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ABSTRACT
We consider three problems in high-dimensional linear mixed models. Without any assumptions on the
design for the !xed e"ects, we construct asymptotic statistics for testing whether a collection of random
e"ects is zero, derive an asymptotic con!dence interval for a single random e"ect at the parametric rate

√
n,

and propose an empirical Bayes estimator for a part of the mean vector in ANOVA type models that performs
asymptotically as well as the oracle Bayes estimator. We support our theoretical results with numerical
simulations and provide comparisons with oracle estimators. The procedures developed are applied to the
Trends in International Mathematics and Sciences Study (TIMSS) data. Supplementary materials for this
article are available online.
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1. Introduction

In the past two decades, there has been a lot of progress in the
theory for high-dimensional linear models. However, its close
cousin, the high-dimensional linear mixed model, has received
signi!cantly less attention; it was not until the past decade until
there were procedures for estimation. Consider a linear mixed
model given by

Y = µ + Zν + Wγ + ε, (1)

with Z ∈ Rn×q, W ∈ Rn×d, and Y , µ, ε ∈ Rn; the vector µ and
the pair ν and γ are the !xed e"ects and the random e"ects,
respectively. In addition, we observe covariates X ∈ Rn×p such
that µ ≈ Xβ for some sparse vector β ∈ Rp (see Section 1.2 for
a rigorous de!nition). Here, X is the component of the design
corresponding to the !xed e"ects and (Z, W) the component
corresponding to the random e"ects. We consider the setting
where the random e"ects are low-dimensional, q + d < n,
but the !xed e"ects are high-dimensional, p > n. We have
separated the random e"ects in two to emphasize that later we
are interested in ν and view γ as nuisance parameters. Various
authors have considered di"erent aspects of this problem.

The earliest work of Schelldorfer, Bühlmann, and van de Geer
(2011) proposed an estimator for both β and the variance com-
ponents using a lasso-type approach. These types of approaches
were later extended by several authors who considered estima-
tion with both convex penalties, such as Groll and Tutz (2014),
and nonconvex penalties, such as Wang, Zhou, and Qu (2012).
There is also a growing literature on model selection in high-
dimensional linear mixed models (see, e.g., the review article by
Müller, Scealy, and Welsh 2013).

The problem of inference is slightly less well studied. To the
best of our knowledge, hypotheses testing problems were !rst

CONTACT Michael Law mmylaw@umich.edu University of Michigan, 1085 S. University Ave. West Hall, Ann Arbor, MI 48109-1382.

considered by Chen et al. (2015) for random e"ects and Bradic,
Claeskens, and Gueuning (2017) for !xed e"ects. However, the
work of Chen et al. (2015) only consider the special case of
ANOVA designs for random e"ects. During the preparation of
this manuscript, we became aware of the independent work of
Li, Cai, and Li (2021), who consider the problem of inference
in high-dimensional linear mixed models. In particular, they
discuss inference for !xed e"ects and estimation of variance
components. A more detailed comparison of our methodology
with Li, Cai, and Li (2021) is deferred to Section 2.4. We also
note that there is a parallel notion of high-dimensional mixed
models, where the number of !xed e"ects is low-dimensional
while the random e"ects are high-dimensional. Under this set-
ting, Jiang et al. (2016) established asymptotic results for the
restricted maximum likelihood for variance components.

The goal of the present article is to contribute to this growing
literature on high-dimensional linear mixed models where the
!xed e"ects are high-dimensional, both in terms of estimation
and inference. In particular, we consider three related problems:

1. Testing whether a collection of random e"ects is zero.
2. Constructing con!dence intervals for the variance of a single

random e"ect.
3. Estimating using empirical Bayes in Gaussian ANOVA Type

Models.

Our methodology is inspired by both low-dimensional linear
mixed models as well as high-dimensional linear models. Specif-
ically, our approach to all three problems starts with considering
a procedure in the corresponding low-dimensional problem and
retro!tting it with tools and techniques from high-dimensional
linear models to produce a procedure for high-dimensional
linear mixed models. Throughout the article, while we consider
the general linear mixed e"ects models, we use the balanced

© 2022 American Statistical Association
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one-way ANOVA model to simplify the discussion of our esti-
mators and assumptions.

1.1. Organization of the Paper

We end the current section with a description of the nota-
tion that we adopt throughout the article. Sections 2, 3, and
4 consider the three problems outlined in the Introduction in
succession. Each one starts with a description of the problem
setup, a brief motivation from the low-dimensional problem,
and a description of the estimator, that is, considered, and
ends with some theoretical results. In Sections 5 and 6, we
provide the results of our simulations and a real data application,
respectively. For the ease of presentation, we defer all proofs and
additional simulation results to the supplementary material.

1.2. Notation

Throughout, all of our variables have a dependence on n, but
we suppress this dependence when it does not cause confu-
sion. For a general vector a and matrix A, let ‖a‖2 denote
the standard Euclidean norm with the dimension of the space
being implicit from the vector, ‖A‖2 the operator norm, and
‖A‖HS the Hilbert–Schmidt norm. Furthermore, if A is square,
then λmax(A) and λmin(A) denote the maximal and minimal
eigenvalue of A, respectively. For any k ∈ N, we let λmax,k(A)

denote the kth largest eigenvalue of A if A is square. Moreover,
we write 1k ∈ Rk and Ik ∈ Rk×k to denote the k-dimensional
vector of all ones and the k-dimensional identity matrix, respec-
tively. For two matrices A and B, the notation A & B denotes
the intersection of the column space of A and the orthogonal
complement of the column space of B. Then, for a matrix A,
we write PA to denote the projection onto the column space
of A and P⊥

A the projection onto the orthogonal complement.
Moreover, we write rA to denote the rank of A.

Consistent with other high-dimensional works, we assume
that β is a sparse vector. There are various notions of sparsity
but we assume the slightly more general setting of weak sparsity
from Law and Ritov (2021). Before providing the de!nition,
we introduce some more notation. For u ∈ N, we let Mu !{

m ⊆
{

1, . . . , p
}

: |m| = u
}

denote the collection of all models
with the dimension of the !xed e"ects design equal to u. For
a model m ∈ Mu, Xm denotes the n × u sub-matrix of X
corresponding to the columns indexed by m.

De!nition 1. The vector µ is said to satisfy the weak sparsity
property relative to X with sparsity s at rate k as n → ∞ if the set

Sµ !
{

m ∈ Ms : ‖P⊥
Xm

µ‖2
2 = o(k)

}

is nonempty.

Then, we let S ∈ Sµ denote any weakly sparse set for µ. We
note that the usual high-dimensional setting of strong sparsity,
where µ = XSβS for |S| = s, implies that µ is weakly sparse
relative to X with sparsity s. Similar to other works on high-
dimensional linear models and high-dimensional linear mixed
models, we consider errors and random e"ects which are sub-
Gaussian, for which we use the following de!nition:

De!nition 2. A random vector ξ ∈ Rn is said to be sub-Gaussian
with parameter K if

E exp
(
λTξ

)
≤ exp

(
K2‖λ‖2

2
2

)

for all λ ∈ Rn.

