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Abstract— Collaborative robots stand to have an immense
impact on both human welfare in domestic service applications
and industrial superiority in advanced manufacturing with
dexterous assembly. The outstanding challenge is providing
robotic fingertips with a physical design that makes them adept
at performing dexterous tasks that require high-resolution,
calibrated shape reconstruction and force sensing. In this work,
we present DenseTact 2.0, an optical-tactile sensor capable of
visualizing the deformed surface of a soft fingertip and using
that image in a neural network to perform both calibrated
shape reconstruction and 6-axis wrench estimation. We demon-
strate the sensor accuracy of 0.3633mm per pixel for shape
reconstruction, 0.410N for forces, 0.387N ·mm for torques, and
the ability to calibrate new fingers through transfer learning,
which achieves comparable performance with only 12% of the
non-transfer learning dataset size.

I. INTRODUCTION

Robots must be able to manipulate objects with dexterity
comparable to human performance in order to be effective
collaborators in environments designed for humans. This
requires both the physical design of a robotic fingertip that
can accommodate complex objects as well as the modeling
of the contact region relating deformation to calibrated shape
and force measurements. Many robotic fingertip designs exist
with various strengths and weaknesses with representative
examples that include piezoelectric [1], optical [2]–[4], resis-
tance [5], capacity [6] and hall effect [7]. Robotic fingertips
can be broadly categorized in terms of transduction based
sensors, where an electrical signal is caused by deformation
and used to provide information of shape and force, versus
optical-based sensors, where an image of the fingertip is ob-
served and the deformation of the soft fingertip is correlated
to shape and forces. For all of these sensors, the objectives
are high contact resolution and calibration for both shape and
forces. The challenge is obtaining high-resolution calibration
for the shape and forces. Previous work explored high-
resolution shape calibration for a vision based sensor [8], but
a primary limitation was the inability to sense forces as well.
A comparison of the proposed sensor and competitive sensor
models is presented in Table I with comparison metrics for
sensor resolution, design shape, and force sensing modality.

To obtain the shape from the interior of an optical tactile
sensor, the incidence angle of the interior projected light with
the surface of the sensor must be used to approximate the
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Fig. 1: DenseTact 2.0. Sensors are pinching ATI Nano
sensor™. Image (a) and (c) shows the image taken from
upper and lower sensors. Image (b) and (d) shows the corre-
sponding resultant depth images. Right pointcloud represents
the 3D reconstructed surface of sensor. Right middle matrix
shows the estimated force from DenseTact 2.0s and ATI
sensor.

normal to the surface, and with these normal’s the sensor
shape can be constructed from Poisson integration either
directly or through an approximation method that leverages
neural networks [8]. To obtain forces, some studies leverage
an inverse FEM model [9], use of an expressing marker, or
leverage a skeletal structure for precise estimation via image
input [10]. For all of these approaches, the deformation of
the sensor must be tracked to correlate to observed forces. If
a soft fingertip is used without skeletal structure [10], [11],
then the force distribution approximation may require a huge
computational load due to the nature of the hyper-elastic
material of the sensor. This can be mitigated with data-
driven models, which can approximate forces from a single
deflected image. To track the interior of the sensor, markers
must adorn the interior in order to observe normal, shear and
torsional deflection. However simple patterns such as dots
can suffer the effects of aliasing under large deflection [12].
To accommodate this, we propose the use of a randomized,
continuous pattern deposited on the surface of the sensor for
tracking large deflection without aliasing.

Our contributions are as follows: 1) We present the phys-
ical design of the DenseTact 2.0 which has upgrades in
modularity, lighting design, and is approximately 60% the
size of DenseTact 1.0 [8] with a novel surface patterning
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Name Resolution Force range Shape
Gelslim 3.0 [11] 640×480 unspecified full

TaTa [13] 1280×720 × full
Skin sensor [7] 0.1 mm 0 ∼ 3N, 1 partial
Softbubble [14] 224×171 × full
Omnitact [15] 400×400 × partial
NeuTouch [16] 39 × ×
Romero [17] 640×480 × full

Optofiber-sensor [18] 61 fibers 0.03 ∼ 8N, 5 ×
GelTip [19] × unspecified partial
Digit [20] 640×480 × partial

