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Abstract

The International Society of Cancer Metabolism (ISCaM) meeting on Cancer Metabolic
Rewiring, held in Braga Portugal in October 2019, provided an outstanding forum for
investigators to present current findings and views, and discuss ideas and future directions on
fundamental biology as well as clinical translations. The first session on Cancer pH Dynamics
was preceded by the opening keynote presentation from our group entitled /ntracellular pH
Regulation of Protein Dynamics: From Cancer to Stem Cell Behaviors. In this review we
introduce a brief background on intracellular pH (pH1) dynamics, including how it is regulated as
well as functional consequences, summarize key findings included in our presentation, and
conclude with perspectives on how understanding the role of pHi dynamics in stem cells can be
relevant for understanding how pHi dynamics enables cancer progression.

Introduction

Intracellular pH (pHi) was previously thought to be mostly constant for cellular homeostasis and
possibly dysregulated in diseases. We now know, however, that pHi is dynamic in normal cells
and clearly dysregulated in a number of diseases. In normal cells, pHi changes during cell cycle
progression, increasing ~ 0.3-0.4 pH units at the end of S phase and if this increase is blocked,
G2/M is delayed with increased inhibitory phosphorylation of Cdk1-Tyr15 and suppressed cyclin
B1 expression (1-3). Additionally, pHi dynamics regulates cell-substrate adhesion remodeling
and migration, with increased pHi enabling both behaviors (4-7). Emerging evidence also
indicates a critical role for increased pHi in epithelial plasticity, including epithelial to
mesenchymal transition (EMT) (8) and stem cell differentiation (9-12). Moreover, it is now well
established that dysregulated pHi is seen with many diseases, most notably cancers, which often
have a constitutively increased pHi (13-18), and neurodegenerative disorders, which are
associated with a constitutively decreased pHi (19, 20). Our review focuses on dysregulated pHi
dynamics in cancer; however, another feature of cancers is a dysregulated extracellular pH that is
lower (~ 7.0) compared with normal tissues (~ 7.4).

Although many factors contribute to pHi dynamics, the major regulators in most
mammalian cells are plasma membrane ion exchangers, including the Na+-H+ exchanger NHE1,
the Na+-HCO3- transporter NBC, and the Na+-dependent Cl--HCO3- transporter NDCBE, which
are acid-extruders, and Cl--HCO3- exchangers of the anion exchanger (AE) family, which are
acid loaders (21-23). The BioParadigms Solute Carrier tabless3 are an excellent resource on the
classification, expression, and transport characteristics of these ion exchangers. Additional
plasma membrane ion transport proteins that contribute to pHi dynamics, albeit to less of an
extent, include V-ATPases and monocarboxylate transporters of the MCT family. The broad
range of ion transport proteins regulate pHi dynamics through changes in their expression and
activity, the latter mostly mediated by posttranslational modifications as many are substrates of
key signaling kinases, including for NHE1, p90rsk (24), Akt (25, 26), the Rho kinase ROCK
(27), and the Ste20 kinase MAP4K4 (28), previously termed NIK. Experimentally, these
exchangers can be pharmacologically or genetically targeted to understand how they contribute
to pHi dynamics and how pHi dynamics regulates cell behaviors.

We have a relatively strong understanding of how changes in pHi are generated and the
effects of pHi changes on myriad cell functions. However, a mechanistic understanding of how
pHi changes regulate cell behaviors remains understudied, particularly effects on signaling
networks and protein functions. At the ISCaM meeting we presented our work on how changes

3 http://slc.bioparadigms.org/
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in pHi regulate protein dynamics to enable cancer and stem cell behaviors, which we summarize
in this review. Key to pH-regulated protein structure and function is considering protonation and
deprotonation as a protein posttranslational modification, analogous to posttranslational
modification by phosphorylation, acetylation, and methylation as we previously described (29).
However, studying protonation and deprotonation as a posttranslational modification is more
difficult compared with other posttranslational modifications because it is not catalyzed by an
enzyme and cannot be detected by mass spectrometry or antibodies. Furthermore, many
endogenous “pH sensors” or proteins that are regulated by pH dynamics within the cellular range
are coincidence (AND-gate) detectors with their structural conformations, activities, or binding
affinities dependent on multiple posttranslational modifications, most commonly
phosphorylation or dephosphorylation and protonation or deprotonation.