Note that if ξ is sub-Gaussian with parameter K and A ∈
Ra×n is any deterministic matrix, then Aξ is also sub-Gaussian
with parameter Kλmax(ATA). Finally, the asymptotic distribu-
tions of some of our estimators depend on the fourth moments
of the underlying distributions. We write κε ! var(ε2

1), ωε !
E(ε4

1), κν ! Var(ν2
1), and ων ! E(ν4

1) when ν corresponds to a
single random e"ect.

2. Hypotheses Testing for Random E!ects

In this section, we consider the problem of inference for a
collection of random e"ects. Consider the high-dimensional
linear mixed model (1) and let ) ! var(ν). We are interested in
the hypotheses testing problem

H0 : λmax()) = 0, H1 : λmax()) > 0. (2)

We propose two procedures in this section depending on
whether ε is Gaussian.

2.1. Model and Motivation

Suppose temporarily that we are in the low-dimensional Gaus-
sian setting with s = p, p + q + d < n, µ = XSβS, ε ∼
Nn(0n, σ 2

ε In) for some positive constant σ 2
ε > 0, and ν ∼

Nq(0q, )) for some symmetric positive semi-de!nite matrix ) .
Then, in this problem, the standard procedure for testing ν is
through the Wald F-test. Writing rZ&(XS,W) ! rank(PZ&(XS,W))

and r(XS,Z,W)⊥ ! rank(P⊥
(XS,Z,W)), the Wald F-test is de!ned as

Fld = ‖PZ&(XS,W)Y‖2
2/rZ&(XS,W)

‖P⊥
(XS,Z,W)Y‖2

2/r(XS,Z,W)⊥
. (3)

Under the null hypothesis, the above statistic has an
FrZ&(XS ,W),r

(XS ,Z,W)⊥ distribution. The main obstacle to directly
using the Wald F-test in the high-dimensional setting is
removing the contribution of the !xed e"ects. One possibility is
to perform model selection and choose the relevant covariates
from X and then use the Wald F-test. Chen et al. (2015) consider
a similar problem in the growing dimensional setting and
they use a SCAD based approach for variable selection. As a
consequence, they require p = o(

√
n). Instead, we leverage the

fact that a projection onto a particular space is a regression onto
a design whose columns span the same space.

Expanding both the numerator and the denominator of the
Wald F-statistic, we have that

PZ&(XS,W)Y = PZ&(XS,W)Zν + PZ&(XS,W)ε,
P⊥

(X,Z,W)Y = P⊥
(XS,Z,W)ε.

In both matrices above, they project onto the orthogonal
complement of W, which may still be achieved in the high-
dimensional problem since W is a low-dimensional matrix.
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Thus, we may !nd two projection matrices, PZ&W and P⊥
(Z,W),

such that

PZ&WY = PZ&WXβ + PZ&WZν + PZ&Wε,
P⊥

(Z,W)Y = P⊥
(Z,W)Xβ + P⊥

(Z,W)ε.

If PZ&WX was low-dimensional, obtaining the projection
of PZ&WY onto the orthogonal complement of PZ&WX is
equivalent to !nding the residuals of PZ&WY using the
covariates PZ&WX; this yields PZ&WY − PZ&WXβ̂ , where β̂

is the least-squares estimator for β . The same holds for P⊥
(Z,W)X

and P⊥
(Z,W)Y . Then, we have that

PZ&WY − PZ&WXβ̂ = (PZ&WXβ − PZ&WXβ̂)

+PZ&WZν + PZ&Wε,
P⊥

(Z,W)Y − P⊥
(Z,W)Xβ̂ = (P⊥

(Z,W)Xβ − P⊥
(Z,W)Xβ̂) + P⊥

(Z,W)ε.

Hence, this recasts the problem into one of high-dimensional
prediction, for which there have been many procedures sug-
gested to estimate PZ&WXβ and P⊥

(Z,W)Xβ , such as the lasso and
exponential weighting (see Tibshirani 1996 and Leung and Bar-
ron 2006, respectively). Therefore, we propose using a plug-in
estimator for PZ&WXβ and P⊥

(Z,W)Xβ using exponential weight-
ing of all models of a particular size and then consider the
resultant residuals. Since we view the !xed e"ects as nuisance
parameters, we consider exponential weighting instead of the
lasso since exponential weighting does not require any assump-
tions on the design matrix X. However, most of the theory
developed also applies to other plug-in estimators, albeit with
simple modi!cations and much stronger conditions. This idea,
under some mild assumptions, provides an asymptotic F-test.

However, there are two asymptotic regimes for the random
e"ects: (i) the number of random e"ects increases to in!nity
and (ii) the number of random e"ects stays bounded. These
two settings require slightly di"erent analyses, so we consider
separate exponential weighting estimators for the two cases.

Besides providing an asymptotic F distribution when ε is
Gaussian, the F-ratio in Equation (3) simultaneously removes
the scaling e"ect from σ 2

ε . When ε is known only to be sub-
Gaussian, the ratio no longer follows an F-distribution. How-
ever, a#er appropriate rescaling, we may still achieve the ancil-
lary property relative to σ 2

ε by looking at the di"erence instead
of the ratio. This approach, under slightly stronger sparsity
assumptions, leads to an asymptotic z-test with only the sub-
Gaussian assumption on the error distribution.

2.2. Estimator

In the setting, where the number of random e"ects increases
to in!nity, instead of estimating PZ&WXβ and P⊥

(Z,W)Xβ sep-
arately, we estimate P⊥

WXβ and then project the resultant vector
onto PZ&W and P⊥

(Z,W), respectively. In addition to saving on
computational time by only using exponential weighting once,
this also allows us to leverage a larger sample size when estimat-
ing the mean vector. To apply exponential weighting, we !x a
sequence of sparsities u = un. Let β̂m denote the least-squares
estimator of β using the model m ∈ Mu with covariates P⊥

WXm.
Let KZν+ε denote the sub-Gaussian parameter for Zν + ε. We

de!ne the exponential weights by

wm !
exp

(
− 1

α ‖P⊥
W(Y − Xβ̂m)‖2

2

)

∑
k∈Mu exp

(
− 1

α ‖P⊥
W(Y − Xβ̂k)‖2

2

) ,

where α > 4KZν+ε . Then, the estimator for β is given by

β̂EW ! ∑
m∈Mu wmβ̂m.

Note that the bound on α is to ensure P⊥
WXβ̂EW is a consistent

estimator of P⊥
WXβ . In the case where both ν and ε are Gaussian,

the above bound on α becomes α > 4
(
σ 2

ε + λmax
(
Z)ZT)).

Then, we estimate PZ&WXβ and P⊥
(Z,W)Xβ by PZ&WXβ̂EW and

P⊥
(Z,W)Xβ̂EW, respectively. The corresponding F-statistic is

FEW ! ‖PZ&W (Y−Xβ̂EW)‖2
2/rZ&W

‖P⊥
(Z,W)(Y−Xβ̂EW)‖2

2/r
(Z,W)⊥

.

