
How to Obfuscate MPC Inputs

Ian McQuoid ∗† Mike Rosulek∗† Jiayu Xu∗

October 25, 2022

Abstract

We introduce the idea of input obfuscation for secure two-party computation (io2PC). Sup-
pose Alice holds a private value x and wants to allow clients to learn f(x, yi), for their choice
of yi, via a secure computation protocol. The goal of io2PC is for Alice to encode x so that an
adversary who compromises her storage gets only oracle access to the function f(x, ·). At the
same time, there must be a 2PC protocol for computing f(x, y) that takes only this encoding
(and not the plaintext x) as input.

We show how to achieve io2PC for functions that have virtual black-box (VBB) obfuscation
in either the random oracle model or generic group model. For functions that can be VBB-
obfuscated in the random oracle model, we provide an io2PC protocol by replacing the random
oracle with an oblivious PRF. For functions that can be VBB-obfuscated in the generic group
model, we show how Alice can instantiate a “personalized” generic group. A personalized generic
group is one where only Alice can perform the algebraic operations of the group, but where she
can let others perform operations in that group via an oblivious interactive protocol.

1 Introduction

Alice has invested significant resources into training a machine-learning classifier. She decides to
capitalize on her investment by creating a service where customers can pay her to classify inputs
of their choice. The classifier itself is sensitive, and so are the inputs of Alice’s clients, so her
service uses secure two-party computation (2PC) to perform these classifications. She deploys a
server that repeatedly runs the 2PC protocol with customers. This server is a high-value target for
attackers, since it must store the details of Alice’s proprietary classifier. If a hacker compromises
Alice’s server it is unavoidable that he learns her classifier. . . or is it?

Input obfuscation for 2PC. Abstractly, Alice has an input x, and she wants to use a 2PC
protocol to allow customers to repeatedly learn f(x, yi) for any yi of their choice. An attacker who
compromises her computer can gain oracle access to the function f(x, ·) by running the 2PC protocol
in its head, playing the role of Alice using her private state information which was compromised.
In this work, we investigate whether compromising Alice’s computer can leak no more than oracle
access to f(x, ·). Input obfuscation for 2PC (io2PC) refers to (1) a way for Alice to encode
her input x, along with (2) a 2PC protocol for computing functions of x that takes this encoding
— not x — as input. The encoding itself should leak only oracle access to the function f(x, ·).

∗Oregon State University, {mcquoidi,rosulekm,xujiay}@oregonstate.edu
†First two authors partially supported by NSF award S2356A

1

Why isn’t this trivial? If knowledge of Alice’s encoded input is equivalent to having oracle
access to f(x, ·), then her encoded input is actually a virtual-black-box (VBB) obfuscation. So
a natural approach is to use a 2PC protocol that takes the obfuscation from Alice, and the input
y from Bob evaluates the obfuscation on y and gives the result to Bob.

Unfortunately, this natural approach does not work. The reason is that we require a strong
definition of VBB described in Section 2.2 which precludes known constructions of non-trivial
functions in the standard model as these obfuscations rely on weakened definitions of VBB [Wee05,
Can97, CD08]. It is possible to construct VBB for trivial functions such as the constant function,
but all (non-trivial) instances of VBB to our knowledge are in an idealized model such as the
random oracle model [LPS04], the generic group model [BLMZ19], or the generic graded encodings
model [BR13]. As the algorithm that evaluates a VBB obfuscation on an input will call the ideal
model’s oracle, this algorithm cannot be implemented inside a 2PC protocol.

One way to think about io2PC is designing a 2PC protocol for obliviously evaluating an obfus-
cated program, even if the obfuscation scheme requires an idealized model.

1.1 Overview of Our Results

We first formally define io2PC, and then show how to achieve it for certain classes of functions.

Inspiration from saPAKE. In io2PC we are interested in allowing a server to encode a function
in such a way that even on compromise, the adversary only obtains oracle access to the underlying
function. This kind of security property is similar to one found in the definition of strong asym-
metric password-authenticated key exchange (saPAKE) [JKX18]. In saPAKE, a server
wants to authenticate clients using passwords and stores only “digests” of the passwords so that
when an adversary steals the server’s storage, the adversary gains only oracle access to a password-
checking functionality (i.e. it can submit a password guess and learn whether that guess is correct).
In other words, the adversary gains oracle access to a point function for each user, with the distin-
guished point being the user’s password. It is therefore natural to think of saPAKE as a special
case of io2PC, considering only point functions.

Although the oracle saPAKE protocols provide on compromise is a point function, saPAKE
protocols are much stronger than pure point functions as they allow for joint key establishment.
To simplify, we can consider lighter VBB obfuscations of point functions in the random oracle
model [LPS04]. An obfuscation of the point function f(x, ·) simply consists of the value Ox = H(x),
for random oracle H, where the obfuscation can be “evaluated” on y by computing H(y) and
comparing it to Ox. As we will see in Section 3, this simple construction doesn’t meet the security
requirements for io2PC as it allows the oracle interaction in the obfuscation to take place before
server compromise. This is exactly the issue that Jareki, Krawczyk, and Xu [JKX18] set out to
solve for asymmetric PAKE (aPAKE) protocols. The authors present a compiler which augments an
aPAKE protocol by replacing the client’s input with the output of an oblivious pseudo-random
function (OPRF) on the client’s input. Roughly, an OPRF is a two-party protocol for evaluating
a PRF F on a client’s input x and a server’s key k where the client learns the PRF output F (k, x)
and the server learns nothing. We discuss modeling this primitive in further detail in Section 4.1.
This technique allows the server to limit access to the oracle behind an interactive protocol which
prevents the adversary from evaluating the oracle calls locally until the server is compromised. It is
tempting to apply this compiler directly to our VBB point function, and generally this idea serves
as valid intuition for the techniques used in our compilers.

2

Our result for random-oracle VBB obfuscations. Our main constructions develop and ex-
tend the analogy of applying Jareki, Krawczyk, and Xu’s compiler directly to VBB obfuscations.
We construct io2PC for a function f , if the related class of functions Cf = {f(x, ·) | x ∈ {0, 1}n}
has a VBB obfuscation in the random oracle model. The obfuscation scheme consists of algorithms
Obf and ObfEval satisfying the following:

• Correctness: ObfEvalH(ObfH(x), y) = f(x, y)

• Virtual black box: For any probabilistic polynomial-time (PPT) adversary A, there exists
a PPT simulator S such that AH(ObfH(x))’s view can be simulated by S given only black-box
access to f(x, ·).

In our io2PC protocol Alice chooses and stores an OPRF key k and uses the keyed OPRF in place
of a random oracle to compute Ox = ObfOPRF(k,·)(x). She then stores Ox instead of x for future
interactions. As in the OPAQUE saPAKE protocol [JKX18], we require an OPRF protocol where
knowledge of the key k only gives oracle access to F (k, ·). Thus, even when an adversary steals the
encodingOx, the OPRF still acts as a random oracle, in terms of observability and programmability,
to the simulator. This is what allows us to reduce to VBB security and argue that Ox leaks no
more than oracle access to f(x, ·). It is indeed possible to realize such an OPRF protocol in the
random oracle model; in this case, the OPRF algorithm itself makes calls to the random oracle.
Since our simulator must be efficient, but reduces to the simulator for the VBB obfuscation, our
results do not immediately generalize to virtual grey-box (VGB) obfuscations. This is because VGB
simulators can be inefficient and would not be simulatable under our restrictions.

When a client wants to interactively evaluate f(x, y), the goal is to instead run
ObfEvalOPRF(k,·)(Ox, y), since Alice holds only Ox instead of x. However, the two cannot simply
run this computation as a 2PC protocol, since OPRF involves calls to the random oracle. Instead,
Alice can send Ox to the client, who runs ObfEval?(Ox, y). The parties can then run an OPRF
protocol each time ObfEval makes an oracle query.

Our result for generic-group obfuscation. In our random-oracle result, we can think of the
OPRF as a “personalized” random oracle. It is a random function that only Alice, holding the
OPRF key, can evaluate and her evaluations of this function are visible and programmable to the
simulator. She can also allow a client to evaluate this function (without leaking the input to Alice)
using the OPRF protocol.

Suppose we have a VBB obfuscation now in the generic group model. What is the analogy of a
“personalized” generic group? How can Alice instantiate a group, for which only she has the key,
which acts as a generic group with respect to the simulator, and yet she can grant access to the
group operations via an oblivious protocol? We formalize a personalized generic group as an ideal
functionality, and then show how to realize such a functionality. Of course, our protocol is in the
generic group model, just as the OPRF (“personalized random oracle”) protocol is in the random
oracle model.

We show that our main io2PC technique also applies to VBB obfuscations in the generic group
model. In other words, Alice can obfuscate her input, replacing the generic group with her per-
sonalized group during the obfuscation process. The client can evaluate the obfuscated program,
deferring group operations to the oblivious personalized generic group protocol.

Additionally, we provide example applications of our personalized protocols and show that
Canetti, Rothblum, and Varia’s hyperplane-membership obfuscation [CRV10] is indeed a VBB
obfuscation in the generic group model. Previously, the obfuscation was proven VBB with an

3

inefficient simulator, under the Strong DDH assumption. Using this hyperplane obfuscation in our
main protocol, we achieve an io2PC for hyperplane membership.

We conjecture that io2PC is possible for functions that are VBB-obfuscatable in the generic
graded encoding model (i.e. all circuits [BR14]); however, we leave this result for future work.

1.2 Related Work

Upon server compromise, an adversary learns no more than oracle access to some residual function.
Specific instances of this kind of property have been considered previously: in the context of
[strong] asymmetric password-authenticated key exchange (aPAKE) [BM93, JKX18], where server
compromise should reveal no more than an equality-test oracle; and by Thomas et al. [TPY+19],
where server compromise should reveal no more than a set-membership oracle. Our study of io2PC
systematizes security properties and constructions of this kind, which have previously been studied
in an ad hoc way.

Beyond the context of server compromise, the more general idea of leaking oracle access appears
in some MPC models: In both non-interactive multiparty computation (NIMPC) [BGI+14] and
the one-pass computation model [HLP11], each party speaks only once in the protocol, with the
difference in models being the communication pattern (star topology vs path topology). In these
models, it is inevitable that certain types of corruption allow the adversary to re-execute the
protocol on different inputs an unlimited number of times. Such an adversary can thereby learn
the output of the function on many inputs of its choice, with the honest parties’ inputs being fixed.
Therefore, the best possible security in these models is if the protocol leaks no more than oracle
access to this residual function.

Beyond this similarity of defining best-possible security with respect to a residual function
oracle, there are important differences between these prior works and ours. In the NIMPC protocols
of [BGI+14] and one-pass protocols of [HLP11, GMRW13], the residual functions are completely
learnable from oracle queries, either by virtue of being over a small domain, or by being algebraically
simple. Our work is meant to be used with unlearnable residual functions — for example, we
instantiate our framework with point functions and hyperplane membership queries.

More fundamentally, prior works like [HIJ+17] in the NIMPC model define security in the
style of indistinguishability obfuscation (iO) — if two vectors of inputs for honest parties result in
functionally identical residual functions, then the protocol must hide which input vector the honest
parties use. This kind of definition for MPC is not conducive to composable security. By contrast,
we explicitly require a virtual black-box (VBB) style of security, and define security in the UC
framework. Our VBB-style definition also models the fact that, after compromising the server, the
adversary must expend some effort each time it wants to evaluate the residual function.

2 Preliminaries

Let κ be the security parameter. We assume that all algorithms have 1κ as input and do not
explicitly write it.

2.1 Idealized Models

In an idealized model, all parties have oracle access to some exponentially large random object.
In the random oracle model, the random object is a function H : {0, 1}∗ → {0, 1}n. In the ideal
permutation model, the random object is a pair of functions Π,Π−1 : X → X where Π and Π−1 are
inverses.