Insight [10] 1640 × 1232 0.03 ∼ 2N, 5 partial
DenseTact 1.0 [8] 800 × 600 × full

DenseTact 2.0 1024 × 768 −11 ∼ 3N, 6 full

TABLE I: Related Work. Table shows resolution of sensor,
sensing range and dimension of the force, and availability
of shape reconstruction. ‘Partial’ means the sensor does not
estimate the depth of the entire sensing area, or estimates
only the position of contact.

deposition technique. 2) We present the combination of a
calibrated high-resolution shape reconstruction with a cali-
brated 6-axis wrench estimation. 3) We provide a comparison
study between leading monocular depth estimation models
with our model applied to both shape reconstruction and
force estimation. 4) We show the effectiveness of transfer
learning of our model for faster and more efficient training
of future sensors with consistent geometry for calibration and
deployment.

The paper is organized as follows: Sec. II presents the
sensor design of DenseTact 2.0, Sec. III presents the data
preparation for force and shape estimation, IV presents the
method of estimating force and shape with modeling, Sec. V
shows results for the shape reconstruction model and force
estimation model, and the conclusion and future work is
discussed in Sec. VI.

II. DENSETACT 2.0 SENSOR DESIGN

A. Design Criteria

A tactile sensor with a highly-deformable gel has a clear
advantage for the vision-based approach. Gel deformation
not only enables collecting the information of the contact
object, but also easily tracks features, even with small
indentation. In order to extract as much geometrical and force
information from the single image, the sensor requires more
attractive features. Furthermore, the in-hand manipulation is
more prone to happen with a compact sensor size. To deal
with these issues, we augmented the design of DenseTact
[8] with following features: 1) Reduced sensor size while
maintaining highly-curved 3D shape. 2) Modular design
using off-the-shelf materials for easy assembly and resource-
efficiency. 3) Enriched features with randomized pattern on
the surface for force estimation.

B. Gel Fabrication with Randomized Pattern

The fabrication process of the gel follows three steps: 1.
making a gel base [8], 2. printing a randomized pattern on
the surface of the gel, and 3. covering the gel with a reflective
surface.

Fig. 2: DenseTact Design. Exploded view of DenseTact 2.0.
The gel mount reflects the light from LED while the gel is
covered with the pattern and reflective surface.

1) Gel Base: The material of the gel is the same material
(49.7 shore OO hardness) and similar mold shape as in
[8], while the compact hemispherical shape has a 31.5mm
diameter. Compared to the DenseTact 1.0, we increased the
contact area between the gel mount and lens to be more
durable - the contact area - volume ratio of the DenseTact
1.0 is 0.0707mm−1 (Area / Vol = 3,264.3mm2 / 46,173mm3),
and the ratio of DenseTact 2.0 is 0.1229mm−1 (Area /
Vol = 1,443.4mm2 / 11,746mm3).

2) Randomized Pattern on the Gel Surface: The random-
ized pattern can hold more information for extracting features
from a single image, such as continuous deformation output
or non-aliasing problem. Marker-based approaches seen in
most tactile sensors are hard to deal with the aliasing problem
with large deformation. One other approach such as the use
of a randomly colored pattern [21] enables intrinsic features
to follow, but it is only applicable for sensors with planar
surfaces, and the RGB channel can interfere with the pattern
itself. Furthermore, the pattern requires to have a unique
pattern to avoid the aliasing problem and maintain a balanced
density between the pattern and background to extract the
feature from the surface deformation.

To create the unique pattern, we first distribute points on
the 2D planar surface using the voronoi stippling technique
[22] and randomly connect all points. Connecting the array of
points can be considered as the Traveling Salesman Problem
(TSP), a classic algorithm for finding the shortest route to
connect a finite set of points with known positions. We
connect all points with a TSP solver [23], convert the solution
as an image file, and extract the unique pattern using 8,192
points on a 25mm×25mm size square.

We printed a stamp plate of the randomized pattern using
a laser cutter with a depth of 0.03mm. Next, we spread an
ink on the plate, where the ink is composed of a silicone base
with black ink (Smooth-on Psycho Paint™ and pigment, the
ratio of silicone base to ink is 5:1). Then we scrape the ink
on the plate so that the ink only remains on the imprinted
part of the stamp. Next, we press the cured gel onto the ink
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and distribute the pattern evenly by contacting all parts of
the surface only once. The result of the printed pattern is
shown in input images at Fig. 1.

