and 3) what are the relative binding affinities to different sequences. 

Pipelines combining elements from structural databases, molecular dynamics, docking, and machine 

learning are becoming more prominent to address some (or all) of the above questions (10, 11). 

 

While the initial views on protein-DNA recognition focused on the ability of proteins to “read” the DNA 

sequence and find the best binding site, current views show DNA has a much more prominent role in 

recognition(9, 12). Thus, some proteins interact with DNA through sequence-specific interactions, but 

many interact through shared DNA features (e.g., the phosphate backbone). The difference in binding 

patterns leads to binding mechanisms lying between two extremes: sequence readout and shape 

readout(9, 13–16). The first is governed by specific interactions, while the second accounts for the 

ability of a particular DNA sequence to adopt conformations compatible with the structure of the complex. 

Attempts at combining structural descriptors (e.g., average groove widths, propeller twist, or roll) 

combined with sequence preferences derived from genomic studies (17–19) significantly improve 

predictions of where TF proteins bind along the genome.  However, attempts to use detailed structural 

approaches, such as free energy perturbation or energy decomposition, to distinguish shape and 

sequence contributions to binding are not always successful, limiting their general application (20–22). 

Although the reason for failures are unclear, factors like the amount of DNA deformation in different 

transcription factors, the number of binding modes contributing to the binding free energy, and force 

field accuracy are suspect(22).   

 

We require initial structures of the complex for many studies involving an understanding of binding 

affinity predictions, binding mechanisms, or even DNA-mediated allostery. However, there is a lack of 

experimental structural data and few computational methods to predict such complexes accurately. For 

instance, there are 6052 protein-DNA structures in the Nucleic Acid Database, compared to 171,077 

protein structures in Protein Data Bank (PDB) as of October 2022(23, 24). Such small datasets pose 

challenges to adapting protein structure prediction approaches (e.g., AlphaFold (25)) to the problem of 

predicting nucleic acids and their complexes. The recent RoseTTAFoldNA(26) ML approach 

compensates for the smaller datasets (they report 1556 protein-nucleic acid complex clusters compared 

to 26128 all protein clusters) by incorporating physics-based parameters (e.g., van der Waals terms) 

originating from Rosetta. Despite the advances this method represents, especially in RNA structure 

prediction, it requires further development to correct anomalies in predicting structures of homodimers 

bound to DNA (prevalent in transcription factors), which leads to an overlap between monomer units 

and incorrect binding modes. 

 



For many decades, docking has been the most efficient technique for predicting atomic resolution 

structures of macromolecular binding.(27) Docking is an invaluable tool for the virtual screening of small 

molecule libraries in the early stages of drug discovery(28) thanks to the balance between 

computational efficiency and accuracy. For larger assemblies, community efforts like the Critical 

Assessment of PRediction of Interactions (CAPRI)(29) have led to significant improvements in the field. 

However, the accuracy of docking drops rapidly for systems involving conformational changes and in 

charged systems, where scoring functions are less reliable. Thus, docking methods will often combine 

with strategies such as normal modes or a later stage using molecular dynamics to overcome limitations 

in scoring functions(30, 31). The most successful efforts come from the High-Ambiguity Driven Docking 

(HADDOCK)(32, 33) group combining docking with ambiguous data and DNA flexibility (via normal 

modes). They have led to helpful benchmark sets of different difficulties for assessing protein-DNA 

docking performance(34). 

 

Knowing the structure of the complex opens the possibility of predicting relative binding affinities to 

different sequences. Alchemical free energy methods based on Molecular Dynamics simulations (MD) 

are the gold standard for predicting relative (and absolute) binding affinities for small molecules(35). 

However, they present limitations when dealing with electrostatic charge variations and flexible 

complexes where several binding modes can contribute to the binding free energy(36). Despite some 

successes for protein-DNA systems(37, 38), a recent systematic study(39) on protein-DNA complexes 

points to deficiencies of these approaches arising from either phase space overlap or force field issues. 

Thus, current methods based on physics and statistical potentials like Rosetta(40) or machine 

learning(41–44) far outperform traditional MD-based approaches in speed and accuracy. 

