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Forensics of polymer networks

Andrey V. Dobrynin    1  , Yuan Tian    1, Michael Jacobs1, Evgeniia A. Nikitina    2, 
Dimitri A. Ivanov    2,3, Mitchell Maw1, Foad Vashahi    1 & Sergei S. Sheiko    1 

Our lives cannot be imagined without polymer networks, which range 
widely, from synthetic rubber to biological tissues. Their properties—
elasticity, strain-stiffening and stretchability—are controlled by a 
convolution of chemical composition, strand conformation and network 
topology. Yet, since the discovery of rubber vulcanization by Charles 
Goodyear in 1839, the internal organization of networks has remained 
a sealed ‘black box’. While many studies show how network properties 
respond to topology variation, no method currently exists that would  
allow the decoding of the network structure from its properties.  
We address this problem by analysing networks’ nonlinear responses 
to deformation to quantify their crosslink density, strand flexibility and 
fraction of stress-supporting strands. The decoded structural information 
enables the quality control of network synthesis, comparison of targeted  
to actual architecture and network classification according to the 
effectiveness of stress distribution. The developed forensic approach  
is a vital step in future implementation of artificial intelligence principles  
for soft matter design.

The topology of polymer networks is an ill-defined product of erratic 
node formation processes. Any reasonable efforts to project the net-
work architecture by specifying stoichiometry and the synthetic 
pathway are instantly scrambled by the swift scaffold percolation 
generating a stochastic distribution of structural elements (Fig. 1a)1–4.  
The problem is further exacerbated by the limited ability of tradi-
tional characterization techniques to isolate and measure contribu-
tions from the individual building blocks within an interconnected 
construct (Fig. 1b)5. Even the seemingly trivial parameters such 
as actual crosslink density and functionality are unknown. There 
are two general approaches, both imperative, to uncover network 
organization. The so-called structure-to-property approach employs 
model networks with synthetically predefined strands, loops and 
dangles to quantify the contributions of each element to a specific 
property, for example, the modulus6–8. Although informative, this 
method is unsuitable for ordinary polymer networks with unknown 
topology. Alternatively, a structure-from-property approach allows 
the extraction of structural information. Over the years, the elastic 
modulus or equilibrium swelling ratio have been used for evaluating 

the crosslink density1,2. Recently a step forward in model network 
characterization was made by applying a double-quantum low-field 
NMR in combination with equilibrium swelling experiments to assess 
the network strand degree of polymerization and a defect weight frac-
tion by using the Flory–Rehner model of swollen phantom networks 
and Miller–Macosko theory of gelation9. However, this approach 
ignores contributions from entanglements and loops in the network 
elastic response and is very sensitive to minute changes in the Flory– 
Huggins parameter10.

We address this problem by developing a facile methodology 
for deciphering the network structure from its nonlinear response to 
deformation (Fig. 1c). Unlike the traditional analysis of a single data 
point, for example, the modulus at small deformations1,2,4,8, we analyse 
the entire shape of a stress–strain curve, containing information about 
the network structure. By expanding the analysis to multiple self-similar 
networks, we use their cross-correlated mechanical response to quan-
tify the strand Kuhn length, density of stress-supporting strands, onset 
of entanglement-defined elasticity and, in some cases, effective cross-
link functionality and loop contributions. Our approach can be viewed 
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true stress, σtrue, is derived by considering individual network strands 
as nonlinear springs of finite extensibility3,23

σtrue (λ) = (λ2 − λ−1)G3 [1 + 2(1 −
β (λ2 + 2λ−1)

3 )
−2

] (1)

which results in the appearance of the divergent term in the brackets. 
The strain-stiffening behaviour is defined by the firmness parameter

β ≡ ⟨R2
in⟩ /R

2
max = α (1 − α

2 (1 − exp (− 2
α ))) . (2)