Similar to the Wald F-statistic, we reject the null hypothesis for
large values of FEW. In particular, for a value δ ∈ (0, 1), let Fa,b,δ
denote the δ upper quantile of the Fa,b distribution. Then, we
consider tests of the form

φF,δ ! 1
(

FEW > FrZ&W ,r
(Z,W)⊥ ,δ

)
.

For the second setting where the number of random e"ects
stay bounded, we estimate the numerator di"erently. Let
U(Z,W)⊥ ∈ Rn×r

(Z,W)⊥ be any orthogonal matrix such that
P⊥

(Z,W) = U(Z,W)⊥UT
(Z,W)⊥ ; for example, the matrix U(Z,W)⊥ may

be computed by taking the spectral decomposition of P⊥
(Z,W).

De!ne Ỹ = UT
(Z,W)⊥Y and let Ỹ(1), Ỹ(2) ∈ Rr

(Z,W)⊥/2 be a
partition of Ỹ . We similarly de!ne X̃(1) and X̃(2). Then, letting
β̃

(1)
m (respectively, β̃

(2)
m ) denote the least-squares estimator of β

using the model m ∈ Mu with covariates X̃(1)
m (respectively,

X̃(2)
m ), the exponential weights are de!ned as

w̃(1)
m !

exp
(
− 1

α̃
‖Y(1)−X(1)

m β̃
(1)
m ‖2

2

)

∑
k∈Mu exp

(
− 1

α̃
‖Y(1)−X(1)

k β̃
(1)
k ‖2

2

)

and similarly for w̃(2)
m , where α̃ is delineated in Theorem 4 below.

Now, de!ne

β̃
(1)
EW ! ∑

m∈Mu w̃(1)
m β̃

(2)
m , β̃

(2)
EW ! ∑

m∈Mu w̃(2)
m β̃

(1)
m .

Then, the estimator of β is

β̃EW ! (β̃
(1)
EW + β̃

(2)
m )/2

and the corresponding F-statistic is

F̃EW ! ‖PZ&W (Y−Xβ̃EW)‖2
2/rZ&W

‖P⊥
(Z,W)(Y−Xβ̂EW)‖2

2/r
(Z,W)⊥

.

At !rst sight, computation of these estimators may seem pro-
hibitive since we need to aggregate over

(p
u
)

models. However,
they may be well approximated by an MCMC algorithm given
by Law and Ritov (2021), to which we refer the interested reader.

In the setting, where the ε is not distributed Gaussian, we
consider the following z-statistic

zEW ! ‖PZ&W (Y − Xβ̂EW)‖2
2 − rZ&W r−1

(Z,W)⊥‖P⊥
(Z,W)(Y − Xβ̂EW)‖2

2.



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1685

Under proper scaling, the statistic zEW has an asymptotic Gaus-
sian distribution under the null hypothesis. Let

σ 2
ς ,z ! κε

n∑

i=1
(PZ&W − rZ&Wr(Z,W)⊥

−1P⊥
(Z,W))

2
i,i

+ 2σ 4
ε

∑

i .=j
(PZ&W − rZ&Wr(Z,W)⊥

−1P⊥
(Z,W))

2
i,j,

with σ̂ 2
ς ,z a consistent estimator of σ 2

ς ,z. The quantity σ 2
ς ,z is the

scaling factor to ensure a central limit for zEW. Then, letting zδ

denote the δ upper quantile of the standard Gaussian distribu-
tion, we consider tests of the form

φz,δ ! 1
(
zEW > zδσ̂ς ,z

)
.

A general discussion regarding σ̂ 2
ς ,z is deferred to Section 3.4.

When ε is not Gaussian, we only consider the setting where the
number of random e"ects increases to in!nity since the analysis
of zEW relies of a central limit theorem for quadratic forms.

As mentioned in Section 2.1, under appropriate conditions,
we may also use the lasso instead of exponential weighting. For
a suitable choice of λ > 0, de!ne the lasso estimator of β as

β̂LA ! arg minβ∈Rp‖P⊥
W(Y − Xβ)‖2

2 + λ‖β‖1.

Then, the corresponding F-statistic is

FLA ! ‖PZ&W (Y−Xβ̂LA)‖2
2/rZ&W

‖P⊥
(Z,W)(Y−Xβ̂LA)‖2

2/r
(Z,W)⊥

.

2.3. Assumptions

In this section, we make the following assumptions.

(A1) The mean vector µ = µn has squared norm, ‖µn‖2
2/n,

that is, bounded.
(A2) The vector ε is sub-Gaussian with parameter Kε and has

independent components.
(A2∗) The vector ε ∼ Nn

(
0n, σ 2

ε In
)
.

(A3) The random e"ects ν are sub-Gaussian with parameter
Kν .

(A3∗) The random e"ects ν satisfy Zν ∼ Nn
(
0n, Z)ZT).

(A4) The matrix Z satis!es λmax(ZZT) being bounded and
(Z, W) is independent of X.

(A5) The mean vector µ = µn is weakly sparse relative to
X with sparsity sn, with weak sparsity de!ned in De!ni-
tion 1. Furthermore, the statistician chooses a sequence
of sparsities un such that un ≥ sn for n su$ciently
large and un = o

(
nτ/ log(p)

)
for some τ ∈ [1/2, 1].

Moreover, the number of observations in the reduced
models, rZ&W and r(Z,W)⊥ , satisfy rZ&W 1 r(Z,W)⊥ 1 n.

(A6) The mean vector µ = µn satis!es µ = Xβ with ‖β‖0 =
sn. Furthermore, the statistician chooses a sequence of
sparsities un such that un ≥ sn for n su$ciently large and
un = o

(
nτ/ log(p)

)
for some τ ∈ [1/2, 1]. Moreover,

the rows of X are independent and identically distributed
Np(0p, 0X) with max(diag(0X)) = O(1) and r(Z,W)⊥ 1
n.

(A7) The vector ε = εn satis!es

infn
{(

mini=1,...,n Var(εn,i)
)
∧

(
mini=1,...,n Var(ε2

n,i)
)}

> 0,

limx→∞ supn
{(

maxi=1,...,n E
(
ε2

n,i : |εn,i| > x
))

∨
(

maxi=1,...,n E
(
ε4

n,i : |εn,i| > x
))}

= 0.

Remark 1. Assumptions (A1) and (A2) are standard assump-
tions in high-dimensional linear models. Calling ε the noise
and Zν + ε the random component, assumption (A1) is a
scaling assumption to ensure the ratio of the !xed components
to the random components remains bounded asymptotically
and is analogous to the assumptions of Bradic, Claeskens, and
Gueuning (2017), who assume that the population covariance
matrix of X has bounded maximal eigenvalue and ‖β‖2 = O(1).
Next, (A2) is used for consistency of the prediction procedure
under the null hypothesis and assumption (A3) allows for
concentration of the prediction procedure under the alternative
hypothesis. Both assumptions are used by various authors,
such as Bradic, Claeskens, and Gueuning (2017) and Cai
and Guo (2017). We note that (A2) and (A3) are implied by
(A2*) and (A3*), respectively, but the additional Gaussian
distribution assumption allows us to relate our methodology
to the vast literature on low-dimensional Gaussian mixed
models.