3) Reflective Surface: The reflective surface is made from
a mixture of silicone paint and silver silicone pigment with
the ratio of 2:1. 0.5% of the solution of Thivex thickening
solution is added to the mixture. Then, the mixture is placed
in a vacuum chamber to remove any air bubbles that may
be present from mixing the materials together. The method
of applying the reflective surface improved from versions
DenseTact 1 to 2.0 as the application time reduced from
2 hours to 30 minutes. This is done by leveraging a paint
dipping technique as opposed to airbrushing. To execute this
method, a suction cup is used to grip the gel, which is then
dipped into the silicone ink mixture. The gel is dipped in the
ink a total of three times and a heat gun is used to cure the
paint after each dip. With this method, users can easily repair
from possible abrasion created through extended gel usage
by dipping the gel into the ink solution whenever necessary.

C. Sensor Fabrication

The bottom part of the sensor contains a camera, LED
mount, LED strip, and a gel mount covered with mirror-
coating. The sensor’s exploded view is shown in Fig. 2.

1) Illumination with Mirror-Coated Wall: The major re-
quirement for a vision-based sensor is illumination. Because
of the compact size of the sensor and the LED being a point
light source with a limited angle of light emission, the LED
strip with a single RGB channel LED had a limitation when
the sensor became smaller. Therefore, we implemented the
new illumination system with a mirror-coated wall while still
maintaining the simple assembly feature.

Instead of using 3 LED lights as in [8] or other tactile
sensors, we utilized 9 LED lights (3 LEDs for each color-
red, green, and blue) from an LED strip (Adafruit Mini
Skinny NeoPixel ™) while controlling the intensity of each
LED. As shown in Fig. 2, the LED surrounds the camera
while facing outside. An equivalent distance between each
LED with more lights allows the sensor to get an equal
distribution of lights. Furthermore, the increased brightness
makes the sensor more resistant to external lights.

The 3D-printed gel mount reflects the lights to the gel
through the mirror-coated surface. To develop the mirror-like
effect on the side, we flattened the surface of the gel mount
with XTC-3D™ and coated it with the mirror-coating spray.
Finally, the lights on the LED pass through the opposite side
of the gel (see the input image in Fig. 1).

2) Sensor Assembly: We modularized the sensor into
three parts - gel with gel mount and lens, LED module, and
camera module. Each module is easily replaceable while the
other modules remain intact. The gel, gel mount and lens
are firmly attached through sil-poxy adhesive™ and Loctite
Powergrab™ Crystal Clear adhesive. The gel module and
LED module is fixed through the 4 screws with camera
module. The user can simply unscrew and replace either
the camera, LED, or gel module. Since the sensor has more

Fig. 3: Force Data Collection. Densetact 2.0 has been
pushed under an ATI Gamma sensor with the Franka™ arm,
where the grippers are covered with indenters.

contact area-volume ratio, the durability increased even with
the modularized design.

We chose to use the camera module Sony IMX179 (30fps)
and M12 size lens with the field of view 185 deg degree
for easy replacement. The distance of focal length of the
camera is manually set to optimize the focal length for the
expected deformation. The final size of the sensor including
the camera is W ×D×H = 32×32×43mm with the weight
34g. The cost of the sensor became cheaper because of the
smaller LED strip ($3.75), gel part ($3), and camera LED
mount ($1.5) with the same price of the camera system ($70).

III. DATA PREPARATION FOR FORCE AND SHAPE
ESTIMATION

A. Data Collection Process for Shape Reconstruction

The dataset for shape estimation has been collected in a
similar manner as the DenseTact 1.0 with more autonomy
[8]. While utilizing the CNC machine with a stepper motor
for precise movement, we implemented an encoder for
the stepper motor and a limit switch for an autonomous
procedure. The sensor is attached to the stepper motor side
with a mount. The mount ensures the center of the sensor is
aligned with the rotational center of the stepper motor.