Equation (2) characterizes the strand extensibility, that is, how 
much a network strand containing nx repeat units between crosslinks 
each with projection length l can be stretched from its initial 
mean-square end-to-end distance ⟨R2

in⟩  to the fully extended state 
Rmax = nxl. The second part of equation (2) expresses β in terms of 
α−1 = nxl/bK , which represents the number of Kuhn segments of 
length bK per network strand. The structural shear modulus of phan-
tom networks, G, includes contributions from stress-supporting 
strands between crosslinks with functionality f, dangling ends and 
loops as

G = Gm
⟨R2

in⟩
bKRmax

(1 − 2
⟨ f ⟩

)Cloop (
1
nx

− 1
N ) (3)

where Gm = ρkBT is the monomeric shear modulus defined by the mon-
omer number density ρ and the thermal energy kBT (kB, Boltzmann 
constant; T, absolute temperature). The coefficient Cloop describes 
contribution from loops to G (inset in Fig. 2a), while the factor 1/N quan-
tifies the decrease in the density of stress-supporting strands caused 
by two dangling ends per precursor chain and having nx/2 monomers 
each (inset in Fig. 2a and Supplementary Information)1,2. The dangling 
ends reduce the effective crosslink functionality, which is accounted 
for by using the average value of the crosslink functionality ⟨ f ⟩ (Sup-
plementary Equations (2)–(5)).

as a macroscopic analogue of single chain stretching experiments that 
use large deformations to extract molecular information11,12.

The developed methodology does not require any assumptions 
about the type of structural defects8,13, the mechanism of network 
assembly8,14,15 or about the solvent quality in swelling tests1,2 to establish 
structure–property relationships. Unlike spectroscopic16 and scatter-
ing17 techniques that involve complex structure-perturbing prepa-
ration procedures, our method deals with as-synthesized materials 
intended for direct use in practical applications. Our approach takes 
into account contributions from crosslinks, defects (loops and dan-
gling ends) and trapped entanglements (Fig.1a)1,13,18 responsible for the 
elastic modulus at small deformations, E0, as well as its strain-stiffening 
at large deformations due to the finite strand extensibility, β. The only 
requirement is to have a series of networks with varying crosslink 
density prepared by the same synthesis protocol. Analysis of a single 
network is also possible but delivers less information; this information 
includes the degree of polymerization (DP) of the network strands in 
weakly entangled networks and whether crosslinks or entanglements 
control network elasticity.

The developed methodology was validated by applying the 
forensic approach to a set of basic systems including natural rubber19, 
end-crosslinked linear poly(dimethyl siloxane) (PDMS)7 and brush-like 
poly(n-butyl acrylate) (PBA) networks with a systematically varied 
DP of side chains nsc = 0–41, number of repeat units between them 
ng = 1–10 and DP of the backbone between crosslinks nx = 25–1,200  
(refs. 20,21). Since synthetic control of the network topology is limited, 
we performed coarse-grained molecular dynamics simulations of  
linear chain and diamond networks that allow accurate variations of 
strand dimensions, effective crosslinking functionality and defect 
distribution (Supplementary Information).

We first apply the forensic approach to results of molecular 
dynamics simulations of phantom networks1,22 made by the crosslink-
ing of non-interacting bead–spring chains (precursor chains) with 
a DP of N = 1,025 in a melt state (Supplementary Information). The 
networks have dangling ends and loops but are without entanglements 
as network strands are permitted to cross each other. The equation of 
state for phantom networks undergoing uniaxial elongation, λ, under 
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Fig. 1 | Forensics methodology. a, Schematic of a real polymer network 
(containing various defects such as loops, multiple strands, side chains and 
dangles) defined by a set of structural parameters: degree of polymerization 
between crosslinks (red dots), nx and entanglements, ne; crosslink functionality,  
f; and the Kuhn length of a network strand, bK. b, Synthesis of a series of self-
similar networks with different crosslink densities and unknown internal 

