1688

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023

Randomized Scheduling of Real-Time Traffic in
Wireless Networks Over Fading Channels

Christos Tsanikidis

Abstract— Despite the rich literature on scheduling algorithms
for wireless networks, algorithms that can provide deadline
guarantees on packet delivery for general traffic and interference
models are very limited. In this paper, we study the problem of
scheduling real-time traffic under a conflict-graph interference
model with unreliable links due to channel fading. Packets that
are not successfully delivered within their deadlines are of no
value. We consider traffic (packet arrival and deadline) and
fading (link reliability) processes that evolve as an unknown
finite-state Markov chain. The performance metric is efficiency
ratio which is the fraction of packets of each link which are
delivered within their deadlines compared to that under the
optimal (unknown) policy. We first show a conversion result
that shows classical non-real-time scheduling algorithms can be
ported to the real-time setting and yield a constant efficiency
ratio. In particular, Max-Weight Scheduling (MWS) yields an
efficiency ratio of 1/2. We then propose randomized algorithms
that achieve efficiency ratios strictly higher than 1/2, by carefully
randomizing over the maximal schedules. Further, we propose
low-complexity and myopic distributed randomized algorithms,
and characterize their efficiency ratio. Simulation results are
presented that verify that the randomized algorithms outperform
classical ones such as MWS and GMS for scheduling real-time
traffic over fading channels.

Index Terms— Scheduling, real-time traffic, Markov processes,
stability, wireless networks.

I. INTRODUCTION

HERE has been vast research on scheduling algorithms

in wireless networks which mostly focus on maximiz-
ing long-term throughput when packets have no strict delay
constraints. Max-Weight Scheduling (MWS) policy is known
to be throughput optimal in such settings, attaining any
desired throughput vector in the feasible throughput region [2].
Further, greedy scheduling policies such as LQF [3], [4],
or distributed policies such as CSMA [5], [6], [7] have been
proposed, to alleviate the computational complexity of MWS
and achieve a certain fraction of the throughout region. How-
ever, in many emerging applications, such as Internet of Things
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(IoT), vehicular networks, and edge computing, delays and
deadline guarantees on packet delivery also play an important
role [8], [9], [10], as packets that are not received within
specific deadlines are of little or no value, and are typically
discarded by the application. This discontinuity in the packet
value as a function of latency makes the problem significantly
more challenging than traditional scheduling where packets do
not have strict deadlines.

There is an increasing body of work attempting to address
the above challenge, however they either assume a frame-based
traffic model [11], [12], [13], [14], [15], relax the wireless
interference graph constraints [16], or use greedy scheduling
approaches like LDF [17], [18]. In the frame-based traffic
model, time is divided into frames, and packet arrivals and
their deadlines during a frame are assumed to be known at
the beginning of the frame, and deadlines are constrained by
the frame’s length [11], [12], [13], [14], [15]. Under such
assumptions, the optimal solution in each frame is a Max-
Weight schedule, where the weight of each link is its deficit
counter (i.e., a measure of how many more packets need to be
transmitted from a link to meet its delivery ratio requirement).
Note that unless the traffic is restricted to be periodic and
synchronized across the users, such solutions are non-causal.
Partial generalizations of the frame-based traffic are considered
in [19] and [20] without performance guarantees. The optimal
scheduling policy (and the real-time throughout region) for
general traffic patterns and interference graphs is unknown
and very difficult to characterize. Largest-Deficit-First (LDF)
is a causal policy which extends the well-studied Longest-
Queue-First (LQF) [3], [4] from traditional scheduling to real-
time scheduling. The performance of LDF has been studied
in terms of efficiency ratio, which is the fraction of the real-
time throughput region guaranteed by LDF. Under i.i.d. packet
arrivals and deadlines, with no fading, LDF was shown to
achieve an efficiency ratio of at least ﬁ [17], where (3 is the
interference degree of the network (which is the maximum
number of links that can be scheduled simultaneously out of
a link and its neighboring links).

Recently, the work [21], [22] has shown that, through
randomization, it is possible to design algorithms that can
significantly improve over prior algorithms (such as LDF),
in terms of both efficiency ratio and traffic assumptions.
Specifically, [21] proposed two randomized scheduling algo-
rithms, namely, AMIX-ND for collocated networks with an
efficiency ratio of at least efl ~ 0.63, and AMIX-MS for
general interference graphs with an efficiency ratio of at least

2\\;\\4 > 1 (|Z] is the number of maximal independent sets).
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Fig. 1. An example of a Markovian traffic-and-fading process that alternates

between two patterns. Each rectangle indicates a packet for a link. The left
side of the rectangle corresponds to its arrival time, and its length corresponds
to its deadline. The numbers in circles indicate the channel success probability
of each link in each time slot.

However, the complexity of AMIX-MS can be prohibitive for
implementation in large networks. Moreover, intrinsic wireless
channel fading has not been considered in [21] and [22],
and packet transmission over a link is assumed to be always
reliable.

In this work, we consider an interference graph model of
wireless network subject to fading, where packet transmissions
over links are unreliable. We consider a joint traffic (packet
arrival and deadline) and fading (link’s success probability)
process that evolves as an unknown Markov chain over a finite
state space. Note that the addition of fading complicates the
deadline-constrained scheduling problem significantly. In this
case, a transmission over a link, even if all its interfering links
are silent, might fail, which not only wastes the transmission,
but also reduces the remaining deadline of the packet by one.

A natural question is whether the existing traditional
scheduling algorithms (which focus on long-term throughput
with no deadline constraints) can be used to provide guarantees
for scheduling in this setting, without assuming the knowledge
of future traffic and fading process and without making frame-
based assumptions? We show that interestingly the answer is
“yes”, but fading and deadlines might significantly degrade
their performance guarantees.

For example, consider the initial two time slots in Pattern B
in traffic-fading process of Figure 1 with two interfering links:
link 1 has a packet with deadline 2 and link 2 has a packet with
deadline 1. Link 1’s success probability is 1 in the first two
slots, and link 2’s success probability is 0.5 in the first time
slot. Not knowing the future traffic and fading, an opportunistic
scheduler would prioritize link 1 in the first time slot and
subsequently in the second time slot, but the optimal policy
would always schedule link 2 in the first time slot and packet
of link 1 in the second time slot.

A key insight of our work is that careful randomization in
decision is crucial to hedge against the risk of poor decision
due to lack of the knowledge of future traffic and fading. We
design randomized algorithms that strictly outperform existing
scheduling algorithms.

A. Contributions

Our main contributions can be summarized as follows:

o Application of Traditional Scheduling Algorithms to
Real-Time Scheduling. Each non-empty link (i.e., with
unexpired packets for transmission) is associated with a
weight which is the product of its deficit counter and
channel fading probability at that time, otherwise if the
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link is empty, the weight is zero. We show that any algo-

rithm that provides a -approximation to Max-Weight

Schedule (MWS) under such weights, achieves an effi-

ciency ratio of at least % for real-time scheduling under

any Markov traffic-fading process. As a consequence,

MWS policy achieves an efficiency ratio of %, and
GMS (Greedy Maximal Scheduling, which extends LDF)
provides an efficiency ratio of at least %

o Randomized Scheduling of Real-Time Traffic Over
Fading Channels. We extend [21], [22] to show the
power of randomization for scheduling real-traffic traffic
over fading channels. By carefully randomizing over
the maximal schedules, the algorithms can achieve an
efficiency ratio of ar least % > % in any general
graph under any unknown Markov traffic-fading process.
In the special case of a collocated network with i.i.d.
channel success probability ¢, the algorithm can achieve
an efficiency ratio of at least (== +1 — q)~t, which
ranges from 0.5 to 0.632, as ¢ varies from 0 to 1.

o Low-Complexity and Distributed Randomized Algo-
rithms. To address the high complexity of the ran-
domized algorithm in general graphs, we propose a
low-complexity covering-based randomization and a
myopic distributed randomization. Given a coloring of
the graph using x colors, we can achieve an efficiency
ratio of at least qu’ by randomizing over x schedules.
Moreover, we show that a myopic distributed random-
ization, which is simple and easily implementable, can
achieve an efficiency ratio of approximately ﬁ in any
graph with maximum degree A.

B. Notations

Some of the notations used in this paper are as follows.
Given y € R™, [ly|| = Y7 |vs|- We use int(A) to denote
the interior of set A. [z]* = max{z,0}. 1(E) is the indicator
function of event E. |A| is the cardinality of set A. EY[]
is used to indicate that expectation is taken with respect to
random variable Y.