In order to collect more datasets in one process, 21
indenters, a Stl model which covers the entire sensor surface,
are placed in a 3×7 grid on the plate of the CNC machine.
Each row contains the same shape of indenters, each with a
different orientation along a random axis. The rotation axis
is aligned with the center of each indenter and placed in the
xy plane. Therefore, each row shows different orientations
by rotation on the x and y axes, while the z axis rotational
difference is provided from the stepper motor. As a result,
each data collection procedure generates up to 8,400 image
datapoints (21 indenters × 400 steps/rev) without human
intervention.
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Fig. 4: DenseTact 2.0 Algorithm. The sensor interior is the input to the encoder-decoder network for shape estimation
model (blue box). Force estimation models (red box) consist of encoder and fully-connected layers. Transfer learning model
with 6 dimension (includes yellow box) takes deflected and undeflected image as an input. (Model references: E1- [24], E2-
[25], D1- [26], D2 - [27])

Consideration of the bulging effect is a major improvement
in the data collection process. Since the silicone gel is
an incompressible, and hyper-elastic material, deformation
causes bulging on regions not in contact with the indentor.
For shape reconstruction, we account for this in the generated
contact shape Stl file. In this way, the sensor is exposed to a
more natural deformation. The size of captured image from
camera has been increased into (1024×768×3), which leads
the final image size into (640×640×3). After collecting the
input image, the depth is reprocessed from the corresponding
Stl model through a Gaussian Process with a ray casting
algorithm [8]. The Stl files are available on github 1.

The default distance of the sensor in the dataset is 15.5mm,
and its radial distance ranges from 12.23mm to 16.88mm,
while the opposite side of the sensor bulges when deformed,
resulting in a larger depth value than the hemisphere radius.
Allowing for a margin around 0.05mm, we normalized the
depth value from 12.23mm to 16.88mm (4.64mm range) into
0-255 pixel values for ground truth depth images. Finally, the
1 pixel increment corresponds to a 0.0182mm increment in
depth value. We collected a dataset for two sensors - the
sensor 1 has 38,909 training and 1,000 test configurations,
and the sensor 2 has 20,792 training and 1,000 test configura-
tions. Test configurations for each sensor are recorded with
an unseen indenter from the training dataset. The datasets
have a total 8.7GB and 6.8GB size for the sensor 1 and 2.

B. Dataset Collection for Force Estimation

The force dataset has been generated through randomly
pushing sensors with the Franka arm. This method allowed
us to collect the dataset with no constraints on the pose of the
franka arm. The right image in Fig. 3 shows the configuration

1https://github.com/armlabstanford/DenseTact

of the force dataset collection where the DenseTact 2.0 is
mounted on the ATI Gamma sensor (SI-65-5). We created 10
different objects to push the sensor and collected the dataset
while either attaching an object on each gripper finger or by
gripping an object. The set of objects includes cylindrical
shapes, spherical shapes and daily objects such as nuts. All
joint positions including the position of the gripper fingers
were recorded during dataset generation in the rate of 1,000
paths per second. The recorded motion of the Franka arm
for calibration makes multiple sensor calibration easier by
requiring less human intervention.

During online dataset collection, we filter out duplicated
sequential images which do not show significant change us-
ing Peak signal-to-noise ratio (PSNR) as a similarity metric.
The ring buffer collects the image up to 5 current images and
applies the following threshold - PSNR(Imgcurr, Imgprev,i)<
0.9, where i= 1, ... ,5. The dataset has been collected within
the range specified in the left part of the Fig. 3, where the
unit of force and torque are N and N ·m. the left image and
force distribution in Fig. 3 shows the collected input image
and corresponding force and torque data. The final dataset
has been normalized between each force and torque range.
The dataset has been collected for two sensors - the sensor
3 has 38,909 training force points and 1,000 test points, and
the sensor 4 has 20,792 training points and 1,000 test points.
Test points are collected with different shape as the pushing
objects used in each training points. Total size of each dataset
is 7.5GB and 2.7GB, respectively.

IV. ALGORITHMS FOR SHAPE AND FORCE
RECONSTRUCTION

A. Algorithms for Shape Reconstruction

While the randomized pattern on the surface adds more
features for continuously tracking surface movement, recon-
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structing the sensor surface requires learning features such
as the deflected part’s location, or surface normal based on
the LED position. The position of the random pattern also
gives the dynamic movement of the sensor, which requires
the networks to learn more features from a single image.
Therefore, we compared two network models to reconstruct
the shape of the sensor surface.