Next, the !rst part of assumption (A4), like (A1), ensures that
the ratio of the !xed components to the random components of
the variance noise ratio remains bounded under the alternative
hypothesis. To elucidate this point, consider the Gaussian setting
with ε ∼ Nn(0n, σ 2

ε In) and ν ∼ Nq(0q, σ 2
ν Iq). Then, Zν + ε ∼

Nn(0n, σ 2
ν ZZT + σ 2

ε In). Since λmax(ZZT) ≥ max(diag(ZZT)),
assumption (A4) bounds the variance of the noise. Moreover,
(A3) and (A4) together imply that Zν is sub-Gaussian with
parameter Kνλmax(ZZT). This requirement is similar to Condi-
tion 1 of Bradic, Claeskens, and Gueuning (2017) and Condition
3.1 of Cai and Guo (2017). The assumption that (Z, W) is
independent of X is common in the literature (see the discussion
before Condition 3.2 of Cai and Guo 2017).

The following two assumptions, (A5) and (A6), are about
the sparsity of the !xed e"ects. The two assumptions consider
di"erent asymptotic regimes regarding the random e"ects; (A5)
assumes that the number of random e"ects increases to in!nity
while (A6) allows for the number of random e"ects to stay
bounded. The !rst part of both (A5) and (A6) is a sparsity
assumption commonly found in the high-dimensional linear
models literature, which is discussed further in Remark 2 below.
Note that since the selected sequence of sparsities un satis!es
un = o(nτ / log(p)), then the true sequence of sparsities sn also
satis!es the same requirement.

The second half of (A5) is an assumption on the component
of the design for the random e"ects, requiring the number
of realizations of the random e"ects to increase to in!nity.
The requirement that rZ&W 1 r(Z,W)⊥ 1 n is for conve-
nience and can be weakened to only min(rZ&W , r(Z,W)⊥) →
∞ if the sparsity requirement is accordingly relaxed to un =
o
(
min(rZ&W , r(Z,W)⊥)τ/ log(p)

)
. The second half of (A6) is

a technical requirement to ensure consistency of exponential
aggregation for out-of-sample predictions. Since the number
of random e"ects remains bounded, the regression of PZ&WY
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on PZ&WX does not necessarily yield a consistent estimator of
PZ&Wµ for arbitrary designs. With the Gaussian assumption, we
may estimate β by regressing P⊥

(Z,W)Y on P⊥
(Z,W)X and obtain

a consistent estimator of PZ&Wµ. Again, the requirement that
r(Z,W)⊥ 1 n can be weakened to r(Z,W)⊥ → ∞ by adjusting the
sparsity requirement to un = o(r(Z,W)⊥

τ / log(p)).
Assumption (A7) is a mild assumption on the distribution

of ε to ensure a central limit theorem. For example, (A7) is
satis!ed by the Gaussian distribution. Note that no assumption
is necessary on γ as the nuisance parameters are projected out
in the !rst stage.

Example 1 (Balanced one-way ANOVA). As an example of a
design satisfying the above assumptions on Z, consider a bal-
anced one-way ANOVA design, with q subjects, m observations
per subject, and n = mq total observations. In this setting, there
are no nuisance random e"ects, so d = 0. Assume further that
the number of observations per subject remains bounded (i.e.,
m = O(1)), which is commonly satis!ed in practice. Then, the
matrix Z may be represented by Z = Iq⊗1m. It is immediate that
rZ&W = q and r(Z,W)⊥ = (m − 1)q, implying that the second
half of (A5) is satis!ed. Finally, assumption (A4) is satis!ed since
λmax(ZZT) = λmax(mIq) = m.

2.4. Main Results

Since FEW is motivated by the classical F-statistic Fld, the follow-
ing theorem shows that, up to a small bias term depending on
the sparsity, the two statistics are asymptotically equivalent.

Theorem 1. Consider the model given in Equation (1) and the
hypotheses testing problem from Equation (2). Assume (A1),
(A2*), (A3*), (A4), and (A5). If α ≥ 4

(
σ 2

ε + λmax
(
Z)ZT)),

then

FEW = Fld + oP(nτ−1).

As mentioned in Section 2.1, under the null hypothesis, the
statistic Fld ∼ FrZ&(XS ,W),r

(XS ,Z,W)⊥ . However, since the weakly
sparse set S is unknown, the value of rZ&(XS,W) and r(XS,Z,W)⊥
cannot be determined in practice. From assumption (A5), as s =
o(nτ / log(p)), then FrZ&(XS ,W),r

(XS ,Z,W)⊥ = FrZ&W ,r
(Z,W)⊥ + oP(1).

Thus, the statistic FEW can also be compared to the reference
distribution FrZ&W ,r

(Z,W)⊥ .
Despite being asymptotically equivalent to the Wald F-test,

FEW has an additional bias term of oP(nτ−1), which impacts the
power of the testing procedure. This leads us to consider the
following hypotheses testing problem; for any τ ∈ [1/2, 1], we
consider the contiguous hypotheses

H0 : λmax(PZ&WZ)ZTPZ&W) = 0,
H1 : λmax,rZ&W (PZ&WZ)ZTPZ&W) = hnτ−1.

(4)

Example 2. Consider the setting of Example 1 with ν corre-
sponding to a single random e"ect and ν ∼ Nq(0q, σ 2

ν Iq). Then,
with τ = 1/2, the above hypotheses becomes

H0 : σ 2
ν = 0, H1 : mσ 2

ν = hn−1/2,

which is a standard hypotheses testing problem, such as in the
balanced one-way random e"ects model. In this model, in the
low-dimensional setting, the rate of

√
n is optimal.

Theorem 2. Consider the model given by equation (1) and
the hypotheses testing problem from equation (4). Assume fur-
ther (A1), (A2*), (A3*), (A4), and (A5) for any τ ∈ [1/2, 1].
Fix a value of δ > 0. Under the alternative hypothesis with
h > 0 su$ciently large (not depending on n) and α ≥
4
(
σ 2

ε + λmax
(
PZ&WZ)ZTPZ&W

))
, the sum of Type I and Type

II errors for the test statistic φF,δ is less than one.

Remark 2. The above theorem implies that FEW can distin-
guish at the classical parametric

√
n rate if the model is in

the ultra-sparse regime, s = o(
√

n/ log(p)). This sparsity rate
is common in high-dimensional inference problems for low-
dimensional parameters at the parametric rate; in particular, for
high-dimensional linear models, a version of this rate is required
(cf. Cai and Guo 2017; Javanmard and Montanari 2018). When
the value of τ ∈ (1/2, 1], we are limited by the ability to
remove the bias from the mean vector; in the setting where
τ = 1/2, we are limited by the noise level. This seems to sug-
gest a trade-o" between the sparsity and the achievable rate of
separation.