C. Organization

The rest of the paper is organized as follows. We start with
the model and definitions in Section II. We state the main
results and present the scheduling algorithms in Section III.
Section IV is devoted to the proofs of main results. The
simulation results are presented in Section V. Finally we end
the paper with conclusions and future research directions in
Section VI.

II. MODEL AND DEFINITIONS
A. Wireless Network and Interference Model

Consider a set of K links, denoted by the set K. We assume
time is divided into slots, and in every slot ¢, each link
l € K can attempt to transmit at most one packet. To model
interference between links, we use the standard inferference
graph G; = (K, Ey): Each vertex of G is a link, and there is
an edge (l1,l2) € Ey if links [y, (5 interfere with each other.
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Hence, two links that share an edge in G, cannot transmit
packets at the same time. Let 7 be the set of all maximal
independent sets of graph G. Also let B(t) C K denote the
set of nonempty links (i.e., links that have packets available
to transmit) at time ¢t. We use M (¢) to denote the set of links
scheduled at time ¢. By definition, M (¢) is a valid schedule if
links in M (t) are nonempty and form an independent set of
G I, i.e.,

M(t) C (B(t)n D), for some D € 7. (1)

A schedule is said to be maximal if no nonempty link can
be added to the schedule without violating the interference
constraints.

B. Fading Model

Transmission over a link is unreliable due to wireless
channel fading. To capture the channel fading over link [,
we use an ON-OFF model where link [ at time ¢ is ON
(Ci(t) = 1) with probability ¢ (¢), otherwise it is OFF
(Ci(t) = 0). If scheduled, transmission over link [ at time
t is successful only if link [ is ON. Let q(¢) = (¢:(t),l € K)
be the vector of success probabilities of the links. We assume
that at any time slot ¢, the link’s success probability is known
to the scheduler before making a decision. At the end of
time slot ¢, link’s transmitter receives a feedback from its
receiver indicating whether transmission was successful or
not. A special case of this model is when ¢;(t) € {0,1},
VIl € K, in which case the channel state Cj(t) is deter-
ministically known to the scheduler, which requires periodic
channel state estimation. Another special case is when Cj(t)
is i.i.d. with some probability ¢; which eliminates the need for
periodic estimation. Similar models have been used in, e.g.,
[16] and [23].

Overall, we define I(t) = (I;(t),l € K) to denote the
successful packet transmissions over the links at time ¢. Note
that by definition, I,(t) = 1(l € M (t))C;(t), where M(t) is
the valid schedule selected at time ¢, and C(t) is the channel
state of link /.

C. Traffic Model

We assume a single-hop real-time traffic. We use a;(t) <
amax to denote the number of packets arriving to link [ at time
slot ¢, where an,x < 0o is a constant. Each arriving packet has
a deadline' which indicates the maximum delay that the packet
can tolerate before successful transmission. A packet arriving
at time ¢ with deadline d has to be successfully transmitted
before the end of time slot ¢ + d — 1, otherwise it will be
discarded. We define the traffic process 7(t) = (1.4(t),d =
1,--+ ,dmax,! € K), where 7, 4(t) is the number of packets
with deadline d arriving to link [ at time ¢, and dyax < 00.

D. Traffic and Fading Process

In general, we assume that the joint traffic and fading
process z(t) = (q(t),T(t)) evolves as an “unknown” irre-
ducible Markov chain over a finite state space Z. See Figure 1
for an example of a Markovian traffic-fading process.

IThe term “relative deadline® or “slack is often used instead.
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Without loss of generality, we make the following assump-
tion to make this Markov chain non-trivial: For every link [,
there are two states z',z’ ' € Z such that z! has a packet
arrival with deadline d, and z'' has q; > 0, and there is a
positive probability that z(t) can go from z' to z’ "in at most
d time slots. This assumption simply states that it is possible to
successfully transmit some packets of every link [ within their
deadlines. If a link does not satisfy this condition, we can
simply remove it from the system. Note that, without loss
of generality, z(t) is assumed to be an irreducible finite-state
Markov chain,? hence it is positive recurrent [24], and the
time-average of any bounded function of z(t) is well defined,
in particular the packet arrival rate for link [:

limy oo %Zi:l ai(s) =:ay. 2)

E. Buffer Dynamics

The buffer of link / at time ¢, denoted by W;(t), contains the
existing packets at link [ which have not expired yet and also
the newly arrived packets at time ¢. The remaining deadline of
each packet in ¥, (t) decreases by one at every time slot, until
the packet is successfully transmitted or reaches the deadline 0,
which in either case the packet is removed from W;(t). We also
define W(t) = (¥;(t);1 € K).

FE. Delivery Requirement and Deficit

As in [11], [12], [13], [14], and [17], we assume that there
is a minimum delivery ratio requirement p; (QoS requirement)
for each link [ € K. This means we must successfully deliver
at least p; fraction of the incoming packets on each link [
within their deadlines. Formally,

Stoam 2o ®

We define a deficit w;(¢) which measures the number of
successful packet transmissions owed to link [ up to time ¢
to fulfill its minimum delivery ratio requirement. As in [14],
[17], and [21], the deficit evolves as

liminf; o

wt +1) = [wn(t) + @) - 1) 4

where @;(t) indicates the amount of deficit increase due to
packet arrivals. For each packet arrival, we should increase
the deficit by p; on average. For example, we can increase the
deficit by exactly p; for each packet arrival to link [, or use
a coin tossing process as in [14] and [17], i.e., each packet
arrival at link [ increases the deficit by one with probability
p1, and zero otherwise. We refer to a,;(t) as the deficit arrival
process for link /. Note that it holds that

limg o0 % Zi:l 61(5) =ap =N, lEK. 5)

We refer to \; as the deficit arrival rate of link {. Note that an
arriving packet is always added to the link’s buffer, regardless
of whether and how much deficit is added for that packet. Also

21f the chain is not irreducible, since it is finite state, there is at least one
recurrent class. Starting from any state, the chain eventually enters a recurrent
class and remains there for the remaining time, and hence we can truncate
the chain to the recurrent class.
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note that in (4) each time a packet is transmitted successfully
from link [, i.e., I;(t) = 1, the deficit is reduced by one. The
dynamics in (4) define a deficit queueing system, with bounded
increments/decrements, whose stability, e.g., in the sense

(6)

implies (3) holds [25]. Define the vector of deficits as w(t) =
(wi(t),1 € K). The system state at time ¢ is then defined as

S(t) = (at), 7(t), ¥(t), w(t)). ©)

Objective: Define P¢ to be the set of all causal policies, i.e.,
policies that do not know the information of future arrivals,
deadlines, and channel success probabilities in order to make
scheduling decisions. For a given traffic-fading process z(t),
with fixed @;, defined in (2), we are interested in causal policies
that can stabilize the deficit queues for the largest set of
delivery rate vectors p = (p;,1 € K), or equivalently largest
set of A = (A := @p;,l € K) possible. For a given traffic
process, we say the rate vector A = (\;,! € K) is supportable
under some policy . € P if all the deficit queues remain
stable for that policy. Then one can define the supportable
real-time rate region of the policy p as

lim SUP; 60 %Zi:l E[wl(s)] < 00,

A, ={X>0: X is supportable by p}. 8)

The supportable real-time rate region under all the causal poli-
cies is defined as A = {J,cp., Ay. The overall performance
of a policy u is evaluated by the efficiency ratio defined as

©)

For a casual policy u, we aim to provide a universal lower
bound on the efficiency ratio that holds for “all” Markovian
traffic-fading processes, without knowing the Markov chain.

v, =sup{y: YA C A}

III. SCHEDULING ALGORITHMS AND MAIN RESULTS

Recall that 7 is the set of all maximal independent sets of
interference graph G, and B(t) is the set of links that have
packets to transmit at time ¢. At any time ¢, we define M(t)
to be the set of maximal schedules. Formally, M(t) = Z|g
where T|p(;) is the set of maximal independent sets of the
induced subgraph of G on the vertex set B(t).