organization (black box). c, Forensics procedure includes deformation test to 
record nonlinear stress–strain curves characterized by the Young’s modulus, 
E0,i and strain-stiffening parameter, βi, and deciphering network structure from 
the domain of the measured [E0,i, βi] combinations to deliver the structural 
parameters [f, bK, nx,i, κi] using a theoretical model (Human Intelligence (HI)), 
where κi is the network quality factor defined in the main text.
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Figure 2 outlines the essential steps of the forensic approach 
in application to a set of phantom networks with different crosslink 
densities. First, structural shear modulus G and strand extensibility 
parameter β are determined for each network by fitting their corre-
sponding stress–elongation curves to equation (1) (Fig. 2a and Sup-
plementary Fig. 1a). Second, we numerically solve equation (2) for α, 
which yields the DP of network strands as nx,calc = bK/lα within 8% of the 
actual nx (inset in Fig. 2b), using the value of bK/l = 2.92 known for model 
phantom networks (Supplementary Information). Third, we use the 
determined α and β to rewrite equation (3) as

G = Gm
β
α (1 − 2

⟨ f ⟩
)Cloop (

l
bK

α − 1
N) . (4)

Plotting the reduced shear modulus Gα/Gmβ as a function  
of α enables the extracting of the structural parameters 〈f〉, Cloop  
and N from the slope and intercept (Fig. 2b). Specifically, we obtain 
(1 – 2/〈f〉)Cloop ≈ 0.40 ± 0.01 and the DP of precursor chains Ncalc = 998, 
which is close to the actual value 1,025. Finally, the obtained nx and N 
are used to calculate 〈f〉 (Supplementary Equation (5)) and plot Cloop(〈f〉) 
(Fig. 2c). This results in Cloop being a decreasing function of 〈f〉. Note that 
the calculated Cloop includes contributions from all types of loops as 
well as higher order corrections due to dangling ends that are omitted 
in the analytical calculations of the loop factor8,24.

A similar analysis can be applied to diamond networks of 
end-crosslinked phantom strands with a varying density of dangling 
ends (inset in Fig. 2c, Supplementary Fig. 1c and Supplementary  
Table 1). A perfect diamond network without dangling chains has cross-
link functionality f = 4 and can be viewed as a hierarchical system of 
loops with Cloop = 2 (Fig. 2c). Dangles lead to a decrease of average 〈f〉 
and increase of Cloop, which scales inversely with 〈f〉. The inverse correla-
tion reflects the slower decrease of the ratio GbK/Gmβl, characterizing 
the network topology (network quality factor as defined below), in 
comparison with changes in 〈f〉 and the fraction of the repeat units 
nx/N in dangling ends (equation (3)), pointing out the repartitioning 
of contributions from different network structural elements. Thus, the 
forensic approach executed on model networks provides complete 
information about the DP between crosslinks and effective crosslink 
functionality, and also quantifies the effect of loops and dangling ends 
on the network elasticity.

The stress–strain analysis becomes more complex for real net-
works with trapped entanglements, described by the following nonlin-
ear equation of state3,23 introduced in the spirit of the Mooney–Rivlin 
formulation of network elasticity1,22

σtrue (λ) = (λ2 − λ−1) (Ge
λ
+ G

3 [1 + 2(1 −
β (λ2 + 2λ−1)

3 )
−2

]) (5)

where Ge represents both the direct contributions of entanglements 
and indirect effect of crosslinks on stress support by entanglements. 
The entanglement term corresponds to a different mode of network 
deformation associated with the ability of entanglements to slide, 
redistributing the stress1,22. This feature distinguishes entanglements 
from chemical crosslinks. In addition, entanglements cause an indirect 
effect on the structural modulus as

G = Gm
β
α (1 − 2

f ) (
l
bK

α + 1
Neff

) (6)

where Cloop is absorbed by Neff, which describes the partitioning of repeat 
units between stress-supporting structural elements (networks strands, 
entanglement strands and loops) and stress-free elements (dangling 
ends), and together with the sign in front of it, reflects the interplay 
between the different contributions. In contrast to equations (3) and 
(4), the sign ‘+’ indicates that entanglements enhance stiffness by over-
powering the contributions from dangles and loops. Unlike model 
networks with specific incorporated defects8 and the ones discussed 
previously, the partitioning representation is more adequate for real 
networks given the unfeasibility of separating individual contributions 
from specific elements of unknown network topology. Furthermore, 
this approach has proven to be instrumental in elucidating the interplay 
of entanglements and chemical crosslinks as well as evaluating the 
Kuhn length, as discussed in the following.