 

In this paper, we introduce a framework based on Molecular Dynamics that incorporates information 

via Bayesian inference to predict structure-sequence relationships to increase our understanding of 

how proteins bind nucleic acids.  The approach, MELD (Modeling Employing Limited Data)(45, 46), has 

been previously used for predicting protein structures and their complexes with small molecules, 

peptides, and proteins. Here we extend the framework to DNA (MELD-DNA), with different applications 

depending on the type of data used. This work exemplifies three of the most common uses: 1) predicting 

structures of protein-DNA complexes, 2) identifying sequence sensitivity, and 3) predicting relative 

binding affinities. We expect the first application to be the most broadly used and thus present a 

generalized protocol over fifteen different proteins. We make more specific comparisons over a series 

of fifteen sequences for three of those systems. Finally, we exemplify the application of relative binding 

affinities for six sequences binding a particular TF. The current work represents an extensive simulation 

study with an aggregated 1 ms of sampling. Our results show that MELD-DNA successfully: i) samples 

multiple binding modes, ii) identifies the experimental binding mode through clustering the ensembles, 

and iii) is sensitive to DNA sequences and conformations. 

 

MATERIAL & METHODS 

General Approach 



We use the MELD (Modeling Employing Limited Data) Bayesian inference approach (p(x|D) α p(D|x) • 

p(x))  to incorporate ambiguous and noisy data to enhance binding/unbinding events(45, 46). The prior 

distribution (p(x)) is given by the Boltzmann distribution based on the chosen force field, while the 

likelihood (p(D|x)) comes from the agreement of the sampled conformations (x) with a subset of the 

data (D, the one with the lowest restraint energy). As MELD samples the energy landscape, different 

subsets of data are also explored, exploiting regions compatible with some subset of data and the force 

field(45, 46) gives rise to the posterior distribution (p(x|D)). In practical terms, MELD uses a Hamiltonian 

and Temperature replica exchange molecular dynamics approach in which some replica conditions are 

compatible with unbound states and some with bound states. As walkers sample different conditions in 

the replica ladder, they go through cycles of binding and unbinding. We identify bound states by 

clustering the lowest temperature ensembles, where each cluster represents a different binding mode 

and is compatible with varying subsets of data. We will showcase here three protocols to address three 

questions: i) general binding (applied to any protein-DNA system), ii) specific binding (applied to many 

DNA sequences binding a particular protein where additional information is known), and iii) relative 

binding affinities. The type of data used to guide simulations depends on the questions we ask. 

Examples are accessible from Zenodo (see Data availability section). MELD simulations use 30 replicas, 

the parmBSC1 force field for nucleic acids(47–49) the ff14SB side force field for the protein(50, 51) and 

the GBneck2Nu implicit solvent model(52, 53). Throughout all protocols, we include restraints to keep 

the protein and DNA from unfolding at high temperatures. For proteins, we enforce secondary structure 

and flat-bottom harmonic restraints on native Cα-Cα contacts, the initial coordinates for simulations and 

to set up the restraints is based on its bound conformation. For DNA, we implement restraints that 

maintain hydrogen bonding patterns at each base pair to prevent DNA melting. All simulations were 

initialized with the protein far away (at least 30Å) from the DNA. The initial DNA conformation is 

generated in its canonical B-form based on the sequence (54). 

 

Protocol 1: Posing general knowledge in terms of ambiguous data drives protein-DNA structure 

prediction 

In this approach, we seek to explore multiple binding modes and rely on statistical mechanics to identify 

the most native-like one (e.g., the most compatible with our physical model). We presume knowledge 

of 1) the protein structure, 2) the DNA sequence to bind, and 3) the DNA binding domain. We generate 

a B-DNA structure using Chimera (54) and create a dummy atom at the N1 position of each purine base 

(see Fig. 1). We define the binding data as the possible interactions between Cα atoms in the binding 

domain and the N1 atoms (Fig. 1A). We produce a list of potential contacts, where only some might be 

satisfied during binding (noisy data) (Fig. 1B). We reduce the amount of possible combinatorics by 

taking into consideration geometric considerations (e.g., residues far away in the binding site are 

unlikely to interact with the same DNA base simultaneously). Clustering on the MELD ensemble we 

identify native-like poses in the ensemble (see Fig. 1).  The current setup has two advantages: 1) by 

using dummy particles at the N1 site, we do not favor the protein approaching through either major or 

minor groove orientations, 2) the information added is not exhaustive of all possibilities – and it does 



not need to be, as the force field will sample the most likely conformations given the available data (Fig. 