Definition 1 (Gain of a Schedule): The gain of maximal
schedule M € M(t) is defined as the total deficit of links
with a successful packet transmission at time ¢, i.e.,

Gu(t) ==Y _Ci(tywi(t).
leM
Note that since link [’s channel state Cj(t) is a random
variable, the gain of the schedule is also random.
Definition 2 (Weight of a Schedule): We define the weight
of maximal schedule M to be its expected gain, conditional
on state S(¢), i.e.,

War(t) == E[Gu (1)IS(H)] = D wi(t)au(t)-

leM

(10)

Note that the above expectation is with respect to the random-
ness of the fading channel.
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Definition 3 (MWS): Max-Weight Schedule (MWS) at
time ¢ is defined as

M*(t) := arg max Wy (t).
MeM(t)
We use W*(t) := Wy« 4)(t) to denote its weight. The MWS
policy is the policy that selects a MWS at any time.
In general, given a Markov policy ALG,® let my/(t) be the
probability that ALG selects maximal schedule M at time t¢.
Hence, the probability that link / is scheduled at time ¢ is

o1(t) ::ZMEM(t) mm (t)1(1 € M). (11)

With a minor abuse of notation, we will use G4 (¢) to denote
the gain of the schedule selected by policy ALG at time t.
Then the expected gain of ALG is given by

E[Garc(t)|S(t)] = Z T ()W (t) (12)
M eM(t)

= > aat)w(t). (13)
leX

In the above, the expectation is with respect to the random-
ness of the channel and the decisions of policy ALG. Without
loss of generality, we consider natural policies that transmit
the earliest-deadline packet from every selected link in the
schedule. This is because, similar to [21] and [22], if a policy
transmits a packet that is not the earliest-deadline, that packet
can be replaced with the earliest-deadline packet of that link,
and this only improves the state. Similarly, the optimal policy
always selects a maximal schedule at any time.

A. Converting Classical Non-Real-Time Algorithms for
Real-Time Scheduling

We first state a theorem that, surprisingly, allows us to con-
vert non-real-time scheduling policies to real-time scheduling
policies, hence enabling the use of numerous policies from the
literature of traditional non-real-time scheduling (i.e., MWS
and its approximations). Specifically, policies whose expected
gain is ¢-fraction of the expected gain of MWS (i.e., W*(t)),
yield an efficiency ratio of at least ¢//() + 1). The result is
stated formally in Theorem 1 below.

Theorem 1: Consider any policy ALG such that, at every
time t, E[Garc(t)|S(t)] > vWars(t), whenever ||w(t)| >
W', for some finite W'. Then

> L
P +1

The proof of Theorem 1 is provided in Section I'V-D.

Note that this conversion results in deadline-oblivious poli-
cies which can be preferred in cases where information about
the deadlines of packets is either not accurate or not available.
We remark that for certain policies, the result of Theorem 1 is
tight as seen in Corollary 1.1 below, whereas for other policies
the bound can be loose, as we will see later in Remark 7. We
now state some of the implications of Theorem 1.

3 A Markov policy is a policy that chooses the action at time ¢ as a function
of the current state S(t).
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Corollary 1.1: MWS policy provides efficiency ratio
Wiws = % for real-time scheduling under Markov traffic-
fading processes.

Proof: Using Theorem 1 for MWS with ¢ = 1,

we directly obtain yiws > 1/2. We can get the the opposite
inequality through an adversarial example. If we consider
a simple network with two interfering links without fading,
then MWS reduces to LDF, which has been shown to have
~v* < 1/2 for Markovian traffic with deterministic deficit
admission [17], [21] (recall that efficiency ratio ~* is defined
as a universal bound for all traffic-fading processes for any
given graph). (]

Definition 4 (GMS Policy): The Greedy Maximal Schedul-
ing (GMS) policy is defined as follows. Order the nonempty
links [ € B(t) in the decreasing order of the product wy (t)q; (t).
Then construct a schedule recursively by including the non-
empty link with the largest w; (¢)g;(t), removing its interfering
links, and repeating the same procedure over the remaining
links.

The following corollary extends the result of [17], which
was for i.i.d. traffic without fading (i.e., for LDF), to general
Markov traffic and fading processes.

Corollary 1.2: GMS provides an efficiency ratio Yy >
ﬁ for real-time scheduling under any Markov traffic-fading
process, where (3 is the interference degree of the graph.

Proof: The schedule M constructed by GMS satisfies
Diem wit)q(t) > %WM* (t) and thus we can apply The-
orem 1 with ¢» = 1/ to obtain the result. The details can be
found in Appendix A in the Supplementary Materials. (]

Note that many other results from traditional scheduling
literature can be converted to real-time scheduling using
Theorem 1. For example, the distributed greedy policy DIST-
GREEDY in [2§] also obtains Yjcrarerny = ﬁ but has a
lower complexity than GMS.

B. Randomized Real-Time Scheduling Algorithms

In this section, we extend AMIX policies for collocated
networks and general networks introduced in [21] and [22]
to incorporate fading. We refer to the generalized policies
as FAMIX (Fading-based Adaptive MIX). We describe these
policies below.

1) FAMIX-MS: Randomized Scheduling in General Graphs:
Let R := {M € M(t),Wa(t) > 0}| be the number of
maximal schedules at time ¢ with positive weight (based on
Definition (10)). We discuss the nontrivial case of R > 0.
We index and order the maximal schedules such that M () ¢
M(t) has the i-th largest weight, i.e.,

Wiy (1) > Wy () -+ - = Wiy (1).

Define the subharmonic average of weight of the first n
maximal schedules, n < R, to be

(14)

n—1

Cult) = = =2 (15)
E’L:l (WMW (t)) !
Then select schedule M (") with probability
- " 1-— m, 1<i<n
Ty (B) =m0 (t) = Whra (t) (16)
0, n<i<R
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where 7 is the largest n such that {n]'(¢),1 < i < R}
defines a valid probability distribution, i.e., 77"(¢f) > 0, and
SR @ (t) = 1. It is not hard to verify that this is equivalent
to finding the largest n such that 7/ (¢) > 0, since 7*(t) is
decreasing with respect to ¢ for fixed n.

Remark 1: It has been shown in [21] that n in such a
distribution can be found through a binary search by looking
for the first value of n with 7)/(¢t) > 0. The algorithm
FAMIX-MS above and AMIX-MS in [21] and [22] are similar,
but they crucially differ in the definition of weight of a
schedule (10).

The theorem below states a lower bound on the efficiency ratio
of FAMIX-MS.

Theorem 2: In a general interference graph G with max-
imal independent sets I, the efficiency ratio of FAMIX-MS
is

. om 1
TFAMIX-MS = ST — 1 ~ 5

The proof of Theorem 2 is presented in Section I'V-E.

Remark 2: Theorem 2 shows that with randomization we
can do strictly better than MWS (Corollary 1.1). In particular,
in the case of a complete bipartite interference graph (which
has two maximal independent sets), FAMIX-MS yields an
efficiency ratio of at least 2/3 while MWS yields 1/2.

The main disadvantage of FAMIX-MS is that it is compu-
tationally demanding as it could require randomization over
all the maximal schedules. Therefore, FAMIX-MS would
be better suited for networks with a small number of max-
imal schedules. Note that MWS also suffers from analogous
complexity issues. In Section III-C, we will discuss how to
design low-complexity randomized algorithms that can obtain
nontrivial efficiency ratios in larger interference graphs.

2) FAMIX-ND: Randomized Scheduling in Collocated
Graphs: Extending AMIX-ND [21] to fading channels is more
challenging. In particular, the derivation in [21] relied on two
main ideas: (1) it is sufficient to consider only a restricted set
of “non-dominated” links for transmission, and (2) there is an
ordering among the non-dominated links such that given two
non-dominated links, having a packet in the buffer of one of
the links is always preferred to that of the other link. Finding
such domination relationship for a general Markov fading
process is difficult. Here, we describe an extension under a
simplified fading process, where ¢;(t) = ¢ = ¢, i.e., the
links’ success probabilities are fixed and equal to ¢g. We allow
the channel state across links to be either independent or
positively correlated, i.e., Pr[Cy,(t) = 1|Cy, () = 1] > q,.
The above setting could be a reasonable approximation in
collocated networks where links have similar reliabilities, and
an active channel for one link implies a better condition for
the overall shared wireless medium.

Let ¢;(t) denote the deadline of the earliest-deadline packet
of link [ at time ¢. We say that link /; dominates link [, at
time ¢ if e, (t) < ey (t), wy, (t) > wy,(t), ie., link [; is
more urgent and has a higher deficit. Based on this definition,
the set of non-dominated links at any time can be found
though a simple recursive procedure as in [21], i.e., add the
largest-deficit nonempty link, remove all the links dominated
by it from consideration, and repeat the same procedure
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over the remaining links. The following theorem describes
FAMIX-ND and its efficiency ratio for a collocated network
with a channel success probability gq.