We apply equations (5) and (6) to establish the evolution of the 
mechanical properties of natural rubber upon increasing the crosslink 
density (Supplementary Figs. 4 and 5 and Supplementary Table 2)19. 
Two distinct deformation regimes with G < Ge and G > Ge separated by 
a sharp transition at β ≈ α = 0.027 were identified (Fig. 3a). From the 
slope value a = 0.13 at β > 0.027 and the known bK/l = 1.89 and f = 4,  
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Fig. 2 | Forensics of phantom networks. a, Stress–elongation curves obtained 
by the computer simulation of phantom networks with different crosslink 
densities made by crosslinking linear bead–spring chains with bead diameter σ 
and the DP N = 1,025, undergoing uniaxial deformation at a constant volume from 
initial size L0 to L, described by the elongation ratio λ = L/L0. Solid lines are the 
best fits to equation (1) by considering G and β as fitting parameters 
(Supplementary Table 1). b, The self-similarity of phantom networks of  

linear chains is confirmed by plotting the reduced shear modulus 
Gα
Gmβ as a 

function of parameter α = bK/nxl, which effectively corresponds to strand DP nx 
(Gm = 0.85kBT/σ3). The dashed line is the best fit to the equation 

y = 0.143x − 0.00041. The inset shows the dependence of the calculated DP of 
network strands, nx,calc = bK/lα, on the strands’ actual DP. The error bars are 
smaller than the symbol size and calculated by using fitting errors in a. c, 
Dependence of the loop coefficient Cloop on the average crosslink functionality 〈f〉 
for linear chain networks (filled rhombs) and for diamond networks of end-linked 
chains with nx = 150 and a different density of dangling ends (filled circles). Note 
that the large value of Cloop for diamond networks follows from its definition 
(equation (3)). For perfect diamond networks with f = 4, Cloop = 2, since the ratio 
GbK/Gmβl = 1 (Supplementary Table 1).
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we estimate ⟨nx⟩ = n∗x = 0.5/aβ ≈ 143 , which corresponds to the  
transition at β = 0.027 and accounts for strand polydispersity  
(Supplementary Equations (10)–(15)). Since transition n∗x  is larger  
than the entanglement DP in a melt of precursor chains ne ≈ 57 (ref. 25), 
we argue that there is a percolation-like transition26 between the two 
types of networks, where elasticity is controlled by either crosslinks 
(⟨nx⟩ < n∗x) or entanglements (⟨nx⟩ > n∗x; insets in Fig. 3a). In these net-
works, the entanglement contributions (before and after n∗x) are quali-
tatively different, which results in the stepwise G increase, change of 

its functional form (Fig. 3a) and non-monotonic dependence of the 
entanglement modulus on 〈nx〉 (Supplementary Figs. 5b and 2b). Spe-
cifically, this transition highlights two different mechanisms of entan-
glement response to deformation. In densely crosslinked networks 
(⟨nx⟩ < n∗x), the increase of the G and Ge (Supplementary Fig. 5b) moduli 
with increasing crosslinking density is due to a decrease of entangle-
ments in dangling ends combined with an enhancement of the con-
straints imposed on entanglement fluctuations. In weakly crosslinked 
networks (⟨nx⟩ > n∗x), these constraints are relaxed, and fluctuations 
of entanglements are controlled by a soft confining potential like in a 
melt of uncrosslinked chains. With increasing 〈nx〉, the entanglement 
modulus Ge monotonically increases towards the melt plateau value 
(Supplementary Figs. 5b and 2b), while the structural modulus 
decreases towards zero (Fig. 3a and Supplementary Table 1). This also 
explains why networks with 〈nx〉 ≈ ne have an entanglement modulus 
smaller than that in a melt of precursor chains.