1) Network with Swin Transformer and NeWCRF: The
Vision Transformer (ViT) is a well-known model from
transformer-based architecture for image classification [28].
While ViT splits an image into patches and train position
embedding for each image patch, the Swin transformer builds
the feature maps hierarchically with lower computational
complexity because of a localized self-attention layer [24].
Our input image contains closely-related information relation
between neighbor pixels. Therefore, the path embedding
with hierarchical feature maps between each layer can better
connect information between the indented and opposite parts.

Once the input image has been trained with swin trans-
former as the encoder part, the decoder is also important for
correlated embeddings. Recently, models using a classifica-
tion model to boost the performance of depth estimation,
such as binsformer [29] or adpative bins [30], perform
well with the monocular depth estimation. However, Neural
window FC-CRFs (NeWCRF) reaches the same performance
by applying Conditional Random Field (CRF) on the decoder
part to regress the depth map by utilizing fully-connected
CRFs on each split image part (window) [26]. Therefore, we
chose the Swin Transformer with NeWCRF decoder among
the state of the art models for monocular depth estimation.

As shown in the green part of Fig. 4, the network gets
input as 640×640×3. Without using the pretrained model,
we normalized both the input and ground truth depth images
from 0 to 1 (ground truth originally 0-255). We utilized 4
swin-transformer blocks on the encoder part using window
size 20, the number of patches from one image. The predicted
model is compared with the ground truth using the Scale-
Invariant Logarithmic loss (SILog loss) with 0.85 as variance
minimizing factor [31]. The model is trained for 21 epochs
with the batch size of 8 while the learning rate starts from
2× 10−5 on the 4 Nvidia A4000 GPUs. The model took
about 36 hours for training.

2) Densetact Net Position: The above model is compared
with the Network from [8] without resizing the image. As
shown in Fig. 4, the network consists of an encoder as
Densenet [25], and a simple decoder with skipped con-
nections [27]. The final result has been upsampled by the
upsampling layer to get the 640×640×1 as an output depth
image. Unlike the above model, the input and ground truth
are un-normalized. The network is trained without any prior
or pretrained model and used the reciprocal of the depth for
structural similarity loss.

By comparing the above model with ours, we can show 1)
whether the random pattern blocks the estimation result and
2) how many model parameters are enough to estimate the
depth or force estimation. The training runs for 25 epochs
with batch size 8. The learning rate is set to 1×10−4, where

Fig. 5: Shape and Force Reconstruction Performance.
Examples from test set for sensor shape and force recon-
struction.

the model took about 16 hours for training.

B. Algorithm for Force Estimation

The network model for force estimation utilized each
encoder part of the above two models. The network structure
for force estimation is illustrated in Fig. 4. After passing
either the Swin transformer encoder or the Densenet-based
encoder, two fully-connected layers shrink the channel size
from 1,000 to 500, and from 500 to 6, which corresponds to
the 6 wrench inputs. The learning rate starts decreasing from
2×10−5. Both models are trained with batch size 8 for 22
epochs. The training has been done for each sensor dataset.

C. Data-efficient Training with Transfer Learning

One major disadvantage of the data-driven approach in
tactile sensing estimation is that the data collection process
is much longer than the modeling-based approach. However,
the pre-trained model from multiple sensor datasets can
significantly reduce the burden for the calibration process.
We proposed a two network structure for transfer-learning
model for our sensor.

The first model, 3-dim model, has a network identical
to the Densenet-based encoder, which takes input as 640×
640×3. The training datasets are combined for both sensors,
while the test sets are also combined from each sensor’s test
dataset. Finally, the total number of configuration training
data points is 59,701 and for the test dataset is 1,200, where
600 data points are extracted from each sensor.

The second model, 6-dim model, simultaneously takes the
undeflected image and deflected image of the sensor so that
the input becomes 640× 640× 6. The blue part in Fig. 4
indicates the layer applied for the model with 6-dimensional
inputs. Two blocks of convolutional, batchnorm, and relu
layers reduces the number of channels from 6 to 4, and
from 4 to 3. Finally, the input has been passed to the same
Densenet-based encoder. Both models are trained for 30
epochs with a batch size of 16. After getting the pretrained
model, we compared the loss of each model by using a small
dataset of the another, unseen sensor input for both force and
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Fig. 6: Violin plot of shape reconstruction model. Left
and right image compares L1 error for model SwinTF and
DenseNet on test and train dataset, respectively.