4

We also consider the generic group model, which we discuss in more detail in Section 5.1.
Immediately below, we define VBB obfuscation in an idealized model, making the definition

agnostic with respect to the actual choice of idealized model. We simply let all algorithms have
oracle access to some idealized oracle Ora, which may be a random oracle or a generic group.

2.2 Obfuscation

Definition 1. Let Cf = {f(x, ·) | x ∈ {0, 1}∗} be a class of functions. An obfuscation for Cf (in
the Ora-idealized model) is a tuple of polynomial-time algorithms (Obf,ObfEval), where

• ObfOra(x) outputs an obfuscated program Ox;

• ObfEvalOra(Ox, y) outputs a value z in the range of f .

The obfuscation satisfies correctness if for all x, y, we have ObfEvalOra(ObfOra(x), y) = f(x, y) with
overwhelming probability.

We often omit explicitly writing Ora if it is clear from the context.
Looking ahead, we replace the idealized oracle in ObfEval with an interactive protocol. Hence,

we must require that the number of oracle queries does not depend on the input.

Definition 2. An obfuscation (Obf,ObfEval) for Cf has input-independent query complexity if
there is a polynomial function c such that for all x, y, ObfEvalOra(Ox, y) makes c(κ) queries to its
Ora oracle. Throughout the paper, we then refer to an obfuscation with this property as a triple
(Obf,ObfEval, c).

Virtual black-box (VBB) security means that holding an obfuscated program is equivalent to
having oracle access to the function being obfuscated. In our io2PC protocol, we need to explicitly
relate the number of queries an adversary makes to its idealized oracle, and the number of queries
the simulator makes to its function oracle.

Definition 3. An obfuscation (Obf,ObfEval, c) has virtual black-box (VBB) security with
simulation rate r if there exists a polynomial-time simulator Sim = (Sim0, Sim1) such that for
any polynomial-time adversary A and any x, the distributions

{Ox ← ObfOra(x);AOra(Ox)} (real interaction)

{(Ox, state)← Sim1();A
Sim

f(x,·)
2 (state)(Ox)} (ideal interaction)

are indistinguishable, and furthermore in the ideal interaction QS ≤ r · QA

c , where QS is the number
of queries Sim2 makes to its function oracle, and QA is the number of queries A makes to its oracle
interface.

We also need the following extractability property of obfuscation to handle the case where a
corrupt server generates an obfuscated program in our io2PC protocol.

Definition 4. A VBB obfuscation (Obf,ObfEval, c) for Cf is extractable if for any polynomial-time
adversary A, there is a polynomial-time algorithm Extract such that

Pr

[
ObfEvalOra(O, y) 6= f(x, y) :

(y,O)← AOra

x := Extract(O,H)

]

is negligible, where H is the list of A’s queries.

In Section 6 we describe examples of obfuscation schemes that satisfy these definitions.

5

Standard Model VBB Recall that at least trivial VBB obfuscations are possible in the standard
model. Even in an idealized model, if ObfEval never queries its oracle, then we have a VBB
obfuscation in the standard model. However, our constructions need something slightly stronger
than VBB. In particular, Definition 3 and Definition 4 require an idealized model for non-trivial
functions. A standard-model VBB allows the evaluator to learn f(x, ·) on an unbounded number
of inputs, for the cost of 0 oracle queries, making the simulation rate for Definition 3 infinite.
A similar observation has been made in the context of asymmetric PAKE[Hes20]: aPAKE seems
impossible to achieve in the standard model, as measuring the time of an offline dictionary attack
requires counting the adversary’s oracle queries. In Definition 4, the simulator’s only advantage
over a regular adversary is that it can observe the obfuscator’s idealized oracle queries.

So our protocol paradigm is incompatible with (at least non-trivial) standard-model VBB. But
the spirit of io2PC is possible for standard-model VBB. The server stores an obfuscation Ox of
f(x, ·). The parties can do a standard 2PC protocol computing (Ox, y) → ObfEval(Ox, y), which
is possible because ObfEval is a standard-model program. Upon compromising the server, an
adversary learns only Ox which is equivalent to oracle access to f(x, ·) by the VBB property. This
protocol does not achieve our specific io2PC functionality, though, because the simulator cannot
perform the necessary extractions of x from Ox, and of an adversary’s oracle queries to f(x, ·) after
compromising the server to learn Ox.

3 Defining io2PC

In this section, we formally define io2PC. The ideal functionality is presented in Figure 1. In FiO2PC

and future functionalities, we leverage the universal composability framework’s ability to analyze
a single protocol instance by providing unique session and subsession identifiers (sid, ssid).

Intuitively, io2PC can be thought of as an extension of VBB obfuscation to an interactive setting
where the server may store its obfuscated input for long periods. This setting has been studied in
the context of (strong) asymmetric PAKE [GMR06, JKX18], where the server stores a “password
file” (e.g. the hash of its password) instead of the plain password. Similar to the asymmetric
PAKE functionality, this is modeled as follows: In the initialization phase, the server sends its
input to FiO2PC who stores it. After that, the functionality provides an interface for the adversary
to compromise the server — the Compromise query — which corresponds to stealing the server’s
long-term storage in the real world. This allows the adversary to perform offline evaluations, in
which it evaluates the function primed on the server’s input, without any online interaction.

In an online evaluation, the server can use the stored input, or use a replacement input if the
server is corrupt. This is meant to model the real-world scenario where a corrupt server executes
the protocol on fresh input instead of using stored input. Finally, the client may query against the
functionality and receive the function result on the client and server’s inputs.

3.1 Simulation Rate

Our eventual io2PC protocol has the following interesting property. A corrupt client may perform k
different IOEval sessions in such a way that it eventually learns (only) k outputs of the function, but
the simulator cannot extract any of the client’s inputs until after the kth session.1 We handle this
issue in FiO2PC with a ticketing mechanism. During each IOEval the client need not immediately

1Essentially, our protocol for IOEval simply allows the client to make some fixed number of OPRF queries. Instead
of using those OPRF queries for k sequential evaluations of the function, the client can schedule the OPRF queries
in parallel — e.g.., the first query in all k evaluations, then the second query in all k evaluations, etc.

6

Parameters:
• client C, server S, and ideal adversary A∗

Storage:
• three maps, status, budget and input

On command (Init, sid, x) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Set input[sid] := x.
4. Set budget[sid] := 0.
5. Send (Init, sid, S) to A∗.

On command (Compromise, sid) from A∗:
6. Set status[sid] := compromised.

On command (OfflineEval, sid, y) from party P ∈ {A∗, S}:
7. If P = A∗, and either status[sid] 6= compromised or S is honest: ignore the message.
8. If status[sid] is undefined: send (IOEval, sid,⊥) to P.
9. Otherwise, retrieve x := input[sid] and send (OfflineEval, sid, f(x, y)) to P.

On command (IOEval, sid, ssid, x′) from S:
10. If S is honest, retrieve x := input[sid], otherwise, set x := x′.
11. Send (IOEval, sid, ssid, S) to A∗.
12. If C is corrupt: set budget[sid] := budget[sid] + r.
13. Wait for (IOEval, sid, ssid, y) from C or (Abort, sid, ssid) from A∗.
14. If honest C sends (IOEval, sid, ssid, y): send (IOEval, sid, ssid, f(x, y)) to C.
15. If corrupt C sends (IOEval, sid, ssid, y):

• Set budget[sid] := budget[sid]− 1 and send (IOEval, sid, ssid, f(x, y)) to C.
16. If A∗ sends (Abort, sid, ssid):

• If S is corrupt, send (IOEval, sid,⊥) to C.

On command (Redeem, sid, ssid, y) from A∗:
17. If status[sid] is undefined: ignore the message.
18. Retrieve x := input[sid].
19. If budget[sid] = 0, send (IOEval, sid, ssid,⊥) to A∗.
20. Otherwise set budget[sid] := budget[sid]− 1 and send (IOEval, sid, ssid, f(x, y)) to A∗.

Figure 1: The functionality FiO2PC computing Cf with simulation rate r

7

learn the output of f . Rather, the functionality grants a ticket that entitles the client to one
evaluation of f , and this evaluation of f can be redeemed at any later point.

More generally, the functionality can grant r tickets for a single IOEval. Intuitively, think of
IOEval as granting some resources to the client, which it can use to evaluate f . But there may
be “cheap” inputs to f which require r times fewer resources than the worst case, in which case
one session of IOEval may provide enough resources for a corrupt client to learn r outputs of the
function.

3.2 Server Compromise and Offline Evaluation

Following the treatment of server compromise in aPAKE [GMR06, JKX18], our functionality sepa-
rates Byzantine server corruption and server compromise. Upon being compromised, the server
only leaks its long-term storage to the adversary but remains honest ; in other words, a Compromise

query does not allow the server to be controlled by the adversary. On the other hand, server cor-
ruption not only leaks the entire state of the server to the adversary, but additionally allows for
complete control of the server. We consider the static corruption model, but crucially, we allow the
adversary to adaptively compromise an honest server. This is reflected in our FiO2PC functionality:
the adversary can compromise the server via a Compromise message at any time, which marks the
status of the current session compromised, after which the adversary can perform offline evaluations.
However, in subsequent online evaluations, a compromised server is still treated as honest.

Furthermore, similar to the (strong) aPAKE functionality, we require that both Compromise

and OfflineEval messages be accounted for by the environment. In particular, this means that
the ideal adversary (simulator) cannot take certain actions without some corresponding real-world
event caused by the real adversary: the ideal adversary cannot send Compromise unless the real
adversary compromises the server, and it cannot send OfflineEval unless the real adversary performs
some “work” (in the form of random oracle or generic group queries) that corresponds to evaluating
f . The rationale is similar to why Byzantine corruptions are accounted for by the environment in
the UC framework: to prevent the simulator from corrupting all parties and making the simulation
trivial. Indeed, the Compromise and OfflineEval messages can be formally modeled as a special form
of corruption — see [Can01, Hes20] for a detailed description.

3.3 Preventing Precomputation

We require that OfflineEval commands sent by a corrupt client are accounted for by the environment,
and can only be issued by the environment if the real-world adversary does some observable “work”.
Crucially, that “work” must happen after server compromise. This requirement means that the
client cannot “precompute” work before compromise that permits the simulator to send many
OfflineEval commands instantly upon server compromise.

This feature is analogous to the definition of strong aPAKE. In non-strong aPAKE, an ad-
versary can learn all parties’ stored passwords instantly upon compromise of the password file. In
strong aPAKE, an adversary can only make password guesses after compromise, and these password
guesses must be accounted for by the environment — i.e. they must correspond to observable work
performed after compromise by the adversary. In this sense, our FiO2PC functionality is analogous
to the strong flavor of aPAKE.

8

4 io2PC for Random-Oracle-Model Obfuscation

In this section, we describe a compiler for realizing io2PC from functions that have VBB obfuscation
in the random oracle model. Let us first recall the JKX compiler [JKX18] from aPAKE to saPAKE.
The compiler works by replacing the input password pw to the starting aPAKE protocol with the
evaluation OPRF(pw). This compiler serves as a source of intuition for an intermediate compiler
for io2PC which takes a VBB obfuscation in the random oracle model and replaces the input x to
each random oracle evaluation with OPRF(x).

Recall the point function obfuscation Ox = H(x) for random oracle H, with evaluation H(·)
?
=

Ox [LPS04]. Applying this compiler, we arrive at the io2PC protocol in which the server stores

O′
x = H(OPRF(x)) and interactively evaluates H(OPRF(·))

?
= O′

x by sending O′
x to the client then

acting as the server in an OPRF protocol. This intuitive compiler is not far from the truth, as
for random oracle H, H(OPRF(·)) is itself an OPRF, so we simplify slightly by instead replacing
all random oracle invocations directly with OPRF invocations. Indeed, with a small modification
replacing the OPRF in this compiler with a verifiable OPRF (VOPRF), we achieve the compiler
described in Section 4.2.