The existence of the transition is further corroborated by the 
dependence of the shear modulus at small deformations (G0) on the 
ratio ne/ ⟨nx⟩ for natural rubber and tetrafunctional (f = 4) networks of 
end-crosslinked PDMS chains (Supplementary Fig. 6, Supplementary 
Table 3 and Fig. 3b)7. Even though the networks differ in both chemistry 
and topology, they demonstrate the same percolation behaviour dur-
ing a crosslinking process: a sharp increase in shear modulus at  
⟨nx⟩ = n∗x followed by a linear increase of modulus for ⟨nx⟩ < n∗x. In the 
entanglement-controlled regime, n∗x < ⟨nx⟩, the plateau modulus of 
the PDMS networks is close to that of an entangled linear PDMS melt 
(Ge = 0.2 MPa). By contrast, the majority of the natural rubber samples 
are softer than Ge = 0.58 MPa (ref. 25), which suggests a dilution of 
entanglements during the network formation. We observed no evi-
dence that would suggest a disruption of the network structure at low 
crosslinking densities or explain the modulus drop. This finding  
calls into question the commonly held belief of continuous  
crossover between two types of networks6,22 and should be a subject 
of future research.

Finally, we illustrate the applicability of the forensic approach to 
networks with brush-like strands where stress-supporting backbones 
are diluted by side chains with DP = nsc separated by ng backbone repeat 
units as defined by a dilution factor φ = ng/(ng + nsc) (inset, Fig. 4a). As 
for the linear chain networks with nsc = 0 (φ = 1; Fig. 2a), the forensics 
procedure begins with fitting experimental stress–elongation curves 
(Fig. 4a) with equation (5) to obtain G and β values (Supplementary 
Figs. 7–13 and Supplementary Table 4). The Kuhn length bK of the brush 
backbone is determined from the slope of the reduced structural shear 
modulus Gα/Gmβφ as a function of α (Fig. 4b). For systems with a lower 
grafting density (linear and comb-like networks), several parallel lines 
are observed with slopes equal to (1 – 2/f)l/bK, which is consistent with 
the fact that bK is not affected by loosely grafted side chains. The vertical 
shift between the lines reflects changes in the fraction of repeat units 
belonging to stress-supporting strands characterized by Neff, includ-
ing the contribution from trapped entanglements. The Kuhn length of 
linear and comb-like PBA chains (f = 4) is revealed to be bK = b = 1.91 nm, 
which is in excellent agreement with literature values b = 1.79–1.90 nm 
of the bare PBA backbone27.

In densely grafted bottlebrush networks, the inverse relationship 
observed between slope and grafting density is due to steric repulsion 
between side chains, resulting in backbone extension and stiffening 
(Fig. 4b). Plotting the normalized Kuhn length bK/b as a function of the 
so-called crowding parameter Φ demonstrates the effect of side chains 
on strand stiffness, where Φ describes the degree of interpenetration 
of side chains belonging to different brush molecules (Fig. 4c)28,29. 
In the comb regime (Φ < Φ*≈0.7), the steric repulsion between side 
chains is weak and the effective Kuhn length of the backbone is bK ≈ b 
(refs. 28,29). However, in bottlebrush systems (Φ > Φ*), the repulsion 
between densely grafted side chains results in backbone stiffening as 
bK ≈ bΦ/Φ* (refs. 29,30). This behaviour is universal as it was observed 
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Fig. 3 | Elasticity and percolation transition. a, Evolution of the reduced 
structural shear modulus G/Gm with the firmness parameter β for natural rubber 
crosslinked in a melt of chains with number-averaged molecular mass 
Mn = 195 kg mol–1 at 25 °C (f = 4 and Gm = 33.16 MPa). The solid line corresponds  

to the equation , for β > 0.027. 

