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Our lives cannot be imagined without polymer networks, which range
widely, from synthetic rubber to biological tissues. Their properties—

elasticity, strain-stiffening and stretchability—are controlled by a
convolution of chemical composition, strand conformation and network
topology. Yet, since the discovery of rubber vulcanization by Charles
Goodyear in 1839, the internal organization of networks has remained
asealed ‘black box’. While many studies show how network properties
respond to topology variation, no method currently exists that would
allow the decoding of the network structure from its properties.

We address this problem by analysing networks’ nonlinear responses

to deformation to quantify their crosslink density, strand flexibility and
fraction of stress-supporting strands. The decoded structural information
enables the quality control of network synthesis, comparison of targeted
to actual architecture and network classification according to the
effectiveness of stress distribution. The developed forensic approach
isavital step in future implementation of artificial intelligence principles
for soft matter design.

Thetopology of polymer networks is anill-defined product of erratic
node formation processes. Any reasonable efforts to project the net-
work architecture by specifying stoichiometry and the synthetic
pathway are instantly scrambled by the swift scaffold percolation
generating a stochastic distribution of structural elements (Fig. 1a)"*.
The problem is further exacerbated by the limited ability of tradi-
tional characterization techniques toisolate and measure contribu-
tions from the individual building blocks within an interconnected
construct (Fig. 1b)°. Even the seemingly trivial parameters such
as actual crosslink density and functionality are unknown. There
are two general approaches, both imperative, to uncover network
organization. The so-called structure-to-property approach employs
model networks with synthetically predefined strands, loops and
dangles to quantify the contributions of each element to a specific
property, for example, the modulus®®. Although informative, this
method is unsuitable for ordinary polymer networks with unknown
topology. Alternatively, astructure-from-property approach allows
the extraction of structural information. Over the years, the elastic
modulus or equilibrium swelling ratio have been used for evaluating

the crosslink density". Recently a step forward in model network
characterization was made by applying a double-quantum low-field
NMRin combination with equilibrium swelling experiments to assess
the network strand degree of polymerization and a defect weight frac-
tion by using the Flory-Rehner model of swollen phantom networks
and Miller-Macosko theory of gelation’. However, this approach
ignores contributions from entanglements and loops in the network
elasticresponse and is very sensitive to minute changes in the Flory-
Huggins parameter™.

We address this problem by developing a facile methodology
for deciphering the network structure fromits nonlinear response to
deformation (Fig. 1c). Unlike the traditional analysis of a single data
point, for example, the modulus at small deformations™***, we analyse
the entire shape of astress-strain curve, containing information about
the network structure. By expanding the analysis to multiple self-similar
networks, we use their cross-correlated mechanical response to quan-
tify the strand Kuhnlength, density of stress-supporting strands, onset
of entanglement-defined elasticity and, in some cases, effective cross-
link functionality and loop contributions. Our approach can be viewed
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Fig.1|Forensics methodology. a, Schematic of areal polymer network
(containing various defects such as loops, multiple strands, side chains and
dangles) defined by aset of structural parameters: degree of polymerization
between crosslinks (red dots), n, and entanglements, n.; crosslink functionality,
f;and the Kuhn length of a network strand, b. b, Synthesis of a series of self-
similar networks with different crosslink densities and unknown internal

organization (black box). ¢, Forensics procedure includes deformation test to
record nonlinear stress—strain curves characterized by the Young’s modulus,
E,;and strain-stiffening parameter, 8, and deciphering network structure from
the domain of the measured [£,;, ;] combinations to deliver the structural
parameters [f, by, n, ;, k;] using a theoretical model (Human Intelligence (HI)),
where k;is the network quality factor defined in the main text.

asamacroscopic analogue of single chain stretching experiments that
use large deformations to extract molecular information™",

