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ABSTRACT

We consider three problems in high-dimensional linear mixed models. Without any assumptions on the
design for the fixed effects, we construct asymptotic statistics for testing whether a collection of random
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effects is zero, derive an asymptotic confidence interval for a single random effect at the parametric rate 4/n,

and propose an empirical Bayes estimator for a part of the mean vector in ANOVA type models that performs
asymptotically as well as the oracle Bayes estimator. We support our theoretical results with numerical
simulations and provide comparisons with oracle estimators. The procedures developed are applied to the
Trends in International Mathematics and Sciences Study (TIMSS) data. Supplementary materials for this

article are available online.

1. Introduction

In the past two decades, there has been a lot of progress in the
theory for high-dimensional linear models. However, its close
cousin, the high-dimensional linear mixed model, has received
significantly less attention; it was not until the past decade until
there were procedures for estimation. Consider a linear mixed
model given by

Y=pu+2Zv+Wy+e, (1)

with Z € R"™4, W € R"*4, and Y, i, & € R"; the vector u and
the pair v and y are the fixed effects and the random effects,
respectively. In addition, we observe covariates X € R"*? such
that u &~ X for some sparse vector 8 € R? (see Section 1.2 for
a rigorous definition). Here, X is the component of the design
corresponding to the fixed effects and (Z, W) the component
corresponding to the random effects. We consider the setting
where the random effects are low-dimensional, ¢ + d < =,
but the fixed effects are high-dimensional, p > n. We have
separated the random effects in two to emphasize that later we
are interested in v and view y as nuisance parameters. Various
authors have considered different aspects of this problem.

The earliest work of Schelldorfer, Bithlmann, and van de Geer
(2011) proposed an estimator for both 8 and the variance com-
ponents using a lasso-type approach. These types of approaches
were later extended by several authors who considered estima-
tion with both convex penalties, such as Groll and Tutz (2014),
and nonconvex penalties, such as Wang, Zhou, and Qu (2012).
There is also a growing literature on model selection in high-
dimensional linear mixed models (see, e.g., the review article by
Miiller, Scealy, and Welsh 2013).

The problem of inference is slightly less well studied. To the
best of our knowledge, hypotheses testing problems were first
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considered by Chen et al. (2015) for random effects and Bradic,
Claeskens, and Gueuning (2017) for fixed effects. However, the
work of Chen et al. (2015) only consider the special case of
ANOVA designs for random effects. During the preparation of
this manuscript, we became aware of the independent work of
Li, Cai, and Li (2021), who consider the problem of inference
in high-dimensional linear mixed models. In particular, they
discuss inference for fixed effects and estimation of variance
components. A more detailed comparison of our methodology
with Li, Cai, and Li (2021) is deferred to Section 2.4. We also
note that there is a parallel notion of high-dimensional mixed
models, where the number of fixed effects is low-dimensional
while the random effects are high-dimensional. Under this set-
ting, Jiang et al. (2016) established asymptotic results for the
restricted maximum likelihood for variance components.

The goal of the present article is to contribute to this growing
literature on high-dimensional linear mixed models where the
fixed effects are high-dimensional, both in terms of estimation
and inference. In particular, we consider three related problems:

1. Testing whether a collection of random effects is zero.

2. Constructing confidence intervals for the variance of a single
random effect.

3. Estimating using empirical Bayes in Gaussian ANOVA Type
Models.

Our methodology is inspired by both low-dimensional linear
mixed models as well as high-dimensional linear models. Specif-
ically, our approach to all three problems starts with considering
aprocedure in the corresponding low-dimensional problem and
retrofitting it with tools and techniques from high-dimensional
linear models to produce a procedure for high-dimensional
linear mixed models. Throughout the article, while we consider
the general linear mixed effects models, we use the balanced
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one-way ANOVA model to simplify the discussion of our esti-
mators and assumptions.

1.1. Organization of the Paper

We end the current section with a description of the nota-
tion that we adopt throughout the article. Sections 2, 3, and
4 consider the three problems outlined in the Introduction in
succession. Each one starts with a description of the problem
setup, a brief motivation from the low-dimensional problem,
and a description of the estimator, that is, considered, and
ends with some theoretical results. In Sections 5 and 6, we
provide the results of our simulations and a real data application,
respectively. For the ease of presentation, we defer all proofs and
additional simulation results to the supplementary material.

1.2. Notation

Throughout, all of our variables have a dependence on #, but
we suppress this dependence when it does not cause confu-
sion. For a general vector a and matrix A, let ||a|l, denote
the standard Euclidean norm with the dimension of the space
being implicit from the vector, ||All, the operator norm, and
|Allgs the Hilbert-Schmidt norm. Furthermore, if A is square,
then Amax(A) and Apin(A) denote the maximal and minimal
eigenvalue of A, respectively. For any k € N, we let Apaxi(4)
denote the kth largest eigenvalue of A if A is square. Moreover,
we write 1; € R¥ and I € R*¥*¥ to denote the k-dimensional
vector of all ones and the k-dimensional identity matrix, respec-
tively. For two matrices A and B, the notation A © B denotes
the intersection of the column space of A and the orthogonal
complement of the column space of B. Then, for a matrix A,
we write P4 to denote the projection onto the column space
of A and Py the projection onto the orthogonal complement.
Moreover, we write 74 to denote the rank of A.

Consistent with other high-dimensional works, we assume
that B is a sparse vector. There are various notions of sparsity
but we assume the slightly more general setting of weak sparsity
from Law and Ritov (2021). Before providing the definition,
we introduce some more notation. For u € N, we let M, £
{m C {1, . ,p} D m| = u} denote the collection of all models
with the dimension of the fixed effects design equal to u. For
a model m € M,, X,, denotes the n x u sub-matrix of X
corresponding to the columns indexed by m.

Definition 1. The vector p is said to satisfy the weak sparsity
property relative to X with sparsity s at rate k as n — oo if the set

Su 2 fme M 1Pg uiE = ot}
is nonempty.