4.1 Oblivious PRF

An Oblivious Pseudorandom Function (OPRF) [FIPR05] for a Pseudorandom Function (PRF)
family F(·) is, generally, a two-party protocol for realizing the functionality where a server who
holds a key k and a client who holds an input x evaluate Fk(x) with output (ǫ, Fk(x)). Namely, the
client learns Fk(x) and the server learning nothing about the input x or the output Fk(x). OPRFs
have found many applications and have been extended to support verification of client and server
inputs [JKK14, JL09].

Our functionality FVOPRF, in Figure 2, for a verifiable OPRF (VOPRF) with active compromise
closely follows the functionality of Jarecki, Krawczyk, and Xu [JKX18].

The main difference between the functionality in Figure 2 and the comparable OPRF function-
ality [JKX18] is the addition of the Abort query. FVOPRF is verifiable in the sense that it allows for
a client to abort in the face of a corrupt server who may, for example, commit to a PRF key through
a public key and use a different PRF key during evaluation. Instead of presenting multiple tables
indexed by a function parameter as in previous functionalities [JKK14], FVOPRF uses a single key
provided during initialization and then exposes Abort. This verifiability also models the client’s
ability to verify consistent key usage between various OPRF interactions with a given server. The
client will be assured that all interactions compute the same underlying PRF or else the client can
abort.

Our VOPRF functionality Figure 2 differs from others in the literature (e.g., [ADDS21]). Our
definition requires that the outputs of the VOPRF are pseudorandom even to the server. This
requirement is related to the fact that io2PC (like asymmetric PAKE) requires programmability of
outputs from the simulator, even for the server’s non-interactive evaluations of the OPRF. [Hes20]
In particular, this means that to provide input obfuscation to non-trivial functions we must rely
on some assumption with stronger programmability than afforded by a CRS. As such, we cannot
achieve this functionality outside a strongly programmable model such as the random oracle model
or the generic group model.

The requirement that the outputs of the VOPRF are pseudorandom even to the server is
necessary to realize the intuition that a corrupt client can only gain oracle access to the underlying
PRF on server compromise. We like to think of such a (V)OPRF as a “personalized” Random
Oracle which the server can let another party evaluate, privately, on some input. When an honest

9

Parameters:
• client C, server S, and ideal adversary A∗

Storage:
• two maps, status and F

On command (VOPRFInit, sid) from S:
1. If status[sid] is defined: ignore the message.
2. Set status[sid] := active.
3. Send (VOPRFInit, sid, S) to A∗.

On command (Compromise, sid) from A∗:
4. Set status[sid] := compromised.

On command (OfflineEval, sid, x) from party P ∈ {A∗, S}:
5. If status[sid] 6= compromised or S is not corrupted, and P 6= S: ignore the message.
6. If status[sid] is undefined: send (VOPRFEval, sid,⊥) to P.
7. Otherwise, if F [x] is undefined, set F [x]← H, and send (OfflineEval, sid, F [x]) to P.

On command (VOPRFEval, sid, ssid, x) from C:
8. If status[sid] is undefined: send (VOPRFEval, sid,⊥) to C.
9. Send (VOPRFEval, sid, ssid,C) to A∗, (VOPRFEval, sid, ssid) to S, and wait for

(SComplete, sid, ssid) from S.
10. Send (SComplete, sid, ssid, S) to A∗ and wait for either (Deliver, sid, ssid) or

(Abort, sid, ssid) from A∗.
11. If A∗ sends (Deliver, sid, ssid):

• If F [x] is undefined, set F [x]← H and send (VOPRFEval, sid, F [x]) to C.
12. If A∗ instead sends (Abort, sid, ssid):

• If S is corrupt, send (VOPRFEval, sid,⊥) to C.

Figure 2: The functionality FVOPRF for evaluating random function F with range H

10

server is compromised by a corrupt client, the client gains the ability to evaluate this personal
random function at will; however, since the outputs of the function are pseudorandom to the server
they are also pseudorandom to an adversary who compromises the server’s storage. To meet the
idea of oracle access, these evaluations must also be observable. With these two properties, we can
see that the exposed oracle is analogous to a personalized random oracle.

Jarecki, Kiayias, and Krawczyk [JKK14] provide an efficient UC instantiation of a VOPRF in
the random oracle model under a one-more Gap DH assumption. We recall that protocol — called
2HashDH-NIZK therein for its eponymous entry and exit hashes — in Figure 3.

Similar to previous results for the 2HashDH-NIZK protocol [JKK14] in Figure 3 and its non-
verifiable derivative [JKX18], we know that 2HashDH-NIZK satisfies our requirements for adaptive
compromise, and relative to S’s public key, 2HashDH-NIZK satisfies our verifiability requirements.
The inclusion of a NIZK does not significantly modify the proof for adaptive compromise, and
we may consider the existence of an authenticated channel, mediated through the authenticated
channel functionality FAUTH to provide the server’s public key to the client. In situations where the
public key of the server is known a priori to the client, we may drop the need for an authenticated
channel; however, in the cases we consider for io2PC, the existence of an authenticated channel is
already assumed.

Parameters:
Generator g of cyclic group of order q
Random Oracles H1(·), H2(·), H3(·)
Client C and Server S
KeyGen:

S samples k ← Zq.
S stores k and returns public key gk.

Compromise:

S returns stored key k.
Offline Evaluation:

On input x, S returns H2(g
k, x,H1(x)

k)

Online Evaluation:
C, on input x, samples r ← Zp and
sends (H1(x))

r to S.
S, on message b from C sends h = gk,

bk, and NIZKH3(b, bk, g, gk) to C.
C, on message h, c, π from S, verifies
π is a valid proof then returns

H2(h, x, c
1/r).

Figure 3: VOPRF Protocol 2HashDH-NIZK

4.2 io2PC Protocol

We present our OPRF-based io2PC protocol in Figure 4. In the initialization phase, the server
computes an obfuscation of its input x, with the random oracle queries made via evaluating the
random function in FVOPRF offline. Crucially, after computing the obfuscated input Ox, the server
only stores Ox and erases the original input x. In online evaluation, the server sends its storage Ox

to the client, who then runs the obfuscation evaluation procedure to compute the function result
with the random oracle queries made via evaluating the random function in FVOPRF online (so the
client runs evaluation with FVOPRF c times).

Our protocol bears a resemblance to the OPAQUE strong aPAKE protocol [JKX18], where
the client evaluates an OPRF on its password and obtains a point obfuscation of the password
(called the “randomized password” in [JKX18]), receives, from the server, an encryption of the
client’s authenticated key exchange (AKE) credentials under the randomized password, decrypts
and learns its credentials, and then runs an AKE protocol with the server. However, since our goal

11

here is not to establish a key, our protocol is significantly simpler than OPAQUE: the server only
needs to send the obfuscation (the randomized password) to the client, and no AKE protocol is
run between the client and the server.

4.2.1 Using Verifiable OPRF

Our io2PC protocol requires a verifiable OPRF, meaning that the client should be convinced that
the server uses a consistent OPRF key. The alert reader may notice that OPAQUE does not require
a verifiable OPRF. However, OPAQUE corresponds to a variant of io2PC for the special case of
point functions, and some situations arise in the special case of io2PC which are not present in that
special case.

First, point-function obfuscation (and hence OPAQUE) requires only a single call to the OPRF
/ random oracle. In the general case, if multiple random oracle queries are required to evaluate an
obfuscation, and these oracle queries are replaced by OPRF calls, what should happen if a corrupt
server changes its OPRF key between those calls? This is not just a hypothetical question — in the
obfuscation presented in Section 6.2, the evaluation algorithm should make some “dummy queries”
to its oracle so that the total number of queries does not depend on the input. But the choice
of which queries are “dummies” depends on the input. A corrupt server could therefore observe
whether changing its OPRF key in an instance leads to any change in the client’s output, thereby
deducing whether a query is a dummy or not.

Second, point function obfuscation is special because the effect of substituting the “wrong”
OPRF key can be easily simulated. Using the wrong OPRF key for a point function makes the
point function output false with overwhelming probability, and this can be simulated by the corrupt
server simply choosing a random target point for the point function. But in general, it is not
immediate that selectively changing the OPRF key is equivalent to choosing a different obfuscated
input.

Theorem 5. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with simulation rate r, in
the random oracle model. Then the io2PC protocol (Figure 4) realizes the FiO2PC functionality
computing Cf with simulation rate r (Figure 1) in the FVOPRF-hybrid world.

Proof. Consider any polynomial-time environment Z. As standard, assume that the adversary A
is dummy and merely passes messages between Z and protocol parties. Throughout the proof, we
simplify FiO2PC to F . We analyze the cases that S is corrupt and C is corrupt separately.

S is corrupt. In this case, we write S∗ for the server to stress the fact that it is corrupt. The
simulator Sim behaves as follows:

1. On (VOPRFInit, sid) from S∗ aimed at FVOPRF, Sim initializes a list H := [] and sends
(VOPRFInit, sid, S∗) to A. Below we assume that there has been an VOPRFInit message for
sid (otherwise Sim simply ignores all messages as there is nothing to simulate).

2. On (OfflineEval, sid, x) from S∗ aimed at FVOPRF, Sim appends x to the end of H and sends
(OfflineEval, sid, F (x)) (where F (x)← H if undefined) to S∗.

3. On (IOEval, sid, ssid,C) from F , and (sid, ssid,Ox) from S∗ aimed at C, Sim sends
(VOPRFEval, sid, ssid,C) to A and waits for (SComplete, sid, ssid) from S∗.

4. On (SComplete, sid, ssid) from S∗, Sim sends (SComplete, sid, ssid, S∗) to A∗ and waits for
(Deliver, sid, ssid) from A∗.

12

Parameters:
• Obfuscation (Obf,ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈ {0, 1}∗}, in the

random oracle model.
• Client C and server S.

On command (Init, sid, x) for S:
1. S: Send (VOPRFInit, sid) to FVOPRF

2. S: Run Ox ← Obf?(x), where each time Obf queries its oracle at q:
• Send (OfflineEval, sid, ssid, q) to FVOPRF

• Receive response (OfflineEval, sid, ssid, r)
• Give r to Obf as the response to its oracle query

3. S: Store Ox.

On command (Compromise, sid) from A∗:
4. A∗ must also send (Compromise, sid) to FVOPRF

5. A∗ learns Ox.

On command (IOEval, sid, ssid) for S:
6. S: Send (sid, ssid,Ox) to C.
7. Both parties set i := 0.
8. C: Await command (IOEval, sid, ssid, y).
9. C: Run z := ObfEval?(Ox, y), where each time ObfEval queries its oracle at q:

• C: Send (VOPRFEval, sid, ssid‖i, q) to FVOPRF

• S: Await (VOPRFEval, sid, ssid‖i) from FVOPRF

• Both: set i := i+ 1
• S: If i > c: abort. Otherwise, send (SComplete, sid, ssid‖i) to FVOPRF

• C: Await response (VOPRFEval, sid, ssid‖i, r) from FVOPRF

• C: Give r to Obf as the response to its oracle query
10. C: Output (IOEval, sid, ssid, z)

Figure 4: The io2PC protocol for computing function f , based on a VBB obfuscation in the random
oracle model.

13

5. On (Deliver, sid, ssid) from A, Sim sends another (VOPRFEval, sid, ssid,C) message to A and
another (VOPRFEval, sid, ssid) message to S∗. Sim repeats this loop of sending VOPRFEval

and receiving Deliver, until it receives a total number of c Deliver messages from A. If Sim
receives an (Abort, sid, ssid) from A during this cycle, it sends (Abort, sid, ssid) to F .