1C). 

 

We chose fifteen protein-DNA systems to apply this approach (see Table 1). The systems include 

complexes with little or no deformation of the DNA from its canonical B-DNA form, others that induce 

moderate deformation upon binding, and complexes where the DNA is far from its canonical B-DNA 

conformation. The dataset also contains systems that have been solved experimentally with two 

different sequences, resulting in binding mode variations (e.g., different spacing between binding 

domains: 1R4R, 1R4O). Finally, we include two types of systems intended to challenge our approach: 

binding occurs through either flexible (disordered) tails (1ZME) or where large conformational changes 

are needed for accessing the binding site (1BGB, 2B0D). 

 

Table 1. Protein-DNA systems simulated in this study, along with their DNA sequence and PDB IDs. 

System DNA Sequence PDB Ref. 
Nuclear Intron-Encoded Homing 
Endonuclease I-Ppoi 

TGACTCTCTTAAGAGAGTCA 
1A74 (55) 

Hyperthermophile Chromosomal 
Protein Sac7d 

GCGATCGC 
1AZP (56) 

9-Cis Retinoic Acid Receptor TAGGTCAAAGGTCAG 1BY4 (57) 
Human Papillomavirus Type-18 E2 CAACCGAATTCGGTTG 1JJ4 (58) 
Phage 434 Cro AGTACAAACTTTCTTGTAT 3CRO (59) 
Fungal Transcription Factor Put3 CGGGAAGCCAACTCCG 1ZME (60) 
Murine Creb Bzip-Cre Complex CTTGGCTGACGTCAGCCAAG 1DH3 (61) 
P22 C2 Repressor CATTTAAGATATCTTAAATA 2R1J (62) 
Human Tbp Core Domain CTGCTATAAAAGGCTG 1CDW (63) 
Gcn4 Leucine Zipper TTCCTATGACTCATCCAGTT 1YSA (64) 
Gcn4 Leucine Zipper TGGAGATGACGTCATCTCC 2DGC (65) 
Glucocorticoid Receptor TCAGAACATGATGTTCTCA 1R4R (66) 
Glucocorticoid Receptor CCAGAACATCGATGTTCTG 1R4O (66) 
Ecorv Restriction Endonuclease CGGGATATCCC 1BGB (67) 
Ecorv Restriction Endonuclease AAAGAATTCTT 2B0D (68) 

 

Protocol 2: System-specific binding protocols tease out sequence effects  

In this scenario, we have knowledge of the bound state (and binding mode) and use this information to 

guide to repeating binding sites along a DNA oligomer (see Fig. 2). By using oligomers with different 

sequences (but the same driving information), we are interested in teasing out the drivers of binding 

(sequence or shape readout). When the data is too constraining, we should see the same binding mode 

regardless of the sequence. We compare multiple sequences for three systems involving different 

degrees of DNA bending upon binding (see Table 2). 

 

Table 2. DNA sequences used for bZIP, TATA, and P22 complexes. DNA bases highlighted in orange 
represent the changes with respect to the consensus sequence (bold). 



System Sequence PDB Ref. 

bZIP 

Consensus 
noCG 

Random 1 
Random 2 
Random 3 

CCTTGGCTGACGTCAGCCAAG 
CCTTGGCTGAATTCAGCCAAG 
CCTTGGATGCTACGATCCAAG 
CCTTGGCGTAGCTCGGCCAAG 
CCTTGGTCTATCGGTTCCAAG 

1DH3 (61) 

TATA box 

Consensus 
Domain 1 
Domain 2 
Random 1 

CTGCTATAAAAGGCTG 
CTGCCGCGAAAGGCTG 
CTGCTATAGGGGGCTG 
CTGCCGCGGGGGGCTG 

1CDW (63) 