Then, we let S € S, denote any weakly sparse set for (1. We
note that the usual high-dimensional setting of strong sparsity,
where u = Xgfs for |S| = s, implies that u is weakly sparse
relative to X with sparsity s. Similar to other works on high-
dimensional linear models and high-dimensional linear mixed
models, we consider errors and random effects which are sub-
Gaussian, for which we use the following definition:
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Definition 2. A random vector £ € R" is said to be sub-Gaussian
with parameter K if

E exp (AT.‘;‘) < exp (%)
forall A € R™.

Note that if £ is sub-Gaussian with parameter K and A €
R**™" is any deterministic matrix, then A§ is also sub-Gaussian
with parameter KAmay(ATA). Finally, the asymptotic distribu-
tions of some of our estimators depend on the fourth moments
of the underlying distributions. We write «, £ Var(e%), W, 2
E(s‘f), Ky 2 Var(vf), and w, = E(vi‘) when v corresponds to a
single random effect.

2. Hypotheses Testing for Random Effects

In this section, we consider the problem of inference for a
collection of random effects. Consider the high-dimensional
linear mixed model (1) and let ¥ £ var(v). We are interested in
the hypotheses testing problem

Hp : Amax (V) =0, Hj @ Amax (W) > 0. (2)

We propose two procedures in this section depending on
whether ¢ is Gaussian.

2.1. Model and Motivation

Suppose temporarily that we are in the low-dimensional Gaus-
sian setting withs = p,p+q+d < n, u = XgBs, & ~
Nn(On,agzln) for some positive constant 082 > 0,and v ~
Ny (04, W) for some symmetric positive semi-definite matrix W.
Then, in this problem, the standard procedure for testing v is
through the Wald F-test. Writing rzo (x,,w) e rank(Pzgx,,w))
and 1y, 7 w)L = rank(P(JkS)Z’W)), the Wald F-test is defined as

_IPzexsw) Y13/ rze0xsw)

Fgq (3)

- L 2 :
”P(XS,Z,W) Y115/7xg,2,w) -

Under the null hypothesis, the above statistic has an

F distribution. The main obstacle to directly

"Ze(Xg W) T (xg,2,w)L
using the Wald F-test in the high-dimensional setting is
removing the contribution of the fixed effects. One possibility is
to perform model selection and choose the relevant covariates
from X and then use the Wald F-test. Chen et al. (2015) consider
a similar problem in the growing dimensional setting and
they use a SCAD based approach for variable selection. As a
consequence, they require p = o(+/n). Instead, we leverage the
fact that a projection onto a particular space is a regression onto
a design whose columns span the same space.

Expanding both the numerator and the denominator of the
Wald F-statistic, we have that

Pzoxew)Y = Pzoxe,w)ZV + Pzoxs,w)é

1 _ pl
P zw Y = Pixgzw)é

In both matrices above, they project onto the orthogonal
complement of W, which may still be achieved in the high-
dimensional problem since W is a low-dimensional matrix.
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Thus, we may find two projection matrices, Pzgw and Pé)w),
such that

PiewY = PzLewXﬂ + PZEWZV + Pzowe,
P(Z,W)Y = P(Z,W)X'B + P(Z)W)e.

If PzowX was low-dimensional, obtaining the projection
of PzowY onto the orthogonal complement of PzowX is
equivalent to finding the residuals of PzgwY using the
covariates PzgwX; this yields PzgwY — PZ@WXﬁ, where ,3
is the least-squares estimator for 8. The same holds for Pé‘Z)W)X

and P(Z w) Y. Then, we have that
(PzewXB — PzowXp)
+PZeWZV + PZ@We,
5 1
(P(Z W)X,B P(Z W)X,B) + P(Z,W)E'

PzewY — PzowXfB =

Yy — pL

. .
P ZwXP =

(Z,W)

Hence, this recasts the problem into one of high-dimensional
prediction, for which there have been many procedures sug-
gested to estimate Pzow X and P(LZ’W)X B, such as the lasso and
exponential weighting (see Tibshirani 1996 and Leung and Bar-
ron 2006, respectively). Therefore, we propose using a plug-in
estimator for PzowXp and Pé) w)XB using exponential weight-
ing of all models of a particular size and then consider the
resultant residuals. Since we view the fixed effects as nuisance
parameters, we consider exponential weighting instead of the
lasso since exponential weighting does not require any assump-
tions on the design matrix X. However, most of the theory
developed also applies to other plug-in estimators, albeit with
simple modifications and much stronger conditions. This idea,
under some mild assumptions, provides an asymptotic F-test.

However, there are two asymptotic regimes for the random
effects: (i) the number of random effects increases to infinity
and (ii) the number of random effects stays bounded. These
two settings require slightly different analyses, so we consider
separate exponential weighting estimators for the two cases.

Besides providing an asymptotic F distribution when ¢ is
Gaussian, the F-ratio in Equation (3) simultaneously removes
the scaling effect from 2. When ¢ is known only to be sub-
Gaussian, the ratio no longer follows an F-distribution. How-
ever, after appropriate rescaling, we may still achieve the ancil-
lary property relative to o2 by looking at the difference instead
of the ratio. This approach, under slightly stronger sparsity
assumptions, leads to an asymptotic z-test with only the sub-
Gaussian assumption on the error distribution.

2.2. Estimator

In the setting, where the number of random effects increases
to infinity, instead of estimating PzowXp and P(LZ’W)X B sep-
arately, we estimate P, X8 and then project the resultant vector
onto Pzow and P(lz,W)’ respectively. In addition to saving on
computational time by only using exponential weighting once,
this also allows us to leverage a larger sample size when estimat-
ing the mean vector. To apply exponential weighting, we fix a
sequence of sparsities 4 = uy,. Let 3,,, denote the least-squares
estimator of B using the model m € M, with covariates PJme.
Let Kz,+. denote the sub-Gaussian parameter for Zv + ¢. We

define the exponential weights by
exp (~LIPH (¥ = XB)I3)
ken, e (2 IPE(Y = XA

where o > 4Kz, 1. Then, the estimator for g is given by

L

Wmn

<. .
Bew = 2 e, WmbPm.