Theorem 3: Consider a collocated network, where q; = q,
Vil € K, and channels of links are independent or positively
correlated. Order and re-index the non-dominated links such
that

wy(t) > wa(t) > ... > wy().

Starting from i = 1, assign probability m;(t) to the i-th non-
dominated link,

mi(t) = min{1(1 - Ll()t))l - ij(t)}. (17)

q w;(t

FAMIX-ND selects the i-th non-dominated link with proba-
bility m;(t) and transmits its earliest-deadline packet. Then

-1

VFAMIX-ND = (1 _qe,q +(1- Q)) i=h(q). (18)

The proof of Theorem 3 is presented in Section I'V-F.

Note that FAMIX-ND does not assign any probability
to dominated links. In (17), we assign probability to non-
dominated links, starting from the largest-deficit link ¢ = 1,
until we exhaust all the available probability, i.e., the i-
th non-dominated link will receive a positive probability if
Zj<i Trj(t) <1

Remark 3: Note that due to channel uncertainty, FAMIX-
ND boosts the transmission probability of larger-deficit links.
Intuitively, as ¢ becomes small, deadlines of packets are “effec-
tively” reduced, as each packet will need to be transmitted
several times before success. For example, in the case that

g<1-— Z’j—gg, FAMIX-ND will transmit the packet of the

largest-deficit link with probability 1.

Remark 4: The lower bound h(q) on efficiency ratio in (18)
is a monotone function of ¢, which increases from 0.5 to egl s
as q goes from 0 to 1. For ¢ = 1, this recovers the result
of [21] for non-fading channels, i.e., YApxND = %

In the case of unequal ¢; € (Gmin,Qmax), using (17) by
replacing ¢ with gp,in, Will give an efficiency ratio of at least
(li‘imf’;‘ +1 = Gmax)"' = A(¢min, Gmax). Depending on

(maxs Gmin, I, we can choose either FAMIX-ND or FAMIX-
MS and achieve v* > max{h(¢min, ¢max)s TK_l}

C. Low-Complexity and Distributed Randomized Variants

The general algorithm FAMIX-MS in Section III-B poten-
tially randomizes over all the maximal schedules. This can be
computationally expensive in large networks that may have
many maximal schedules. In this section, we present variants
of FAMIX-MS that only need to consider a subset of the
maximal schedules or are distributed.

1) Covering-Based Randomized Algorithms: We propose
two variants that only need to consider a subset of the maximal
schedules.

Let FAMIX-MS]| v, (+) denote a policy that, at any time ¢,
selects a schedule from a subset M(t) € M(t), accord-
ing to probabilities of FAMIX-MS computed for Moy(t).
Proposition 1 below states a sufficient condition under which
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randomization over a subset of the maximal schedules can
provide a related approximation on the efficiency ratio.

Proposition 1: Consider a subset of maximal schedules
Mo(t) € M(t), and policy ALG = FAMIX-MS|nq, 1)
Suppose for every M € M(t) \ My(t), we have

Y(t) E wi()q(t)eu(t) < max E q(t)wi (t) i (t)
e M’ eMo(t) et
+ (1 =(t)E[Gara(t)|S(t)],

19)

Jor some (t) € (0,1], where ¢;(t) was defined in (11) and
&, (t) =1 — ¢(t). Then

[Mo(t)] }
2Mo(@)| = 1)

The proof of Proposition 1 is presented in Section IV-G.

Proposition 1 requires selecting a suitable subset of maximal
schedules M(t) at any time ¢, such that Condition (19) holds
for some constant ¢(¢) as large as possible. Next, we present
a special case in which Condition (19) holds, by considering
a small set of schedules such that any other maximal schedule
can be covered by them.

Lemma 4: Suppose M(t) is selected such that every M €
M(t)\My(t) is covered by at most ¢ maximal schedules from
Mo(t), ie.,

M C Uppres,, M', for some Sy C Mo(t) @ |Su] < C.
(2D

Ao = i { vt o)

Then Condition (19) holds with fixed (t) = %
Proof: Using the covering definition (21), we have

Yo a®wat) < D> D> a)wt)a()
len M/ €S LlEM

> atywi()é(t),

leM’

< ({ max
M'eMoy(t)

(22)

and hence condition (19) trivially holds for (t) = % O
In general, M(t) can be adaptive and constructed based
on the link deficits and fading probabilities. Here, we apply
Proposition 1 and Lemma 4 for a constant ¢ (t) = v and
a family My(t) induced by fixed subset of the independent
sets Iy C I, ie., Mo(t) = Zo|pw). With a minor abuse
of notation, we refer to such algorithms as FAMIX-MS|z,.
Below, we present two such covering-based algorithms.
Corollary 4.1 (Coloring-Based Randomization): Consider
a coloring of graph G with x colors, which partitions the
vertices of G into X independent sets {D1, ..., D\ }. Extend
these independent sets arbitrarily so that they are maximal
{D1,.... Dy} = To. Then Yixoms |z, = 3T
Proof: Any maximal schedule in M\ M can be covered
by at most y maximal schedules in Mg, thus ¢ = =

X
by Lemma 4. Further, 2\/‘\//\1/:)(21(%§|)LI > 2X’£1. Thus applying

Proposition 1, we get the stated efficiency ratio. 0

Refer to Figure 2 for an example of a valid coloring in a
graph using y = 4 and an extension to 4 maximal independent
sets Zp. In this example, VEAMIX-MS\IO

1
> 1.
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Fig. 2. An example of coloring of an interference graph using x = 4 colors.
The corresponding independent sets are D} = {4},D} = {3},D} =
{1,5,7}, D}y = {2,6}. These can be extended arbitrarily so that they
become maximal, e.g., D1 = {4,2}, D2 = {3,7,6},D3 = {1,5,7},
Dy =1{2,6,7}.

Remark 5: In general, finding an efficient coloring might be
computationally demanding, but it needs to be done only once
for a given ;. There are many interesting families of graphs
for which coloring can be solved efficiently. For example, for a
(not necessarily complete) bipartite graph (e.g. a tree) where
X = 2, we obtain v* > % This performs much better than
LDF whose efficiency ratio in a tree with maximum degree /3
isy* > Wil—&-l in the case without fading (which is a special
case of our setting). Another family that admits an efficient
coloring are planar graphs where, by the four-color theorem,
always have a 4-coloring which can be found in polynomial
time [27]. Further, we remark that the independent sets D)
could be extended adaptively at every time ¢, e.g., using GMS.

In the following corollary, we describe a partition-based
randomization variant.

Corollary 4.2 (Partition-based Randomization): Partition
the vertices of graph Gy into two sets Ky and Ko, each
with at most [K /2] vertices. Consider the set of maximal
independent sets of each induced subgraph, denoted by
Z1,T). Then extend these independent sets arbitrarily so that
they form maximal independent sets for the whole graph Gj.

Denote the new sets of maximal independent sets by 1, 7.

* 1_ |Z1|+]Z5] 1
Then TFAMIX-MS |7, Uz, = 22( i [+ Z2))—1 > 1 )
Proof: By construction, every maximal independent set in

G can be covered by at most 2 maximal independent sets in
71 U7, and hence we have ¢ = 1/2 by Lemma 4. Following
similar arguments as in Corollary 4.1, we obtain the result. [

Remark 6: By Corollary 4.2, we only need to randomize
over at most |Z; |+ |Z2| maximal schedules at any time which
can be much smaller than |Z| in large graphs. The corollary can
be generalized to more than 2 partitions to allow a trade-off
between the guaranteed efficiency ratio and complexity.

2) Myopic Distributed Randomized Algorithm: We present
a myopic distributed randomized algorithm that has a constant
complexity.

Assume each slot is divided in two parts, a control
part of duration T, and a packet transmission part with
duration normalized to 1. Assume the deadlines of packets are
expressed in terms of such time slots, each time slot having
a duration (1 + T¢). At the beginning of the control phase,
every non-empty link [ € B(t) starts a timer T; ~ Exp(v;),
where Exp(v) denotes an exponential distribution with rate v.
Once the timer of a link [ runs down to zero, it broadcasts an
announcement informing its neighbors that it will participate in
data transmission, unless it has heard an earlier announcement
from its neighboring links, or the control phase ends.