This comparison with the linear models literature that the
inferential procedure requires an additional factor of

√
n for

sparsity assumption appears to be consistent with the recent
results by Li, Cai, and Li (2021). In particular, their proposed
estimator for the variance components requires a consistent esti-
mator of β . They show in Theorem 3.1 that the minimax rate for
estimating β is s log(p/s2)/tr(0−1

a ), where 0a ∈ Rn×n is a proxy
for the true covariance matrix of Y . Thus, this suggests that
tr(0−1

a ) 1 n, and they require s log(p)/n → 0 to consistently
estimate the variance components.

Remark 3. Compared to the recent work of Li, Cai, and Li
(2021), who only suggest an asymptotic distribution for their
variance components estimators, Theorem 1 also demonstrates
that FEW enjoys certain optimality properties. In addition to
providing a distribution under the null hypothesis, Theorem 1
also demonstrates under a sparsity assumption, FEW is asymp-
totically equivalent to the classical Wald F-test, which is known
to enjoy certain optimality properties, such as uniformly most
powerful unbiased and uniformly most powerful invariant
unbiased in certain ANOVA models (cf. Mathew and Sinha
(1988)). In addition, Lu and Zhang (2010) showed that the Wald
F-test and likelihood ratio tests are equivalent for balanced one-
way ANOVA models while Qeadan and Christensen (2020)
showed that the Wald F-test renders the likelihood ratio test
inadmissible in generalized split plot designs. Moreover, unlike
Li, Cai, and Li (2021), who assume a compatibility condition,
our procedure imposes no such requirement on the design
matrix X.

We now turn our attention to the setting of sub-Gaussian
errors. When τ > 1/2, zEW no longer has an asymptotic Gaus-
sian distribution at the

√
n rate since the variance dominates the

signal. Therefore, in this setting, we only consider hypotheses
testing problems as given in Equation (4) with τ = 1/2.
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Theorem 3. Consider the model given by equation (1) and the
hypotheses testing problem from equation (4). Assume further
(A1), (A2), (A3), (A5) for τ ≤ 1/2, and (A7). Under the null
hypothesis, if α ≥ 4Kε , then

√
nzEW

L→N
(
0, σ 2

ς ,z
)

.

Remark 4. Compared to Theorem 1, Theorem 3 trades the
Gaussian assumption for a sub-Gaussian assumption under
a slightly stronger sparsity assumption in order to obtain an
asymptotic distribution. From Theorem 2, FEW exhibits a
continuous tradeo" between sparsity and power, which does
not hold for zEW. This is a consequence of using a central limit
theorem for zEW, which requires scaling by

√
n. This implies

that the bias should be o(
√

n) and the signal from the alternative
should be 1(n−1/2).

Finally, we end this section by considering the setting where
the number of random e"ects remains bounded.

Theorem 4. Consider the model given in Equation (1) and
the hypotheses testing problem from equation (2). Assume
(A1), (A2*), (A3*), (A4), and (A6). If α > 4KZν+ε and
α̃ > 16 max(diag(0X), σ 2

ε ), then
F̃EW = Fld + oP(nτ−1).

3. Con"dence Intervals for a Single Random E!ect

3.1. Model and Motivation

In the previous section, we considered the problem of testing a
collection of random e"ects. However, it is o#en of interest to
construct con!dence intervals for the variance of a particular
random e"ect. Suppose that ) = σ 2

ν Iv. In the low-dimensional
setting, there have been many procedures suggested to construct
con!dence intervals, from likelihood based approaches to F-test
inversions (see, e.g., Jiang (2007) for a nonexhaustive list). In this
section, we deal with a con!dence interval for a single variance
component, which can easily be extended using a Bonferroni
correction or similar procedures for simultaneous con!dence
intervals. Alternatively, we may also invert the F-statistic from
Section 2 to obtain con!dence intervals for parameters of the
form σ 2

ν /σ 2
ε , with such ratios being !rst studied by Hartley and

Rao (1967).
Our high-dimensional approach is inspired by F-test inver-

sion. However, instead of using the ratio, we again use the
di"erence. De!ne

Q !
(

PZ&W − rZ&Wr(Z,W)⊥
−1P⊥

(Z,W) PZ&WZ
ZTPZ&W ZTPZ&WZ

)
,

ξ !
(

ε

ν

)
.

Then, expanding the statistic zEW from Section 2, we have that
zEW = ‖PZ&W(Y − Xβ̂EW)‖2

2 − rZ&Wr(Z,W)⊥
−1

×‖P⊥
(Z,W)(Y − Xβ̂EW)‖2

2
= ‖PZ&W(Zν + ε)‖2

2 − rZ&Wr(Z,W)⊥
−1

×‖P⊥
(Z,W)ε‖2

2 + oP(nτ )

= ‖PZ&W(Zν + ε) − rZ&W 1/2r(Z,W)⊥
−1/2P⊥

(Z,W)ε‖2
2

+oP(nτ )

= ξTQξ + oP(nτ ),

where the second equality follows from Lemma S1 in the sup-
plementary material. A direct calculation shows that EξTQξ =
σ 2

ν tr(ZTPZ&WZ). Then, with proper centering and scaling, we
may apply a central limit theorem for quadratic forms under a
mild condition on the matrix Q.

3.2. Estimator

To estimate σ 2
ν , we consider σ̂ 2

ν de!ned by

σ̂ 2
ν ! [tr(ZTPZ&WZ)]−1

(
‖PZ&W(Y − Xβ̂EW)‖2

2

− rZ&Wr(Z,W)⊥
−1‖P⊥

(Z,W)(Y − Xβ̂EW)‖2
2

)
.

By a direct calculation, it can be shown that

σ 2
ς ! Var(ξTQξ) = κε

n∑

i=1
Q2

i,i + κν

n+q∑

i=n+1
Q2

i,i

+ 2
∑

i .=j
Q2

i,j(σ
2
ε 1(1 ≤ i ≤ n)

+ σ 2
ν 1(n + 1 ≤ i ≤ n + q))

× (σ 2
ε 1(1 ≤ j ≤ n)

+ σ 2
ν 1(n + 1 ≤ j ≤ n + q)).

From the above, we see that the asymptotic distribution of σ̂ 2
ν

depends on the second and fourth moments of ν and ε. To
estimate the second moment of ε, we consider the estimator

σ̂ 2
ε ! r(Z,W)⊥

−1‖P⊥
(Z,W)(Y − Xβ̂EW)‖2

2.