Note that the bound on « is to ensure PJ- X ﬂEW is a consistent
estimator of PJ- XpB. Inthe case where both v and ¢ are Gaussian,
the above bound on « becomes o > 4 (a + Amax (Z\IIZT))

Then, we estimate Pzow X8 and P&W)X B by PzowX ﬁEW and
Pé)w)X Bew, respectively. The corresponding F-statistic is

HPZGW(Y*XBEW)H%/VZGW
1P, wy (Y =XBEW)13/7 7y L

A
Fpw =

Similar to the Wald F-statistic, we reject the null hypothesis for
large values of Fgw. In particular, for a value § € (0,1),1et F,
denote the § upper quantile of the F,; distribution. Then, we
consider tests of the form

N
¢rs =1 (FEW > FrZGW,r(Z)W)l,(S) :

For the second setting where the number of random effects
stay bounded, we estimate the numerator differently. Let
Uzw)yL € R™@w' be any orthogonal matrix such that
P(Lz,W) = Ugw)L U(Tz,W) 1 ; for example, the matrix U, )1 may
be computed by taking the spectral decomposition of P(Lz,W)'

Define Y = U(TZ w Y and let YU, 7@ e R'@w:/? be a
partition of Y. We similarly define X" and X®. Then, letting
B (respectively, B2 denote the least-squares estimator of 8
using the model m € M, with covariates X (respectively,

X2y, the exponential weights are defined as

exp(— 2 IYO-X{ Bi13)

171/(1) N
m Srent, exp(—g\lY“)—X}(”,élg”||§)
and similarly for ', where & is delineated in Theorem 4 below.
Now, define
1 2 52 1
’3()A )/3() )Azme ()'

Then, the estimator of 8 is

(Bg + B ) /2

and the corresponding F-statistic is

Bew £

I1Pzow (Y—XBew)lI3/rzew
HP(Z W)(Y_X/SEW)”%/”(Z,W)L

T A
Frgw =

At first sight, computation of these estimators may seem pro-
hibitive since we need to aggregate over (Y) models. However,
they may be well approximated by an MCMC algorithm given
by Law and Ritov (2021), to which we refer the interested reader.

In the setting, where the ¢ is not distributed Gaussian, we
consider the following z-statistic

28w 2 [Pzow (Y — XBew) 5 — fzewf(zw)lllp(zw)(Y XBew) 3.



Under proper scaling, the statistic zgw has an asymptotic Gaus-
sian distribution under the null hypothesis. Let

n
2 A —1pl 2
Ocz = Ke Z(PZGW — rZowrz,w)- P(Z,W))i,i

i=1

—+ 2084 Z(PZ@W — TZ@WY(Z’W)L_IPé’W))?’P

i#f
with 65’2 a consistent estimator of ogz’z. The quantity aéz is the
scaling factor to ensure a central limit for zgw. Then, letting z;
denote the § upper quantile of the standard Gaussian distribu-
tion, we consider tests of the form

bz £1 (ZEW > 2565‘,2) .

A general discussion regarding &gz’z is deferred to Section 3.4.
When ¢ is not Gaussian, we only consider the setting where the
number of random effects increases to infinity since the analysis
of zpw relies of a central limit theorem for quadratic forms.

As mentioned in Section 2.1, under appropriate conditions,
we may also use the lasso instead of exponential weighting. For
a suitable choice of A > 0, define the lasso estimator of 8 as

Bra £ argming g ||Py (Y — XB)II3 + Al

Then, the corresponding F-statistic is

Pl IPzow (Y=XBL) 3 /rzew
LA

= Hpé'z,W) (Y—XPB1a) H%/T(z,W)l .

2.3. Assumptions
In this section, we make the following assumptions.

(A1) The mean vector © = u, has squared norm, ||,un||§/n,
that is, bounded.
The vector ¢ is sub-Gaussian with parameter K and has
independent components.
(A2*) The vector & ~ N, (0,,021,).
(A3) The random effects v are sub-Gaussian with parameter
K,.
(A3*) The random effects v satisfy Zv ~ N, (On,Z\I/ZT).
(A4) The matrix Z satisfies Amax(ZZ7) being bounded and
(Z, W) is independent of X.
The mean vector @ = p, is weakly sparse relative to
X with sparsity s,, with weak sparsity defined in Defini-
tion 1. Furthermore, the statistician chooses a sequence
of sparsities u, such that u, > s, for n sufficiently
large and u, = o(n"/log(p)) for some t € [1/2,1].
Moreover, the number of observations in the reduced
models, rzgw and r(z 1, satisfy rzgw < 1z )1 < n.
The mean vector u = u, satisfies u = X8 with ||B]lo =
sy. Furthermore, the statistician chooses a sequence of
sparsities u, such that u, > s, for n sufficiently large and
U, = 0 (n’/log(p)) for some 7 € [1/2,1]. Moreover,
the rows of X are independent and identically distributed
N, (0p, Xx) with max(diag(Zx)) = O(1) and 1z L <
n.

(A2)

(A5)

(A6)
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(A7) The vector ¢ = ¢, satisfies

infy, |(mini=1,m,n Var(an,i)) A (minizl)m,n Var(sﬁ i)>] > 0,
limy_s oo sup,, {(maxi:h“,n E (8%)1- tenil > x))
\ (maxizl ,,,,, 2 E (sﬁi tenil > x))} =0.

Remark 1. Assumptions (A1) and (A2) are standard assump-
tions in high-dimensional linear models. Calling ¢ the noise
and Zv + ¢ the random component, assumption (Al) is a
scaling assumption to ensure the ratio of the fixed components
to the random components remains bounded asymptotically
and is analogous to the assumptions of Bradic, Claeskens, and
Gueuning (2017), who assume that the population covariance
matrix of X has bounded maximal eigenvalue and || 8|2 = O(1).
Next, (A2) is used for consistency of the prediction procedure
under the null hypothesis and assumption (A3) allows for
concentration of the prediction procedure under the alternative
hypothesis. Both assumptions are used by various authors,
such as Bradic, Claeskens, and Gueuning (2017) and Cai
and Guo (2017). We note that (A2) and (A3) are implied by
(A2*) and (A3*), respectively, but the additional Gaussian
distribution assumption allows us to relate our methodology
to the vast literature on low-dimensional Gaussian mixed
models.