P22 c2 
Repressor 

Consensus 
Domain 1 
Domain 2 
Bridge 1 
Bridge 2 

Random 1 

CATTTAAGATATCTTAAATA 
CATTTCCTATATCTTAAATA 
CATTTAAGATATGGCAAATA 
CATTTAAGCGCGCTTAAATA 
CATTTAAGCCGACTTAAATA 
CGCCATTTAGGGACGATCCA 

2R1J (62) 

 

Protocol 3: Competitive binding simulations quantify relative binding affinities 

The data used in this protocol is the most constraining: we aim to distinguish the preference of a 

particular known binding mode to two different sequences. Thus, the data is compatible with one binding 

mode. Rather than defining this strictly as in docking or an alchemical free energy calculation, there is 

still enough freedom to sample widely inside the basin corresponding to this binding mode. To compare 

across systems, we have previously used a competitive binding strategy (69) in which the relative 

binding affinity can be determined by counting the population of the protein-DNA complex for each 

sequence. Converging populations to obtain statistical significance makes this protocol more 

computationally demanding than the previous two. We thus exemplify this protocol on the six sequences 

binding P22 shown in Table 2. 

 

HADDOCK docking predictions  

We used the bio3d R module to calculate normal modes of the minimized canonical B-DNA and 

minimized protein for each system(70, 71). The ensemble of normal modes for each binding partner 

was fed into the HADDOCK web server (72, 73), specifying identical residues involved in the contact 

lists of MELD as active residues. We then analyzed the top 5 clusters and all the models generated by 

the docking package. 

 

RosettaFold2NA machine learning predictions 

The RosettaFold2NA (RF2NA) program was assembled following their GitHub walkthrough(26). The 

FASTA sequence of each protein chain and DNA strand was provided to the program as separate files 

according to the instructions. Each prediction returned one structure. 

 

RESULTS 

MELD-DNA is successful at predicting protein-DNA complexes 

We analyze our ensembles for each of the 15 proteins by asking two questions (see Fig. 3): 1) can the 

method sample the native state, 2) can we identify the native state with high confidence without knowing 



the actual structure. We find that in 13 of the 15 cases the native state is present in the ensemble, and 

in 11 of 15 cases it belongs to a high population cluster (present in the top five clusters by population). 

The ensembles represent multiple binding modes highlighting MELD’s ability to explore various bound 

conformations. Figures S1-15 represent the distribution of structures sampled at every replica in the 

MELD approach for each of the 15 complexes. At high replica indexes, the system explores unbound 

conformations (high RMSD values). Sampling at lower replicas explores different bound states – where 

typically, the lowest replica index will be enriched on the state with the lowest RMSD to the experimental 

structure. Complex 1AZP (see Fig. S2 and S16) represents a particular case since the DNA sequence 

is palindromic, and our methodology captures clusters binding in either orientation (180-degree flip of 

the protein, see Fig. S16). Similarly, most Leucine zippers correctly identify the binding mode, with the 

binding domains overlapping the experimental binding mode. For these long coil-coil structures, small 

fluctuations near the binding site give rise to a large displacement at the ends – hence some of these 

structures look visually distinct from the experimental structure but retain a low interface RMSD(e.g., 

2GDG in Fig. 3). Despite the use of restraints to keep the protein and DNA from unfolding, we find that 

both macromolecules sample a broad ensemble of conformations. Typically, the DNA and protein 

ensembles approach the holo conformation as the native binding mode is sampled (see Fig. S17). 

 

We examined predictions from HADDOCK and RF2NA for comparison. For HADDOCK, we first tried 

submitting only one DNA and protein structure as input for each complex. As expected, in this scenario, 

we did not observe any native-like predicted complexes (which MELD also fails to predict in the absence 

of data). We then used several structures for both the protein and DNA sampled along their normal 

modes as calculated by the bio3D package (70, 71, 74). HADDOCK returns 200 models of the complex 

by default and clusters them. We observed many native-like complexes amongst the 200 generated 

models (Table 3 and Figs. S18-19). However, the top 5 clusters generally had higher interface RMSDs 

and a lower fraction of native contacts(75)(76) than MELD predictions.  In our hands, the RF2NA 

machine learning approach produced overlaps between the two monomers in protein dimers where 

both bind in the same DNA region (marked as MO in Table S1). For 1BY4, it used the two monomers 

of the protein to form a large monomer-like protein binding only on one of the two binding sites of the 

DNA. We are optimistic that future versions will be available to predict structures of homodimers binding 

DNA. 