6. Sim computes x := Extract(Ox,H) and sends (IOEval, sid, ssid, x) to F (as from a corrupt
server).

We now argue that Z’s distinguishing advantage between the ideal world and the real world is
negligible. Let y be C’s input. In the real world, on (IOEval, sid, ssid, y) from Z and (sid, ssid,Ox)
from S∗, C runs ObfEvalF (·)(Ox, y). This consists of evaluating F (·) with FVOPRF c times; each
time A receives an (VOPRFEval, sid, ssid,C) message and S∗ receives an (VOPRFEval, sid, ssid)
message, and the evaluation proceeds only after A sends a (Deliver, sid, ssid) message. (If A sends
an (Abort, sid, ssid) message instead, C aborts immediately.) By the description of Sim, this is
exactly A’s view in the ideal world. 2

It remains to analyze C’s output. Here we assume that A never sends (Abort, sid, ssid)
aimed at FVOPRF (otherwise C outputs (IOEval, sid, ssid,⊥) in both worlds, as shown above).
Observe that Sim answers OfflineEval queries via lazy sampling, so Z’s view in the ideal
world when sending (OfflineEval, sid, x) messages aimed FVOPRF, is identical to its view when
querying (sid, x) to a random oracle functionality with range H. Therefore, in the ideal
world, C outputs (IOEval, sid, ssid, f(x, y)). On the other hand, in the real world, C outputs
(IOEval, sid, ssid,ObfEvalF (·)(Ox, y)).

We now construct a reduction RExtract that, given Z, attacks the extractability property of
(Obf,ObfEval). RExtract acts as the combination of Sim, FiO2PC, and C by running their codes, and
interacts with the adversarial parties Z, A, and S∗ (where A and S∗ are both controlled by Z), but
with the following exceptions: in step 2 of Sim, RExtract queries F (x) := H(x) if undefined, rather
than sampling F (x) ← H; in step 3 of Sim, RExtract outputs (y,Ox). Clearly, RExtract’s advantage
in breaking the extractability property of (Obf,ObfEval), is equal to Z’s distinguishing advantage
between the two worlds. Therefore, Z’s distinguishing advantage is negligible, completing the proof.

C is corrupt. In this case, we write C∗ for the client to stress the fact that it is corrupt. The
simulator Sim behaves as follows:

1. On (Init, sid, S) from F , Sim runs SimObf1(), the first phase of the VBB simulator for
(Obf,ObfEval). Let Ox be SimObf1’s output. Below we assume that there has been such
an Init message (otherwise Sim simply ignores all messages as there is nothing to simulate).

2. On (Compromise, sid) from A aimed at S and FVOPRF, Sim marks sid compromised, sends
(Compromise, sid) to F , and sends (sid,Ox) to A.

3

3. On (OfflineEval, sid, p) from A aimed at FVOPRF, if sid is marked compromised, Sim runs
SimObf2() with the adversary querying H(p). (Note that while interacting with Sim2, Sim
needs to play the role of both the adversary in Theorem 1 and the oracle f(x, ·).) When
SimObf2 makes a query y to its oracle f(x, ·), Sim sends (OfflineEval, sid, y) to F , and on

2This is assuming w.l.o.g. that C must evaluate F sequentially — e.g., it never starts the second evaluation before
receiving the result of the first evaluation.

3Following e.g., [JKX18], we assume that A always sends a Compromise message to S and FVOPRF simultaneously.
These two actions correspond to a single action in the real protocol, i.e. compromising the server.

14

F ’s response (OfflineEval, sid, z), Sim sends z to SimObf2 as the response to its query. Fi-
nally, when SimObf2 outputs q as the response to the adversary’s H(p) query, Sim sends
(OfflineEval, sid, q) to A.

4. On (IOEval, sid, ssid, S) from F , Sim sends (sid, ssid,Ox) to C∗.

5. On (VOPRFEval, sid, ssid, p) from C∗ aimed at FVOPRF and (VOPRFEval, sid, ssid) from C∗,
if there have been more than c such messages, Sim does not do anything.
Otherwise, Sim runs SimObf2() with the adversary querying H(p). When SimObf2 makes a
query y to its function oracle f(x, ·):

• If this is the first such query since the last (IOEval, sid, ssid, S) from F , Sim sends
(IOEval, sid, ssid, y) to F .

• Otherwise, Sim sends (Redeem, sid, ssid, y) to F .

On F ’s response (IOEval, sid, ssid, z), Sim sends z to SimObf2 as the response to its query.
Finally, when both of the followings happen: (1) SimObf2 outputs q as the response to the
adversary’s H(p) query, and (2) A sends (Deliver, sid, ssid) aimed at FVOPRF, Sim sends
(VOPRFEval, sid, ssid, q) to C∗.

We now argue that Z’s distinguishing advantage between the ideal world and the real world is
negligible. In the real world, if the number of (VOPRFEval, sid, ssid) messages from C∗ exceeds c,
they do not have any effect; (Abort, sid, ssid) messages from A∗ aimed at FVOPRF also do not have
any effect (because S is honest). By the description of Sim, this is also the case in the ideal world.
Below we assume that C∗ sends at most c (VOPRFEval, sid, ssid) messages, and A∗ never sends
(Abort, sid, ssid).

We construct a reduction RVBB that, given Z, distinguishes between the two distributions in
the definition of the virtual black box property of (Obf,ObfEval) (Theorem 1). RVBB first receives
Ox. Then it acts as the combination of Sim (only steps 2-5), FiO2PC, and S by running their
codes, and interacts with Z, A, and C∗, but with the following exceptions: in steps 3 and 5, RVBB

queries H(p). Finally, RVBB copies Z’s output. Note that if RVBB is in the ideal interaction, the
adversary’s H queries are simulated by SimObf2, so Z’s view, in this case, is identical to its view
in the ideal world; whereas if RVBB is in the real interaction, Z’s view is identical to its view in
the real world. Therefore, Z’s distinguishing advantage is equal to RVBB’s advantage, which is
negligible.

5 io2PC for Generic-Group Obfuscations

5.1 Generic Groups

Generic groups were introduced by Shoup [Sho97] as a way to model an idealized cyclic group
where the only allowable operations are the standard group operations. Consider an encoding
σ : Zp → {0, 1}

∗ of group elements (without loss of generality, the cyclic group of order p) into
strings. The group operation (on encoded elements) is defined by the function multσ(σ(x), σ(y)) =
σ(x + y mod p). In Shoup’s generic group model, parties have access to an oracle for multσ for
a uniformly chosen encoding σ, along with an encoding of the group generator. Under such a
random encoding, the encoding of a group element leaks nothing about that item’s “identity”
(i.e. its discrete log).

Maurer [Mau05] proposed a slightly different model of generic groups, where the encoding of
elements is not bijective; i.e. each group element may have many valid encodings. In this model, a

15

dlog := empty map
g∗ ← {0, 1}2κ

dlog[g∗] := 1

ZeroTest(g1):

if dlog[g1] undefined: dlog[g1]← Zp

return dlog[g1]
?
= 0

Mult(g1, g2):

if dlog[g1] undefined: dlog[g1]← Zp

if dlog[g2] undefined: dlog[g2]← Zp

g3 ← {0, 1}
2κ

dlog[g3] := dlog[g1] + dlog[g2] mod p
return g3

gen():

return g∗

Figure 5: A generic group oracles for group of order p, with handles of length 2κ

stateful oracle maintains a mapping D : {0, 1}∗ → Zp, where an abstract handle h represents the
group element D[h] ∈ Zp. A party can query its oracle to multiply handles h1, h2 — to do this, the
oracle chooses a new handle h3 and records D[h3] = D[h1] +D[h2] mod p.

In Shoup’s generic group model, every group element x has a unique encoding σ(x), which
means that it is trivial to test equality of group elements. In Maurer’s model, the oracle must

provide an equality-test function — i.e. given handles h1, h2 the oracle returns D[h1]
?
= D[h2].

The two generic group models are equivalent in terms of algorithmic power (e.g., the discrete
log problem is equally difficult in both models) [JS08]. However, the distinction is important when
incorporating generic groups into a larger cryptographic system. For example, in the Shoup model
one may compute a hash of a group element’s encoding, so that anyone who can compute the same
group element can also compute the same hash. In the Maurer model, two parties may compute two
different handles for the “same” group element, so one must be more careful about the distinction
between handles and the group elements they represent.

In this work we use a generic group model more similar to Maurer’s model. The details are given
in Figure 5. Group elements may be represented by many handles, and the oracle must therefore
provide an explicit equality test feature. Without loss of generality, we provide a zero-test feature
as it is simpler.

In Maurer’s model, the handles can be sequential numbers — i.e. the ith oracle query is given
handle “i”. This suffices to reason about non-interactive algorithms. In our setting, the generic
group oracle is a common resource shared among many parties (similar to a random oracle), and in
that case sequence numbers would reveal how many group operations other parties have performed.
Our generic group oracle therefore chooses new handles uniformly at random.

Conventions. Although technically a generic group is modeled as an oracle, it becomes too
cumbersome to notate all group operations as oracle calls. Instead, we use standard (multiplicative)
group notation to denote operations in the group, as is standard.

A group requires both a group operation and inverses. Since we always consider groups of
known order p, inverses can be computed by raising to the p − 1 power, which can be done with
the group-multiplication oracle, so we do not provide a separate explicit group-inverse oracle.

Our generic group formulation assumes that every handle represents some group element. Any
handle not specifically generated by the oracle corresponds to a uniformly chosen group element.
Hence, parties can generate [handles of] random group elements at any time.

16

Standard Concepts. The generic group oracle uses a map dlog to keep track of the discrete log
of every handle. The discrete log of a group element is of course an element of Zp. A common
proof technique in the generic group model is to keep track of discrete logs symbolically.

We use the mathbb font to denote formal variables like K,R. Then we extend the contents
of dlog to contain not only scalars from Zp but rational functions in these formal variables —
i.e. dlog[·] ∈ Zp(K,R, . . .). When multiplying group elements, the new handle’s dlog value is still
recorded as dlog[g3] = dlog[g1]+dlog[g2], but now addition denotes (symbolic) addition of functions
over the formal variables.

In our security proofs, we write an expression like “gaK+b” to indicate that the simulator gen-
erates a new group handle whose dlog value is the symbolic expression aK + b. Our convention is
that lowercase letters like a, b will denote scalars from Zp.

In a standard generic-group security proof, a random group element like gr will be replaced by
a symbolic one gR. After an adversary performs group operations, other group elements may have
dlog-values that are expressions including R. A zero-test on such a group element is performed
by checking whether the dlog of that group element is identically (symbolically) zero. A standard
argument shows that symbolic zero-tests are indistinguishable from real/concrete zero-test, pro-
vided that all symbolic dlog expressions have bounded degree, and the dlog formal variables take
the place of uniformly chosen (concrete) discrete log values.

5.2 Personalized Generic Group

In the previous sections, we saw that we can convert a VBB obfuscation into an io2PC protocol
by replacing a random oracle with an oblivious PRF. We like to think of an OPRF as a kind of
“personalized” random oracle. It is a random function, to which only the server has the key; yet
the server can allow the client to evaluate the function on a private input. Even if the server’s key
to the OPRF is stolen, the adversary’s access to the random function is observable/programmable
to the simulator.

In this section we extend this analogy from random oracles to generic groups. A personalized
generic group (PGG) is a group to which only the server has the key; yet the server can allow
the client to perform the group operation on private inputs. If the server’s key to the group is
stolen, the adversary’s access to the group is analogous to a true generic group.

We formally define a personalized generic group as an ideal functionality Fpgg in Figure 6. The
functionality maintains a map DLog associating discrete logs with handles, similar to a standard
generic group. The server can perform group operations at any time by sending appropriate com-
mands (OfflineMult,OfflineZeroTest) to the functionality. The client can perform group operations,
but only interactively (OnlineMult,OnlineZeroTest) and only with approval from the server. These
group operations are oblivious — the server does not learn which group elements the client is op-
erating on. Only after designating the session as compromised can a corrupt client also gain the
ability to perform the group operations unilaterally.

We point out some other notable aspects of the definition: There are a few things that a client
can do non-interactively, i.e. without the server’s assistance and approval. A client can freely
“clone” a handle, resulting in another handle with the same DLog value. In our eventual PGG
protocol, this is indeed possible, but does not seem to give obvious advantage to the client. The
client can also generate a handle representing a random group element since by default, all handles
correspond to uniform group elements.