The developed methodology does not require any assumptions
about the type of structural defects®", the mechanism of network
assembly®'*" or about the solvent quality in swelling tests'* to establish
structure-property relationships. Unlike spectroscopic' and scatter-
ing” techniques that involve complex structure-perturbing prepa-
ration procedures, our method deals with as-synthesized materials
intended for direct use in practical applications. Our approach takes
into account contributions from crosslinks, defects (loops and dan-
gling ends) and trapped entanglements (Fig.1a)"">'® responsible for the
elastic modulus at small deformations, £, as well asits strain-stiffening
atlarge deformations due to thefinite strand extensibility, 8. The only
requirement is to have a series of networks with varying crosslink
density prepared by the same synthesis protocol. Analysis of a single
networkis also possible but delivers less information; thisinformation
includes the degree of polymerization (DP) of the network strands in
weakly entangled networks and whether crosslinks or entanglements
control network elasticity.

The developed methodology was validated by applying the
forensicapproach to aset of basic systemsincluding natural rubber®,
end-crosslinked linear poly(dimethyl siloxane) (PDMS)” and brush-like
poly(n-butyl acrylate) (PBA) networks with a systematically varied
DP of side chains n,, = 0-41, number of repeat units between them
n,=1-10 and DP of the backbone between crosslinks n, =25-1,200
(refs.20,21).Since synthetic control of the network topology is limited,
we performed coarse-grained molecular dynamics simulations of
linear chain and diamond networks that allow accurate variations of
strand dimensions, effective crosslinking functionality and defect
distribution (Supplementary Information).

We first apply the forensic approach to results of molecular
dynamics simulations of phantom networks"* made by the crosslink-
ing of non-interacting bead-spring chains (precursor chains) with
aDP of N=1,025 in a melt state (Supplementary Information). The
networks have dangling ends and loops but are without entanglements
asnetwork strands are permitted to cross each other. The equation of
state for phantom networks undergoing uniaxial elongation, A, under

true stress, 0, is derived by considering individual network strands
as nonlinear springs of finite extensibility>*

Oirue (1) = (° —A-l)g 1+ 2<1 -

2 —1yy 2
A +27) ";M )) ] M

whichresultsin the appearance of the divergent termin the brackets.
The strain-stiffening behaviour is defined by the firmness parameter

B=(R2) /R0 = a(l - %{ (1 —exp (—%))) ()]

Equation (2) characterizes the strand extensibility, that is, how
much anetwork strand containing n, repeat units between crosslinks
each with projection length [ can be stretched from its initial
mean-square end-to-end distance <Ri2n> to the fully extended state
R..x = nl. The second part of equation (2) expresses B in terms of
a! = n /by, which represents the number of Kuhn segments of
length by per network strand. The structural shear modulus of phan-
tom networks, G, includes contributions from stress-supporting
strands between crosslinks with functionality f, dangling ends and

loops as

(RY)

2 1 1
6=Cnp R (1 - m) Cloop (n_x - /T/) @)

where G,,, = pk Tis the monomeric shear modulus defined by the mon-
omer number density p and the thermal energy k; T (k;, Boltzmann
constant; 7, absolute temperature). The coefficient C,,,, describes
contribution fromloops to G (insetin Fig.2a), while the factor 1/N quan-
tifies the decrease in the density of stress-supporting strands caused
by two dangling ends per precursor chain and having n,/2 monomers
each (inset in Fig. 2a and Supplementary Information)". The dangling
ends reduce the effective crosslink functionality, which is accounted
for by using the average value of the crosslink functionality (f) (Sup-
plementary Equations (2)-(5)).