	
Table 3. Fraction of native contacts for MELD and HADDOCK (italics) from the top five clusters and the 
highest value sampled in the whole ensemble. Any two residues with at least one heavy atom pair within 
5Å in the experimental structure were defined as a contact. We highlight in bold instances where 70% 
or more of the native contacts are satisfied. 

  Fraction of Native Contacts 
System # contacts Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Best in all 

1A74 189 
0.60 
0.06 

0.85 
0.06 

0.11 
0.05 

0.51 
0.05 

0.577 
0.0 

0.93 
0.57 

1AZP 46 
0.35 
0.13 

0.31 
0.14 

0.29 
0.15 

0.21 
0.08 

0.68 
0.13 

0.95 
0.67 



1BY4 83 
0.73 
0.01 

0.74 
0.03 

0.24 
0.05 

0.26 
0.02 

0.16 
0.02 

0.80 
0.67 

1JJ4 109 
0.15 
0.33 

0.31 
0.41 

0.06 
0.23 

0.00 
0.28 

0.02 
0.12 

0.34 
0.58 

3CRO 123 
0.38 
0.06 

0.10 
0.4 

0.13 
0.04 

0.08 
0.06 

0.16 
0.1 

0.57 
0.62 

1ZME 110 
0.17 
0.02 

0.27 
0.06 

0.09 
0.04 

0.13 
0.06 

0.15 
0.01 

0.62 
0.49 

1DH3 55 
0.94 
0.32 

0.04 
0.38 

0.11 
0.40 

0.34 
0.24 

0.49 
0.27 

1.00 
0.44 

2R1J 99 
0.89 
0.05 

0.18 
0.03 

0.30 
0.04 

0.31 
0.02 

0.10 
0.05 

0.92 
0.62 

1CDW 84 
0.51 
0.08 

0.20 
0.12 

0.07 
0.04 

0.18 
0.04 

0.49 
0.07 

0.69 
0.58 

1YSA 62 
0.64 
0.38 

0.58 
0.44 

0.36 
0.26 

0.67 
0.22 

0.52 
0.05 

0.73 
0.51 

2DGC 72 
0.50 
0.04 

0.62 
0.04 

0.89 
0.05 

0.47 
0.03 

0.68 
0.21 

0.98 
0.36 

1R4R 83 
0.50 
0.01 

0.27 
0.01 

0.80 
0.01 

0.29 
0.01 

0.42 
0.02 

0.86 
0.26 

1R4O 79 
0.79 
0.02 

0.45 
0.04 

0.34 
0.02 

0.34 
0.03 

0.31 
0.03 

0.86 
0.69 

1BGB 220 
0.09 
0.00 

0.08 
0.00 

0.02 
0.00 

0.05 
0.00 

0.12 
0.01 

0.19 
0.10 

2B0D 227 
0.20 
0.00 

0.17 
0.00 

0.07 
0.00 

0.17 
0.00 

0.19 
0.01 

0.24 
0.18 

 

MELD is sensitive to sequence properties 

We chose three systems representative of binding DNA in its canonical conformation, bent DNA, and 

significantly bent DNA (bZIP, p22, and TATA box binding proteins, respectively). For each of the 

systems, we simulated the consensus sequence, for which we have an experimental structure of the 

complex. We then generated the sequences defined in table 2, for which we have no experimental 

data. The consensus sequence is the highest affinity binder of all sequences. However, other 

sequences are also likely to bind based on charge complementarity – especially in cases with no 

specific interactions between protein residues and DNA nucleobases. Hence, we expect differences 

in the ensemble, either by binding at different sites along the sequence or affecting the populations 

identified by clustering with respect to the consensus sequence (see Fig. 4). 