A corrupt server can learn all discrete logs of all handles. This makes the simulation considerably
easier, but does not seem to represent any issues with our usage of the functionality. Note that if
the server is honest but a corrupt client compromises the session, the client cannot learn discrete

17

logs. This helps reflect the fact that the corrupt client can obtain at most oracle access to a generic
group upon compromising the session. It is likely that our PGG protocol could be proven secure
without letting the simulator for a corrupt server learn all discrete logs, but at the cost of increased
proof complexity.

The OnlineMult and OfflineMult commands are not analogous. OfflineMult is more powerful than
OnlineMult, since it allows the caller (either the server or a client after the session is compromised) to
perform arbitrary linear combinations of group elements, not just a single group operation between
two elements. We could define the PGG ideal functionality so that OnlineMult is more powerful
than a single group operation, and our protocol could achieve this feature in a natural way. We
have chosen to model only the minimal functionality of OnlineMult.

The simulator for a Fpgg protocol should only call OfflineMult at most once for each multipli-
cation made (after compromise) in the common group by the corrupt client; and it should call
OfflineZeroTest at most once for each zero-test made in the common group by the corrupt client.
i.e. an adversary must expend new effort for each OfflineMult and OfflineZeroTest, and further-
more that effort must be expended after compromise. However, recall that an OfflineMult is more
powerful than a single multiplication. A corrupt client could perform a single multiplication in
the common group that is as powerful as a single OfflineMult (which performs a more powerful
linear combination of group elements) in the personalized group.4 For this reason, it is much more
important to measure an adversary’s effort in terms of zero-tests and not group mul-
tiplications, since the simulator does not precisely preserve the number of group multiplications
between the common group and personalized group. Only the zero-tests are preserved exactly.

5.3 Protocol for Personalized Generic Groups

In this section we describe our protocol for a personalized generic group. The protocol is in the ideal
permutation model and uses a generic group itself. This leads to a high potential for confusion.
We differentiate between the common group and the personalized group:

The common group is the generic group that is used by the protocol. Both parties have unre-
stricted oracle access to the operations of this group. Group element handles are associated with
their discrete log via a map that we call dlog. In the security proof, the simulator finds it useful
to play the role of this generic group and maintain the dlog map differently (e.g., with symbolic
expressions rather than scalars from Zp).

The personalized group is one that is realized by the protocol. In the ideal functionality for
this personalized group, handles are associated with their discrete log via a map that we call DLog.
The goal of this personalized group is to carefully restrict the client’s access to the operations that
involve DLog, via an interactive protocol.

Main Idea. In our protocol, a “key” for a personalized generic group consists of a key k to a
strong PRP F , with forward and inverse evaluation denoted F+ and F− respectively, and a random
generator ĝ (of the common group). An element in the personalized group with discrete log x is
represented by a handle of the form (Fk(m), ĝxgm) for m ∈ Z providing a multiplicative blind gm.
This kind of encoding can be motivated as follows:

A client who doesn’t know the “key” to the personalized group can only create handles of
random elements, because the action of F±

k is unpredictable.
After compromising the server and learning the “key” (k, ĝ), an adversary can invert the PRP

to obtain m, then remove the gm blinding term to obtain simply ĝx. In other words, after compro-

4This is indeed possible in our protocol but would be mitigated if the common-group oracle had a group-
multiplication feature exactly as powerful as OfflineMult of Fpgg.

18

mising the server, the handle becomes equivalent to knowing ĝx. The adversary can now perform
group operations on these unblinded values of the form ĝx, without the server’s help. But since we
are in a generic group, the simulator can continue to observe the adversary’s group operations on
these values.

With the help of the server, it is possible for the client to perform group operations on two of
these handles:

1. Consider two handles of the form (c1, g1) and (c2, g2), where c1 = Fk(m1), c2 = Fk(m2) and
g1 = ĝx1gm1 , g2 = ĝx2gm2 . The client can perform g3 = g1g2 = ĝx1+x2gm1+m2 . This is half of
a valid handle for the element with discrete log x1+x2. If the client can obtain an encryption
of Fk(m1 +m2), they will be able to construct a complete and correct handle.

2. The client and server run a 2PC protocol, where the client provides c1, c2, and the server
provides k, and the client learns Fk(m1 + m2). The server learns nothing. Note that this
2PC protocol involves no group operations in the common generic group – it merely involves
arithmetic on exponents and PRP evaluation.

Similarly, the client can perform a zero-test with the server’s help:

1. Given a handle (c1, g1) the client wants to know whether these have the form c1 = Fk(m1) and
g1 = ĝ0gm1 = gm1 . In other words, the client should learn whether c1 encrypts the discrete
log of g1.

2. Our approach again involves enlisting the help of a 2PC protocol. The client provides c1 and
the server provides k, so m1 can be obtained inside the 2PC functionality. The functionality
provides two basic functions: First, it chooses a random s and lets the client learn gs·m1 using
the value of m1 that it computed. Next, it allows the client to raise any group element of its
choice to the s power. Assuming the client chooses to compute gs1, the result equals gs·m1 if
and only if g1 = gm1 . We discuss exactly how this is done below.

Details and fine print. The full details of our protocol are given in Figure 8, where the separate
2PC functionality invoked by the parties is described in Figure 7. This “helper functionality” is
a typical reactive functionality that can be securely realized by any standard 2PC protocol. The
preceding outline captures the main intuition of our protocol, but there are several necessary
modifications required for technical reasons.

First, the handles are “wrapped” in an ideal permutation Π± — i.e. a valid handle is h of the
form Π(c1, g1) where c1, g1 are as described above, and Π is an ideal permutation. By enlisting the
ideal permutation, the simulator can observe every time a new handle is generated or an existing
handle is “unpacked” into its two components.

In our outline, the parties run an oblivious protocol that allows a client, who holds handles
Π(Fk(m1), ĝ

x1gm1) and Π(Fk(m2), ĝ
x2gm2), to obtain a new handle Π(Fk(m1+m2), ĝ

x1+x2gm1+m2).
However, this new handle would leak its “history” to anyone who holds k, which would be undesir-
able. The new handle should instead have a fresh mask m3, rather than a mask m1 +m2 derived
from its parent handles. When the parties run a 2PC to let the client learn its new ciphertext, the
client should instead learn Fk(m3) for a fresh m3. Then the client needs to learn a correction term
∆ = gm3−m1−m2 , so it can complete the handle as Π

(
Fk(m3), (g1 · g2 ·∆) = ĝx1+x2gm3

)
. Since the

2PC functionality itself cannot generate group elements (this would require contacting the generic
group oracle for the common group), it delegates this task to the server. i.e. it gives m3−m1−m2

to the server, who generates and sends ∆ = gm3−m1−m2 to the client.

19

Parameters:
• group order p
• handle length ℓ
• client C and server S

Storage:
• map DLog; our convention is uninitialized entries of DLog are sampled uniformly from Zp

before being used.
• map status

On input (Init, sid, h ∈ {0, 1}ℓ) from server S:
1. If status[sid] already defined: abort.
2. Set status[sid] := active.
3. Send (Init, sid, S, h) to C.
4. Set DLog[h] := 1.

On (Compromise, sid) from A∗:
5. Set status[sid] := compromised.

On input (OnlineMult, sid, ssid, h1, h2) from C:
6. Give (OnlineMult, sid, ssid) to S and await response (Deliver, sid, ssid)
7. Sample h3 ← {0, 1}

ℓ.
8. Set DLog[h3] := DLog[h1] + DLog[h2] mod p.
9. Give (OnlineMult, sid, ssid, h3) to P .

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) from party P ∈ {S,A∗}:
10. If status[sid] 6= compromised and P = A∗: do nothing.
11. Sample h′ ← {0, 1}ℓ.
12. Set DLog[h′] := u0 + u1DLog[h1] + · · ·+ unDLog[hn] mod p.
13. Give (OfflineMult, sid, ssid, h′) to P .

On input (cmd ∈ {OnlineZeroTest,OfflineZeroTest}, sid, ssid, h) from party P :
14. If cmd = OfflineZeroTest:

If P /∈ {A∗, S}, or P = A∗ and status[sid] 6= compromised: do nothing.
15. If cmd = OnlineZeroTest:

If P = C: Give (OnlineZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid).

16. Give (cmd, sid, ssid, [DLog[h]
?
= 0]) to P .

On input (Identify, h) from corrupt S:
17. Give DLog[h] to S

On input (Register, v) from corrupt S:
18. h← {0, 1}ℓ

19. DLog[h] := v
20. Give h to C

On input (CloneHandle, h) from corrupt C:
21. h′ ← {0, 1}ℓ

22. DLog[h′] := DLog[h]
23. Give h′ to C

Figure 6: The personalized generic group functionality Fpgg.

20

However, the server may cheat and send a different group element than the functionality in-
tended. To prevent this, the functionality authenticates the group element with a one-time MAC.
The functionality gives random MAC key α, β to the client, and gives s and its one-time MAC
µ = αs+ β to the server. Now the server can send both gs and gµ to the client, who can check the

MAC in the exponent via (gs)α · gβ
?
= (gµ).

There are two conceptual steps in the zero-test protocol which are more complicated than our
high-level outline. First, the 2PC helper functionality wants the client to learn the group element
gm1s. It delegates this to the server, using the same method above with one-time MACs, so that
the client can be sure that it receives the intended group element. Actually, we must blind the
exponent m1s from the server (since it also learns s below, and it should not learn m1 which is
tied to this particular handle) — so the functionality gives a random z to the client, and asks the
server to deliver gm1s+z. The client can unblind by multiplying with g−z.

Second, the 2PC functionality gives s to the server so that the server can take part in a blind
exponentiation protocol (raising a group element of the client’s choice to the s power). It is
important to ensure that the server raises the client’s element to the correct power, since otherwise
the server could easily cause a zero-test to fail even when it should correctly succeed. For this, we
(1) have the functionality deliver the value gs to the client (via delegating to the server), and (2)
have the server run a simple verifiable exponentiation protocol, where the client can be convinced
that its group element was indeed raised to the s power.

Security.

Theorem 6. The protocol in Figure 8 UC-securely realizes Fpgg (Figure 6) in the generic group
and ideal-permutation model, when F is a strong PRP.

We provide a sketch of the main ideas here. The case of a corrupt server is considerably easier.
It is easy to see that the server’s view during OnlineMult, OnlineZeroTest gives no information
about the client’s choice of handles, since all the communication is mediated through the helper
functionality Fhelper. The Fpgg functionality allows a corrupt server to both learn the discrete log
for any handle, and also directly register a handle with a chosen discrete log. The simulator can use
these features to intercept all the adversary’s Π± oracle queries and relay discrete log information
between the functionality and the actual group elements used for h = Π(·, g1).

The case of a corrupt client is considerably more complex, but the main idea is as follows. In

the real world, handles have the form h = Π(c, ĝDLog[h]gF
−1
k

(c)). We use the technique of symbolic
discrete logs (described in Section 5.1) to model the adversary’s ignorance of certain values. The
adversary does not know the discrete log of ĝ, so we represent it by a formal variable K. Before the
session is compromised, the adversary does not know F−1

k (c) for any c, so we represent this value
by formal variable Mc. The adversary initially does not know anything about the DLog[h] values,
so we represent them by formal variables Dh.