The factor nx(α)/⟨nx⟩ ≈ 2 accounts for the renormalization of the DP of  
network strands due to effects of strand polydispersity (Supplementary 
Equations (10)–(15)). The solid-to-dashed line in the interval β < 0.027  
indicates the extrapolation to infinitely long strands with β = 0. The insets show 
computer simulation snapshots for entanglement-controlled (G < Ge) and 
crosslink-controlled (G > Ge) networks. b, Shear modulus at small deformations 

G0 ≡
1
3
(∂σ/∂λ)λ=1 = Ge + G(1+ 2(1− β)−2)/3 as a function of the ratio Me/⟨Mx⟩ 

for randomly crosslinked natural rubber and tetrafunctional PDMS networks of 
end-crosslinked chains of different molecular weights. In PDMS networks, the 
number-averaged strand mass ⟨Mx⟩ varies between 2,460 and 58,000 g mol–1, 
while the entanglement molecular weight in a PDMS melt is Me = 12,000 g mol–1. 
Solid lines show general trends. The inset shows the normalized shear modulus 
Ψ = (G0 − Gav)/Gav versus the ratio n∗x /⟨nx⟩ for different networks, as indicated. 
The coarse-grained networks studied in computer simulations are made by 
crosslinking chains with DP = 1,025 in a melt (filled rhombs; Supplementary Fig. 2 
and Supplementary Table 1). Shear modulus Gav corresponds to the average value 
in the plateau regime, and n∗x defines the location of the percolation transition. 
The sharpness of the transition is a general feature for all networks studied 
experimentally. However, in computer simulations, the sharp transition 
transforms into a crossover, for which there could be several explanations, as 
discussed at the end of Supplementary Section 5.
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for brush elastomers with different side chains (PBA, PDMS)20,21 as well 
as in molecular dynamics simulations of bottlebrush melts, provid-
ing evidence of (chemical) universality (Fig. 4c)29,30. The obtained bK 
values were compared with the distance between adjacent brush back-
bones, where the intrinsic contrast of electron density at the backbone 
results in a distinct scattering peak corresponding to the brush diam-
eter, d = 2π/q* where q* is a location of the peak in scattering function  
(Fig. 4d)21,31. The excellent agreement between the bottlebrush diam-
eter d and the Kuhn length derived from the forensic approach (Fig. 4e) 
is consistent with analytical calculations and computer simulations of 
bK in bottlebrush melts28,32.

Following the forensic protocol outlined previously in this paper, 
we use the Kuhn length bK and value of parameter α to calculate the 
DP between crosslinks, nx,calc = bK/lα (Supplementary Table 4). The 
obtained nx,calc scales linearly with targeted nx, which corroborates the 
self-similarity of the synthesized networks (Fig. 4f). The deviation in 
absolute numbers between the targeted and true nx values is ascribed to 
the inevitable variations in the synthetic conditions between individual 
series, which in turn influences the crosslinking efficiency.

Varying network topologies results in different patterns of stress 
distribution between structural elements. To quantify a network’s effec-
tiveness in absorbing an applied force, we introduce a quality factor, 
κ, defined as the ratio of the real network modulus G to the defect-free 
affine network model, Gaffine, in which stress is evenly divided between 
all network strands1,22

