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Abstract— Increasing the performance of tactile sensing in
robots enables versatile, in-hand manipulation. Vision-based
tactile sensors have been widely used as rich tactile feedback
has been shown to be correlated with increased performance in
manipulation tasks. Existing tactile sensor solutions with high
resolution have limitations that include low accuracy, expensive
components, or lack of scalability. In this paper, an inexpensive,
scalable, and compact tactile sensor with high-resolution surface
deformation modeling for surface reconstruction of the 3D
sensor surface is presented. By observing the contact surface
with a fisheye camera, it is shown that the surface deformation
can be estimated in real-time (18 ms) using deep convolutional
neural networks. This sensor in its design and sensing abilities
represents a significant step toward better object in-hand
localization, classification, and surface estimation all enabled
by calibrated, high-resolution shape reconstruction.

I. INTRODUCTION

Robots capable of manipulation have been adopted in a
variety of industrial applications, including car manufactur-
ing, welding, and assembly line manipulation. Despite the
surge of robotics in automation, it is still challenging for
robots to accomplish general, dexterous manipulation tasks.
Increased robotic dexterity particularly of small objects,
would impact across society from agility of manufacturing
to collaborative robots for assisted living [1], [2]. Mod-
ern robots capable of performing manipulation still find it
challenging to perform in-hand manipulation or accurately
measure the deformation of soft fingertips during complex
dexterous manipulation. This problem has been managed
from many different approaches, including designing new
hardware, developing perception and recognition functional-
ity for the robots, or solving control and motion planning
tasks of the robotic assistant. However, persistent challenges
for manipulation in general tasks are the lack of tactile feed-
back with sufficiently high resolution, accuracy, and dexterity
that rivals anthropomorphic performance. Vision-based, soft
tactile sensors capable of reconstructing surface deformation
with high accuracy can address some of the above problems.
To better model the object(s) within the manipulation task,
precise geometric and contact information of the object and
environment must be ensured. Therefore, high-resolution
tactile sensing that provides rich contact information is an
essential step towards high precision perception and control
in dexterous manipulation.
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Fig. 1: DenseTact. Sensor is outfitted on the Allegro™
hand. Left bottom image shows the image taken from the
cameras. Middle bottom shows the resultant depth image.
Right bottom represents the 3D reconstructed surface of
current Sensor.

Common major challenges with the vision-based tactile
sensor are accurate pose estimation from sensory input,
limited 2D-shape of the sensor, and high construction costs.
Existing tactile sensors such as Gelslim and Gelsight can
detect the surface deformation from the soft elastomer, but
the 2D shape limits in-hand manipulation. This work presents
a tactile sensor that has a 3D shape, is relatively inexpensive,
and is capable of solving state estimation tasks more accu-
rately. The developed sensor is a vision-based, soft tactile
sensor designed for accurate position sensing. The developed
sensor design has a hemispherical shape with an inexpensive,
fisheye lens camera with a soft elastomer contact surface
(Fig. 1). The interior of the sensor is illuminated, allowing
for tactile feedback with a single image. From the high-
resolution image, the corresponding 3D surface of the sensor
is estimated. Practical applications of the sensor include in-
hand pose estimation of a held object.

Beyond the 3D-shape sensor design with low-construction
cost and high sensing resolution, our major contributions
include: 1) novel and dense calibration process for model
which performs 3D shape reconstruction from single
image with high resolution, and 2) adapted deep neural
network architecture for estimating sensor surface from
interior sensor image.
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Fig. 2: DenseTact Design. Exploded view of DenseTact
sensor. The soft sensor is composed of a silicone elastomer
coated with a reflective surface and attached on a 3d-printed-
mount with a fisheye lens camera and LED strip.

The rest of this paper is organized as follows: related work
is discussed in Sec. II, Sec. III presents the sensor design,
Sec. IV presents the method of shape reconstruction calibra-
tion and modeling, Sec. V shows shape reconstruction model
results, and the conclusion and future work is discussed in
Sec. VL.