The adversary can only gain information about group elements (in the common group) through
a zero-test. When the adversary makes such a zero-test, the simulator observes it and checks the
dlog value of that group element. This dlog is a symbolic expression over the formal variables.
Formal variables Mc and K represent values that are random from the adversary’s point a view,
so if the dlog expression is not symbolically equal to zero as a function of those variables, then the
zero test in the real world would succeed only with negligible probability. Hence, the simulator can
simply claim that the zero-test fails. However, the dlog expression may contain Dh terms which
represent concrete DLog[h] values, and depending on the actual values in DLog[h] the dlog expression
may or may not be identically zero as a function of the other formal variables. In that case, the

21

Parameters:
• modulus p
• strong PRP F± : {0, 1}κ × Zp → Zp

• client C and server S

Storage: value k, initially sampled as k ← {0, 1}κ

On command (HelpInit, sid) from S:
1. Sample α, β, c, s← Zp

2. µ = αs+ β // one-time MAC of s under key (α, β)

3. Send (HelpInit, sid, α, β, c) to C and send (HelpInit, sid, s, µ, c, k) to S.

On command (HelpMult, sid, ssid, c1, c2) from C:
4. Send (HelpMult, sid, ssid) to S await response (Deliver, sid, ssid).
5. m1 := F−1

k (c1); m2 := F−1
k (c2).

6. α, β,m3 ← Zp.
7. c3 = Fk(m3).
8. s = m3 −m1 −m2 mod p.
9. µ = αs+ β mod p. // one-time MAC of s under key (α, β)

10. Give (HelpMult, sid, ssid, α, β, c3) to C and give (HelpMult, sid, ssid, s, µ) to S

On command (HelpZeroTest, sid, ssid, c) from C:
11. Send (HelpZeroTest, sid, ssid) to S and await response (Deliver, sid, ssid)
12. m := F−1

k (c).
13. α, β, γ, s, z ← Zp.
14. t := sm+ z
15. µ = αs+ βt+ γ mod p. // one-time MAC of (s, t) under key (α, β, γ)

16. Give (HelpZeroTest, sid, ssid, α, β, γ, z) to C and
give (HelpZeroTest, sid, ssid, s, t, µ) to S

Figure 7: Helper functionality Fhelper for our personalized generic group protocol.

22

Parameters:
• generic group 〈g〉 of prime order p, with handles of length 2κ
• strong PRP F±

• ideal permutation Π± : (Zp × {0, 1}
2κ)→ (Zp × {0, 1}

2κ)
• client C and server S

On input (Init, sid) for server S:
1. S: Send (HelpInit, sid) to Fhelper

2. C: Receive (HelpInit, sid, α, β, c) from Fhelper

3. S: Receive (HelpInit, sid, s, µ, c, k) from Fhelper

4. S: Store (ĝ := gs−m, k), where m := F−1
k (c).

5. S: Send (S = gs,M = gµ) to C.
6. C: If Sα · gβ 6= M : abort.
7. C: Output (Init, sid, h = Π(c, S))

On input (Compromise, sid) from A∗:
8. A∗ should learn (k, ĝ)

On input (OnlineMult, sid, ssid, h1, h2) for C:
9. C: (c1, g1) = Π−1(h1); (c2, g2) = Π−1(h2).

10. C: Send (HelpMult, sid, ssid, c1, c2) to Fhelper

11. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

12. C: Receive (HelpMult, sid, ssid, α, β, c3) from Fhelper

13. S: Receive (HelpMult, sid, ssid, s, µ) from Fhelper

14. S: Send (S = gs,M = gµ) to C.
15. C: If Sα · gβ 6= M : abort.
16. C: Output (OnlineMult, sid, ssid, h3 = Π(c3, g1 · g2 · S))

On input (OnlineZeroTest, sid, ssid, h1) for C:
17. C: (c1, g1) = Π−1(h1).
18. C: Send (HelpZeroTest, sid, ssid, c1) to Fhelper

19. S: Await (Deliver, sid, ssid) from environment and forward it to Fhelper

20. C: Receive (HelpZeroTest, sid, ssid, α, β, γ, z) from Fhelper

21. S: Receive (HelpZeroTest, sid, ssid, s, t, µ) from Fhelper

22. S: Send (S = gs, T = gt,M = gµ) to C.
23. C: If Sα · T β · gγ 6= M : abort.
24. C: a, b, c← Zp; A := ga1 · g

b; C := gc1; send (A,C) to S.
25. S: Send A′ = As and C ′ = Cs to C

26. C: If (A′)c 6= (C ′)a · Sbc: abort

27. C: Output (OnlineZeroTest, sid, ssid, [(C ′)1/c
?
= T · g−z])

On input (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) for S:
28. S: For each i ∈ [n] do: (ci, gi) = Π−1(hi); mi := F−1

k (ci)
29. S: m∗ ← Zp; c

∗ := Fk(m
∗); h∗ = Π(c∗, ĝu0

∏
i g

ui

i · g
m∗−

∑
i mi)

30. S: Output (OfflineMult, sid, ssid, h∗)

On input (OfflineZeroTest, sid, ssid, h1) for S:
31. S: (c1, g1) = Π−1(h1); m1 := F−1

k (c1)

32. S: Output (OfflineZeroTest, sid, ssid, [g1
?
= gm1])

Figure 8: Our personalized generic group protocol.

23

simulator must know whether the concrete DLog values make the dlog expression identically zero.
We carefully analyze what kinds of expressions are possible in dlog, and show that this situation
only happens when the simulator needs to know whether a single DLog[h] value is zero, and then
only after the adversary has done an OnlineZeroTest on h. In all other cases, the concrete values
in DLog have no bearing on whether a dlog expression is symbolically zero (at least before session
compromise).

When the adversary compromises the session, it learns the PRP key k. This makes the F−1
k (c)

values no longer uncertain from the adversary’s point of view. We model this by having the simula-
tor replace every formal variable Mc with a concrete value F−1

k (c), after compromise. This changes
what kinds of expressions the adversary is able to make appear in dlog. After the compromise,
there are more situations where the concrete values in DLog[h] have a bearing on whether a dlog

expression is symbolically zero. In those cases, the simulator can use OfflineMult,OfflineZeroTest to
learn the relevant information about those DLog values.

Throughout the simulation, act as an honest generic group oracle, maintaining the mapping
dlog as in Figure 5

At initialization time:
1. Await command (HelpInit, sid) from S to Fhelper

2. Sample s,m, µ← Zp; k ← {0, 1}
κ; and c = Fk(m)

3. Give (HelpInit, sid, s, µ, c, k) to S on behalf of Fhelper

4. If S sends (gs, gµ) to C, then send (Init, sid, h = Π(c, gs)) to Fpgg; otherwise abort.
5. Remember ĝ = gs−m and k

When A∗ makes a fresh query Π−1(h):
6. Send (Identify, h) to Fpgg and receive response (Identify, v)
7. m← Zp; c := Fk(m)
8. Return (c, ĝv · gm) as the result from Π−1

When A∗ makes a fresh query Π(c1, g1):
9. m1 = F−1

k (c1)
10. v = (dlog[g1]−m1)/dlog[ĝ]
11. Send (Register, v) to Fpgg and receive response (Register, h).
12. Return h as the response from Π

Upon receiving (OnlineMult, sid, ssid) message from Fpgg:
13. Choose random s, µ← Zp and give them to S as outputs from Fhelper.
14. If S sends (gs, gµ) to C, then send (Deliver, sid, ssid) to Fpgg; otherwise abort.

Upon receiving (OnlineZeroTest, sid, ssid) message from Fpgg:
15. Choose random s, t, µ← Zp and give them to S as outputs from Fhelper.
16. If S sends (gs, gt, gµ) to C, then continue; otherwise abort.
17. Choose A,C ← 〈g〉 and give them to S on behalf of C.
18. If S sends (As, Cs) to C, then send (Deliver, sid, ssid) to Fpgg; otherwise abort.

Figure 9: Simulator for a corrupt server

24

Throughout the simulation, act as an honest generic group oracle, maintaining the mapping
dlog as in Figure 5, except where indicated below.

Storage:
• k, ĝ;
• map dlog, whose values are rational functions in formal variables K, {Dh}h, {Mc}c, {Si}i;
• map canonical, where all values initialized to uniform values

Upon receiving (HelpInit, sid, h) from Fpgg:
1. Choose k ← {0, 1}κ; α, β, s,m← Zp; c := Fk(m)
2. Give (HelpInit, sid, α, β, c) to C on behalf of Fhelper

3. Send (gs, gas+b) to C on behalf of S.
4. ĝ := gK.
5. canonical[c] := h

When A∗ sends (Compromise, sid):
6. For every formula stored in dlog: replace every formal variable Mc with concrete value

F−1
k (c)

7. Give (k, ĝ) to A∗

Upon message (HelpMult, sid, c1, c2) from C to Fhelper:
8. m1 := F−1

k (c1); m2 := F−1
k (c2)

9. h1 := canonical[c1]; h2 := canonical[c2]
10. Send (OnlineMult, sid, ssid, h1, h2) to Fpgg; receive h3 in response
11. α, β,m3 ← Zp; c3 := Fk(m3)
12. canonical[c3] = h3
13. If compromised: S := g(Dh3

+m3)−(Dh1
+m1)−(Dh2

+m2);
else: S := g(Dh3

+Mc3)−(Dh1
+Mc1)−(Dh2

+Mc2)

14. Send (S, Sα · gβ) to C on behalf of S

Upon message (HelpZeroTest, sid, c1) from C to Fhelper:
15. m1 := F−1

k (c1)
16. h1 := canonical[m1]
17. α, β, γ, z ← Zp;
18. S := gSi where Si is an unused formal variable
19. if compromised: T := gSi·m1 ; else T := gSi·Mc1

20. Send (S, T, Sα · T β · gγ) to C on behalf of S
21. Await message (A,C) from C to S

22. Send (OnlineZeroTest, sid, ssid, h1) to Fpgg; receive t in response
23. Give (ASi , CSi) to C on behalf of S
24. If t: replace every instance of Dh1 in a formula in dlog with 0

Figure 10: Simulator for a corrupt client, part 1

25

When A∗ makes a fresh query Π−1(h):
25. m← Zp; c := Fk(m)
26. canonical[c] := h
27. If compromised: return (c, gKDh+m); else return (c, gKDh+Mc)

When A∗ makes a fresh query Π(c1, g1):
28. if canonical[c1] undefined:

• Send (RandHandle, sid) to Fpgg and receive h1 in response
• Set canonical[c1] := h1;
• Return h1

29. If dlog[g1] has the form KDh1 +Mc1 for some h1:
// only possible pre-compromise

• Send (CloneHandle, sid, h1) to Fpgg and receive h∗ in response
• Return h∗

30. If dlog[g1] has the form K(u0 + u1Dh1 + unDhn
) +m1, where m1 := F−1

k (c1):
// only possible post-compromise

• Send (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) to Fpgg;
Receive response (OfflineMult, sid, ssid, h∗)

• Set canonical[c1] := h∗ unless it is already defined;
• Update dlog[g1] := KDh∗ +m1

• Return h∗

When A∗ multiplies two generic group elements g1, g2:
31. g3 ← {0, 1}

2κ

32. dlog[g3] := dlog[g1] + dlog[g2] // as symbolic formulas

33. If dlog[g3] has the form K(u0 + u1Dh1 + unDhn
) +m:

// only possible post-compromise

• Send (OfflineMult, sid, ssid, u0, (u1, h1), . . . , (un, hn)) to Fpgg;
Receive response (OfflineMult, sid, ssid, h∗)
• Update dlog[g3] := KDh∗ +m1

34. Return g3

When A∗ tests g1
?
= 1 for a group element:

35. If dlog[g1] is of the form K · Dh for some h:
• Send (OfflineZeroTest, sid, ssid, h) to Fpgg; receive response t
• If t: replace every occurrence of Dh in a formula in dlog with 0
• Return t

36. Else: return dlog[g1]
?
≡ 0 // is the formula identically zero?

Figure 11: Simulator for a corrupt client, part 2

26

5.3.1 Proof

Corrupt Server

Lemma 7. The protocol in Figure 8 UC-securely realizes Fpgg (Figure 6) against a corrupt server.