Next, the first part of assumption (A4), like (A1), ensures that
the ratio of the fixed components to the random components of
the variance noise ratio remains bounded under the alternative
hypothesis. To elucidate this point, consider the Gaussian setting
with & ~ N, (0, 621,) and v ~ Ng(0g, 02,). Then, Zv + & ~
Niu(0,, 0222 + 021,). Since Amax(ZZ") > max(diag(ZZ")),
assumption (A4) bounds the variance of the noise. Moreover,
(A3) and (A4) together imply that Zv is sub-Gaussian with
parameter K, Amax (ZZ"). This requirement is similar to Condi-
tion 1 of Bradic, Claeskens, and Gueuning (2017) and Condition
3.1 of Cai and Guo (2017). The assumption that (Z, W) is
independent of X is common in the literature (see the discussion
before Condition 3.2 of Cai and Guo 2017).

The following two assumptions, (A5) and (A6), are about
the sparsity of the fixed effects. The two assumptions consider
different asymptotic regimes regarding the random effects; (A5)
assumes that the number of random effects increases to infinity
while (A6) allows for the number of random effects to stay
bounded. The first part of both (A5) and (A6) is a sparsity
assumption commonly found in the high-dimensional linear
models literature, which is discussed further in Remark 2 below.
Note that since the selected sequence of sparsities u,, satisfies
u, = o(n*/log(p)), then the true sequence of sparsities s, also
satisfies the same requirement.

The second half of (A5) is an assumption on the component
of the design for the random effects, requiring the number
of realizations of the random effects to increase to infinity.
The requirement that rzgw < 1)L < n is for conve-
nience and can be weakened to only min(rzgw, 7z w)L) —
oo if the sparsity requirement is accordingly relaxed to u, =
0 (min(rZew, r(Z)W)L)’/log(p)). The second half of (A6) is
a technical requirement to ensure consistency of exponential
aggregation for out-of-sample predictions. Since the number
of random effects remains bounded, the regression of PzowY
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on PzowX does not necessarily yield a consistent estimator of
Pyzow  for arbitrary designs. With the Gaussian assumption, we
may estimate B by regressing P(J‘Z’W)Y on P%Z,W)X and obtain
a consistent estimator of Pzow . Again, the requirement that
rzw)L < n can be weakened to rz 1 — 00 by adjusting the
sparsity requirement to u, = o(rz L " /log(p)).

Assumption (A7) is a mild assumption on the distribution
of & to ensure a central limit theorem. For example, (A7) is
satisfied by the Gaussian distribution. Note that no assumption
is necessary on y as the nuisance parameters are projected out
in the first stage.

Example 1 (Balanced one-way ANOVA). As an example of a
design satisfying the above assumptions on Z, consider a bal-
anced one-way ANOVA design, with g subjects, m observations
per subject, and n = mgq total observations. In this setting, there
are no nuisance random effects, so d = 0. Assume further that
the number of observations per subject remains bounded (i.e.,
m = O(1)), which is commonly satisfied in practice. Then, the
matrix Z may be represented by Z = I;®1,,. It isimmediate that
rzew = qand rz w1 = (m — 1)q, implying that the second
half of (A5) is satisfied. Finally, assumption (A4) is satisfied since
)Mmax(ZZT) = )Lmax(”’dq) = m.

2.4. Main Results

Since Fry is motivated by the classical F-statistic Fi4, the follow-
ing theorem shows that, up to a small bias term depending on
the sparsity, the two statistics are asymptotically equivalent.

Theorem 1. Consider the model given in Equation (1) and the
hypotheses testing problem from Equation (2). Assume (Al),
(A2%), (A3*), (A4), and (A5). If @ > 4(02 + Amax (Z¥Z7)),
then

Fpw = Fia + op(n™™1).

As mentioned in Section 2.1, under the null hypothesis, the

statistic Fig ~ FrZG(XS:W)’r(XS,Z,W) , - However, since the weakly

sparse set S is unknown, the value of rzgx,w) and r(xg 7 L
cannot be determined in practice. From assumption (A5),ass =
o(n" /log(p)), then FrZ@(XS’W)’r(XS,Z,W)l = FfzeW>f(Z,W>L + op(1).
Thus, the statistic Few can also be compared to the reference
distribution Fryowr gL

Despite being asymptotically equivalent to the Wald F-test,
Few has an additional bias term of op (n*~!), which impacts the
power of the testing procedure. This leads us to consider the
following hypotheses testing problem; for any € [1/2,1], we
consider the contiguous hypotheses

Hp : rmax(PzewZW¥Z Pzow) = 0,

(4)
Hi : Amaxryow (PzowZ¥Z Pzow) = hn™ L.

Example 2. Consider the setting of Example 1 with v corre-
sponding to a single random effectand v ~ N (04, 0.2I,). Then,
with T = 1/2, the above hypotheses becomes

Hy:0l=0, Hy : mo? = hn~1/2,

which is a standard hypotheses testing problem, such as in the
balanced one-way random effects model. In this model, in the
low-dimensional setting, the rate of /7 is optimal.

Theorem 2. Consider the model given by equation (1) and
the hypotheses testing problem from equation (4). Assume fur-
ther (A1), (A2%), (A3*), (A4), and (A5) for any 7 € [1/2,1].
Fix a value of § > 0. Under the alternative hypothesis with
h > 0 sufficiently large (not depending on n) and o >
4 (crez + Amax (PZe WZ\IIZTPZGW)), the sum of Type I and Type
IT errors for the test statistic ¢ s is less than one.