Nature Materials | Volume 22 | November 2023 | 1394-1400

1395


http://www.nature.com/naturematerials

Article

https://doi.org/10.1038/s41563-023-01663-5

15 Dangling end s 7] 380
gling w0l B n o’ Ve Diamond networks
K] e Ve °
150 100 B e P S
< -
{E 2 H5]° // L7 7 LA N
= * Actual a 2.0 ~
> % W Ko g’ g
~ O
7 Cuoapl1-2/O/b h
o 17 B ” toop K Phantom networks
L7 1.0
17 by /Nl
] T T T 0.5 T T T T
[0] 0.05 0.10 0.15 0.20 3.0 3.2 3.4 3.6 3.8 4.0
A=L/Ly a=by/n,l hH

Fig. 2| Forensics of phantom networks. a, Stress-elongation curves obtained
by the computer simulation of phantom networks with different crosslink
densities made by crosslinking linear bead-spring chains with bead diameter o
and the DP N =1,025, undergoing uniaxial deformation at a constant volume from
initial size L,to L, described by the elongation ratioA = L/L,. Solid lines are the
best fits to equation (1) by considering G and S as fitting parameters
(Supplementary Table 1). b, The self-similarity of phantom networks of

linear chains is confirmed by plotting the reduced shear modulus % asa
function of parameter a = by/n,/, which effectively corresponds to strand DP n,
(G,,= 0.85k;T/0”). The dashed line is the best fit to the equation

y=0.143x - 0.00041. The inset shows the dependence of the calculated DP of
network strands, n, ., = bi/la, on the strands’ actual DP. The error bars are
smaller than the symbol size and calculated by using fitting errorsina.c,
Dependence of the loop coefficient C,,,, on the average crosslink functionality (f)
for linear chain networks (filled rhombs) and for diamond networks of end-linked
chains with n, =150 and a different density of dangling ends (filled circles). Note
that the large value of C,,,, for diamond networks follows fromits definition
(equation (3)). For perfect diamond networks with f=4, C,,,, = 2, since the ratio
Gb,/G,.pl=1(Supplementary Table1).

Figure 2 outlines the essential steps of the forensic approach
in application to a set of phantom networks with different crosslink
densities. First, structural shear modulus G and strand extensibility
parameter 3 are determined for each network by fitting their corre-
sponding stress—elongation curves to equation (1) (Fig. 2a and Sup-
plementary Fig. 1a). Second, we numerically solve equation (2) for a,
whichyields the DP of network strands as n, ., = by/la within 8% of the
actual n, (insetinFig.2b), using the value of b/l = 2.92 known for model
phantom networks (Supplementary Information). Third, we use the
determined aand S to rewrite equation (3) as

1

.3<1 )Cloop (b—lKa— N)'

a

Plotting the reduced shear modulus Ga/G,, as a function
of a enables the extracting of the structural parameters (f), Cioop
and N from the slope and intercept (Fig. 2b). Specifically, we obtain
(1-2/{f))Cio0p = 0.40 £ 0.01 and the DP of precursor chains N, = 998,
whichiis close to the actual value 1,025. Finally, the obtained n, and N
areused to calculate (f) (Supplementary Equation (5)) and plot Cy,., ({f))
(Fig.2c). Thisresults in C,,,, being a decreasing function of {f). Note that
the calculated C,,, includes contributions from all types of loops as
well as higher order corrections due to dangling ends that are omitted
in the analytical calculations of the loop factor®*,

A similar analysis can be applied to diamond networks of
end-crosslinked phantom strands with a varying density of dangling
ends (inset in Fig. 2¢, Supplementary Fig. 1c and Supplementary
Tablel). A perfect diamond network without dangling chains has cross-
link functionality f=4 and can be viewed as a hierarchical system of
loops with C,,,, =2 (Fig. 2¢). Dangles lead to a decrease of average (f)
andincrease of C,,,, Whichscalesinversely with (f). The inverse correla-
tionreflects the slower decrease of the ratio Gb,/G,,fl, characterizing
the network topology (network quality factor as defined below), in
comparison with changes in (f) and the fraction of the repeat units
n,/N in dangling ends (equation (3)), pointing out the repartitioning
of contributions from different network structural elements. Thus, the
forensic approach executed on model networks provides complete
information about the DP between crosslinks and effective crosslink
functionality, and also quantifies the effect of loops and dangling ends
onthe network elasticity.