Proof. The simulator for this case is given in Figure 9. Throughout the proof, we assume without
loss of generality that the adversary does not make a query to Π or Π−1 whose answer is already
known. I.e., it does not repeat queries to Π±; it does not query Π(x) if a previous query Π−1(y) = x
was made; it does not query Π−1(y) if a previous query Π(x) was made. All the adversary’s queries
to Π± are therefore fresh, and the simulator’s behavior is described in terms of its responses to
fresh queries.

We prove that the simulation is indistinguishable from the real protocol interaction, using the
following sequence of hybrids:

Real interaction: The adversary interacts with an honest client running the protocol, honest
generic group oracle, honest ideal permutation Π±, and honest Fhelper functionality. The generic
group oracle maintains dlog which maps group elements (handles) to their discrete logs.

Hybrid 1: Same as above, but let every fresh query to Π or Π−1 output a uniform result, rather
than ensuring that Π remains a permutation. Then abort if any of the following bad events happen:

• There is a repeated output of Π or of Π−1.

• Maintain a set C. Each time a fresh call to Π−1 returns (c1, ·), add c1 to C. Each time Fhelper

outputs a value c or c3, add it to C. Abort if a value already exists in C when it is being
added.

• Abort if a fresh query to Π−1 results in output (·, g1) where dlog[g1] already defined.

• Abort if during an OnlineMult session or Init, the server receives S,M from Fhelper, sends
something other than (S,M) to the client, and yet the client does not abort.

• Abort if during an OnlineZeroTest session, the server receives S, T,M from Fhelper, sends
something other than (S, T,M) to the client, and yet the client does not abort.

• Abort if during an OnlineZeroTest session, the server receives s from Fhelper and (A,C) from
the client, and responds with something other than (As, Cs), and yet the client does not
abort.

The hybrids are indistinguishable if the probability of a bad event is negligible. The first three bad
events have negligible probability, by the birthday bound (and the fact that F is a permutation
– since often m is chosen uniformly and c is computed as c = Fk(m)). The next two bad events
have negligible probability because the M is a one-time MAC verified by the client. In Lemma 8
we show that the probability of the final event is negligible.

Hybrid 2: Same as the previous hybrid, except for the following changes:

• The random values chosen by Fhelper during Init, which determine ĝ, can be made at the
beginning of time.

• Maintain a map DLog. Every time there is a fresh query Π(c1, g1) = h1 or Π−1(h1) = (c1, g1)
by any party, set DLog[h1] = (dlog[g1] − F−1

k (c1))/dlog[ĝ]. Here dlog is the table from the
honest generic group oracle.

27

These changes have no effect on the adversary’s view.
Writing the formula for DLog differently, we get the invariant h1 = Π(Fk(m1), ĝ

DLog[h1] · gm1).
In the interactive protocols in this hybrid, the honest client either aborts or reliably receives

the S, T values intended by Fhelper. If an honest client runs OnlineMult with h1 and h2 and finally
outputs h3, then (using the notation in the protocol and in Fhelper) we get:

h3 = Π(c3, g1g2S) = Π
(
Fk(m3), g1 · g2 · g

s
)

= Π
(
Fk(m3), (ĝ

DLog[h1]gm1)(ĝDLog[h2]gm2)gm3−m1−m2

)

= Π
(
Fk(m3), ĝ

DLog[h1]+DLog[h2]gm3

)

Hence DLog[h3] = DLog[h1] + DLog[h2] always holds. Similarly, if the honest client does not abort
during Init, then it outputs:

h = Π(c, gs) = Π(Fk(m), gs−m · gm) = Π(Fk(m), ĝ · gm)

Hence DLog[h] = 1.
If an honest client runs OnlineZeroTest with h1 and does not abort, then the server has sent

the correct S = gs, T = gsm1+z value, and the correct (A′ = As, C ′ = Cs) values. In that case the
client correctly outputs the result of:

(C ′)1/c
?
= T · g−z ⇐⇒ (Cs)1/c

?
= gsm1+zg−z ⇐⇒ (gcs1)1/c

?
= gsm1

⇐⇒ gs1
?
= gsm1 ⇐⇒ g1

?
= ĝ0gm1 ⇐⇒ DLog[h1]

?
= 0

Hybrid 3: Based on the invariants defined above, we make the following modifications to the
previous hybrid. Recall that every time a fresh query to Π± is made, we update DLog according
to the rule above. In this hybrid, we modify what happens when it is the honest client who makes
such a query.

The honest client only queries Π at the end of OnlineZeroTest and Init. In Init, the client queries
Π(c, S), where c and S are known to the adversary. We can therefore assume without loss of
generality that the adversary makes this initial query to Π instead of the client. In OnlineZeroTest

the client queries h3 = Π(c3, g3) where c3 and g3 are never used again in the interaction until
someone queries Π−1(h3). Therefore, it would not change the adversary’s view if we instead:

• Choose h3 uniformly (this is equivalent because we are considering h3 resulting from a fresh
query to Π)

• Record DLog[h3] = DLog[h1] + DLog[h2]

• Later, only if/when Π−1(h3) is needed, sample a uniform m3 (this is equivalent to sampling
c3 = Fk(m3) uniformly) and respond with (Fk(m3), ĝ

DLog[h3] · gm3)

The honest client only queries Π−1 at the beginning of OnlineMult or of OnlineZeroTest. If this
is a fresh query, then the output will be of Π−1 will be uniform. The output of this query is used
only as input (c1, c2) to Fhelper (which gives no information about it to the server) or as part of the
input to a final call to Π. But after making the previous change described above, this call to Π is
no longer even made. So it would not change the adversary’s view if the honest client did not make
this query to Π−1, and its uniform output was chosen later only if/when the adversary makes the
query.

28

Hybrid 4: Same as the previous hybrid, except that we change how fresh Π−1 queries by
the adversary are handled. In the previous hybrid, a random (c1, g1) was chosen as output from
Π−1(h1), and based on that value we computed DLog[h1]. Clearly the value of DLog[h1] is uniform
in this case. It would be equivalent then to first choose DLog[h1], then choose random c1 and then

set g1 = ĝDLog[h1] · gF
−1
k

(c1).
With this change, the adversary’s view in the interaction is now identical to the simulation.

• During Init, Fhelper gives uniform output to the adversary; the honest party aborts if the
adversary does not send the expected group elements to the client; Π is called resulting in
output h; and a value DLog[h] = 1 is recorded. In the simulation, DLog[h] is recorded in Fpgg

by the simulator sending the appropriate Init command.

• When the adversary makes a fresh Π−1(h) query, the corresponding DLog[h] value is fetched
(if that value doesn’t exist, a random one is chosen); the output of Π−1 becomes the correct
values representing DLog[h]. In the simulation, DLog[h] is consulted by the simulator sending
an Identify command to Fpgg.

• When the adversary makes a fresh Π query, its DLog value is computed and stored for a
random handle h which is chosen as the output of Π. In the simulation, the simulator
computes the DLog value, and Fpgg samples h and records DLog[h] when the simulator sends
a Register command.

• During OnlineMult and OnlineZeroTest, the adversary sees random outputs from Fhelper. As
a side effect of OnlineMult, a new random handle is registered in DLog. As a side effect of

OnlineZeroTest, the honest client outputs the result of DLog[h1]
?
= 0.

Lemma 8. If during an OnlineZeroTest session, a corrupt server receives s from Fhelper and (A,C)
from the client, and responds with something other than (As, Cs), then the client will abort with
overwhelming probability.

Proof. In OnlineZeroTest, it is easy to see that the client’s group elements A and C are uniformly
distributed from the adversary’s view. From the client’s view they are computed as A = ga1 · g

b and
C = gc1 for uniform a, b, c. The client also holds the correct value gs, as it was authenticated by
Fhelper. The server responds with (A′, C ′) and the client aborts if (A′)c 6= (C ′)a(gs)bc.

Consider one particular execution of OnlineZeroTest and suppose we represent the discrete logs
of A and C symbolically. Specifically, dlog[A] = δA+ B and dlog[C] = δC, where δ = dlog[ĝ]. Here
A,B,C are formal variables. Note that δ = 0 with only negligible probability — we assume δ 6= 0
below.

The client will verify whether C · dlog[A′] = A · dlog[C ′] +BCs, after replacing every occurrence
of A with the concrete value a, and likewise for B,C. Note that dlog[A′] and dlog[C ′] are symbolic
expressions that may include A,B,C as well. Indeed, each of these two dlog values may be any
linear combination of dlog[A], dlog[C] and 1, since dlog[A] and dlog[C] are the only dlog values that
include formal variables. Write:

dlog[A′] = u(δA+ B︸ ︷︷ ︸
dlog[A]

) + v(δC︸︷︷︸
dlog[C]

) + w

dlog[C ′] = x(δA+ B︸ ︷︷ ︸
dlog[A]

) + y(δC︸︷︷︸
dlog[C]

) + z

29

for scalars u, v, w, x, y, z ∈ Zp. Then the client will check the condition

C · dlog[A′] = A · dlog[C ′] + BC · s

⇐⇒ C

[
u(δA+ B) + v(δC) + w

]
= A

[
x(δA+ B) + y(δC) + z

]
+ BC · s

We will now prove the contrapositive of the statement in the lemma. Namely, suppose the client
aborts with less than overwhelming probability — i.e., the equation holds with non-negligible
probability. We will show that the server must have sent the “correct” A′, C ′ values. If the two
sides of this equation are not identically equal as polynomials over the formal variables, then they
can only be equal with negligible probability over a random assignment to the formal variables. So
under our hypothesis, the two sides of the equation are identically equal as polynomials, and we
may equate corresponding coefficients.

The coefficient of BC on the right is s, and on the left is u; hence u = s. With u = s the
coefficient of AC on the left is uδ = sδ. The coefficient of AC on the right is yδ. Since δ 6= 0 we
must have y = s. The monomial C2 is possible on the left with coefficient vδ but impossible on the
right; hence v = 0. Similarly, monomial C is possible on the left but not the right; monomials A2

and A are possible on the right but not the left; hence w = x = z = 0.
In summary, if the equation holds with more than negligible probability, dlog[A′] = s · dlog[A]

and dlog[C ′] = s · dlog[C], as desired.

Corrupt Client

Lemma 9. The protocol in Figure 8 UC-securely realizes Fpgg (Figure 6) against a corrupt client.

Proof. The simulator for this case is given in Figures 10 and 11. Throughout the proof, we assume
without loss of generality that the adversary does not make a query to Π or Π−1 whose answer is
already known. I.e., it does not repeat queries to Π±; it does not query Π(x) if a previous query
Π−1(y) = x was made; it does not query Π−1(y) if a previous query Π(x) was made. All the
adversary’s queries to Π± are therefore fresh, and the simulator’s behavior is described in terms of
its responses to fresh queries.

We prove that the simulation is indistinguishable from the real protocol interaction, using the
following sequence of hybrids:

Real interaction: The adversary interacts with an honest server running the protocol, honest
generic group oracle, honest ideal permutation Π±, and honest Fhelper functionality. The generic
group oracle maintains dlog which maps group elements (handles) to their discrete logs.

Hybrid 1: Same as above, but let every fresh query to Π or Π−1 output a uniform result, rather
than ensuring that Π remains a permutation. Then abort if any of the following bad events happen:

• There is a repeated output of Π or of Π−1.

• Maintain a set C. Each time a fresh call to Π−1 returns (c1, ·), add c1 to C. Each time Fhelper

outputs a value c or c3, add it to C. Abort if a value already exists in C when it is being
added.

• Abort if a fresh query to Π−1 results in output (·, g1) where dlog[g1] already defined.

The hybrids are indistinguishable if the probability of a bad event is negligible, and these three bad
events have negligible probability as in the security proof for a corrupt server.

30

Hybrid 2: Same as the previous hybrid, except for some added bookkeeping. First choose k and
(the random values chosen by Fhelper that determine) ĝ at the beginning of time.