 

For all three cases, MELD correctly identifies the native binding mode when the consensus sequence 

is used -- but we differentiate two different behaviors when changing the sequence. For p22 and 

TATA, binding is driven by shape complementarity, and in all simulations, we observe a very similar 

binding pattern, with all DNA sequences adapting bent conformations. However, for bZIP, which binds 

DNA in its canonical B-DNA conformation, we observe dramatical shifts in cluster populations and 

binding preferences, with some sequences preferring to bind different sites along the sequence (see 



Fig. 4A). To further study the sequence/structure relationship, we took the top two clusters from 

unbiased MD simulations of each protein-free DNA sequence, and we performed binding simulations 

restraining the conformation of each sequence to each of the possible clusters (a total of 50 

simulations). Figure S20 shows the RMSD of the protein vs. the protein-DNA interface RMSD. While 

some structure/sequence combinations lead to binding, others do not. For the consensus sequence, 

the experimental binding mode is sampled in high populations in 9/10 simulations, with the highest 

population cluster falling in this region most of the time. Other sequences have a lower preference for 

the canonical binding site despite starting from the same conformation and using the same data. 

Conformation random1-c1 (random1 sequence and cluster 1 conformation) merits a special mention: 

only using the sequence from random1 does this conformation allow sampling of the experimental 

binding mode. For this structure, we find a significant amount of binding through the minor groove in 

most sequences – but for Random1 sequence, the most prevalent binding mode is through the major 

groove, as in the experimental structure. Thus, we conclude that the physical model used in MELD is 

sensitive to sequence-dependent properties. Despite this, in cases where the DNA undergoes 

significant conformational changes, where we expect shape readout to drive binding, the MELD 

restraints overcome sequence preferences. It is difficult to directly compare the effect of the restraints 

as independent MELD binding simulations are not comparable(77). We thus complement these 

results with relative binding affinity calculations (protocol 3). 

 

Relative binding affinities identify structure/sequence preferences during binding 

Here two DNA duplexes and a protein are simulated together (see methods), promoting protein binding 

to either DNA duplex at low replicas while restricting interactions between the duplexes. During 

unbinding events, the protein is far from both DNA duplexes. We assess the higher affinity binders by 

counting how often the protein binds each duplex. In this approach, the binding mode is known; thus, 

MELD uses more constraining information to favor faster binding/unbinding events leading to higher 

statistical significance.  

 

 We first tested simulations in which we competed the consensus sequence against itself. The expected 

outcome is that the protein should bind equally to each sequence and is thus a test of the expected 

errors as well as possible systematic errors arising from the setup conditions. The observed ratio of 

57/43 population was close to the expected 50/50 value (see Fig. 5b), giving us confidence that the 

setup conditions were not biased towards one of the two DNA structures. Competing the consensus 

against the other five sequences showed that the consensus sequence was preferred in all cases.  

 

The advantage of simulation tools is that we can decouple sequence and shape readout by freezing 

the DNA structure in either its apo or holo conformation – similar to a rigid docking experiment, where 

the DNA can only fluctuate around the initial structure. We expected all relative free energies to increase 

when freezing DNA structures to the holo conformation as the conformational free energy change to 

the binding free energy was “prepaid.” Interestingly, while it increased in most cases (see Fig. 5d), it 

decreased in others, most significantly for the random sequence. We further analyzed this sequence 



by fixing either the consensus or random sequence to the holo/apo conformation. Surprisingly, the 

protein recognizes the random sequence preferentially when both structures are kept in their B-DNA 

form but the consensus sequence when they are in their holo conformation. Thus, simulations that 

include flexibility to deform will have more events progressing down the replica ladder when the protein 

binds the random sequence. Still, once they form the complex structure, the consensus remains bound 

for a longer time. The approach is not currently sensitive to large free energy differences – where only 

one structure might be bound at the lowest replica. The method can readily be made more quantitative 

by using information from all replicas with proper reweighting (e.g., using the multistate Bennett 

acceptance ratio(78)), however this was out of the scope of the current work (79).  