The next corollary states the efficiency ratio for the uniform
timer rates.
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Corollary 4.3: Consider the myopic randomized algorithm
with control duration T > 0, and the same timer rate vy = v
for every link 1. If the maximum degree of Gy is A, then

1

*
Tmvoric = N —

; (23)
1-9 +1

where § = e~ Tcv,
The proof of Corollary 4.3 is provided in Section I'V-H.
Note that theoretically, we can scale up the timer rate v,
so that 6 — 0 for any T > 0, hence Vyopic = ﬁ.
Remark 7: We note that a direct application of Theorem 1
to the myopic algorithm would yield an efficiency ratio = ﬁ
as the myopic algorithm obtains a ¢ ~ ﬁ approximation
to MWS (to see this, note that every link has roughly a
probability of ﬁ for getting service. Thus all the links of the
MWS are included with this probability). Hence, Corollary 4.3
serves as an example that shows a more careful analysis can
potentially improve the bound on the efficiency ratio obtained

from Theorem 1.

IV. ANALYSIS TECHNIQUES AND PROOFS

We provide an overview of the techniques in our proofs.

A. Frame Construction

A key step in the analysis of our scheduling algorithms is
a frame construction similar to the one in [21], but based on
the joint traffic-fading process. The definition of frame is as
follows

Definition 5 (Frames and Cycles): Starting from an initial
traffic and fading state tuple (7(0),q(0)) = z € Z, let ¢,
denote the i-th return time of traffic-fading Markov chain z(t)
to z, : = 1,---. By convention, define ¢y = 0. The ¢-th cycle
C; is defined from the beginning of time slot ¢;_1 + 1 until
the end of time slot ¢;, with cycle length C; = ¢; — t;_1.
Given a fixed k¥ € N, we define the ¢-th frame fi(k) as k
consecutive cycles C(;_1)x41," -+, Cik, i.€., from the beginning
of slot #(;_1); + 1 until the end of slot Z;;. The length of

the ¢-th frame is denoted by Fi(k) = Z;'k:(i—l)k-i-l C;. Define
J(F®) to be the space of all possible (7(t),q(t)) patterns
during a frame F(*). Note that these patterns start after z and
end with z.

By the strong Markov property and the positive recurrence
of traffic-fading Markov chain z(t), frame lengths Fi(k) are
iid with mean E[F(*)] = EKE[C], where E[C] is the mean
cycle length which is a bounded constant [24]. In fact, since
state space Z is finite, all the moments of C' (and F(*)) are
finite. We choose a fixed k, and, when the context is clear,
drop the dependence on k in the notation.

Define the class of non-causal F-framed policies Pyc(F)
to be the policies that, at the beginning of each frame F;,
have complete information about the traffic-fading pattern in
that frame, but have a restriction that they drop the packets
that are still in the buffer at the end of the frame. Note that
the number of such packets is at most dyaxGmaez K, Which is
negligible compared to the average number of packets in the
frame, @, E[F] = @kE[C], as k — oco. Define the rate region

ANG(F) = U epneir M- (24)
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Given a policy 1 € Pnc(F), the time-average real-time
service rate I; of link [ is well defined. By the renewal reward
theorem (e.g. [28], Theorem 5.10), and boundedness of E[F],

S his) _E[Ye 0]
Jim / - E[F] =1 (25)
Similarly for the deficit arrival rate \;, defined in (5),
ER iera(t)]
W—)\l, lek. (26)

In Definition 5, each frame consists of k cycles. Using similar
arguments as in [17] and [21], it is easy to see that

lim inf Axc (F®)) D int(A),

Hence, if we prove that for a causal policy ALG, there exists
a constant p, and a large kg, such that for all & > ko,

pint(Anc(FH)) C Aare,

then it follows that AaLg 2 pint(A). For our algorithms,
we find a p such that (27) holds for any traffic-fading process
under our model. Then it follows that v, 5 > p.

27)

B. Lyapunov Argument

To prove (27), we rely on comparing the expected gain
of ALG with that of the non-causal policy that maximizes
the expected gain over the frame (which we refer to as max-
gain policy). The following proposition, which is similar to
that in [21], will be used to prove the main results. Its proof
is similar to the proof in [21] with minor modifications to
account for channel uncertainty. It is provided in Appendix B
in Supplementary Materials for completeness.

Proposition 2: Consider a frame F = F*), for a fixed k
based on the returns of the traffic-fading process z(t) to a
state z. Define the norm of initial deficits at the beginning
of a frame ||w(to)l| = >_;ccwilto). Suppose for a causal
policy ALG, given any € > 0, there is a W’ such that when
Iwito)l| > W,

E > ierGarc(®)|S(to)] > pe. 28)
i [Zte}‘gu* (t)|8(t0)}
where S(to) = (q(to), T(to), Y(to), w(to)), and p* is the
non-causal policy that maximizes the gain over the frame.

Then for any A € pint(Anc(F)), the deficit queues are
bounded in the sense of (6).

C. Amortized Gain Analysis

To use Proposition 2, we need to analyze the achiev-
able gain of ALG and the non-causal policy u* over
a frame. Since comparing the gains of the two policies
directly is difficult, we adapt an amortized analysis technique
from [21], initially extended from [29], [30], [31], and [32].
The general idea is as follows. Let (q(t),7(t), ¥(t), w(t))
be the state under our algorithm at time ¢ € F, and
(UH*(t), q(t), 7(t), U(t), wH*(t)) be the state under the opti-
mal policy p*. The traffic-fading process z(t) = (q(t), 7(t))
is identical for both algorithms as it is independent of the
actions of the scheduling policy. We change the state of u*
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(by modifying its buffers and deficits) to make it identical to
(a(t), (t),¥(t),w(t)), but also give u* an additional gain
that ensures the change is advantageous for p* considering
the rest of the frame. Let G, (t) denote the amortized gain
of p* at time ¢ with any compensated gain, which has the
property that

[Z% )N, S to} >E[ZQH )\, S(to)} (29)

teF

given any traffic-fading pattern J € J(F) and initial frame
state S(tp). Then, the following proposition will be useful in
bounding the gain and thus the efficiency ratio of our policies.

Proposition 3: Consider a Markov policy ALG that for any
traffic-fading pattern J € J(F), at any time t € F, satisfies

o G (01, S(8)] <EGarc®l O] +&r  (0)

for some Ep which is a measurable function of the frame
length F, with E[FEr] < co. Then yx g > p.
Proof: First note that

E[Garc(t)|],S(t)] = E[Gara(t)|J,S(t),S(to)],

by the Markov  property of ALG.  Further,
E[G,- (t)|J,3(t)} - E{éw ()|, S(), S(to)|, since the

amortized gain of the max-gain policy does not depend on
the past state given the current state and future traffic-fading
pattern (note that this amortized gain might depend on policy
ALG, which itself is Markov). Hence, taking expectation of
both sides of (30), conditional on J, S(to), and using the law
of iterated expectations, we get

- (D)1, S(t0)] SE[Garc ()1, S(to) +E [€r |, S(to)]

the frame, and using the fact that
= &r since I is determined by .J, we have

pE |G
Summing over
E(Erl,S(to)]

> Gt

LteF

pE )|, S(to) +FEp.

<E [ZQALG |J S(to)

teF

Using the definition (29), and taking expectations over the
randomness of the traffic-fading pattern, we obtain

pE [ZQM

teF

)[S(to ] <E [ZQALG(tﬂS(tO) +E[FEF].

teF

Note that by assumption, E [FEr] < oo. If we show that
100y (10 | o0 B[22, £Gpr (1)[S(to) ] = oo, then

lim [ZtengLG( )|S(t0)}
T w(to)l—oe E[Y,c£Gur (8)[S(to)]
and using Proposition 2, we obtain that v, > p.

To that end, consider the link /; := arg max; w;(tp). Since
1 maximizes the expected gain over the frame, its expected
gain cannot be lower than a policy that simply schedules link
I1 whenever it has available packets. Choose F = F* with
any k > 2. Then by the non-trivial traffic-fading Markov
chain assumption (Section II), there is a traffic-fading pattern
J" of length F;, with some nonzero probability of occurring
Pr(J’) > 0, in which a packet arrives for link /; at some
time ¢; € F, and at a later time ¢5 € F before the packet
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expires, we have q;(tz) > 0, i.e., [; € B(t2) and E [Cy, (t2)] =
qi, (t2) > 0. Then trivially

E |G, (IS(to)| = E|un, (t2)C, (12)|', S(t0) | Pr ()
teF

> (wy, (to) — Fiyr)ar, (t2) Pr (J')

> (MU gy 1) P (1),

)|S (to)] = 0.
O

The following lemma describes a generic amortized gain
computation for general networks that allows us to modify the
state of the max-gain policy during a frame to match the state
of the considered policy ALG. Recall from (11) that ¢;(¢) is
the probability that link [ is scheduled under ALG, and 7/ (t)
is the probability that schedule M is selected. Below we drop
their dependence on time to simplify the notation.