II. RELATED WORKS

The ability for robots to perform complex dexterous
manipulation is inherently dependent on the quality of the
tactile sensors. The tactile sensor’s resolution, noise, bias,
and repeatability all contribute directly to the robot’s abil-
ity to perform robust object manipulation and control. A
variety of tactile sensors have been developed with many
different approaches including piezoelectric [3], optics [4],
resistance [5], or capacity [6]. Recently, vision-based tactile
sensors have been become very popular compared to previ-
ous sensors due to their higher resolution. Optical sensors
have proven valuable for tactile sensing with usefulness
in detecting both shear and normal forces [7], controlling
grasping motion [8], or adjusting grasp [9]. Table I compares
vision-based sensor design shape, resolution, and calibration
methodology with the proposed sensor of this work in the
final row.

However, most vision-based tactile sensors are expensive,
bulky, and limited to 2D shapes. Tactile sensors such as
Gelsight, Gelslim, or DIGIT have high resolution, but a flat
surface limits the application in a manipulation task [4], [10],
[11]. The sensors with air-pressure-based approaches pro-
vide the elastic, restorative reconstruction of surface during
contact. However, sensors have large sizes for pneumatic
transmission [12], [13]. Leveraging surface normal from
image intensity is a common method to perform depth recon-
struction in a limited environment [4], [14]-[17]. Assuming
that the surface is Lambertian, the linear reflective function
between the pixel’s intensity with the surface normal can be
obtained, making the lookup table to get the surface normal.
However, the limitations on dimensions of the lookup table
and assumption of Lambertian surface make the approach
inapplicable for the 3D-shaped sensor.

The tactile sensors with 3D curved surface designs such
as Omnitact [18] allow multi-directional sensing but are
costly, especially for multi-finger applications. The round

Name 3D shape Resolution Calibration
Gelsight-like
sensors g[20]—[22] x 640 x 430 3D
Softbubble [13] v 224 x 171 3D
Omnitact [23] v 400 x 400 X
NeuTouch [24] X 39 %
TacTip [25] v 127 180 X
Optofiber-sensor [26] X 61 fibers 2D
Digit [11] X 640 x 480 X
FingerVision [27] X 640 x 480 3D
GelTip [28] v not specified 2D
This work: DenseTact v 800 x 600 3D

TABLE I: Related Work. List of high-resolution vision-
based tactile sensor for shape reconstruction. 2D-calibrated
sensors localize the surface position without estimating
depth.

fingertip sensor from [19] also has a 3D shape but relatively
small resolution compared to other vision-based sensors. To
solve the current issue from previous sensors, the design
in this work is a cost-efficient sensor with a 3D shape
that enables high-resolution sensing feedback towards robot
manipulation.

III. DENSETACT SENSOR DESIGN
A. Design Criteria

For a general manipulation task, an accurate tactile sensor
can maximize the quality of information at the contact
surface. To meet this criterion, the design goals for the sensor
are: 1) Small sensor size, useful for in-hand, small-object
manipulation. 2) 3D curved shape with a very soft surface,
enabling versatile manipulation. 3) High-resolution surface
deformation modeling (shape reconstruction) for contact
sensing. A fisheye-lens camera combined with hemispher-
ical shaped, transparent elastomer design satisfies the above
criteria. When the contact boundary of the elastomer has
a reflective coating, the monocular camera can observe the
internal deformation of the elastomer from a single image
provided there is sufficient interior illumination.