Intracellular pH and cancer cell behaviors: From the protein view

Most cancer cells have a higher pHi compared with untransformed cells, regardless of the
mutational landscape or tissue origin. This higher pHi enables many cancer behaviors, including
increased proliferation, directional migration, tumorigenesis, and most recently recognized, the
oncogenic and tumor-suppressor functions of proteins with charge-changing mutations (Fig. 1).
At the [ISCaM meeting we presented our findings on pH sensors regulating cell migration and
tumorigenesis as well as how pHi dynamics in cancer cells affect the functions of proteins with
somatic mutations encoding arginine to histidine substitutions.

Cell migration is confirmed to be regulated by pHi in many cell types and species (6, 30-
34). An increased pHi of ~ 0.3-0.4 units is seen in migrating cells and preventing the increased
pHi inhibits migratory rate and directionality, and impairs cell polarity. Our presentation
described several pH sensors we identified in atomistic detail that collectively regulate different
aspects of migration. These include guanine nucleotide exchange factors for the low molecular
weight GTPase Cdc42 involved in cell polarity (35), talin binding to actin filaments (36) and
focal adhesion kinase (FAK) activity for cell-substrate adhesion dynamics (5) as well as cofilin
for actin polymerization (37). The single histidine in cofilin, His133 (human), has an upshifted
pKa to ~ 7.2 and must be neutral for increased cofilin activity (Fig. 1A). However, cofilin is a
coincidence detector and full activity also requires dephosphorylation of Ser3 (Fig. 1A) by one
of several phosphatases, which releases an autoinhibited interaction between phosphorylated
serine and lysine 126 and 127 to allow binding to actin filaments. This AND-gate regulation
enables signaling mechanisms to increase cofilin activity in time (with migratory cues) and space
(at the leading edge of a migrating cell), and highlights that for many pH sensors a change in
protonation state does not function as a binary switch.

Tumorigenesis and dysplasia are enabled by increased pHi regulated by NHE1, NBCs
and MCTs, including tumor cell proliferation, growth, and survival (38-40). Our presentation
included two of our recent key findings on pHi and tumorigenesis. First, that increased pHi from
~ 7.30 to ~ 7.65 in Drosophila eye epithelia by overexpressing Drosophila dnhe2, an ortholog of
mammalian NHE], is sufficient to induce dysplasia in the absence of an activated oncogene (41).
Second, that -catenin, an adherens junction and Wnt pathway protein is a pH sensor, with pHi
not regulating its activity but rather its stability, which decreases at pHi > 7.5 (42). Using a
phenotype screen, we found that overexpressing [3-catenin suppresses dysplasia in Drosophila
eye epithelia with constitutively increased pHi induced by overexpression of dnhe2. These data
suggested a lower abundance of B-catenin at higher pHi, which we confirmed in mammalian
cells. We also resolved the pH sensing mechanism of His36 (human) in the N-terminus of 3-
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catenin, which when neutral (at higher pHi) increases binding affinity for the E3 ligase -TrCP1.
However, like cofilin described above, B-catenin is a coincidence detector requiring both a
neutral His36 and phosphorylated flanking Ser33 and Ser37 for binding B-TrCP1 (Fig. 1B). The
role of phosphorylated serines in enabling proteasome-mediated degradation of B-catenin has
long been recognized (43). The importance of a neutral His36 for binding B-TrCP1 is evident in
the crystal structure of B-TrCP1lin complex with an N-terminal B-catenin peptide (44) (PDB:
1P22), which shows the proximity of B-catenin-His36 and B-TrCP1-Lys365 (Fig. 1B). This
suggests that binding would be electrostatically unfavorable with a protonated His36 at lower
pHi. Importantly, the DSxxHS motif is conserved in all species of B-catenin and occurs in a
number of other B-TrCP1 target proteins (45), including the transmembrane protein polycystin 2,
the tumor suppressor tensin 2, the centrosomal protein Cep97, the hedgehog pathway protein
Gli3, and myosin-XVIIla, suggesting these substrates may have similar pH sensitive binding to
B-TrCP1 and regulated protein stability. We also described that a cancer-associated somatic
mutation, B-catenin-H36R, is insensitive to pHi-regulated degradation and, when expressed in
Drosophila eye epithelia, enhances Wnt pathway activity, causes tissue overgrowth growth, and
induces ectopic tumors. With this mutation, B-catenin stability could be retained at the higher
pHi of a cancer cell and enable tumorigenesis. As described in the section below, this is an
example of a charge-changing mutation that confers a loss of pH sensing.