Lemma 5: For any pattern J € J(F) in a frame F, given
a Markov policy ALG, the amortized gain of the max-gain
policy p* (w.r.t. ALG) if it selects maximal schedule M € M
at time t in the frame, is given by

which shows hme (to)||—o0 E [Ete]—'gﬂ

B[00 017,80 = War () + 3 wi®)ran(t) + En
1gM
< W (1)1 = mar) + E[Gara(t)S(1)]

+Ems

where Ey, = K(F + amazdmax)-

Proof: The main idea is similar to the one in [21],
but we have to account for fading. Suppose p* attempts to
transmit the earliest-deadline packets of links from schedule
M whereas ALG attempts the earliest-deadline packets from
schedule M’. We need to modify the state of p*, i.e., the
buffers and deficits, so it is identical with the state of ALG.
To achieve this, we allow p* to additionally transmit the
packets of links successfully transmitted by ALG but not p*,
ie, S1= (M) \M@#)n{l € K:C(t) = 1}. Transmitting
such packets for p* might not be advantageous for its total
gain as the weight of these packets can increase by @,,q2@max
before they could be transmitted. Thus giving an additional
reward K a,q.dmax to p* guarantees that the modification is
advantageous. Further, we insert the packets transmitted suc-
cessfully by p* but not ALG, i.e., So = (M (t)\M'(¢))n{l €
K : Ci(t) = 1}, back to its buffers (which is advantageous for
w*). Further to make the deficits identical, we increase the
deficit counters of p* for links in S, which is advantageous
for the total-gain within the frame. Additionally, we decrease
the deficit counters of p* for the links in S;. This change
might not be advantageous for the total gain of p*, thus we
give it extra reward for every possible subsequent transmission
over links, which is at most K F. Hence the total additional
compensation is &, = K(F + amazdmax)

Following the above argument, the expected amortized gain
of u*, when it selects M, is bounded as

E [g}ff >(t)|J,S(t)}

= > abw(t)

leM
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+ Y mwe® Y aw(t) +En

M'eM\{M} lEM\M
(@)
= W)+ Y wit)bq(t) + € (31)
1¢M

where (a) follows from definitions of ¢; and Wy (t). The
inequality in the lemma’s statement follows by noting that

GH<Wu®+ > W t)ma + Em,
M'e M\{M}

since D¢y ar @u(t)wi(t) < Wap(t), and by using (12).
U

D. Proof of Theorem 1: Conversion Result

In the rest of proofs, for notional compactness, we define
E. s [] :=E[|S(t),J] and E,; [] := E[-|S(¢)]. Now consider
a pattern J € J(F). When ||w(t)|| > W’, the amortized gain
of u*, if it selects schedule M, is bounded as

£, s [0 (1)

A
INE

Wi () (1 —7ar) + Ee [Gara(t)] + Em

< Wi (t) + Ei [Gara(t)] + Em
— E; [Gaza(t) (#ﬁgm LD 48,

(b)
< By [Gare)(1/Y 4+ 1) + &,

where in (a) we used Lemma 5, and in (b) we used the main
assumption that ALG obtains ¢ fraction of the maximum
weight schedule. This inequality does not depend on the
particular choice M. Similarly in the case that ||w(t)| < W/,

it can be seen from (13) and Lemma 5 that E, ; {QAS*W)(t)} <
2 W'+ &,,. Consequently in either case, E; ; [_C’;l(f*w) (t)} <

2W' +Em+E [Gara(t)] (1/¢+1). Applying Proposition 3
with p = (1/1 + 1)~1, we obtain the result.

E. Analysis of FAMIX-MS: Proof of Theorem 2

Using Lemma 5, and probabilities of FAMIX-MS indicated
in (16), in both cases of ¢ < 7 and ¢ > n, the amortized gain
of ©* can be bounded as

Er.s |G (0)] € Wage (01 = m) + Bt [Gara(t)] + Em
< Ca(t) +Et [Gara(t)] + Em.-

Thus regardless of the schedule selected by p*, we have

E¢ g |:gAp* (t)} < Et[Gara(t)] (I&[gzig(t)] + 1) +E&m
Note that |Z| > |M| > 7, hence it suffices to show that
Cr(t n—1
E, [gAE(zos)] =T 42
as then by Proposition 3 it will follow that Yiavixms =
(|I‘| ‘1 +1)1 = 2|'II|',1- To show (32), note that
Ca(t) _ nCa(t) = (n = DE; [Garc(D)] LRz 1
E; [Garc(t)] nE¢ [Gare(t)] n
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hence, we need to show
nCH(t) — (i — E; [Garc(t)] < 0.

The inequality (33) holds because by (12) and (16), it follows
that By [Garc(t)] = Y07_ W) (t) —7Cy (t) and hence (33)
becomes

(33)

Ca(t)i® < (A —1) X7, Wi (t),

which holds by (15) and the arithmetic mean-harmonic mean
inequality applied to {Wy,a) (t),i =1,...,7}.

F. Analysis of FAMIX-ND: Proof of Theorem 3

We first state the following Lemma that allows us to focus
on policies that transmit from non-dominated links. Due to the
uncertainty of the channels, our analysis has to deviate from
the one in [21]. Here, we rely on a coupling argument to prove
the following lemma.

Lemma 6: Given J € J(F), let i* be the maximum-gain
policy that transmits only from non-dominated links at any
time (we refer to [* as max-gain ND-policy) and the
maximum-gain policy p* that can transmit any packet, then

E[XiexGa DIS(t0), J] > E [3,c #Gu- (1)[S(t0), J]
— (@maz + 1)F2.

Proof: First we consider the case where deficits do
not vary over time regardless of arrivals or transmissions.
We argue that in this case transmitting from a non-dominated
link has always higher total expected gain from any state
considering the remaining frame for any pattern J. Let
Vi(t, U, J) denote the maximum expected gain over the
remaining frame for the given pattern .J, if at the current time
slot ¢ € F with buffers W, link [ is scheduled. Further, define
V(t, ¥, J) = max; {V;(¢, ¥, J)}. Finally define Vyp(¢, S, J)
to be the maximum expected gain for the remaining frame
over policies that only schedule non-dominated links. Consider
the earliest-deadline packets P,,P, of links w,v, with u
dominating v. We argue that transmitting P,, yields a higher
expected gain than that of p,. If P, is scheduled we have:

Vu(t, 0, J) = q(wy + V(t+ 1, \If’(m, J))
+ (1 -Vt +1,9. ),

where W’ are the updated buffers due to regular buffer dynam-
ics but ignoring the scheduled packet by our policy, and \Ilzp)
indicates buffer ¥’ without packet P. Similar expression can
be written if P, is scheduled. Hence, to show V,, (¢, ¥, J) >
Vi (t, ¥, .J), equivalently we can show

wy + V(E+ 1,90, 0,J) > w, + V(E+ 1,V ),J). (34)

Now note that by the domination definition, the deadline of
packet v is at least as long as that of w, hence the optimal
policy u for V(¢t+1, \I/’(PU)7 J) that can attempt packet u can be
used to construct a policy p’ for V(t+1, \If’(Pu ,J) that attempts
v instead of u whenever . would have scheduled P,. This is
possible since P, does not expire before pP,. Now consider
a coupling for the channel outcomes in p and p’ such that
channel C#(t) under s is identical to C**' (t) under p/. This

1697

does not affect the marginal success probability of links as
both links u, v have the same probability of success ¢. Further
each success when transmitting v under g results in reward
wy, instead of w,, under u, therefore the gain of policy u’ is
stochastically larger than that of policy p, and hence in the
expectation,

VIt + 1,90 ), J) > (wp — wa) + V(E+ 1,9, ,J)