Remark 2. The above theorem implies that Fgyw can distin-
guish at the classical parametric /n rate if the model is in
the ultra-sparse regime, s = o(y/n/log(p)). This sparsity rate
is common in high-dimensional inference problems for low-
dimensional parameters at the parametric rate; in particular, for
high-dimensional linear models, a version of this rate is required
(cf. Cai and Guo 2017; Javanmard and Montanari 2018). When
the value of T € (1/2,1], we are limited by the ability to
remove the bias from the mean vector; in the setting where
7 = 1/2, we are limited by the noise level. This seems to sug-
gest a trade-off between the sparsity and the achievable rate of
separation.

This comparison with the linear models literature that the
inferential procedure requires an additional factor of /n for
sparsity assumption appears to be consistent with the recent
results by Li, Cai, and Li (2021). In particular, their proposed
estimator for the variance components requires a consistent esti-
mator of B. They show in Theorem 3.1 that the minimax rate for
estimating B is slog(p/s?) /tr(X; 1), where &, € R"*"isaproxy
for the true covariance matrix of Y. Thus, this suggests that
tr(2;!) < n, and they require slog(p)/n — 0 to consistently
estimate the variance components.

Remark 3. Compared to the recent work of Li, Cai, and Li
(2021), who only suggest an asymptotic distribution for their
variance components estimators, Theorem 1 also demonstrates
that Frw enjoys certain optimality properties. In addition to
providing a distribution under the null hypothesis, Theorem 1
also demonstrates under a sparsity assumption, Fgw is asymp-
totically equivalent to the classical Wald F-test, which is known
to enjoy certain optimality properties, such as uniformly most
powerful unbiased and uniformly most powerful invariant
unbiased in certain ANOVA models (cf. Mathew and Sinha
(1988)). In addition, Lu and Zhang (2010) showed that the Wald
F-test and likelihood ratio tests are equivalent for balanced one-
way ANOVA models while Qeadan and Christensen (2020)
showed that the Wald F-test renders the likelihood ratio test
inadmissible in generalized split plot designs. Moreover, unlike
Li, Cai, and Li (2021), who assume a compatibility condition,
our procedure imposes no such requirement on the design
matrix X.

We now turn our attention to the setting of sub-Gaussian
errors. When t > 1/2, zgw no longer has an asymptotic Gaus-
sian distribution at the /7 rate since the variance dominates the
signal. Therefore, in this setting, we only consider hypotheses
testing problems as given in Equation (4) with r = 1/2.



Theorem 3. Consider the model given by equation (1) and the
hypotheses testing problem from equation (4). Assume further
(A1), (A2), (A3), (A5) for T < 1/2, and (A7). Under the null
hypothesis, if & > 4K, then

Vnzew SN (0,02,) .

Remark 4. Compared to Theorem 1, Theorem 3 trades the
Gaussian assumption for a sub-Gaussian assumption under
a slightly stronger sparsity assumption in order to obtain an
asymptotic distribution. From Theorem 2, Fgw exhibits a
continuous tradeoff between sparsity and power, which does
not hold for zgw. This is a consequence of using a central limit
theorem for zgyw, which requires scaling by +/n. This implies
that the bias should be 0(4/n) and the signal from the alternative
should be Q2 (n~1/2).

Finally, we end this section by considering the setting where
the number of random effects remains bounded.

Theorem 4. Consider the model given in Equation (1) and
the hypotheses testing problem from equation (2). Assume
(A1), (A2%), (A3%), (A4), and (A6). If « > 4Kz,4, and
a > 16 max(diag(Ex),af),then

Frw = Fq + op(n™™1).

3. Confidence Intervals for a Single Random Effect
3.1. Model and Motivation

In the previous section, we considered the problem of testing a
collection of random effects. However, it is often of interest to
construct confidence intervals for the variance of a particular
random effect. Suppose that ¥ = ¢21,. In the low-dimensional
setting, there have been many procedures suggested to construct
confidence intervals, from likelihood based approaches to F-test
inversions (see, e.g., Jiang (2007) for a nonexhaustive list). In this
section, we deal with a confidence interval for a single variance
component, which can easily be extended using a Bonferroni
correction or similar procedures for simultaneous confidence
intervals. Alternatively, we may also invert the F-statistic from
Section 2 to obtain confidence intervals for parameters of the
form o2 /o2, with such ratios being first studied by Hartley and
Rao (1967).

Our high-dimensional approach is inspired by F-test inver-
sion. However, instead of using the ratio, we again use the
difference. Define

Q2 (Pzew - rzewr(z,W)flP(Lz,W)

Z"Pzew
N &
()

Then, expanding the statistic zgw from Section 2, we have that

ProwZ
Z'PzowZ)’

zgw = [[Pzow (Y — X,éEY\/)”% — rzewrzwyt "
X |\Pg ) (Y = XBew) 13
= IPzow(Zv + ©)II3 — rzewrzwy "
XIIPG €115 + op(n?)
= |Pzew(Zv +¢&) — YZGW1/2Y(Z,W)L_l/zpé’w)é‘”%
“+op(n®)
=&TQ¢ + op(n"),
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where the second equality follows from Lemma S1 in the sup-
plementary material. A direct calculation shows that E& TQe =
o2tr(Z"PzowZ). Then, with proper centering and scaling, we
may apply a central limit theorem for quadratic forms under a
mild condition on the matrix Q.

3.2. Estimator

To estimate .2, we consider 52 defined by
&2 2 [tr(Z Prow I (IPow (Y = XBaw)I3

— rzewrun " 1P (Y = XPrw) ).

By a direct calculation, it can be shown that
n n+q
ol £ Var(ETQ8) =k Y Qi+ Y, Q
i=1 i=n+1
+2) Q211 <i<n)
i#f

+oll(n+1<i<n+q)
x (671(1 <j < n)

+olln+1<j<n+gq).

From the above, we see that the asymptotic distribution of 6
depends on the second and fourth moments of v and ¢. To
estimate the second moment of &, we consider the estimator
52 = 1wyt T PG (Y = XBew) 13-

The problem of estimation of fourth moments requires
some technical assumptions on the design, even in the low-
dimensional setting. For simplicity, we only consider the setting
of Gaussian mixed models and the balanced one-way ANOVA
design, but we note that the arguments may be extended under
suitable regularity on the design matrices Z and W. In the
setting, Gaussian mixed models, the fourth moment is entirely
determined by the second moment. For the setting of the
balanced one-way ANOVA design with m observations per
subject, we consider the estimator

@ £ 7' m||PG
@y = (mq) M |Pzow (Y = XPrw)|l§ — 6m ™67

—m 3@, —3m3(m — 1)62,

A A}\ A4 A~ A}\ 4
Ke = Wg — O, Ky = wy — 0.