Fig. 7: Violin plot of force estimation model. Upper and
lower images show the absolute error of train and test dataset
from model SwinTF and DenseNet. Left and right side shows
the plot of Fx,y,Fz, Tx,y,Tz, respectively.

position dataset. The size of the small dataset is 4,643 and
the dataset is pushed with a single object.

V. RESULTS AND DISCUSSION

A. Validation of Models

Fig. 6 and Fig. 7 show the network evaluation with violin
plots for position and force for all training and test datasets,
respectively. The qualitative performance of the model is
shown in Fig. 5. The mean of the L2 loss for SwinTF
model, a shape model with encoder as Swin transformer and
decoder as NeWCRF, with shape test set is (sen1,sen2) =
(0.370mm, 0.584mm), errtot = 0.4769mm, and the L2 loss
for the DenseNet model, a shape model with encoder as
DenseNet and decoder as skipped decoder, is (sen1,sen2) =
(0.282mm, 0.445mm), errtot = 0.3633mm. Both results show
that the DenseNet model outperforms the SwinTF model.

The force model also shows that the DenseNet model, a
force model with encoder as DenseNet, performs slightly
better than the SwinTF model, a model with encoder as
Swin transformer. The total absolute mean error of force
of each sensor on the test set for the SwinTF model is
(sen3,sen4) = (0.426N, 0.436N), and force error for the
DenseNet model is (sen3,sen4) = (0.409N, 0.410N). For the

torque, the absolute mean errors are (sen3,sen4) = (0.416N ·
mm, 0.438N ·mm) for the SwinTF model, and (sen3,sen4) =
(0.395N · mm, 0.377N · mm) for the DenseNet model. In
conclusion, DenseTact 2.0 performs the shape reconstruction
with an absolute mean error of 0.3633mm with the DenseNet
model, and performs force estimation with an absolute mean
error of (e f orce,etorque) = (0.410N , 0.387 N ·mm).

The result of transfer learning indicates that the model
that gets 3-dimensional input works similarly for both big
datasets and small datasets. A 3-dim model trained with
a small force dataset on top of a pretrained model has
an absolute mean error of normalized wrench of 0.05163,
whereas the 6-dim model with a pretrained model is 0.05143.
However, the 3-dim model converged faster (converged at
7,200 steps) than the 6-dim model (converged at 8,400 steps).
3-dim model with a position dataset has converged faster
(converged at 6,900 steps) with an rms error of 0.2275mm,
than the 6-dim model (converged at 8,100 steps) with rms
error of 0.2394mm.

B. Discussion

The results above demonstrate that the randomized pattern
on DenseTact 2.0 performs well with both shape reconstruc-
tion and force estimation. The SwinTF model for shape
reconstruction has about 270 million parameters, while the
DenseNet model for shape has 44 million parameters. The
forward path for the SwinTF model takes 0.124s per step,
while the DenseNet model takes 0.04s per step on Nvidia
3090 GPU. Therefore, the Densetact input requires fewer
parameters for training and works better with the DenseNet
model. The state of the art model for monocular depth
estimation might perform well on the daily objects and gen-
eral images, but the input image for DenseTact 2.0 requires
solving the relation between each pixel by estimating the
position of the LEDs and tracking the pattern deflection.

Both transfer-learning models demonstrated that the model
works with a smaller dataset, which is about 10% of the
original training dataset size. The training time only took
1 hours and 1.8 hours for force and position, respectively,
for 30 epochs with a batch size 10 on Nvidia A4000 GPU.
Considering that the data calibration process can be done
easily with the ATI force sensor, the calibration time is
comparable with the model-based sensors.

VI. CONCLUSION

This paper presents DenseTact 2.0, a compact-size cali-
brated shape and force sensor with an very soft gel, which is
capable of reconstructing surface shape and force estimation
with high resolution. The modularized design and compact
size of DenseTact 2.0 enables versatile in-hand manipulation
as well as easy assembly. We leverge a marker deposition
algorithm which avoids aliasing under large sensor deforma-
tions. We benchmarked multiple models and show the benefit
of using transfer learning which allows us to use 12% of the
original dataset size. Our future direction is estimating force
distribution from the single image output while applying the
transfer learning feature as well.
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