Thus in the fixed-deficit case we have
VND (tv \Ijv J) > V(tv \Ijv J)
__ Now consider the case with time-varying deficits, and let
V.(t, ¥, J) denote the corresponding quantities. In this nota-
tion V(to, Wto,J) = E[>,c G- (1), S(to)]. If pattern J
has length F, then (a): V(£, W, .J) > V(t, U, J)—ayma. F2 since
any transmission under any policy in the varying-deficit case
will yield a gain of at most a,,q,F" higher than the fixed-
deficit case, since the deficit cannot increase more than a,,,q, F'
during a frame, and we can have at most F’ such transmissions.
Similarly we obtain (b): Vi p(t, ¥, J) + F? > Vyp(t, ¥, J),
as in the time-varying deficit case every transmission can result
in at most F' gain less than the fixed-deficit case, and we can
have at most [ such transmissions. By (a) and (b), we obtain:
Vnp(t, 9, J) > V(t,¥,J) — (amax + 1) F2. O
Proof of Theorem 3. In view of Lemma 6, we perform an
amortized gain analysis for FAMIX-ND in comparison with
ND-policies. Due to the presence of fading, the gain analysis
performed in [21] is not applicable in our case and the state
of the channel needs to be considered. Suppose FAMIX-ND
decides to schedule the earliest-deadline packet Py = (wy, ef)
of link f and ND-policy ii* transmits a packet P, = (w,e.)
from a different non-dominated link z (z # f). The state of
i and FAMIX-ND will be different in the following four
cases,

1) Cy(t) =1,C.(t) = 0: In this case, we make the buffers
of the two identical by allowing /i* to also transmit P,
and give extra reward @,,q;dmax. Further we reduce the
deficit in i* for link f by 1 and we give reward F' to
[ similarly as in the proof of Lemma 5.

2) Cy(t) = 0,C(t) = 1: We replace P, in the buffer of
1 and increase the deficit of link z in g* which are
advantageous for i*.

3) ef < ey,wp < w,y, and Cp(t) = 1,C,(t) = 1t We
replace Py from link f with P, in link 2 in buffers of ji*.
Packet P, has higher deadline and higher weight at time
t. Since both packets will expire in at most dpyax slots,
the deficit of f can only increase by at most dyaxGmax
before Py expires, whereas the deficit of z can decrease
by at most dyax. Therefore giving i additional com-
pensation of (1 + ymaz)dmax Will guarantee that the
modification is advantageous. Further, we decrease the
deficit of link f by one (wy — 1 in i*) and we increase
the deficit of link z by one (w,+1 in ™). To compensate
for the decrease in deficit of link f we give fi* extra
gain of F'. Hence, the total compensation is bounded by
F+ (amaw + 1)dmax~

4) e, < ep,w, < wy and Cf(t) = 1,C.(t) = 1: In this
case, we allow [* to additionally transmit packet Py
at time ¢ and give extra reward d,,q;dmax, and inject a

shown that
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copy of packet P, to the buffer of link z. This makes the
buffers identical, but results in the decrease of deficit of
link f by one. To guarantee the change is advantageous
for 1* considering the rest of the frame, we give it extra
reward F'.

In all cases, the additional compensation is bounded by &

F+ (amax + 1)dmax. Let qij = Pr (Cz(t) =1, Cj(t) = 1) >
q%, or equivalently qi; = @ + €;; for some ¢€; >
0, by the positive correlation assumption, and hence

Pr(C;(t) =1,C;(t) =0) = ¢ — gi; = ¢(1 — q) — €;;. Then,

Ey,.s {Q( Dt } < qw; + ZWJ = ij)w; + ijquij +

Jj<i
& =qu; +(1—q) Zw]qw] + qz w;Tq
i<i
- ZTF]Q]U)J + ZTF]Q]U)J +&
J j<i
< qlw; + (1 —q) ijwj—l—quﬂrj 1+ &
J §<i

Now notice that for m; < %(1 — Z:1) the right-hand-side

of the above inequality is maximized for + = 1. This can be
verified by computing the difference of the gains for choices
1,7+ 1. Hence, we have

Eg [Gﬁ* (t)} < maXIEt J [g(*)( )} =K [gAél*)(ﬁ)}
qui + (1 — Q)E; [Gara(t)] + &o.

Let 7 be the number of links with positive probability in (17).
For the gain of FAMIX-ND, we have

(35)

gALG Zqﬂ—zwz
n—1 n—1
= Z(wz —wiy1) +q(1 — Zm)wﬁ
i=1 i=1
A1
= w1+wﬁ(_1+q—qz7ﬁ‘)
i 1

n—1
@ <1— 1—q+qzm i‘[ 1—mq)>
i=1

where in (a), by the definition of 7; in (17), we used: wys =
w1 H?:_ll(l — m;q). In (b) we used the geometric-arithmetic
inequality. Using the above relation and (35) we get

E: s [gu (t)} <E¢[Garc(t)] (1 _qe,q

Using similar arguments as in the proof of Proposition 3,
we can sum over the entire frame to obtain

E [Y1e G (017.8(t0)|
< E[XierfaraS(t)] (== +1—0) + Féo.

Due to the amortized analysis, (29) holds. Then by using
Lemma 6 we obtain

E [Ztefgu* (t)|J, S(to)}

+(1—4q)+&

— F?(amaz + 1)
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< E[Y,crGarc(t)|J,S(t)] (== + 1 - ¢) + F&.

Let p = (=% +1—¢q)~'. After taking expectation with
respect to the randomness of the frame, rearranging terms and
dividing appropriately, we obtain
E [Yierbarc(t)|S(to)] | E[F& + F*(amas +1)]
E [Zte}‘glt* (t)|8(t0)] E [Ztefgu* (t)|8(t0)]
The proof is concluded as in the proof of Proposition 3,

by 1im|w(ty) | —oc B [Y1e #Gu+ (1)|S(to)] = oo, and applying
Proposition 2.

p

G. Proof of Proposition 1: Low-Complexity Variants
Suppose that under ALG we have

Y(t) ]\f/}leaji/l E s [gﬁ(ﬂ/[)(t)} < ma}oc( )Ef 7 {gffy)( )}

(36)

Since ALG randomizes according to the probabilities of
FAMIX-MS over the maximal schedules in M (t), we have
t E [A‘i‘“t} <E ] +E 37

&), max (B [60 0]} < B (Garc(0)] +£. ()
where (1) := 2|l\4M+(§])‘/\)L1’ by using the same arguments as in
the proof of Theorem 2 applied to My(t). By (36) and (37),

min {0V ()} Evs |G (8)] < Ee [Garc(t)] +¢.

t>0

Then by Proposition 3, it follows that v > min,>o {1 (¢)§(t)} .
Hence to conclude the proof, we simply need to argue that (19)
implies (36) Using Lemma 5, and (13), it can be shown that

B¢, {g( } > wit)qt)dr + B [Gara ()] + Em

leM

Plugging the above expression in (36), it can be seen that (19)
is a sufficient condition for (36) to hold.

H. Proof of Corollary 4.3: Myopic Distributed Algorithm
The amortized gain can be written as

5.0 [6490)]
= Z qt)w () + E[Garc )] + Em

leM(t)
(a) ZleM(t) qu(t)wi(t)dr
> dra(tywi(t)

= E; 7[Garc(®)]( +1)+En

(38)

where in (a), we used (13).

Let Ay = N, eny{Ti < T} be the event that the timer
of [ expires earlier than that of its neighbors. We can obtain a
bound on the probability of link getting scheduled as follows:

¢ > Pr [Al N {Tl < Tc}] =Pr [Al] Pr [Tl < Tc|Al]

(i) #(1 — e_(’/l+zz€1\7(z> Vz)TC)
Vit D en() Ve
(b)
> i (1), (39)

T Ut DN Vs
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Fig. 3. Performance comparison of various algorithms in a simple two-link
collocated network under two different channel success probabilities q.

where (a) follows from the fact that T;|A; ~ FEuxp(y +

Do N(2) v.) (easy to verify), and (b) from the choice of T¢.

Hence, using (39), in the case that v; = v, we get ¢; > 1=0

TrA"
Hence,

2tem @)wi(t)(1— é)
> b (t)wi(t)
e a®wi ()1 = 35%)
S a(tw(t) 455
ienmr @Wwi(t)(1 - =)
ZleM(t) a(t)wi (t)ﬁ
A—9§
< q
—1-4
where the first inequality is due to the fact that the ratio is a
decreasing function of ¢;, thus using (38),
5 A—9§
Bo [620()] < Bos Gara®] (=5 +1)+
The using Proposition 3, we obtain the final result.