(Y — XBew)ll§ — 3(m — 1)62,

B
2
v

. . . . ~D 2
In bothAsettlngs, wei obtain a plug-in estimator ongf oZ. By
setting &, = 0 and 62 = 0, we obtain an estimator O'g)z of agz)z
for Section 2.

Remark 5. The statistic 62 is related to the classical analysis of
variance method for estimating random effects. Consider the
setting of a balanced one-way ANOVA model from Example 1
with u = 0,,. Let

MSTreatments = q_IHPZY”% = 61_1 1Pz (Zv + 8)”%)
MSgrror = (n — @) M IPE Y3 = (n — @) LIP3el3.

Then, the analysis of variance estimate is given by

~2 a1
O, a0y — M (MStreatments — MSError)-
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Now, note that rzgw = ¢, rzw)r = (m — g, n = mgq,
and tr(Z'Pz2) = tr(Z'2) = mq. From the calculations in
Section 3.1, we have that

&2 = (m) ™ (I1P22v + o)1} — (m — D' |PFell} + or(g"))

= 63,AOV + 0P(1)~

Thus, the two statistics are asymptotically equivalent in the
balanced one-way ANOVA setting.

3.3. Assumptions

In addition to the assumptions from Section 2, we need addi-
tional assumptions on the matrix Q and on the distribution of
the random effects v.

(B1) The matrix Q satisfies

Amax(Q%)
tr(Q?)

(B2) The vector v = v, satisfies

— 0.

inf,, {(minizl,._,qn Var(vn,,-))
A (min,-zl,m)qn Var(vﬁ’i))} > 0,

limy, o sup,, {(max,«zl,“_,qn E (vﬁ’i il > x))
\% (max,-zl ,,,,, an E (vﬁ,i il > x))} =0.

Remark 6. Assumptions (B1) and (B2), along with (A7), are
used for a central limit theorem for quadratic forms. For a thor-
ough discussion on these assumptions, we refer the interested
reader to Section 5 of Jiang (1996). As a consequence of using
a central limit theorem, we require that the number of random
effects increases to infinity. Thus, we only consider the sparsity
assumption (A5) in this section.

Example 3 (Balanced one-way ANOVA (ctd.)). Continuing with
Example 1, we note that ZZ' = mPzoy. Also, recall that
rzew = qand rzy)1 = (m — 1)q. Then,

ot = <(m + DPzow + (m = 1) 7Py,

(m+1)Z
(m+1)Z7 > ) :

2
(m”* +m)ly,

A direct calculation shows that Apax(Q*) = (m + 1) and
tr(Q?) = (m+ 1)q+ (m — 1)~'q+ (m? + m)q, which satisfies
assumption (B1).

3.4. Main Results

We start by stating the asymptotic distribution of 62.

Theorem 5. Consider the model in Equation (1). Assume (A1),
(A2), (A3) with ¥ = avzlq, (A4), (A5) with T = 1/2, (A7), (B1),
and (B2). If & > 4(K, Amax(ZZ") + K,), then

o [t (Z Prow2)1(62 — 6D SN (O, 1),

Next, we consider the following lemma, which shows that k.
and k, are consistent estimators of k, and k.

Proposition 1. Consider the balanced one-way ANOVA from
Example 1. Under the assumptions of Theorem 5,

~ P ~ P
Ke—>Keg» Ky—>Ky.

Thus, the preceding two results allow us to construct confi-
dence intervals in the Gaussian mixed model and the balanced
one-way ANOVA setting. Let &3 be a consistent estimator for
agz. Then, an asymptotic (1 — §) confidence interval for o> may
be given by

(62 — 256 [tr(Z"Prow )17V, 62 + 256 [tr(Z"Pzow Z2)]7Y)

where z; is the § upper quantile of a standard Gaussian distribu-
tion. Since the above interval may be negative, we may truncate
negative values to zero.

4. Empirical Bayes in ANOVA Type Models

The motivating example of this problem framework is in terms
of the Rasch model, originally proposed by Rasch (1960). The
model that we consider is different than the classical Rasch
model in that we have Gaussian responses as opposed to binary
responses. Our interest in this section is not in testing whether
the variance of the random effect is different from zero, but,
assuming that it is different from zero, in estimating the individ-
ual components of the random effect. We use the term empirical
Bayes, or compound decision, in the sense of Efron (2019) and
the references therein (specifically Greenshtein and Ritov 2019).

As an example of this model, the data that we consider in
Section 6 is from the Trends in Mathematics and Sciences Study
(TIMSS), an international study conducted every four years
to measure fourth and eighth grade student achievement in
mathematics and science. We only consider data from the year
2015. Polities randomly sample a collection of nationally rep-
resentative schools to take standardized examinations in both
mathematics and science, with questions being either multi-
ple choice or constructed response. Then, each student within
schools takes only a subset of the questions on the exams but
all questions are answered by some students in each school. In
addition to recording student responses, the data also contains
background covariates for schools. Martin, Mullis, and Hooper
(2016) provides a more detailed description of the methods
and procedures employed by TIMSS and more general infor-
mation about TIMSS is available in Mullis, Martin, and Loveless
(2016).

For our analysis, we only consider multiple choice questions
and analyze on the level of school rather than students. To con-
struct a response variable for school, we compute the proportion
of questions answered correctly by students in that school. Note
that, unlike the classical Rasch model, we assume a linear model
and, for all schools, we have answers for all questions. Thus,
by a central limit theorem, our response Y is approximately
Gaussian. The fixed effects design X include the background
covariates for the school and the random effects design Z is an
indicator for the polity, with v corresponding to the unobserved
variability of the polities. In this example, since we have averaged
over questions, we do not have any nuisance random effects.
The problem that we consider in this section is ranking the
polities based on mathematical ability and trying to estimate
the average number of questions that any particular polity will
answer correctly. That is, we would like to estimate . + Zv for
all polities in our dataset.