The problem of estimation of fourth moments requires
some technical assumptions on the design, even in the low-
dimensional setting. For simplicity, we only consider the setting
of Gaussian mixed models and the balanced one-way ANOVA
design, but we note that the arguments may be extended under
suitable regularity on the design matrices Z and W. In the
setting, Gaussian mixed models, the fourth moment is entirely
determined by the second moment. For the setting of the
balanced one-way ANOVA design with m observations per
subject, we consider the estimator

ω̂ε ! q−1m2‖P⊥
(Z,W)(Y − Xβ̂EW)‖4

4 − 3(m − 1)σ̂ 4
ε ,

ω̂ν ! (mq)−1‖PZ&W(Y − Xβ̂EW)‖4
4 − 6m−1σ̂ 2

ε σ̂ 2
ν

−m−3ω̂ε − 3m−3(m − 1)σ̂ 4
ε ,

κ̂ε ! ω̂ε − σ̂ 4
ε , κ̂ν ! ω̂ν − σ̂ 4

ν .

In both settings, we obtain a plug-in estimator σ̂ 2
ς of σ 2

ς . By
setting κ̂ν = 0 and σ̂ 2

ν = 0, we obtain an estimator σ̂ 2
ς ,z of σ 2

ς ,z
for Section 2.

Remark 5. The statistic σ̂ 2
ν is related to the classical analysis of

variance method for estimating random e"ects. Consider the
setting of a balanced one-way ANOVA model from Example 1
with µ = 0n. Let

MSTreatments = q−1‖PZY‖2
2 = q−1‖PZ(Zν + ε)‖2

2,
MSError = (n − q)−1‖P⊥

Z Y‖2
2 = (n − q)−1‖P⊥

Z ε‖2
2.

Then, the analysis of variance estimate is given by

σ̂ 2
ν,AOV ! m−1(MSTreatments − MSError).
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Now, note that rZ&W = q, r(Z,W)⊥ = (m − 1)q, n = mq,
and tr(ZTPZZ) = tr(ZTZ) = mq. From the calculations in
Section 3.1, we have that

σ̂ 2
ν = (mq)−1

(
‖PZ(Zν + ε)‖2

2 − (m − 1)−1‖P⊥
Z ε‖2

2 + oP(qτ )
)

= σ̂ 2
ν,AOV + oP(1).

Thus, the two statistics are asymptotically equivalent in the
balanced one-way ANOVA setting.

3.3. Assumptions

In addition to the assumptions from Section 2, we need addi-
tional assumptions on the matrix Q and on the distribution of
the random e"ects ν.
(B1) The matrix Q satis!es

λmax(Q2)
tr(Q2) → 0.

(B2) The vector ν = νn satis!es
infn

{(
mini=1,...,qn Var(νn,i)

)

∧
(
mini=1,...,qn Var(ν2

n,i)
)}

> 0,
limx→∞ supn

{(
maxi=1,...,qn E

(
ν2

n,i : |νn,i| > x
))

∨
(
maxi=1,...,qn E

(
ν4

n,i : |νn,i| > x
))}

= 0.

Remark 6. Assumptions (B1) and (B2), along with (A7), are
used for a central limit theorem for quadratic forms. For a thor-
ough discussion on these assumptions, we refer the interested
reader to Section 5 of Jiang (1996). As a consequence of using
a central limit theorem, we require that the number of random
e"ects increases to in!nity. Thus, we only consider the sparsity
assumption (A5) in this section.

Example 3 (Balanced one-way ANOVA (ctd.)). Continuing with
Example 1, we note that ZZT = mPZ&W . Also, recall that
rZ&W = q and r(Z,W)⊥ = (m − 1)q. Then,

Q2 =
(

(m + 1)PZ&W + (m − 1)−2P⊥
(Z,W) (m + 1)Z

(m + 1)ZT (m2 + m)Iq

)
.

A direct calculation shows that λmax(Q2) = (m + 1)2 and
tr(Q2) = (m + 1)q + (m − 1)−1q + (m2 + m)q, which satis!es
assumption (B1).

3.4. Main Results

We start by stating the asymptotic distribution of σ̂ 2
ν .

Theorem 5. Consider the model in Equation (1). Assume (A1),
(A2), (A3) with ) = σ 2

ν Iq, (A4), (A5) with τ = 1/2, (A7), (B1),
and (B2). If α > 4(Kνλmax(ZZT) + Kε), then

σ−1
ς [tr(ZTPZ&WZ)](σ̂ 2

ν − σ 2
ν )

L→N (0, 1).

Next, we consider the following lemma, which shows that κ̂ε

and κ̂ν are consistent estimators of κε and κν .

Proposition 1. Consider the balanced one-way ANOVA from
Example 1. Under the assumptions of Theorem 5,

κ̂ε
P→κε , κ̂ν

P→κν .

Thus, the preceding two results allow us to construct con!-
dence intervals in the Gaussian mixed model and the balanced
one-way ANOVA setting. Let σ̂ 2

ς be a consistent estimator for
σ 2

ς . Then, an asymptotic (1 − δ) con!dence interval for σ 2
ν may

be given by

(σ̂ 2
ν − zδσ̂ς [tr(ZTPZ&WZ)]−1, σ̂ 2

ν + zδσ̂ς [tr(ZTPZ&WZ)]−1)

where zδ is the δ upper quantile of a standard Gaussian distribu-
tion. Since the above interval may be negative, we may truncate
negative values to zero.

4. Empirical Bayes in ANOVA Type Models

The motivating example of this problem framework is in terms
of the Rasch model, originally proposed by Rasch (1960). The
model that we consider is di"erent than the classical Rasch
model in that we have Gaussian responses as opposed to binary
responses. Our interest in this section is not in testing whether
the variance of the random e"ect is di"erent from zero, but,
assuming that it is di"erent from zero, in estimating the individ-
ual components of the random e"ect. We use the term empirical
Bayes, or compound decision, in the sense of Efron (2019) and
the references therein (speci!cally Greenshtein and Ritov 2019).

As an example of this model, the data that we consider in
Section 6 is from the Trends in Mathematics and Sciences Study
(TIMSS), an international study conducted every four years
to measure fourth and eighth grade student achievement in
mathematics and science. We only consider data from the year
2015. Polities randomly sample a collection of nationally rep-
resentative schools to take standardized examinations in both
mathematics and science, with questions being either multi-
ple choice or constructed response. Then, each student within
schools takes only a subset of the questions on the exams but
all questions are answered by some students in each school. In
addition to recording student responses, the data also contains
background covariates for schools. Martin, Mullis, and Hooper
(2016) provides a more detailed description of the methods
and procedures employed by TIMSS and more general infor-
mation about TIMSS is available in Mullis, Martin, and Loveless
(2016).

For our analysis, we only consider multiple choice questions
and analyze on the level of school rather than students. To con-
struct a response variable for school, we compute the proportion
of questions answered correctly by students in that school. Note
that, unlike the classical Rasch model, we assume a linear model
and, for all schools, we have answers for all questions. Thus,
by a central limit theorem, our response Y is approximately
Gaussian. The !xed e"ects design X include the background
covariates for the school and the random e"ects design Z is an
indicator for the polity, with ν corresponding to the unobserved
variability of the polities. In this example, since we have averaged
over questions, we do not have any nuisance random e"ects.
The problem that we consider in this section is ranking the
polities based on mathematical ability and trying to estimate
the average number of questions that any particular polity will
answer correctly. That is, we would like to estimate µ + Zν for
all polities in our dataset.
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4.1. Model and Motivation

The general problem framework that we consider is for K-factor
ANOVA models. However, we derive the results in the setting
when K = 2. That is, we consider the model

Y = µ + Zν + Wγ + ε.