2

G=Gn -5

“@)

The stress—strain analysis becomes more complex for real net-
works withtrapped entanglements, described by the following nonlin-

ear equation of state*” introduced in the spirit of the Mooney-Rivlin
formulation of network elasticity

1,22

[m(l_

where G, represents both the direct contributions of entanglements
and indirect effect of crosslinks on stress support by entanglements.
The entanglement term corresponds to a different mode of network
deformation associated with the ability of entanglements to slide,
redistributing the stress"?. This feature distinguishes entanglements
from chemical crosslinks. In addition, entanglements cause anindirect
effect on the structural modulus as

<070

a

where G, is absorbed by N, which describes the partitioning of repeat
units between stress-supporting structural elements (networks strands,
entanglement strands and loops) and stress-free elements (dangling
ends), and together with the sign in front of it, reflects the interplay
between the different contributions. In contrast to equations (3) and
(4),the sign‘+ indicates that entanglements enhance stiffness by over-
powering the contributions from dangles and loops. Unlike model
networks with specific incorporated defects® and the ones discussed
previously, the partitioning representation is more adequate for real
networks given the unfeasibility of separating individual contributions
from specific elements of unknown network topology. Furthermore,
this approach has proventobeinstrumentalin elucidating the interplay
of entanglements and chemical crosslinks as well as evaluating the
Kuhnlength, as discussed in the following.

We apply equations (5) and (6) to establish the evolution of the
mechanical properties of natural rubber uponincreasing the crosslink
density (Supplementary Figs. 4 and 5 and Supplementary Table 2)".
Two distinct deformation regimes with G < G.and G > G, separated by
asharp transition at 8= a = 0.027 were identified (Fig. 3a). From the
slope value a=0.13 at > 0.027 and the known b,/[=1.89 and f=4,

+ 8
3

, =2
Otrue (1) = (A =271) (% M) ]) (5)

1

G=G —
" a+Neff

(6)
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Fig. 3 | Elasticity and percolation transition. a, Evolution of the reduced
structural shear modulus G/G,, with the firmness parameter g for natural rubber
crosslinked in a melt of chains with number-averaged molecular mass

M, =195 kg mol™at 25 °C (f=4and G,, = 33.16 MPa). The solid line corresponds

tothe equation G/Gp, = 0.5(2@ g+ 1 )= 0.138+ 0.0033, for 8> 0.027.
(nx) (bg) Neff

The factor n,(a)/{ny) ~ 2 accounts for the renormalization of the DP of
network strands due to effects of strand polydispersity (Supplementary
Equations (10)-(15)). The solid-to-dashed linein the interval < 0.027

indicates the extrapolation to infinitely long strands with = 0. The insets show
computer simulation snapshots for entanglement-controlled (G < G,) and
crosslink-controlled (G > G,) networks. b, Shear modulus at small deformations
Gy = %((’)t)/c')/l)h1 =G, +G(A+2(1- ﬁ)_z)/3 asafunction of the ratio M./(M)
for randomly crosslinked natural rubber and tetrafunctional PDMS networks of
end-crosslinked chains of different molecular weights. In PDMS networks, the
number-averaged strand mass (M, ) varies between 2,460 and 58,000 g mol ™,
while the entanglement molecular weightin a PDMS meltis M, =12,000 g mol™.
Solid lines show general trends. The inset shows the normalized shear modulus
U = (Go — G,y )/ G,y versus the ratio n /(ny) for different networks, as indicated.
The coarse-grained networks studied in computer simulations are made by
crosslinking chains with DP =1,025 in a melt (filled rhombs; Supplementary Fig. 2
and Supplementary Table 1). Shear modulus G,, corresponds to the average value
inthe plateau regime, and n; defines the location of the percolation transition.
The sharpness of the transition is a general feature for all networks studied
experimentally. However, in computer simulations, the sharp transition
transforms into a crossover, for which there could be several explanations, as
discussed at the end of Supplementary Section 5.