B. Fabrication

1) Elastomer Fabrication: Primary design goals for the
vision-based sensor are that it be cost-efficient, high-
resolution, and has a 3D shape which is captured by a hemi-
spherical design useful for soft-finger manipulation. This
motivates the design selection of a hemispherical shaped,
transparent elastomer with a reflective surface boundary to
allow an interior monocular camera to observe the sensor
deformation. The elastomer selected is the extra-soft silicone
for the elastomer (Silicone Inc. P-565 Platinum Clear Sili-
cone, 20:1 ratio). It has a 6.5 shore A hardness, similar to the
hardness of human skin. The extra soft elastomer maximizes
the surface deformation even from a small shear force. A
clear elastomer surface is ensured using the marble to make
a silicone mold of the elastomer. After the elastomer is cured,
Inhibit X™ is applied as an adhesive before airbrushing
the surface with the mixture of reflective metallic ink and
silicone (Smooth-on Psycho Paint™).
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2) Camera and Illumination system: A cost-effective
camera solution with a Sony IMX179 image sensor (8MP,
30fps) is selected with a small size for in-hand manipulation
while enabling real-time image processing. We select a
circular fisheye lens with 185° FoV to cover the whole
hemispherical-shaped elastomer. The interior of the soft-
sensor is illuminated by an LED strip with a flexible PCB.
The LED strip contains 24 RGB LEDs arranged into a
cylindrical pattern at the base of the elastomer. Similar to
work done in [20], we activate 3 LEDs from LED strip.
This illumination strategy allows surface depressions to emit
color patterns that indicate surface shape correlated to color
channel reflectivity.

3) Sensor Assembly: Fig. 2 and center image in Fig. 4
show the exploded and cross-sectional view of the sensor
respectively. Once assembled, the center of the camera lens
is aligned to coincide with the center of the hemispherical
elastomer, and the strip LEDs are located right below the
elastomer as shown in Fig. 2. DenseTact has a height of
35mm, and the hemisphere elastomer has a radius of 25mm.
In this configuration, DenseTact can sense almost 4,000mm?
of the elastomer surface. A 3D printed camera mount is
used to fasten the camera and elastomer, and the LED strip
is fitted around the interior of this camera mount. A major
problem of elastomer-based tactile sensors is their durability.
Resin is used as an adhesive for the LEDs and the camera
mount to increase durability. Once the resin is cured, the
cured elastomer is attached to the mount using Sil-Poxy
adhesive. This construction method allows the elastomer
to support higher forces without fatigue and degradation.
Preliminary experiments have shown that this DenseTact
sensor design can be reduced in size, with a hemispherical
radius of 15mm and 25mm sensor height, enabling more
delicate manipulation.

The cost for the entire sensor is less than $80, and most
of the sensor cost comes from the camera system ($70).
LED strip ($5.5), elastomer with reflective surface including
resin part ($ 3.5), and camera mount ($1) cost in total $10.
Furthermore, the whole fabrication procedure only takes less
than two days (mostly come from elastomer curing), which
enables the fast application of the robot manipulation.

IV. SHAPE RECONSTRUCTION

Shape reconstruction from sensor interior surface normal
estimation has been used for Gelsight-similar, vision-based
sensors [15], [19], [21], [29]. Assuming the sensor surface
is Lambertian and the reflection and lighting are equally
distributed over the sensor surface, the intensity on each
color channel can be leveraged to estimate a unique surface
normal. The intensity color difference between the deflected
and non-deflected surface is then correlated to the surface
gradient Vf(u,v) by inverting the reflective function R.
Gelsight-like sensors calibrate the R™' by mapping RGB
values to the surface normal through a lookup table. From
the surface normal for each point, the height-map of the
sensor can be reconstructed by solving the Poisson equation
with the appropriate boundary condition.

Fig. 3: Data Collection. 3D printed parts are printed and
pressed in varying configurations into the sensor for calibra-
tion.

However, the above method is not applicable for 3D shape
sensor with non-Lambertian surface. Then the reflective
function R also depends on the location as well as surface
normal:

1) =k (Lwn FLunar).

where (u,v) is the position of the pixel or corresponding lo-
cation on the sensor surface. The above function is nonlinear
and it is difficult to get the inverse. One way to obtain the
inverse function is to leverage a data-driven approach. Given
that the sensor environment is restricted and reproducible,
if the sensor surface shape is known (ground truth) then to
perform shape reconstruction the objective is to determine a
nonlinear function M such that

(R,Q,l[l) :M(Irgb(uvv))a 2

where (R,0,y) is corresponding spherical coordinate of
the sensor surface from the position in the image frame
(u,v). One way to solve equation 2 is to model M with a
representative network.