which reduces to κ = Gnx/Gm for networks of linear flexible chains. This 
parameter is directly related to the topology of the stress-supporting 
scaffold (equations (3) and (6)) and depends on strand flexibility (Sup-
plementary Equations (17)–(21)). To account for bK variation in linear, 
brush-like, covalent and self-assembled networks, it is convenient to 
plot the quality factor as a function of the number of Kuhn segments 
per network strand , to elucidate the variation of network 
quality with strands of different flexibility (Fig. 5). For defect-free unen-
tangled diamond networks, prepared by the end-crosslinking of iden-
tical chains33, κ = 1, indicating a uniform stress distribution 
independent of nx. In real networks such as natural rubber19, the reduc-
tion in stress-supporting strands results in κ < 1. Furthermore, the 
entangled networks first demonstrate an upward trend followed by a 
downward trend at , which is ascribed to a tran-
sition to the entanglement-controlled network elasticity (Supplemen-
tary Table 2). Further reduction of κ is observed for networks with 
comb-like strands20 due to a considerable fraction of stress-free side 
chains and dangling ends (Supplementary Table 4). In bottlebrush 
networks (Supplementary Table 4)20, the increase of grafting density 
leads to an additional decrease of κ between 0.01 and 0.1 due to the 
stiffening of the brush strands by steric repulsion between densely 
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Fig. 4 | Forensics of brush network elasticity. a, Stress–elongation curves 
measured upon uniaxial extension of PBA brush elastomers with different 
grafting densities, as indicated. Solid lines are the best fits to equation (5) by 
considering Ge, G and β as fitting parameters (Supplementary Figs. 7–13 and 
Supplementary Table 4). b, The reduced structural shear modulus described by 

 is plotted versus parameter α for linear and  

comb (blue region) and bottlebrush (yellow region) PBA networks (f = 4 and 
Gm = 20.83 MPa). Unlike entangled linear chain networks (equation (6)), the sign 
‘−’ in front of the 1/Neff term indicates suppression of entanglements in brush 
networks. The dashed lines are the best fits to the equation y = ax − c, where the 
slope a and intercept c give bK and Neff, respectively. The fits yield the following 
(a,c) coefficients for the corresponding [ng,nsc] pairs for networks with PBA linear 
strands, (0.067,0.0014), [0,0] and (0.067,0.0002), [0,0]; PBA comb strands, 

(0.067,0.0023), [11,5] and (0.066,0.0009), [11,10]; PBA bottlebrush strands, 
(0.033,0.0017), [23,2] and (0.024,0.0014), [41,2]; and PDMS bottlebrush strands, 
(0.027,0.0022), [14,1]. c, The reduced Kuhn length, bK/b, as a function of the 
crowding parameter, Φ  for PBA and PDMS brush polymers as 
well as computer simulation data (grey symbols)29,30. The vertical dashed line 
shows the crossover between the comb and bottlebrush regimes at Φ Φ  
(refs. 29,30). The legend for the symbols is given in Supplementary Table 4. d, 
Small-angle X-ray scattering intensity curves as a function of the scattering 
vector q for PBA brush networks at fixed targeted nx = 100 with ng = 1, ng = 2 and 
various DPs of side chains, nsc. q* corresponds to the scattering vector at the peak 
position and a.u. denotes arbitrary units. e, Correlation between bottlebrush 
diameter d = 2π/q* calculated from q* in d and Kuhn length bK obtained from 
forensic analysis. f, Correlation between the targeted DP crosslinks and ones 
calculated by using the forensic approach.
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grafted side chains. For networks of comb and bottlebrush strands 
with identical φ, the quality factor decreases with increasing α–1, indi-
cating an increase in the density of network defects with increasing DP 
of the strands. For self-assembled networks of linear–bottlebrush–lin-
ear block copolymers21, the quality factor falls below the covalent brush 
networks (Supplementary Table 5). The worsening of the stress distri-
bution in such networks is a result of stronger stretching of 
stress-supporting bottlebrush strands and their substantial dilution 
by bulky network nodes formed upon the self-assembly of the linear 
end blocks. The data are separated into two groups of κ values, cor-
responding to the spherical or cylindrical morphology of the linear 
block domains.