we estimate (n,) = nj = 0.5/af ~ 143, which corresponds to the
transition at = 0.027 and accounts for strand polydispersity
(Supplementary Equations (10)-(15)). Since transition n; is larger
thanthe entanglement DPin a melt of precursor chains n, = 57 (ref. 25),
we argue that there is a percolation-like transition® between the two
types of networks, where elasticity is controlled by either crosslinks
({ny) < ny) orentanglements ((n) > n};insetsin Fig. 3a).In these net-
works, the entanglement contributions (before and after n) are quali-
tatively different, which results in the stepwise G increase, change of

its functional form (Fig. 3a) and non-monotonic dependence of the
entanglement modulus on (n,) (Supplementary Figs. 5b and 2b). Spe-
cifically, this transition highlights two different mechanisms of entan-
glement response to deformation. In densely crosslinked networks
({ny) < ny), theincrease of the Gand G, (Supplementary Fig. 5b) moduli
with increasing crosslinking density is due to a decrease of entangle-
ments in dangling ends combined with an enhancement of the con-
straintsimposed on entanglement fluctuations. In weakly crosslinked
networks ((n,) > n), these constraints are relaxed, and fluctuations
of entanglements are controlled by a soft confining potential like in a
melt of uncrosslinked chains. With increasing (n,), the entanglement
modulus G, monotonically increases towards the melt plateau value
(Supplementary Figs. 5b and 2b), while the structural modulus
decreases towards zero (Fig. 3a and Supplementary Table 1). Thisalso
explains why networks with (n,) = n. have an entanglement modulus
smaller than thatin amelt of precursor chains.

The existence of the transition is further corroborated by the
dependence of the shear modulus at small deformations (G,) on the
ratio n./ {n,) for natural rubber and tetrafunctional (f= 4) networks of
end-crosslinked PDMS chains (Supplementary Fig. 6, Supplementary
Table 3 and Fig.3b)’. Even though the networks differ in both chemistry
and topology, they demonstrate the same percolation behaviour dur-
ing a crosslinking process: a sharp increase in shear modulus at
(ny) = n} followed by alinear increase of modulus for (n,) < n}.Inthe
entanglement-controlled regime, nj < (n,), the plateau modulus of
the PDMS networks is close to that of an entangled linear PDMS melt
(G.=0.2 MPa). By contrast, the majority of the natural rubber samples
are softer than G, = 0.58 MPa (ref. 25), which suggests a dilution of
entanglements during the network formation. We observed no evi-
dence that would suggest a disruption of the network structure at low
crosslinking densities or explain the modulus drop. This finding
calls into question the commonly held belief of continuous
crossover between two types of networks®? and should be a subject
of future research.

Finally, weillustrate the applicability of the forensic approach to
networks with brush-like strands where stress-supporting backbones
arediluted by side chains with DP = n, separated by n,backbone repeat
units as defined by a dilution factor ¢ = n,/(n, + n ) (inset, Fig. 4a). As
for the linear chain networks with n,.= 0 (¢ = 1; Fig. 2a), the forensics
procedure begins with fitting experimental stress—elongation curves
(Fig. 4a) with equation (5) to obtain G and g values (Supplementary
Figs.7-13 and Supplementary Table 4). The Kuhnlength b, of the brush
backboneis determined from the slope of the reduced structural shear
modulus Ga/G,Be as afunction of a (Fig. 4b). For systems with alower
grafting density (linear and comb-like networks), several parallel lines
are observed withslopes equalto (1-2/f)l/b, whichis consistent with
thefact that byis not affected by loosely grafted side chains. The vertical
shift between the lines reflects changes in the fraction of repeat units
belonging to stress-supporting strands characterized by N, includ-
ing the contribution from trapped entanglements. The Kuhn length of
linear and comb-like PBA chains (f=4) isrevealedtobe by =bh=1.91nm,
whichisinexcellent agreement with literature values b =1.79-1.90 nm
of the bare PBA backbone”.