A. Depth Data Generation

DenseTact must produce a high-resolution representation
of the sensor surface from a single image. This requires
accurate, high-resolution ground-truth surface knowledge for
model training. The sensor surface is hard to externally detect
using commercial range-finding, active sensors (projected
light or time-of-flight sensors). Measurements from such
range-finding sensors have errors at millimeter scale, which
would propagate to the ground-truth measurement. To avoid
this problem, data is generated by 3D printing a known
computer-generated surface model and is subject to the accu-
racy of the 3D printer. The dataset generated in this manner
has all the shape information required to estimate the surface
shape at each corresponding image pixel necessary for model
training. Given that partial contact would cause deformation
of the soft-sensor in un-touched regions of the elastomer, the
known 3D printed shapes pressed into the elastomer cover
the entire sensor surface at once, limiting unwanted motion,
such that every location on the surface is known for a given
contact. Training shapes were printed on an Ultimaker S5
3D printer and included an indicator (large shell shown in
Fig. 3) as well as indenters (small components in Fig. 3). A
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full set of indenters and indicators selected can be found on
lgithub. The Ultimaker™ S5 is capable of printing layers
with a minimal size of 60 microns and positioning precision
of 6.9 microns. The stated uncertainty of the fused deposition
modeling (FDM) printer is 100 microns (0.1mm), however
this still presents a valid method of obtaining a shape ground-
truth for the entire surface at once under depression. To
diversify the generated dataset from a limited source of
material, a hemispherical shape indicator is printed with a
single or multiple holes and indenter that fits the hole. The
right two images in Fig. 3 show examples of the indenter.
A total of 37 different hemispherical indicators were printed
with a different number of holes and locations. Indicators
have different shapes variations that include a single or two
holes or with a hole and in-built indenter. The left image
in Fig. 3 shows the overall view of the printed indicator
that has two holes assembled with two different indenters.
Location of hole varies with different 6; and 6,. A total of
25 different indenters with various shapes were also printed
and examples are shown in the right two images of Fig. 3.
The dataset is also varied by changing the angle in terms
of axis A, B, and C in Fig. 3. We automated the rotation
on the B axis with stepper motor (400 step/rev) during data
collection with CNC machine, but rotation on A and C axis
are manually adjusted. Total data collection takes 40 hours
for this generation. We rotated the indicator in 0.9° per each
data on axis B while rotating 45° on axis A and C.

For accurate position control of 3D printed objects, a CNC
machine is utilized for data generation. The sensor is fixed
on the bottom plate while the 3D printed object is mounted
on the motorized part. CNC machine moved in z-direction
pressing into the sensor. After getting the radial value from
the STL file with the ray casting algorithm, the depth value
is normalized to an 8-bit integer (0-255) to reduce the size
of the output value. Possible resolution loss is prevented
by normalizing the value with the max depth depression
(9.4mm). By doing so, Il-pixel intensity corresponds to
the 0.0354mm increment in actual depth value. Finally, a
total of 30,200 different contact configurations are generated
which consists of 29,200 training configurations and 1,000
test configurations. Note that a different combination of
indicators and indenters is used for the test set comparing
to the training set. The total dataset size is 3.6 GB.

B. 3D correspondence from camera image

The next step for shape reconstruction is finding corre-
spondence between the image from the camera and sensor
surface. The fisheye lens produces additional distortion on
the image and bars the use of common calibration methods
since correspondence with the 3D-shaped sensor surface
is needed. The calibration method for a wide fisheye lens
and the omnidirectional camera has been proposed in [30],
however, the main purpose of the calibration is to get the
undistorted panoramic image. Therefore, a new correspon-
dence model for the sensor must be developed.

"https://github.com/armlabstanford/DenseTact
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Fig. 4: Ray Casting Algorithm. Ray casting is used to
determine the radial depth from the 3D calibration surface
which is then projected into the image plane.

First, a 3D-printed indicator with a known size is built.
The indicator has 2mm thickness and a saw-tooth shape with
equal angular interval, 5°. By simply pushing the indicator
in a fixed position parallel with the x-axis of the image, the
saw tooth is detected from the sensor image. The position
of each saw-tooth from the image is detected by using the
Canny edge method. From these detected edges from the
image, the edge position is matched with the edge position
on the sensor surface.