Charge-changing somatic mutations can confer a change in pH sensing and enable cancer
behaviors specifically at increased pHi. We recently showed that recurrent arginine to histidine
mutations in p53 and EGFR can confer a gain in pH sensing to the mutant proteins. Arginine,
with a pKa of 12, will be protonated regardless of pHi while histidine, with a pKa near neutral,
can titrate with cellular changes in pHi. We found that a highly recurrent arginine to histidine
mutation in the tumor suppressor p53 (p53-R273H) could confer pH-dependent DNA binding
and transcription of p53 target genes, with decreased transcription at a higher pHi of 7.6
compared with 7.2 (46). The crystal structure of wild-type p53 (47) (PDB: 4HJE) and mutant
p53-R273H (48) (PDB: 4IBW) in complex with DNA suggests that wild-type Arg273 forms an
electrostatic interaction with the negatively charged phosphate-backbone of DNA (Fig 1C). At
the lower pHi of a non-transformed cell, His273 is likely protonated and retains some binding to
the negatively-charged DNA but, at the higher pHi of a cancer cell, His273 is likely
deprotonated, reducing DNA binding and expression of p53 target genes (Fig 1D). Importantly,
lowering pHi in cancer cells expressing p53-R273H recovered p53 transcriptional activity and
p53-dependent cell death in response to double-strand breaks (46). We also showed that a
cancer-associated arginine to histidine substitution in the epidermal growth factor receptor
(EGFR-R776H) that is recurrent in lung cancers confers pH sensing to the mutant protein.
Increasing pHi from 7.2 to 7.6 increases activity of EGFR-R776H but not wild-type receptor,
and increases cell proliferation and cellular transformation in cells expressing the mutant but not
wild-type receptor (46). These results suggest that charge-changing mutations can confer a gain
in pH-sensing not seen with the wild-type protein. This work also indicates that charge-changing
somatic mutations can confer dynamic function to mutant proteins, specifically inactivating a
tumor suppressor and specifically activating an oncogene at the increased pHi of cancer.

Intracellular pH and epithelial plasticity: Focus on stem cell differentiation

Recent findings indicate that pHi dynamics is a key regulator of epithelial plasticity, with
increased pHi enabling EMT (8) and epithelial branching morphogenesis (49) as well as
differentiation of melanocytes (50), embryonic and adult stem cells (9, 11), and mesenchymal
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(12) and cardiomyocyte (10) stem cells. These findings raise questions on the role of pHi
dynamics in morphogenesis and animal development, which remain largely unresolved. New
genetically-encoded tools to measure pHi (51) and genetic and pharmacological approaches to
selectively change pHi temporally and spatially will enable new studies necessary to resolve
pHi-regulated developmental processes with promise for new approaches to correct impaired
morphogenesis.

Toward a goal of resolving the role of pHi dynamics in cell fate decisions, at the ISCaM
meeting we discussed our findings on pHi-regulated embryonic and adult stem cell
differentiation. As we previously described (11), with differentiation of naive clonal mouse
embryonic stem cells (mESC) to primed epiblast-like cells there is an NHE1-dependent transient
increase in pHi of ~ 0.3 units (Fig. 2A). Preventing this increase in pHi blocks differentiation, as
indicated by sustained expression of the mESC markers Rex1, Stra8, and Nanog, and attenuated
expression of the epiblast markers Brachyury, fibroblast growth factor 5, and Pax6. An increase
in pHi is also necessary for differentiation of adult follicle stem cells in the Drosophila ovary to
prefollicle cells and follicle cells (9, 11) (Fig. 2B), the later necessary for germ cell maturation.
Consistent with germ cells requiring enrichment from differentiated follicle cells, preventing the
increase in pHi along the follicle stem cell lineage impairs ovary morphology and adult
oogenesis and substantially decreases fertility (9). These findings were obtained by genetically
silencing Drosophila dnhe2, an acid extruder, or overexpressing a newly identified Drosophila
ae2, an ortholog of the mammalian acid loader AE2.