Indensely grafted bottlebrush networks, the inverse relationship
observed between slope and grafting density is due to steric repulsion
between side chains, resulting in backbone extension and stiffening
(Fig.4b).Plotting the normalized Kuhnlength b,/b as afunction of the
so-called crowding parameter @ demonstrates the effect of side chains
onstrand stiffness, where @ describes the degree of interpenetration
of side chains belonging to different brush molecules (Fig. 4¢)*%.
In the comb regime (® < @*=0.7), the steric repulsion between side
chains is weak and the effective Kuhn length of the backbone is by = b
(refs. 28,29). However, in bottlebrush systems (@ > @*), the repulsion
between densely grafted side chains results in backbone stiffening as
b= b®/d*(refs.29,30). This behaviour is universal as it was observed
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Fig. 4 | Forensics of brush network elasticity. a, Stress-elongation curves
measured upon uniaxial extension of PBA brush elastomers with different
grafting densities, asindicated. Solid lines are the best fits to equation (5) by
considering G, Gand S as fitting parameters (Supplementary Figs. 7-13 and
Supplementary Table 4). b, The reduced structural shear modulus described by
Ga
GmBo
comb (blue region) and bottlebrush (yellow region) PBA networks (f=4 and
G,,=20.83 MPa). Unlike entangled linear chain networks (equation (6)), the sign
‘~’infront of the 1/N;termindicates suppression of entanglements in brush
networks. The dashed lines are the best fits to the equation y = ax — ¢, where the
slope a and intercept c give by and N, respectively. The fits yield the following
(a,c) coefficients for the corresponding [n,,n,] pairs for networks with PBA linear
strands, (0.067,0.0014),[0,0] and (0.067,0.0002), [0,0]; PBA comb strands,

=@1-2) Lag- L )is plotted versus parameter a for linear and
ook Nefr

(0.067,0.0023), [11,5] and (0.066,0.0009), [11,10]; PBA bottlebrush strands,
(0.033,0.0017), [23,2] and (0.024,0.0014), [41,2]; and PDMS bottlebrush strands,
(0.027,0.0022), [14,1]. ¢, The reduced Kuhn length, b,/b, as a function of the
crowding parameter, & = (p‘lns"cl/Z /p(bl)y2 for PBA and PDMS brush polymers as
wellas computer simulation data (grey symbols)***°. The vertical dashed line
shows the crossover between the comb and bottlebrush regimesat ¢ = ¢* ~ 0.7
(refs.29,30). The legend for the symbolsis given in Supplementary Table 4.d,
Small-angle X-ray scattering intensity curves as a function of the scattering
vector g for PBAbrush networks at fixed targeted n, =100 with n, =1, n,=2and
various DPs of side chains, n,.. g* corresponds to the scattering vector at the peak
position and a.u. denotes arbitrary units. e, Correlation between bottlebrush
diameter d = 2r/g* calculated from g*in d and Kuhn length b, obtained from
forensic analysis. f, Correlation between the targeted DP crosslinks and ones
calculated by using the forensic approach.

for brush elastomers with different side chains (PBA, PDMS)***' as well
as in molecular dynamics simulations of bottlebrush melts, provid-
ing evidence of (chemical) universality (Fig. 4¢)***°. The obtained by
values were compared with the distance between adjacent brush back-
bones, where the intrinsic contrast of electron density at the backbone
resultsinadistinct scattering peak corresponding to the brush diam-
eter,d=2m/q* where g*is alocation of the peak in scattering function
(Fig. 4d)**". The excellent agreement between the bottlebrush diam-
eter dand the Kuhnlength derived from the forensicapproach (Fig. 4e)
is consistent with analytical calculations and computer simulations of
binbottlebrush melts?**,

Following the forensic protocol outlined previously in this paper,
we use the Kuhn length b, and value of parameter a to calculate the
DP between crosslinks, n, ... = by/la (Supplementary Table 4). The
obtained n, ., scaleslinearly withtargeted n,, which corroborates the
self-similarity of the synthesized networks (Fig. 4f). The deviation in
absolute numbersbetweenthetargeted and true n, valuesis ascribed to
theinevitable variationsin the synthetic conditions between individual
series, whichin turninfluences the crosslinking efficiency.