To summarize, we presented a forensic methodology for decoding 
the DP of stress-supporting strands, strand flexibility (Kuhn length) and 
network topology by analysing the nonlinear response of elastomers to 
deformation. The introduction of the quality factor, κ, established a uni-
versal classification of self-assembled and chemical networks made of 
strands with different molecular architectures according to the stress 
distribution between network structural elements. For natural rubber 
and PDMS networks, we discovered a percolation transition between 
networks with crosslink- and entanglement-controlled elasticity. Appli-
cation of this technique to networks with brush-like strands elucidated 
the dependence of the Kuhn length on the brush molecular architec-
ture. Future development of the forensic approach could transform 
it into a valuable technique for the characterization of more-complex 
synthetic and biological networks and gels34 due to its combination of 
simplicity and comprehensive explanatory power5, for the accurate pre-
diction of their structures3,4,34–36. Furthermore, decoding the structure 
of real networks is crucial for the verification of architectural codes 
generated by future artificial intelligence machinery in soft matter 
design. By comparing the artificial-intelligence-recommended and 
as-synthesized architectural codes, one will be able to optimize the 
synthesis conditions to achieve optimal mechanical properties.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 

and competing interests; and statements of data and code availability 
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Methods
Computer simulations
Coarse-grained molecular dynamics simulations of entangled and 
phantom networks were performed using the Large-scale Atomic/
Molecular Massively Parallel Simulator. Network strands were mod-
elled as bead–spring chains of beads interacting through the truncated 
and shifted Lennard-Jones potential and connected by the finite exten-
sible nonlinear elastic bonds. The same finite extensible nonlinear 
elastic bonds were used for crosslinks. In addition, the chain bending 
rigidity was introduced by imposing an angular potential between two 
neighbouring unit bond vectors. We studied phantom and entangled 
networks of linear chains and diamond networks of phantom linear 
strands. Networks were deformed uniaxially at a constant volume and 
temperature under three-dimensional periodic boundary conditions. 
The true stress was calculated from the pressure tensor.

Nuclear magnetic resonance spectroscopy
Conversion of macromonomers was determined from 1H NMR spectra 
recorded on a Bruker NMR spectrometer operating at 400 MHz for 1H 
(Bruker AVANCE III Nanobay 400 MHz). MestReNova v.14.1.0-24037 
software (Mestrelab Research) was used to analyse the NMR spectra.

Mechanical properties
The mechanical properties for all samples were determined from 
uniaxial tensile testing using an RSA-G2 dynamic mechanical analyser 
(TA Instruments) at 22 °C. Samples were cut into dog-bone shapes with 
a bridge of dimensions 2 mm × 1 mm × 12 mm and measured at room 
temperature and a strain rate of 0.005 s−1 corresponding to the elastic 
plateau identified by frequency sweeps. True stress σtrue versus elonga-
tion ratio λ curves were fitted with equation (5) to extract G, Ge and β.

Rheology
Frequency sweeps were performed on the ARES-G2 rheometer  
(TA Instruments) with 8 mm compression plate geometries. Samples 
were prepared by cutting 8-mm-diameter discs with an approximate 
height of 1 mm (exact height was specified in the rheometer for each 
sample). The frequency sweep was performed from 0.01 to 100 Hz at 
22 °C with a strain of ε = 0.05.

X-ray scattering
Small-angle and medium-angle X-ray scattering was conducted at 
the ID02 beamline of the European Synchrotron Radiation Facility in 
Grenoble, France. In the experiments, a photon energy of 12.46 keV 
was used. The incident monochromatic X-ray beam was collimated to 
a footprint on the sample of 100 × 200 μm2. The total photon flux was 
estimated to be 9 × 1011 photons s–1, allowing for exposures of ~100 ms. 
A Rayonix MX-170HS installed inside a motorized wagon that travels 
in a 35-m-long vacuum flight tube was employed for the recording 
of scattering intensities at a sample-to-detector distance of 1.5 m. 
For optimization of the scattering signal, binning of 2 × 2 pixels was 
applied, resulting in an effective pixel size of 89 μm in both directions. 

The two-dimensional data recorded in transmission were preliminar-
ily corrected, calibrated and reduced to one dimension by using the 
small-angle X-ray scattering utilities platform.

Data availability
All data supporting the findings are provided as figures and accompa-
nying tables in the article and Supplementary Information. Data files 
for all figures are available from the corresponding authors on request.
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