 

DISCUSSION 

The MELD approach is designed to help answer questions involving structural and energetic 

considerations, drawing from DNA’s sequence dependence binding preferences. Choosing the origin 

of the information can help in either refining structures from these methods (e.g., making predictions 

from these methods and generating ambiguous/noisy data to guide MELD binding), answering 

questions about shape/sequence readout, or even relative binding affinities. The general pipeline is 

available on GitHub (github.com/PDNALab/MELD-DNA) to showcase the potential of this framework. 

Overall, the approach successfully predicts the structures of protein-DNA complexes. Understanding 

sequence/structure relationships and relative binding free energies is better indicated for systems 

where existing available information reduces the conformational search space. The trade-off between 

efficient sampling and the physics model to use currently limits MELD-DNA to implicit solvent, which is 

known to be less accurate than simulations in explicit solvent. Nonetheless, the method samples 

accurate atomic structures representative of the native state for most of the systems studied, even when 

starting from B-DNA conformations. The physics-based nature of the ensembles readily makes this a 

valuable approach to obtaining structures for more detailed studies (e.g., in explicit solvent), such as 

using different MELD clusters as seeds for adaptive sampling simulations combined with Markov State 

Models(80, 81). Thus, we believe the current framework can be a powerful tool to increase our 

understanding of nucleic acid complexes. 

 

We have shown a successful strategy for identifying protein-DNA complexes sensitive to the DNA 

sequence, exploring multiple binding modes, and samples DNA deformation during binding. The MELD 

approach draws on the successes of the HADDOCK docking strategy of combining ambiguous and 

noisy data with the search engine. It goes beyond harmonic deformations by using a molecular 

dynamics engine sensitive to the DNA sequence and identifying successful structures based on a 

statistical mechanics treatment of the generated ensemble rather than on scoring functions. It is worth 

noting that we employed HADDOCK as regular users versed in structural biology, and expert users 

might improve the performance. Regardless, while the accuracy in HADDOCK structure predictions is 

lower than that of MELD, it also comes at a small fraction of the computational cost: MELD simulations 

require 30GPUs typically running for about two days for these systems, while HADDOCK calculations 

take a few minutes, on a single core. HADDOCK predictions can readily be incorporated as structural 



aseeds for each replica in MELD, as well as a source of ambiguous/noisy information. In this regime, 

MELD can be used to refine HADDOCK’s models while simultaneously identifying the most likely model 

as the one most prevalent in the lowest temperature ensemble(82). 

 

The choice of restraints, noise, and ambiguity in the dataset will depend on how much data is available 

to the user. Higher accuracy and amount of data lead to faster convergence but reduced exploration of 

the binding landscape. For most purposes of structure prediction, protocol 1 is the most transferable 

and generalizable. Furthermore, users might decide to change the restraints imposed on the protein 

and DNA. In our current approach, the DNA has more flexibility than the protein system (see Fig. 17) 

to account for DNA bending during binding. However, restraints between base pairs will keep structures 

from sampling conformations where one base is open (e.g., for binding methyltransferases). For such 

cases, a user would modify the restraints affecting the desired region of DNA. Similarly, the protein 

restraints affect the ability to sample open/closed states, which are needed for some systems where 

the binding site is not accessible in the closed state. Knowing the binding site, exceptions can be made 

on which regions of the protein to restrain. 

 

We see three issues related to 1) accessibility of the binding site, 2) force field accuracy, and 3) 

efficiency of replica exchanges. Proteins 1BGB and 2B0D require an opening event before the DNA 

can access the binding site – however, the standard protocol used to predict binding (protocol 1) uses 

distance restraints that prevent the protein from unfolding – and in this case, from accessing the open 

conformation state. Furthermore, force fields typically have a bias towards compact structures, 

especially in implicit solvent, further favoring compact closed conformations that prevent DNA binding.  

Some authors have also suggested a possible DNA + protein force field imbalance resulting in stronger 

than expected Arginine and Lysine interactions with the phosphates(83–86). Such highly charged 

systems challenge the accuracy of the force field in implicit model. This issue is best seen in our set of 

complexes for the TATA box binding protein (1CDW). The bend in DNA structure induced by TATA-

binding is further accentuated in the implicit solvent (see Fig. S21), resulting in overly strong 

electrostatic interactions (see SI). Because of compaction and these strong electrostatic interactions, 

replica exchanges that favor unbinding have a lower probability than similar approaches for protein-

protein and protein-peptide binding (see SI and Figs. S22-23). Thus, despite the current success, future 

endeavors will aim to introduce explicit solvent into the methodology. 