4.1. Model and Motivation

The general problem framework that we consider is for K-factor
ANOVA models. However, we derive the results in the setting
when K = 2. That is, we consider the model

Y=pu+2Zv+ Wy +e.

We do not assume that the design is fully crossed in the ran-
dom effects. The goal in the problem is to estimate a subset
of the mean vector, n £  + Zv, since we view the random
effects W as nuisance. However, as the sample size increases,
the number of observations per group stays bounded. In the
context of the motivating data example, each school still only
answers a finite number of questions as we increase the sam-
ple size. A standard approach in the low-dimensional setting
would be to use an empirical Bayes estimator by placing a
Gaussian prior on both v and y (see, e.g., Brown, Mukherjee,
and Weinstein 2018), which transforms the problem into a stan-
dard high-dimensional linear mixed model. Therefore, we use a

N, (OV, USIV) and NV, (Or, crf],) prior on v and y, respectively.
Since we need to estimate both o7 and o for the prior, our

estimator for 03 is analogous to 62 from Section 3. To this end,
we need an additional matrix Py gz such that

PweozY = PwezXB + PwozWy + Pwoze.

4.2. Estimator

Since we are also interested in estimating PwegzX 8, we define
Bew to be the exponentially weighted estimator using the
covariates X, as opposed to using the covariates Pﬁ,X for
ﬁEW. Then, analogous to Section 2.2 let B denote the least-
squares estimator of B using the model m € M, with
covariates X, and Kz, wy 1. be the sub-Gaussian parameter
for Zv4+Wy+e.Fora > 4Kz, 4wy s, defining the exponential
weights as

o oe(=3I-XBnl3)

w 1 AN
Skent, xp (=3 IY=XAi13)

we have
L .
BEw = Zme/\/{u WinBm-

For convenience, we write figw £ x Bew. Now, the estimators
for the variance are given by

&2 2 [tr(Z Prow DI (IPzew (Y — fiew) 13

— rzewrzuwy " 1P (Y = imw)3),

Q

22 [tr(W Pwaz W1 (IPwez(Y — fzew) I3

— rwezrzuwy " 1P (Y = i) 1),

52 & ”(Z,W)i_1 ||P(Lz,w)(Y — w3

As we do not require an asymptotic distribution for 52 and
63, under weaker assumptions that Theorem 5, we have that
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62 and &5 are consistent estimators of o2 and 05, respec-

tively. This suggests the the following empirical Bayes estimator
for n,

-1
iibw 2 fiew + 52227 (52227 + GEWWT +521,) (Y — figw)

To compare our estimator, we consider an oracle that has
access to 1, 072, cr]%, and o?2. Then, this oracle uses the Bayes
estimator for 7 (see Lemma 6), given by

—1
Toracle L+ ngZT (UgZZT + ‘7)% wwT + 0821,1) Y—-w.

4.3. Assumptions

As previously mentioned, we do not need to establish the asymp-
totic distribution of 62, rather we only need the estimator to be
consistent. Accordingly, we may weaken our assumptions to the
following

(C1) The designs Z and W satisfy tr(ZTPZ@WZ) =
PweozW) < n.
(C2) The matrix W satisfies Amax(WWT) being bounded.

tr(WT

Remark 7. Assumption (C1) ensures that the component of
the design for the random effects is sufficiently well balanced.
This assumption in the presence of (A4) implies the second half
of (A5). Note that tr(Z"PzowZ) < Amax(ZZDtr(Pzow) =
Amax(ZZT)rZGW. Since rzew < n, tr(ZTPZQWZ) = n and
Amax(ZZT) being bounded imply that rzgw < n.

The other assumption (C2) is analogous to (A4).

4.4. Main Results

We start this section by noting that 62, 63, and 62 are all

consistent estimators under a weaker sparsity assumption than
in Section 3. Since we no longer require an asymptotic distri-
bution for the variance estimates, we only need the prediction
rate to ensure consistency, which is the content of the ensuing
proposition.

Proposition 2. Consider the model given in Equation (1).
Assume (A1), (A2*), (A3*) with W = 021, (A4), (A5) with T =
1, (C1),and (C2). if & > 4(67Amax(ZZ") + 02 hmax(WWT) +
052), then

The following is a standard lemma regarding the empirical
Bayes estimators in this problem setup, which we prove for the
sake of completeness.

Lemma 6. For a fixed vector u € R" and fixed values 03 > 0,

03 > 0,and 02 > 0, the Bayes estimator of  is given by

-1
E|Y) = u+ 02227 (agzzT +o2wwT + agln) (Y — ).
We conclude this section with the main result regarding 77gw;

the empirical Bayes estimator performs nearly as well as the
oracle Bayes estimator 7joale asymptotically.
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Theorem 7. Consider the model given in Equation (1). Under
the assumptions of Proposition 2,

n~! (lliiew — 011> = llfioracte — 1) = op(1).

5. Simulations

5.1. Methods and Models

We consider the linear mixed model given by
Y=XB+2Zv+ Wy +e,

with n = 1000, p = 2000, and g = 200. The parameters
that we vary throughout the experiment are the sparsity s, the
distribution of X, v, y, and ¢, the value of 02, and the number
of nuisance random effects d. For each parameter setting, the
results are averaged over 100 replications.
For the sparsity, we set s € {3, 15}. Each row of X is indepen-
dent and identically distributed A, (Op, Z) with
ifi=j,

1
EfJ:{ p ifi#]
for p € {0,0.8}. Then, B is chosen such that the signal strength,
BB, is four times the noise level with o} = 1. This is
accomplished by first generating s uniform random variables in
[—1, 1] and then rescaling to the desired level.

