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Challenge Accepted

Low-power object-detection challenge 
on unmanned aerial vehicles

A design contest for object detection 
with deep learning on embedded 
small devices leads to winning 
hardware–software co-design 
approaches.

Object detection and tracking 
is actively explored in various 
applications such as ambient 
environment monitoring, pre-
cision agriculture and urban 

planning and, increasingly, on unmanned 
aerial vehicles (UAVs) to make use of their 
superior mobility. The task of detecting 
a single object of interest from captured 
images can be tackled with deep learning 
(DL)-based image-processing techniques, 
but in real-world scenarios involving UAVs, 
low latency and high throughput are impor-
tant requirements. Realizing DL-based 
object detection on UAVs is a representative 
problem for TinyML, an area that focuses on 
developing DL algorithms for resource- and 
power-constrained embedded devices.

In 2018, we founded the System Design 
Contest (SDC) at the Institute of Electrical 
and Electronics Engineers (IEEE)/Association  
for Computing Machinery (ACM) Design 
Automation Conference (DAC), the flagship 
conference in the design automation com-
munity, which featured a low-power object 
detection challenge (LPODC) on designing 
and implementing novel algorithms for object 
detection on UAVs. Since then, the contest has 
been held annually, and over 100 teams from 
more than 10 countries and regions have par-
ticipated each year. The challenge focuses on 
UAV applications that have stringent accuracy, 
real-time detection and power requirements 
on resource-constrained hardware. In contrast 
to general computer visual challenges that 
focus on accuracy, LPODC evaluates over-
all performance based on a combination of 
throughput, power and detection accuracy. 
Three metrics are used1: (i) intersection over 
union (IoU), a metric for object detection accu-
racy, which is defined as the ratio between the 
area of the union of the predicted bounding 
boxes (BB) used to bind the targeting object 

and the ground-truth BB, and the area of the 
overlap encompassed by both the predicted 
BB and the ground-truth BB; (ii) throughput, 
in frames per second (FPS); and (iii) power 
consumption, in terms of the average power 
consumed in the whole evaluation. The final 
score in LPODC is a combination of the three.

In the first 2 years, LPODC provided two 
hardware platforms to all participating teams 
to choose from for their implementations: 
embedded graphical processing unit (GPU; 
Jetson TX2 from Nvidia) and system-on-chip 
field-programmable gate array (SoC FPGA; 
PYNQ Z-1 board from Xilinx). From 2020 on, 
only the FPGA SoC platform was used. The 
images of the dataset, all captured by actual 
UAVs, reflect real circumstances and chal-
lenges encountered in UAV-based applica-
tions. The released dataset contains a large 
quantity of manually annotated training 
images, while the testing dataset is withheld 
for evaluation purposes. There are a total of 
150,000 images, provided by the industry 

sponsor, DJI. Participating teams train their 
models with the training dataset and then 
send the trained models to the organizers for 
testing. Evaluations are performed at the end 
of each month and the details of results and 
ranking are made public. The final ranking is 
released at the end of the competition, and the 
top three entries are invited to present their 
work at a technical session at DAC.

Figure 1 demonstrates the trend of the 
performance metrics for each year’s top 
three teams and the corresponding network 
backbone choice in the past 5 years. Between 
2018 and 2020, the detection accuracy and 
throughput improved dramatically, at the cost 
of slightly increased power needs. In 2018, 
the champion, from Tsinghua University in 
Beijing2, focused on machine learning model 
optimization, and downsized the single-shot 
detection (SSD) network topology by remov-
ing the last two convolutional layers. Pruning 
and quantization of network parameters were 
also applied. The top team in 2019, from the 
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Fig. 1 | IoU, power and throughput performance of each year’s top three teams from 2018 to 2022. The 
neural network backbone used by each team is also included. 1st, 2nd and 3rd denote the first, second and 
third placed winner team, respectively.
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University of Illinois at Urbana–Champaign in 
the United States, started to explore the hard-
ware design space through a bottom-up deep 
neural network (DNN) model-design strategy 
together with a top-down flow for accelera-
tor design3. Using a lightweight SkyNet as the 
backbone4, this enables a joint optimization 
of both DNN models and their deployment 
configurations and achieves much higher IoU 
and more than twice the throughput (>200% of 
the original value) of previous year’s first place 
team’s approaches. In 2020, the top winner, 
from Beijing University of Technology, used a 
learnable parameter, soft clipping full-integer 
quantization (LSFQ), as well as full paralleli-
zation of multiplications based on another 
lightweight architecture, UltraNet5.

Starting in 2021, little improvement in detec-
tion accuracy has been achieved, and the win-
ning strategy has shifted towards hardware 
efficiency, with a great throughput increase and 
power reduction seen each year. The 2021 cham-
pion, from Shanghai Tech, adopted tuneable 
activation imbalance transfer (TAIT) for quan-
tization based on SkyNet, and further exploited 
the power of the hardware through fine-grained 
multithreading and parallelization6. Finally, this 
year, all the top three teams adopted UltraNet. 
The top team, from Southeast University in 
Nanjing, China, optimized the data flow in 

programmable logic to increase the data compu-
tation reuse rate, which eventually approached 
the theoretical performance boundary of the 
hardware in terms of throughput7.

LPODC at SDC-DAC has been a success these 
last 5 years, and we expect that it will continue 
to be a premier contest in low-power object 
detection. LPODC is only the starting point for 
TinyML, which deploys artificial intelligence 
on small hardware platforms with constrained  
resources. As evidenced by the LPODC winners,  
for TinyML it is crucial to deploy a hardware–
software co-design approach8 rather than 
optimizing software and hardware separately. 
Beyond accelerator and neural architecture 
design, there are also opportunities in com-
munication, compiler or even device optimi-
zation9 in future contests to push forward the 
field of TinyML and make it usable, reliable and 
prevalent in daily applications.

The source code from the top three teams 
in each of the past 5 years can be found on 
Github10.
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