We do not assume that the design is fully crossed in the ran-
dom e"ects. The goal in the problem is to estimate a subset
of the mean vector, η ! µ + Zν, since we view the random
e"ects W as nuisance. However, as the sample size increases,
the number of observations per group stays bounded. In the
context of the motivating data example, each school still only
answers a !nite number of questions as we increase the sam-
ple size. A standard approach in the low-dimensional setting
would be to use an empirical Bayes estimator by placing a
Gaussian prior on both ν and γ (see, e.g., Brown, Mukherjee,
and Weinstein 2018), which transforms the problem into a stan-
dard high-dimensional linear mixed model. Therefore, we use a
Nv

(
0v, σ 2

ν Iv
)

and Nr
(

0r , σ 2
γ Ir

)
prior on ν and γ , respectively.

Since we need to estimate both σ 2
ν and σ 2

γ for the prior, our
estimator for σ 2

γ is analogous to σ̂ 2
ν from Section 3. To this end,

we need an additional matrix PW&Z such that

PW&ZY = PW&ZXβ + PW&ZWγ + PW&Zε.

4.2. Estimator

Since we are also interested in estimating PW&ZXβ , we de!ne
β̃EW to be the exponentially weighted estimator using the
covariates X, as opposed to using the covariates P⊥

WX for
β̂EW. Then, analogous to Section 2.2 let β̃m denote the least-
squares estimator of β using the model m ∈ Mu with
covariates Xm and KZν+Wγ+ε be the sub-Gaussian parameter
for Zν+Wγ +ε. For α̃ > 4KZν+Wγ+ε , de!ning the exponential
weights as

w̃ !
exp

(
− 1

α̃
‖Y−Xβ̃m‖2

2

)

∑
k∈Mu exp

(
− 1

α̃
‖Y−Xβ̃k‖2

2

) ,

we have

β̃EW ! ∑
m∈Mu w̃mβ̃m.

For convenience, we write µ̃EW ! Xβ̃EW. Now, the estimators
for the variance are given by

σ̃ 2
ν ! [tr(ZTPZ&WZ)]−1

(
‖PZ&W(Y − µ̃EW)‖2

2

− rZ&Wr(Z,W)⊥
−1‖P⊥

(Z,W)(Y − µ̃EW)‖2
2

)
,

σ̃ 2
γ ! [tr(WTPW&ZW)]−1

(
‖PW&Z(Y − µ̃EW)‖2

2

− rW&Zr(Z,W)⊥
−1‖P⊥

(Z,W)(Y − µ̃EW)‖2
2

)
,

σ̃ 2
ε ! r(Z,W)⊥

−1‖P⊥
(Z,W)(Y − µ̃EW)‖2

2.

As we do not require an asymptotic distribution for σ̃ 2
ν and

σ̃ 2
γ , under weaker assumptions that Theorem 5, we have that

σ̃ 2
ν and σ̃ 2

γ are consistent estimators of σ 2
ν and σ 2

γ , respec-
tively. This suggests the the following empirical Bayes estimator
for η,

η̃EW ! µ̃EW + σ̃ 2
ν ZZT

(
σ̃ 2

ν ZZT + σ̃ 2
γ WWT + σ̃ 2

ε In
)−1

(Y − µ̃EW) .

To compare our estimator, we consider an oracle that has
access to µ, σ 2

ν , σ 2
γ , and σ 2

ε . Then, this oracle uses the Bayes
estimator for η (see Lemma 6), given by

η̃oracle ! µ + σ 2
ν ZZT

(
σ 2
ν ZZT + σ 2

γ WWT + σ 2
ε In

)−1
(Y − µ) .

4.3. Assumptions

As previously mentioned, we do not need to establish the asymp-
totic distribution of σ̂ 2

ν , rather we only need the estimator to be
consistent. Accordingly, we may weaken our assumptions to the
following
(C1) The designs Z and W satisfy tr(ZTPZ&WZ) 1 tr(WT

PW&ZW) 1 n.
(C2) The matrix W satis!es λmax(WWT) being bounded.

Remark 7. Assumption (C1) ensures that the component of
the design for the random e"ects is su$ciently well balanced.
This assumption in the presence of (A4) implies the second half
of (A5). Note that tr(ZTPZ&WZ) ≤ λmax(ZZT)tr(PZ&W) =
λmax(ZZT)rZ&W . Since rZ&W ≤ n, tr(ZTPZ&WZ) 1 n and
λmax(ZZT) being bounded imply that rZ&W 1 n.

The other assumption (C2) is analogous to (A4).

4.4. Main Results

We start this section by noting that σ̂ 2
ν , σ̂ 2

γ , and σ̂ 2
ε are all

consistent estimators under a weaker sparsity assumption than
in Section 3. Since we no longer require an asymptotic distri-
bution for the variance estimates, we only need the prediction
rate to ensure consistency, which is the content of the ensuing
proposition.

Proposition 2. Consider the model given in Equation (1).
Assume (A1), (A2*), (A3*) with ) = σ 2

ν Iv, (A4), (A5) with τ =
1, (C1), and (C2). If α > 4(σ 2

ν λmax(ZZT) + σ 2
γ λmax(WWT) +

σ 2
ε ), then

σ̃ 2
ν

P→σ 2
ν , σ̃ 2

γ
P→σ 2

γ , σ̃ 2
ε

P→σ 2
ε .

The following is a standard lemma regarding the empirical
Bayes estimators in this problem setup, which we prove for the
sake of completeness.

Lemma 6. For a !xed vector µ ∈ Rn and !xed values σ 2
ν > 0,

σ 2
γ > 0, and σ 2

ε > 0, the Bayes estimator of η is given by

E (η|Y) = µ + σ 2
ν ZZT

(
σ 2
ν ZZT + σ 2

γ WWT + σ 2
ε In

)−1
(Y − µ) .

We conclude this section with the main result regarding η̃EW;
the empirical Bayes estimator performs nearly as well as the
oracle Bayes estimator η̃oracle asymptotically.
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Theorem 7. Consider the model given in Equation (1). Under
the assumptions of Proposition 2,

n−1 (‖η̃EW − η‖2 − ‖η̃oracle − η‖2) = oP(1).

5. Simulations

5.1. Methods and Models

We consider the linear mixed model given by

Y = Xβ + Zν + Wγ + ε,

with n = 1000, p = 2000, and q = 200. The parameters
that we vary throughout the experiment are the sparsity s, the
distribution of X, ν, γ , and ε, the value of σ 2

ν , and the number
of nuisance random e"ects d. For each parameter setting, the
results are averaged over 100 replications.