The distorted image from the camera has symmetric
distortion in terms of y direction, and the center of the image
is aligned with the center axis of the tactile sensor. The radius
from the center of the image corresponds with the Rsin(6)
in the hemispherical sensor surface. The Gaussian Process
(GP) regression model is implemented for the correspon-
dence between radius in image r and radius in the sensor
surface Rsin(0). From this correspondence, these indexes
are matched and each image pixel is transformed into the
right 8, y in spherical coordinates.

R sin(0) = fep(r(u,v)) 3)

(6,9) = (sin1 <fc%r)) Jtan”! <:_—:Z>> (4)

where u.,v. is center of the image plane. Once the conversion
between (u,v) and (0,¢) is done, the corresponding R from
the STL file of a combined 3D indicator is found. Based
on the vector generated from (6,¢) for each pixel, the ray
casting algorithm allows computing the closest point on the
surface of triangular mesh from STL file [31]. Fig. 4 shows
the cross-section view of the sensor with a radius defined
from the ray casting algorithm. Once the depth or the radius
information for each corresponding pixel value is obtained,
the pixel value is directly matched with the depth from the
ray casting algorithm:

Rruy(”av) = fruycast (MeShsll, 9(1/{, V), III(M,V)), &)

which makes 1:1 correspondence between input images.
Each image from the sensor has 800 x 600 pixel resolution.
First, the image is cropped and the useful pixel value is
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Fig. 5: DenseTact Algorithm. The sensor interior is the input to the autoencoder network. The ground truth is provided
from the object CAD model and converted to a depth image. The resultant disparity between prediction and ground truth is
used to train the network. The output depth image is converted to a 3D point-cloud via a correspondence step.
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extracted from the above GP and ray casting algorithm. A
total of 253,213 useful pixel values are extracted from the
single image and the ground truth image is reconstructed
(right images of Fig. 4).

C. Modeling

The goal of the model is to estimate the depth image
from the RGB input image with the same dimension. This
can be interpreted as the single image depth estimation
problem, but unlike similar implementations, contextual
semantic knowledge from the input image is unavailable
in this case. Some of the leading network strategies are
leveraging encoder-decoder structure with additional network
block that utilizes global information from the depth image
[32]. Unlike general depth images from datasets such as
[33], the DenseTact dataset requires more focus on the
local deformation information since the global information is
similar between datasets. Therefore, a much simpler version
of the network is selected with a pre-trained encoder and
decoder with skip connections [34]. The encoder part of the
network consists of a pre-trained DenseNet-161 [35]. The
decoder part concatenates the previous up-sampled block

with the block of the same size from the encoder, which
allows learning local information by skipping the network
connection. The implemented loss is the combination of
three losses: point-wise L1 loss on depth values, L1 loss
on the gradient of the depth image, and structural similarity
loss as in [36]. Fig. 5 shows the overall working process
of the sensor with network structure. The image size has
been resized from 570 x 570 x 3 to 640 x 480 x 3 before it
pass the network and resize the output result 320 x 240 to
570 x 570. Furthermore, the training quality is maximized by
re-scaling the range(0,255) depth value into range(10, 1000).
The network is trained with 16 epochs (460K iterations) with
batch size 4 from NVIDIA P100 16GB GPU.

V. RESULTS AND DISCUSSION
A. Results

Fig. 6 shows the qualitative result of shape reconstruction.
The first row is the input image and the second row is the
ground truth from the depth image. The model prediction is
shown in the third row. Results show that the reconstruction
works fairly well with the given single monocular image.
Note that input images come from the test set image, so the
model did not train the input image. Furthermore, the sensor
only takes 18.17 milliseconds on average to predict the depth
view from a single image. This implies that the sensor is
able to perform real-time manipulation tasks with 30fps. The
point cloud is reconstructed based on the registered index
with a predicted depth value. The right image in Fig. 5 and
right-bottom images in Fig. Ishows the reconstructed sensor
surface from depth image. After reconstruction, the point-
wise L1 loss on the predicted depth image between the test
set and training set are compared. Fig. 7 shows the violin
plot of the reconstruction error statistics of all training and
test sets. Note that the red line refers to the error of the
ground truth, which is 109.6 micron from the precision error
of the 3D printer. The model is justified by specifying the
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Fig. 7: Re-projection error. Each data point represents the
mean L1 re-projection error for a single image (effectively
253,213 pixels). Statistics are shown for the training (29,200
images) and test sets (1000 images).