<

—

IN

Em.

V. SIMULATION RESULTS

We performed simulations under several networks and
traffic-fading scenarios. We compare the performance of our
algorithms FAMIX-ND and FAMIX-MS with GMS and
MWS (see Section III). Since GMS does not specify the tie
breaking rule when two or more links have the same weight,
we consider two variants, GMS-ED and GMS-RD. The first
variant, GMS-ED, break ties by transmitting the packet with
the earliest deadline (ED) among all the links with equal
weight. GMS-RD on the other hand break ties randomly (RD).

A. Simulation Results for Collocated Networks

In collocated network, MWS coincides with GMS, hence
we compare FAMIX-ND with GMS (-ED, -RD).

First, we consider a simple network with two interfering
links. Traffic is generated according to Pattern B of Figure 1,
but with i.i.d. channel success probability q. We set an equal
target delivery ratio p for both links. Figure 3a shows the
average deficit under different algorithms for different values
of p when ¢ = 0.6. While GMS-RD and GMS-ED cannot
achieve p greater than 0.47, FAMIX-MS can achieve p up to
0.58. Note that the optimal policy cannot achieve p > 0.6 in
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1 i 3 A‘l ‘5 é ‘7 8 9 10 l‘l time

Fig. 4. Traffic pattern C' used in the collocated network in Figure 5.
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Fig. 5. Performance comparison in a 5-link collocated network using the
traffic pattern of Figure 4, under two different channel success probabilities g.

this scenario due to the fading probability ¢ = 0.6, and
hence FAMIX-ND is near optimal. For comparison, Figure 3b
shows the evaluation result for ¢ = 0.8. We observe that the
gap between the maximum achievable delivery ratio of GMS
and FAMIX-ND widens for larger values of ¢. This behavior
is consistent with the lower bounds on the efficiency ratios
presented in this paper.

We observe a similar behavior for larger collocated net-
works. For example, consider a collocated network with
5 links, and a channel success probability of ¢ = 0.5 for
each link. The traffic pattern is indicated in Figure 4 and the
evaluation result is shown in Figure 5a. This is the same traffic
pattern used in [22]. Here, we observe that even with fading,
the randomized policies introduced in this work outperform
other algorithms, i.e., FAMIX-ND can support the highest
delivery ratio requirement, followed by GMS-ED, and then by
GMS-RD. Further, increasing the channel success probability
to ¢ = 0.7 widens the performance gap between the policies,
as seen in Figure 5b. Note that the value of ¢ sets a trivial upper
bound of the maximum achievable delivery ratio of all policies,
therefore FAMIX-ND is near optimal in all the simulations.

Finally we simulate a network with ¢ = 0.8, 5 links and
Bernoulli arrivals and random deadlines, uniformly chosen
between 1 to 6. The results are shown in Figure 6. Despite
the presence of randomness in the traffic, FAMIX-ND still
demonstrates good performance compared to the maximum
achievable delivery ratio (achieving an efficiency ratio of at
least 0.73/0.80 ~ 0.91) and to GMS.

B. Simulation Results for General Networks

1) Efficiency Ratio Comparison in Random Geometric
Graphs: In Figure 7, we generate 100 (generalized) random
geometric graphs to represent interference graphs of networks.
Each network has 50 links. Links are assigned uniformly
random locations in a square area, and are selected to interfere

Authorized licensed use limited to: Columbia University Libraries. Downloaded on November 13,2023 at 22:36:58 UTC from IEEE Xplore. Restrictions apply.



1700

le2
3.51 —e— GMSRD
—v— GMSED
27 —+— FAMIX-ND

0.66 0.68 0.70 0.72 0.74
Delivery Ratio

Fig. 6. Performance comparison in a 5-link collocated network, with ¢ = 0.8,
and packets with random deadlines.
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Fig. 7. Comparison of efficiency ratios of different algorithms in random
graphs with varying connectivity parameter be.

with each other based on their distance (a.k.a. Waxman
model). More specifically, two randomly located nodes at
z, and x, have a probability of being connected given by
boeN1za=aoll/L \where I and b. are two constants. In our
experiments, we fix L = 0.3max,, ||z, — 2| and vary
b. to affect the sparsity of the graph. We refer to b, as the
connectivity parameter. We calculate the average efficiency
ratio bound discussed in this work for Coloring Variant,
Myopic Distributed Variant, GMS, FAMIX-MS and MWS.
We observe that in the sparser graphs the coloring variant
has a better efficiency ratio than GMS. FAMIX-MS is slightly
above MWS, but as these graphs have a larger number of
independent sets, the difference is not significant.

2) Results in Other Networks: In general networks, MWS
and GMS can choose different schedules. In this case, for
MWS, we transmit the earliest deadline packet of every link
scheduled by MWS.

First, consider a sparse network with 5 links with interfer-
ence graph G with edges {(I1,l2), (I2,13), (I2,14), (l4,15) }.
The traffic-fading process for {l1,13,l4} is as in link 2 of
Pattern B in Figure 1, and for links {l2,l5} is as in link 1.
We set an equal target delivery ratio p for all the links.
Figure 8a shows the results. We can see that FAMIX-MS
can support a significantly higher delivery ratio than the other
algorithms. In this case, the optimal policy cannot achieve
p > 0.75. This is because, for each link, for every two arrivals,
the optimal policy cannot successfully transmit more than
1.5 packets on average.

Next, consider a simple path network with links £ =
{l1,12,13} with the interference graph G with edges
{(l1,12), (l1,13)}. The traffic-fading process is indicated in
Pattern A from Figure 1. Then GMS becomes unstable for
Pp=(G+es+ei+e), for any ¢ > 0, whereas the

optimal policy can achieve p = (13, %, %) This is because

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 31, NO. 4, AUGUST 2023
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Fig. 8.  Performance comparison in two non-collocated networks, under
Markovian traffic-fading.
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Fig. 9. (a) Performance comparison in an 8-link network with the interference
graph shown in (b), with the mix of i.i.d. and Markovian traffic-fading
processes.

in this traffic scenario, there is a way to attempt to transmit
every packet exactly once, and the only packet losses will be
due to fading. Then I; will have 2.75 packets successfully
transmitted in every 3 arrivals, hence a delivery ratio of

% = % Similarly lo and [3 will have a delivery ratio of
1+2—2/3 = %. This example illustrates the existence of simple

examples with non-equal delivery ratio requirements where
GMS performs poorly. Similar examples can be constructed
for more links. To further study cases with non-equal delivery
ratio, we consider the same network and set a vector of
delivery ratio requirements p = (0.9,0.8,0.8)p for varying
values of p which we refer to as QoS intensity. The result
is illustrated in Figure 8. As we can see, MWS significantly
outperforms GMS in this network, in contrast to the earlier 5-
link sparse network. Further, as seen in Figure 8, FAMIX-MS
supports larger values of QoS intensity p compared to MWS
and GMS.

Finally, we consider a network with 8 links {i1,---,ls},
with interference graph shown in Figure 9. Links [;,l2 have
the traffic-fading of link 1 in Pattern B of Figure 1b, and
links 14, l5, ls have the traffic-fading of link 2 from the same
pattern. In addition, we add two different i.i.d. traffic sources.
The first traffic source has one packet arrival with probability
0.3 with deadline 1, at links I3 and lg. The other source
has 7 packet arrivals with probability 0.1, each with deadline
10, for link [;. Further, [3 has the same channel success
probabilities as [1, and lg,[7 have the same channel success
probabilities as I, (with the success probabilities in the slots
that are not specified assumed to be 1). The results are shown
in Figure 9a FAMIX-MS retains a considerable advantage
even with the presence of the i.i.d. sources. We observed
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similar behavior when varying the packet arrival probability

for

the i.i.d. sources. This indicates that the results are robust

to traffic perturbations and under different interference graphs.

VI. CONCLUSION

We considered scheduling of real-time traffic over fad-

ing
reli
We

channels, where traffic (arrival and deadline) and links’
ability evolves as an unknown finite-state Markov chain.
provided a conversion result that shows classical non-

real-time scheduling algorithms like MWS and GMS can

be
rati

ported to this setting and characterized their efficiency
0. We then extended the randomized algorithms from [21]

to fading channels. We further proposed low-complexity and
myopic distributed randomized algorithms and characterized
their efficiency ratio. Improving the bounds in this paper and
investigating more efficient low-complexity and distributed
randomized algorithms could be an interesting future research.
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