For the sparsity, we set s ∈ {3, 15}. Each row of X is indepen-
dent and identically distributed Np

(
0p, 0

)
with

0i,j =
{

1 if i = j,
ρ if i .= j,

for ρ ∈ {0, 0.8}. Then, β is chosen such that the signal strength,
βT0β , is four times the noise level with σ 2

ε = 1. This is
accomplished by !rst generating s uniform random variables in
[−1, 1] and then rescaling to the desired level.

For the random e"ects, we either generate them from a Gaus-
sian distribution or a double exponential distribution, which
we denote by “z” and “e,” respectively. For the variances, we let
σ 2

ν ∈ {0, 1} while σ 2
γ = 1.

Finally, for the component of the design corresponding to
the random e"ects, we let d ∈ {0, 200}. When d = 0, the
design is a balanced one-way ANOVA design with m = 5.
When d = 200, we generate from a two-way crossed design
and down sample to have n observations. We only consider the
sub-Gaussian procedures when d = 0.

All of our simulations are conducted in R. For each of our
three problems, we compare the exponential weighting estima-
tor, denoted by “EW” with an oracle low-dimensional estimator
as well as a low-dimensional version of our proposed high-
dimensional statistic.

For exponential weighting, we follow Algorithm 1 from Law
and Ritov (2021). Regarding the tuning parameters, we perform
four fold cross-validation over a grid of values for α and the
sparsity.

For the oracle estimators, in the setting of the F-test, we
directly apply the classical low-dimensional F-test that has
access to the true sparse set S, as given in Equation (2.3) of Jiang
(2007). For the con!dence intervals, we !t the linear mixed
models with the true sparse set S using lmer and applying the
confint function. Finally, in the setting of estimation, we
directly compute the oracle Bayes estimator η̃oracle described
in Section 4. Collectively, these low-dimensional estimators are
denoted by “LD.”

In addition to comparing with the low-dimensional estima-
tors, we also construct low-dimensional versions of our pro-
posed high-dimensional statistics. To do so, we use the exact
same statistic as in the high-dimensional setting but replace
exponential weighting with least-squares using the sparse set S.

We make this comparison since all of our proposed statistics rely
on two layers of asymptotics:

1. In the prediction of the mean vector via exponential weight-
ing.

2. In the convergence once the residuals are obtained.

To di"erentiate between these two, we introduce an intermedi-
ate statistic that relies on least-squares, which we think of as low-
dimensional versions of our statistics. For example, letting β̂S be
the least-squares estimator of β using the covariates XS, we also
consider the statistic

FLS ! ‖PZ&W (Y−Xβ̂S)‖2/rZ&W
‖P⊥

(Z,W)(Y−Xβ̂S)‖2/r
(Z,W)⊥

∼ FrZ&W ,r
(Z,W)⊥ + oP(1).

These estimators are denoted by “LS.”
Finally, we also include a version of our statistics using scaled

lasso, which we denote by “SL.” Then, for “EW,” “SL,” and “LS,”
we subscript them by either “G” or “SG” to distinguish between
the Gaussian and sub-Gaussian methods.

To compare the procedures, we consider the following met-
rics

1. Type I/II Error: The percentage of time the procedure pro-
duces a Type I or Type II error in hypothesis testing.

2. Average Coverage: The percentage of time the correct
hypothesis is selected for F-tests or the percentage of time
the true value of σ 2

ν is in the con!dence interval.
3. Average Length: The average length of the con!dence inter-

val, taken as the upper endpoint minus the lower endpoint.
4. Average Loss: The average squared Euclidean distance

between the estimated vector η̂ and the true vector η divided
by n.

5.2. Results

The results are presented in Tables S1–S3 from the supple-
mentary material. We notice that for hypothesis testing, all the
procedures control Type I and Type II error well throughout
the settings. For con!dence intervals, when d = 0 and s = 3,
we notice that all of the methods perform well in coverage.
However, the length of our procedures appears to be shorter
when σ 2

ν = 0 and longer when σ 2
ν = 1, whereas the low-

dimensional procedure is more uniform across the parameter
space. This is not surprising in view of our estimation proce-
dure. From Section 3.2, the asymptotic variance of σ̂ 2

ν depends
monotonically on the second and fourth moments of ν and ε,
which is re%ected in the lengths of the resulting intervals.

When σ 2
ν = 0, the empirical coverage of our con!dence

intervals are close to the nominal level, even when the distri-
bution of the random e"ects and errors are double exponential.
When σ 2

ν = 1, the empirical coverage drops to around 80%
for the Gaussian procedure and 90% for the sub-Gaussian pro-
cedure when the distribution is double exponential, against a
nominal coverage of 95%. We note that the double exponential
distribution is not a sub-Gaussian distribution, which seems to
suggest that the con!dence intervals are somewhat robust to
slight departures from the distributional assumptions.

Moreover, when increasing the sparsity from s = 3 to s = 15,
the performance of our con!dence intervals decreases slightly
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since it is harder to remove the contribution of the !xed e"ects.
Finally, for empirical Bayes estimation, our methods are com-
petitive with the oracle. However, we notice that exponential
weighting outperforms scaled lasso when s = 15, particularly
when ρ = 0.8. Since larger values of ρ implies that the columns
of X are more correlated, this highlights a salient feature of
exponential weighting.

6. Real Data Application

Following in the motivating example of Section 4, we con-
sider the TIMSS dataset, which is freely available at https://
timssandpirls.bc.edu/. To simplify our analysis, we only consider
the mathematics questions. A#er !ltering out for complete cases
on background covariates, we are le# with 146 questions, q =
43 unique polities, p = 106 covariates, and 6808 schools.
Therefore, we had a total of n = 6808 responses a#er averaging
over the students and questions within the schools. Here, there
are no nuisance random e"ects so d = 0. Due to averaging
over students within schools, we expect the distributions to be
approximately Gaussian by a central limit theorem.

To demonstrate our methodology, we use both exponen-
tial weighting as well as scaled lasso as our estimation proce-
dure. When applying exponential weighting, we jointly tune the
value of u and α using four fold cross-validation. The high-
dimensional F-test rejected the null hypothesis that σ 2

ν = 0
and a 95% con!dence interval for σ 2

ν is (0.0021, 0.0056), which
suggests that, even controlling for school background charac-
teristics, the polity of the school impacts mathematical ability.
For the last part, we de!ne a polity’s background characteristics
X to be the arithmetic average of all the schools’ background
characteristics within that polity. Then, applying the empirical
Bayes procedure, we rank the polities based on the predicted
number of questions they would answer correctly. The top !ve
polities in order from our analysis are South Korea, Singapore,
Hong Kong, Chinese Taipei, and Japan. Up to some reordering,
our results are mostly consistent with the report of Mullis et al.
(2016) based on individual student data, who had the same
top !ve polities. The results using scaled lasso produced the
same ranking as exponential weighting and similar conclusions
regarding σ 2

ν .

Supplementary Materials

In the supplement, we provide proofs for all of the results along with
additional simulation tables.
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