Varying network topologies results in different patterns of stress
distributionbetween structural elements. To quantify anetwork’s effec-
tiveness in absorbing an applied force, we introduce a quality factor,
k,defined as theratio of the real network modulus G to the defect-free
affine network model, G, in Which stressis evenly divided between
all network strands"*

_ G
Gafﬁne

= Gl @

whichreducesto k= Gn,/G,, for networks of linear flexible chains. This
parameteris directly related to the topology of the stress-supporting
scaffold (equations (3) and (6)) and depends on strand flexibility (Sup-
plementary Equations (17)-(21)). To account for by variationin linear,
brush-like, covalent and self-assembled networks, it is convenient to
plot the quality factor as a function of the number of Kuhn segments
pernetworkstrand a~! = n,l/by, to elucidate the variation of network
quality with strands of different flexibility (Fig.5). For defect-free unen-
tangled diamond networks, prepared by the end-crosslinking of iden-
tical chains®, k=1, indicating a uniform stress distribution
independent of n,. Inreal networks such as natural rubber', the reduc-
tion in stress-supporting strands results in k <1. Furthermore, the
entangled networks first demonstrate an upward trend followed by a
downwardtrendat ™! = 70 (ny ¢5c = 143), whichisascribed toatran-
sition to the entanglement-controlled network elasticity (Supplemen-
tary Table 2). Further reduction of k is observed for networks with
comb-like strands® due to a considerable fraction of stress-free side
chains and dangling ends (Supplementary Table 4). In bottlebrush
networks (Supplementary Table 4)?°, the increase of grafting density
leads to an additional decrease of k between 0.01 and 0.1 due to the
stiffening of the brush strands by steric repulsion between densely
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Fig. 5| Network topology classification. Mapping of polymer networks with
different topologies in terms of quality factor k and number of Kuhn segments
per network strand, a™* = n,l/B. The analysed networks include end-crosslinked
diamond networks studied in computer simulations (open rhombs), natural
rubber (open squares), networks of comb strands (half-filled symbols) and
bottlebrush strands (filled symbols) and a self-assembled network of linear-
bottlebrush-linear (PMMA-PDMS-PMMA) block copolymers (filled blue
hexagons); poly(methyl methacrylate) (PMMA). Legends for other symbols

are givenin Supplementary Tables 4 and 5. The pictures on the right show
computer simulation snapshots of the three-dimensional network structure and
schematics of the network mesh.

grafted side chains. For networks of comb and bottlebrush strands
with identical ¢, the quality factor decreases with increasing a’?, indi-
cating anincrease in the density of network defects with increasing DP
of the strands. For self-assembled networks of linear-bottlebrush-lin-
ear block copolymers?, the quality factor falls below the covalent brush
networks (Supplementary Table 5). The worsening of the stress distri-
bution in such networks is a result of stronger stretching of
stress-supporting bottlebrush strands and their substantial dilution
by bulky network nodes formed upon the self-assembly of the linear
end blocks. The data are separated into two groups of k values, cor-
responding to the spherical or cylindrical morphology of the linear
block domains.