For the random effects, we either generate them from a Gaus-
sian distribution or a double exponential distribution, which
we denote by “z” and “e,” respectively. For the variances, we let
a2 € {0,1} while og =1

Finally, for the component of the design corresponding to
the random effects, we let d € {0,200}. When d = 0, the
design is a balanced one-way ANOVA design with m = 5.
When d = 200, we generate from a two-way crossed design
and down sample to have n observations. We only consider the
sub-Gaussian procedures when d = 0.

All of our simulations are conducted in R. For each of our
three problems, we compare the exponential weighting estima-
tor, denoted by “EW” with an oracle low-dimensional estimator
as well as a low-dimensional version of our proposed high-
dimensional statistic.

For exponential weighting, we follow Algorithm 1 from Law
and Ritov (2021). Regarding the tuning parameters, we perform
four fold cross-validation over a grid of values for « and the
sparsity.

For the oracle estimators, in the setting of the F-test, we
directly apply the classical low-dimensional F-test that has
access to the true sparse set S, as given in Equation (2.3) of Jiang
(2007). For the confidence intervals, we fit the linear mixed
models with the true sparse set S using 1mer and applying the
confint function. Finally, in the setting of estimation, we
directly compute the oracle Bayes estimator 7oracle described
in Section 4. Collectively, these low-dimensional estimators are
denoted by “LD.

In addition to comparing with the low-dimensional estima-
tors, we also construct low-dimensional versions of our pro-
posed high-dimensional statistics. To do so, we use the exact
same statistic as in the high-dimensional setting but replace
exponential weighting with least-squares using the sparse set S.

We make this comparison since all of our proposed statistics rely
on two layers of asymptotics:

1. In the prediction of the mean vector via exponential weight-
ing.
2. In the convergence once the residuals are obtained.

To differentiate between these two, we introduce an intermedi-
ate statistic that relies on least-squares, which we think of as low-
dimensional versions of our statistics. For example, letting ,és be
the least-squares estimator of 8 using the covariates Xg, we also
consider the statistic

I1Pzew (Y =XB)II /rzew

Fig £
1P, w) (Y =XB2/7 ) L

~ FTZ@W)V(Z,W)L + op(1).

These estimators are denoted by “LS”

Finally, we also include a version of our statistics using scaled
lasso, which we denote by “SL” Then, for “EW;” “SL,” and “LS;”
we subscript them by either “G” or “SG” to distinguish between
the Gaussian and sub-Gaussian methods.

To compare the procedures, we consider the following met-
rics

1. Type I/II Error: The percentage of time the procedure pro-
duces a Type I or Type II error in hypothesis testing.

2. Average Coverage: The percentage of time the correct
hypothesis is selected for F-tests or the percentage of time
the true value of o2 is in the confidence interval.

3. Average Length: The average length of the confidence inter-
val, taken as the upper endpoint minus the lower endpoint.

4. Average Loss: The average squared Euclidean distance
between the estimated vector 7 and the true vector 1 divided
by n.

5.2. Results

The results are presented in Tables S1-S3 from the supple-
mentary material. We notice that for hypothesis testing, all the
procedures control Type I and Type II error well throughout
the settings. For confidence intervals, when d = 0 and s = 3,
we notice that all of the methods perform well in coverage.
However, the length of our procedures appears to be shorter
when 02 = 0 and longer when 02 = 1, whereas the low-
dimensional procedure is more uniform across the parameter
space. This is not surprising in view of our estimation proce-
dure. From Section 3.2, the asymptotic variance of 62 depends
monotonically on the second and fourth moments of v and ¢,
which is reflected in the lengths of the resulting intervals.
When 62 = 0, the empirical coverage of our confidence
intervals are close to the nominal level, even when the distri-
bution of the random effects and errors are double exponential.
When o2 = 1, the empirical coverage drops to around 80%
for the Gaussian procedure and 90% for the sub-Gaussian pro-
cedure when the distribution is double exponential, against a
nominal coverage of 95%. We note that the double exponential
distribution is not a sub-Gaussian distribution, which seems to
suggest that the confidence intervals are somewhat robust to
slight departures from the distributional assumptions.
Moreover, when increasing the sparsity froms = 3tos = 15,
the performance of our confidence intervals decreases slightly



since it is harder to remove the contribution of the fixed effects.
Finally, for empirical Bayes estimation, our methods are com-
petitive with the oracle. However, we notice that exponential
weighting outperforms scaled lasso when s = 15, particularly
when p = 0.8. Since larger values of p implies that the columns
of X are more correlated, this highlights a salient feature of
exponential weighting.

6. Real Data Application

Following in the motivating example of Section 4, we con-
sider the TIMSS dataset, which is freely available at https://
timssandpirls.bc.edu/. To simplify our analysis, we only consider
the mathematics questions. After filtering out for complete cases
on background covariates, we are left with 146 questions, g =
43 unique polities, p = 106 covariates, and 6808 schools.
Therefore, we had a total of n = 6808 responses after averaging
over the students and questions within the schools. Here, there
are no nuisance random effects so d = 0. Due to averaging
over students within schools, we expect the distributions to be
approximately Gaussian by a central limit theorem.

To demonstrate our methodology, we use both exponen-
tial weighting as well as scaled lasso as our estimation proce-
dure. When applying exponential weighting, we jointly tune the
value of u and « using four fold cross-validation. The high-
dimensional F-test rejected the null hypothesis that 2 = 0
and a 95% confidence interval for o2 is (0.0021, 0.0056), which
suggests that, even controlling for school background charac-
teristics, the polity of the school impacts mathematical ability.
For the last part, we define a polity’s background characteristics
X to be the arithmetic average of all the schools’ background
characteristics within that polity. Then, applying the empirical
Bayes procedure, we rank the polities based on the predicted
number of questions they would answer correctly. The top five
polities in order from our analysis are South Korea, Singapore,
Hong Kong, Chinese Taipei, and Japan. Up to some reordering,
our results are mostly consistent with the report of Mullis et al.
(2016) based on individual student data, who had the same
top five polities. The results using scaled lasso produced the
same ranking as exponential weighting and similar conclusions
regarding o2.

Supplementary Materials

In the supplement, we provide proofs for all of the results along with
additional simulation tables.
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