There are several important questions to resolve on the role of pHi dynamics in stem cell
differentiation. First is whether pHi is a conserved regulator of stem cell differentiation in
different tissues, perhaps using established and well characterized models for intestinal epithelial
(52) and skin epidermal (53) stem cell lineages. Second is how pHi dynamics regulates activity
of pathways and functions of proteins with established roles in stem cell behaviors. One
possibility is a role for pH sensing by p-catenin (as described above) in Wnt signaling, because
high Wnt pathway activity (54) at low pHi may retain self-renewal of stem cells and inhibit
differentiation. Third is whether pHi-regulated stem cell differentiation can inform regenerative
medicine approaches to correct or restore impaired cell and tissue functions.

Integrating pHi dynamics in cancer and stem cells

To consider how pHi dynamics in stem cells and cancer might be linked, we concluded our
presentation by showing new data on pHi heterogeneity in spheroids of clonal human lung
cancer cells (Fig. 2C). Using H1299 cells expressing the previously described (41) genetically
encoded and ratiometric pH biosensor mCherry-pHluorin, we observe distinct intercellular
differences in pHi when grown in 3D (Fig. 2C). Distinct pH heterogeneity (including
intracellular and extracellular pH) is seen in cancer spheroids (55-58) and a mouse model of
breast ductal carcinoma (59); however, whether this heterogeneity reflects differences in
mutational signatures, cell identity, phenotypes, or epithelial or metabolic plasticity remains
unresolved. For example, might cells with a lower pHi be stem-like tumor initiating cells? Could
cells with a higher pHi have increased glycolysis to fuel rapid proliferation or be undergoing
EMT for metastasis? The possibility that a lower pHi could enable tumor initiating cells raises
caution on the idea of lowering pHi to limit cancer progression. Tumor heterogeneity, whether
genetic, epigenetic, or phenotypic, is increasingly being recognized as a challenge for cancer
therapies (60, 61), and improved understanding of the determinants and consequences of pHi
heterogeneity could contribute to resolving these therapeutic challenges.
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The field has taken a first important step in identifying a number of normal and
pathological cell behaviors regulated by pHi dynamics. A second step in understanding how pHi
regulates the signaling pathways mediating these behaviors is now emerging. A third step of
improved mechanistic understanding is an important future direction to resolve design principles
and functions of pH sensitive proteins mediating pHi-regulated cell behaviors. This third step is
experimentally challenging and remains largely unexplored, but holds promise for identifying
new therapeutic targets and informing the design of therapeutics for regenerative medicine and
treating diseases with dysregulated pHi dynamics, including cancer.
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Figure Legends

Figure 1. The higher pHi of cancer cells enables many behaviors, including directional
migration and tumorigenesis as well as the tumorigenic functions of proteins with charge-
changing arginine to histidine mutations. (A) Cell migration is in part dependent on increased
activity of cofilin with increased pHi. Cofilin is a coincidence-regulated pH sensor that is
activated by deprotonation of His133 (cyan) and dephosphorylation of Ser3 (magenta) for actin
polymerization enabling cell migration. (B) Dysplasia is associated with increased pHi, which
decreases B-catenin stability. -catenin is a coincidence-regulated pH sensor with deprotonation
of His36 (cyan) and phosphorylation of Ser33/37 by GSK3 enabling binding to the E3 ligase -
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TrCP1 for targeting to the proteasome for degradation. Crystal structure data show that f3-
catenin-His36 is in close proximity to B-TrCP1-Lys365, which suggest that binding would be
electrostatically unfavorable with a protonated His36 at lower pHi. (C) Charge changing somatic
mutations can confer pH-regulated protein activity. Structure of wild-type p53 (top) and mutant
p53-R273H (bottom) in complex DNA indicating an electrostatic interaction of Arg273 with the
negatively charged phosphate-backbone of DNA that could be partially enabled by protonated,
but not neutral, His273.

Figure 2. (A) Schematic showing that clonal self-renewing mESC (Naive), derived from the
inner cell mass of the early blastocyst, have a lower pHi than differentiated primed epiblast-like
stem cells (EpiSC), which are analogous to cells in the late epiblast stage. (B) Schematic of
Drosophila germarium showing an increase in pHi from self-renewing follicle stem cell (Follicle
SC) to differentiated prefollicle and follicle cell. (C) Image of lung cancer H1299 cells
expressing the pHi biosensor mCherry-pHluorin and grown in Matrigel as 3D spheroids shows
intracellular pHi heterogeneity that might reflect phenotypic heterogeneity, such as cells with a
higher pHi undergoing EMT and cells with a lower pHi being self-renewing tumor initiating
stem-like cells.
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