Tosummarize, we presented a forensic methodology for decoding
the DP of stress-supporting strands, strand flexibility (Kuhn length) and
network topology by analysing the nonlinear response of elastomers to
deformation. Theintroduction of the quality factor, k, established a uni-
versal classification of self-assembled and chemical networks made of
strands with different molecular architectures according to the stress
distributionbetween network structural elements. For natural rubber
and PDMS networks, we discovered a percolation transition between
networks with crosslink- and entanglement-controlled elasticity. Appli-
cation of this technique to networks with brush-like strands elucidated
the dependence of the Kuhn length on the brush molecular architec-
ture. Future development of the forensic approach could transform
itintoavaluable technique for the characterization of more-complex
synthetic and biological networks and gels** due to its combination of
simplicity and comprehensive explanatory power’, for the accurate pre-
diction of their structures®>***~¢, Furthermore, decoding the structure
of real networks is crucial for the verification of architectural codes
generated by future artificial intelligence machinery in soft matter
design. By comparing the artificial-intelligence-recommended and
as-synthesized architectural codes, one will be able to optimize the
synthesis conditions to achieve optimal mechanical properties.

Online content

Anymethods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions

and competinginterests; and statements of dataand code availability
areavailable at https://doi.org/10.1038/s41563-023-01663-5.
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Methods

Computer simulations

Coarse-grained molecular dynamics simulations of entangled and
phantom networks were performed using the Large-scale Atomic/
Molecular Massively Parallel Simulator. Network strands were mod-
elled asbead-spring chains of beads interacting through the truncated
and shifted Lennard-Jones potential and connected by the finite exten-
sible nonlinear elastic bonds. The same finite extensible nonlinear
elasticbonds were used for crosslinks. In addition, the chain bending
rigidity was introduced by imposing an angular potential between two
neighbouring unit bond vectors. We studied phantom and entangled
networks of linear chains and diamond networks of phantom linear
strands. Networks were deformed uniaxially at aconstant volume and
temperature under three-dimensional periodic boundary conditions.
The true stress was calculated from the pressure tensor.

Nuclear magnetic resonance spectroscopy

Conversion of macromonomers was determined from’HNMR spectra
recorded on a Bruker NMR spectrometer operating at 400 MHz for'H
(Bruker AVANCE Il Nanobay 400 MHz). MestReNova v.14.1.0-24037
software (Mestrelab Research) was used to analyse the NMR spectra.

Mechanical properties

The mechanical properties for all samples were determined from
uniaxial tensile testing using an RSA-G2 dynamic mechanical analyser
(TAInstruments) at 22 °C. Samples were cut into dog-bone shapes with
a bridge of dimensions 2 mm x 1 mm x 12 mm and measured at room
temperature and astrain rate of 0.005 s corresponding to the elastic
plateauidentified by frequency sweeps. True stress g, versus elonga-
tion ratio A curves were fitted with equation (5) to extract G, G, and §.

Rheology

Frequency sweeps were performed on the ARES-G2 rheometer
(TA Instruments) with 8 mm compression plate geometries. Samples
were prepared by cutting 8-mm-diameter discs with an approximate
height of 1 mm (exact height was specified in the rheometer for each
sample). The frequency sweep was performed from 0.01to 100 Hz at
22 °Cwith astrain of e = 0.05.

X-ray scattering

Small-angle and medium-angle X-ray scattering was conducted at
the IDO2 beamline of the European Synchrotron Radiation Facility in
Grenoble, France. In the experiments, a photon energy of 12.46 keV
was used. Theincident monochromatic X-ray beam was collimated to
afootprint onthe sample of 100 x 200 pm?. The total photon flux was
estimated tobe 9 x 10" photons s, allowing for exposures of ~100 ms.
A Rayonix MX-170HS installed inside a motorized wagon that travels
in a 35-m-long vacuum flight tube was employed for the recording
of scattering intensities at a sample-to-detector distance of 1.5 m.
For optimization of the scattering signal, binning of 2 x 2 pixels was
applied, resultingin an effective pixel size of 89 pminbothdirections.

The two-dimensional data recorded in transmission were preliminar-
ily corrected, calibrated and reduced to one dimension by using the
small-angle X-ray scattering utilities platform.

Data availability

Alldata supporting the findings are provided as figures and accompa-
nying tables in the article and Supplementary Information. Data files
forallfigures are available fromthe corresponding authors onrequest.
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