 

Overall, the MELD-DNA methodology we presented herein fills a gap in computational tools that predict 

protein-DNA binding. We have shown that the method is sensitive to sequence and structural 

preferences and is thus a promising new approach to studying this type of system. The MELD code is 

freely available through GitHub as a plugin to openmm(87). On a diverse set of protein-DNA systems 

involving 15 different complexes, the method successfully predicted 10 of them as high population 

clusters. We believe the physics-based insights MELD-DNA can provide will advance our 

understanding of protein-DNA interactions and our ability to simulate events related to supramolecular 

chemistry. Increasing our structural knowledge and sequence binding structural preferences combined 



with other factors that affect in vivo binding (e.g., chromatin state and accessibility) can bring new 

understanding to the molecular mechanisms that orchestrate gene regulation.  
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Figure Captions 

Figure 1. Schematic of the MELD approach. A) Each system starts from an unbound state 

(minimum of 30Å distance between the protein (blue) and DNA(orange)). Information for the 

simulation is derived from possible interactions between the known interface C⍺	atoms (yellow) and 

dummy particles (green) projected on purine N1 atoms. Clustering yields the representative structure 

on the right. B) Representation of the data in a circular plot where each residue is a dot on the circle, 

with black lines representing the information used to direct binding. MELD simulations satisfy only a 

fraction of all the possibilities at any given time of the simulation. C) Schematic of the MELD Bayesian 

inference approach, adapted from ref (45). 

 

Figure 2. Representation of ambiguity for bZIP binding. (a) Phosphate sites along the DNA sequence 

are combinatorically paired with Cβ atoms in the binding site of the bZIP protein (highlighted in 

orange). (b) The native interactions from the experimental structure are highlighted with a blue halo. 

 

Figure 3. Superposition of best in top 5 clusters of MELD simulations against the experimental 

structure. We report the iRMSD of the top cluster, the best cluster amongst the top 5 clusters, and the 

best structure in the ensemble. A prediction is marked as a success if we can find a <5Å	
conformation in the top 5 clusters. 

 

Figure 4. DNA sequence differences drive preferences in binding patterns. A) Bzip binding patterns 

seen in the top 4 clusters (c0-c3) binding to either the consensus or a random sequence, ordered by 

population (in %). The plot shows multiple binding modes, with the consensus having a high 

population (22.8%) of the experimental binding mode compared to 8.3% for a random sequence. B) 

Shape complementarity leads to similar binding modes across different sequences. Despite this, there 

are subtle differences along the number of base pairs between the two binding sites (denoted by the 

red dotted lines).  

 

Figure 5. P22-DNA competitive binding. A) MELD simulations in which the protein is directed to bind 

to two different DNA sequences (blue and orange). Protein is shown as Cα dots superposing all frames 

binding to either sequence. The ratio of populations is related to the relative binding affinity. B) When 

the DNA is allowed to change its conformation during competitive binding freely, the consensus 

sequence has a marked preference for binding over the mutant (population in each mode in the bar, 

with grey depicting non-native binding modes. C) Restraining DNA conformations to their holo 

conformation removes the conformational free energy to adopt bound conformations. Despite this, the 

consensus sequence remains the most likely to bind. D) Comparison of random and consensus 

sequences allowing complete DNA flexibility or restraining either sequence to the holo/apo 

conformations.  

 

 



Table Captions 

Table 1. Protein-DNA systems simulated in this study, along with their DNA sequence and PDB IDs. 

Table 2. DNA sequences used for bZIP, TATA, and P22 complexes. DNA bases highlighted in orange 
represent the changes with respect to the consensus sequence (bold). 

Table 3. Fraction of native contacts for MELD and HADDOCK (italics) from the top five clusters and the 
highest value sampled in the whole ensemble. Any two residues with at least one heavy atom pair within 
5Å in the experimental structure were defined as a contact. We highlight in bold instances where 70% 
or more of the native contacts are satisfied. 

 