error of ground truth which matters while it goes to the 100-
micron scale. The mean of L1 loss for training and test set is
0.2381mm and 0.2811mm, respectively. The mean of L2 loss
for all training and test sets is 0.0306mm and 0.03208mm.
In other words, the DenseTact sensor performs the shape
reconstruction with an absolute mean error of 0.28mm.

B. Evaluation with pose tracking

We evaluate the sensor by tracking the pose of a known
object by pinching the object with DenseTact-attached Al-
legro hand. We compare the 3D reconstructed point cloud
from two DenseTact with known spherical object through
ICP (Iterative Closest Point) algorithm. Two DenseTacts
are installed in the Allegro hand while a fiducial marker
(apriltag) is attached to the palm of the hand with a known
pose (see Fig. 5a). To get the reference frame between
Densetacts and grasped object, we attached a fiducial on the
object and frames are configured through encoder of allegro
hand and fiducial configuration from outside camera. The
point-to-point ICP registration algorithm in open3D library
[31] was used to track estimated pose of the object from
DenseTact point cloud. Fig. 8 shows the point cloud of the
object (white points in the right image) and point clouds
from DenseTacts (colored point cloud in right image). Image
A and B show the input images from upper and lower
DenseTact. We evaluated the sensor by measuring first RMS
error and fitness between detected DenseTact point cloud
and corresponding points from object point cloud. Fitness
refers to the ratio of the number of inlier correspondences
and the number of DenseTact point cloud. After 23 grasping
trial, the average fitness score was 0.597 (o = 0.238) and
average RMS error was 0.037184 (o = 0.00276). Note that
the average RMS error after 200 iterations of ICP was
0.0211.

C. Discussion

Fig. 7 shows that the average absolute value of radial depth
of all test and training sets have small and similar variance.
Observed modality on the training set refers to the different
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Fig. 8: Evaluation with ICP. Images from two DenseTacts
(left) and point clouds of object and DenseTact (right) for
the grasp shown in Fig. 5a.

types of indicators — one hole, two holes, and one hole with
a pre-built indenter. Future work includes increasing the size
and variability of the dataset to reduce bias. Possible sources
of error for the sensor performance include ground truth
error from the 3D printer and human error during dataset
collection — as the indenter was manually rotated in the A
and C axis in Fig. 3. Additional rotation error could possibly
come from the error of the stepper motor, however, the error
(0.18° per step) is relatively small comparing to the human
error. The sensor has been shown to be durable enough to
use in real applications. The sensor performed well without
any noticeable change on the sensor after 30,000 pushes and
measurements.

VI. CONCLUSION

This work presents a tactile sensor DenseTact, an anthro-
pomorphic hemispherical-shaped sensor capable of recon-
struction of the entire sensor surface. The sensor is shown
to be durable, enduring more than 30,000 measurements
without noticeable change. The sensor is calibrated with
high-resolution contact, accounting for relative accuracy and
uncertainty in the ground truth. A neural network is leveraged
to model the depth map given the input image and showed
that with this off-the-shelf encoder-decoder based network
with the pre-trained model is capable of accurate depth
reconstruction with our training dataset. The sensor was
able to achieve an average of 0.28mm depth difference on
the test set. Future work includes leveraging multiple LEDs
with different LED configurations to increase the accuracy
of the sensor. Different depth maps of single observation
from rotations of the LED configuration will increase the
accuracy of the sensor. Next sensor design iterations will
be more adaptive in terms of size scalability and different
sensor shapes that improve versatility. Furthermore, future
implementations of the network structure are planned that
will be specialized for the DenseTact sensor. In future work,
the contact force distribution will be extracted based on the
elastomer’s deformation along with the reconstructed shape,
ensuring the sensor’s ability to sense high-resolution forces
compared to other sensors.
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