Maintain a map DLog. Every time there is a fresh query Π(c1, g1) = h1 or Π−1(h1) = (c1, g1)
by any party, set DLog[h1] = (dlog[g1] − F−1

k (c1))/dlog[ĝ]. Here dlog is the table from the
honest generic group oracle. Writing the formula for DLog differently, we get the invariant
h1 = Π(Fk(m1), ĝ

DLog[h1] · gm1).
Additionally, maintain a map canonical. Every time there is a fresh query Π(c1, g1) = h1 or

Π−1(h1) = (c1, g1), and canonical[ci] is not yet defined, set canonical[c1] = h1. Assume without loss
of generality that every time the adversary provides a ci value to Fhelper, it also samples a random
gi and queries Π(ci, gi). This has the effect of setting canonical[ci] if it is not already defined (it
also sets DLog[canonical[ci]]).

Also assume without loss of generality that at the end of Init, the adversary queries on Π as it
is instructed — i.e., h = Π(c, S). Again, this query has the effect of setting dlog and canonical as
above. These changes involve only additional bookkeeping, so they have no effect on the adversary’s
view. With these changes, we have the invariant that the values canonical[ci] and DLog[canonical[ci]]
are always well-defined for any ci value that the simulator observes.

The meaning of canonical[c] is the following: In OnlineMult and OnlineZeroTest the corrupt client
sends only ci values to Fhelper. The simulator must relate these ci values to complete handles (hi
values). The handle canonical[c1] is the first handle that the simulator has seen to be associated
with c1.

Hybrid 3: Consider an honest server who runs OfflineMult on u0, (u1, h1), . . . , (un, hn) resulting
in output h∗. We can easily see that DLog[h∗] = u0 +

∑
i uiDLog[hi] by applying the invariant of

DLog to all terms. The server finally computes h∗ by calling Π on (c∗, g∗) where c∗ is uniform. It
would change nothing in the adversary’s view if the honest server never called Π±, but we simply
chose h∗ uniformly and recorded DLog[h∗] as above. Then only later if/when the adversary made
the query Π−1(h∗) would c∗ and g∗ be sampled.

Similarly, consider an honest server who runs OfflineZeroTest on h1. Again, the invariant on

DLog shows that the server’s output is logically equivalent to DLog[h1]
?
= 0. It would change

nothing in the adversary’s view if the honest server’s output were simply computed by consulting

DLog[h1]
?
= 0, and it never queried Π−1.

Finally, assume without loss of generality that the adversary queries Π according to the
specified protocol, at the end of OnlineMult. In other words, after providing c1, c2, the ad-
versary queries (c1, g1) = Π−1(canonical[c1]) and (c2, g2) = Π−1(canonical[c2]). It then queries
h3 = Π(c3, g1g2S) as instructed. This has the effect of setting canonical[c3]. By some alge-
braic simplifications applying the invariant of DLog, we can further see that DLog[canonical[c3]] =
DLog[canonical[c1]] + DLog[canonical[c2]] will always hold.

After these modifications, the honest server no longer queries Π±. If the adversary makes a fresh

query Π−1(h1) and DLog[h1] is already defined, then the result is computed as (c1, ĝ
DLog[h1]·gF

−1
k

(c1))
for random c1.

In the case that the adversary makes a fresh query Π−1(h1) where DLog[h1] is not already
defined, we proceed as before by choosing a random output (c1, g1) of Π−1 and computing
DLog[h1] = (dlog[g1] − F−1

k (c1))/dlog[ĝ]. But we are already conditioning on the event that g1
sampled in this way avoids all known group elements. Hence dlog[g1] is uniform, so this is equiva-

lent to first choosing DLog[h1] uniformly and then solving g1 = ĝDLog[h1]gF
−1
k

(c1).
So in both cases, the adversary’s response to fresh Π−1 is computed in the same way: refer to

DLog[h1] (sampling it uniformly if it doesn’t already exist) and giving (Fk(m), ĝDLog[h1]gm) as the
result.

31

Note that DLog is still updated on every fresh query to Π.

Hybrid 4: Same as the previous hybrid, except we extend dlog and DLog to contain rational
functions over formal variables K, {Mc}c, {Dh}h, {Si}i. In this hybrid we will simply be “renaming”
values: K will represent the discrete log of ĝ; Mc will represent F

−1
k (c); Dh will represent DLog[h],

and Si will represent the s-value used in the ith OnlineZeroTest.
We separately maintain a map s mapping formal variables to their concrete values. For group

elements that the client receives, we express their discrete logs in terms of symbolic expressions:

• In response to a fresh query Π−1(h) made before storage compromise, sample uniform c and
give response (c, gKDh+Mc).

• In response to a fresh query Π−1(h) made after storage compromise, sample uniform c and

give response (c, gKDh+F−1
k

(c)).

• During Init, give random c and S = gK+Mc . (We assume Init happens before storage compro-
mise.)

• During OnlineMult before storage compromise, let h1 = canonical[c1], h2 = canonical[c2], and
pre-emptively choose h3. S = g(KDh3

+Mc3)−(KDh1
+Mc1)−(KDh2

+Mc2)

• During OnlineMult after storage compromise, do as above, but compute mi = F−1
k (ci) and

give S = g(KDh3
+m3)−(KDh1

+m1)−(KDh2
+m2)

• During OnlineZeroTest before storage compromise, let Si be an unused formal variable and
give S = gSi , T = gSiMc1 , A′ = ASi , C ′ = CSi .

• During OnlineZeroTest after storage compromise, let Si be an unused formal variable and give
S = gSi , T = gSim1 , A′ = ASi , C ′ = CSi , where mi = F−1

k (c1).

For every fresh query h1 = Π(c1, g1), we symbolically set DLog[h1] = (dlog[g1]−Mc1)/K before
compromise, or DLog[h1] = (dlog[g1]− F−1

k (c1))/K after compromise.
When the server storage is compromised, we replace every formal variable Mc appearing in

DLog or dlog with the scalar F−1
k (c).

When any party performs a zero-test with respect to dlog (i.e., the adversary using its generic
group oracle) or DLog (i.e., the honest server during OfflineZeroTest), we check whether the formula
evaluates to zero when K is assigned dlog[ĝ]; each Dh is assigned DLog[h]; each Mc is assigned
F−1
k (c); and each Si is assigned s[Si].
There is no change to the adversary’s view by making these extensive changes, because we have

simply temporarily replaced some concrete scalar values with a formal variable, but substituted
the concrete scalars back in during any zero-test. The only subtle issue worth observing is that
we have replaced gm3−m1−m2 with something of the form g(KDh3

+Mc3)−(KDh1
+Mc1)−(KDh2

+Mc2), but
we will replace each Dh with the corresponding DLog[h], and we have already established that
DLog[h3]− DLog[h1]− DLog[h2] = 0 holds for the handles involved in OnlineMult.

Hybrid 5: We modify the zero-tests in the previous hybrid. When testing whether a formula
evaluates to zero, we replace each Dh formal variable with concrete value DLog[h] as before. But
we then test whether the resulting formula — which still may contain Mc, Si, K formal variables
— is identically zero.

This hybrid differs from the previous one only in the bad event that a symbolic expression,
which is not identically zero, happens to evaluate to zero on the concrete values that we assign
to its formal variables. To show that this bad event has negligible probability, we observe the
following:

32

• Expressions in dlog and DLog are always rational functions of the formal variables

• Every single formal variable has degree at most 1 in an expression in dlog and DLog. We may
have monomials containing several formal variables (e.g., K · Dh), but never any squared or
higher variables. The adversary may choose any group element A and have it raised to the
Si power during OnlineZeroTest, but each time it is with respect to a different Si variable, so
we can never accumulate squared terms from this process.

• The remaining formal variables are K, Mc, and Si. During a zero-test: K would be replaced
with dlog[ĝ] which is uniform; Si would be replaced with s[Si] which is uniform. If any Mc

terms are in the expression, then it must be before server storage compromise, and before the
PRP key k is given to the adversary. Formal variables Mc would be replaced with F−1

k (c)
concrete values; a simple reduction to the strong PRP security of F shows that these F−1

k (c)
values are indistinguishable from random, pre-compromise.

Overall, the bad event happens only when a rational function, which is not identically zero and has
degree-1 in every individual variable, evaluates to 0 on a uniform assignment to its formal variables.
For any particular rational function, this happens with probability at most 1/p, which is negligible.

After making the changes in this hybrid, note that the concrete values corresponding to K and
Si are no longer used; and concrete values corresponding to Mc (i.e., F−1

k (c) values) are no longer
used pre-compromise.

Hybrid 6: In the previous hybrid, symbolic expressions can be assigned to DLog when the
adversary makes the query h1 = Π(c1, g1) — e.g.., this query might result in the assignment
DLog[h1] = (dlog[g1]−Mc1)/K. We modify the behavior in this case, as follows:

• If dlog[g1] has the form K(u0 +
∑

i uiDhi
) + Mc1 , or the form K(u0 +

∑
i uiDhi

) + F−1
k (c1),

for some set of ui’s and hi’s, then simply set DLog[h1] = u0 +
∑

i uiDLog[hi]. Previously, the
assignment would have resulted in symbolic expression DLog[h1] = u0 +

∑
i uiDhi

. Since Dh

values are always replaced by corresponding DLog[h] values during zero-tests, the change has
no effect on the adversary.

• In all other cases, set DLog[h1] to be a uniform value.

We must argue that the second change is indistinguishable to the adversary. Note that the DLog

values are accessed only during a zero test — at all other times, the actual values of DLog are
“hidden” behind a formal variable Dh.

In the previous hybrid, the particular problematic DLog[h1] held a symbolic expression that
contained (at the very least) a term K in the denominator. Any zero-tests that involve such a term
will return false because the expression will not be identically zero. After the change to this hybrid,
DLog[h1] contains a random scalar. The change is noticeable from the adversary’s view only if they
are able to “cancel off” the random scalar in some expression, making some zero-test succeed in
this hybrid where it would have failed in the previous hybrid. Since the scalar assigned to DLog[h1]
is uniform and independent of the adversary’s view, the probability of this event is negligible, so
the hybrids are indistinguishable.

Now observe that after making these changes, DLog contains only scalar values at all times.

We make some observations about what kinds of group elements the adversary can generate in
this hybrid.

• If it is pre-compromise, then the adversary has only seen group elements of the form gKDh+Mc ,
where h = canonical[c], or in the case of OnlineMult, it sees the product of 3 such elements.

33

In other words, Dh appears only for h = canonical[c] for some c, and it always appears with
K and Mc as a “bundle” of the form KDh+Mc. The only other way Dh can appear in dlog is
if the adversary asks for some group element to be raised to the Si power in OnlineZeroTest.
This will have the effect of multiplying the dlog-expression for each such “bundle” by a Si

term.

• If it is pre-compromise, then the only group elements involving Mc that the adversary has
seen are those described above (with dlog containing bundles of the form KDh + Mc), and
elements with dlog = SiMc, only when it invokes OnlineZeroTest with that c.

With these two observations in mind, the only way that the adversary can cancel a Mc term from a
bundle KDh +Mc is to do a zero-test involving c to obtain SiMc, and also raise the corresponding
bundle to the Si power to cancel off SiMc, leaving behind a term SiKDh.

Note that every distinct call to OnlineZeroTest will involve a distinct Si. This Si is tied to a
particular Mc variable, and Mc only ever appears in a bundle with Dh for h = canonical[c]. So, if
any two terms of the form SiKDh have different h subscripts, then they must also have different i
subscripts.

We can now observe the following about this hybrid. When an adversary queries Π using g1
with dlog[g1] of the form K(u0 +

∑
iDhi

) +Mc, the value DLog will be assigned in a special way as
described above. But following the reasoning above, before compromise, there is no way to isolate
a term KDh without either a multiplicative Si or an additive Mc. So the only way this case can
happen is if u = 0 and the sum is over one item — i.e., dlog[g1] has the form KDh + Mc, where
we must also have h = canonical[c]. In this case, the hybrid simply sets DLog[h′] = DLog[h] for the
new handle h′.

We make a further observation about how zero-tests work in this hybrid. When an adversary
makes a zero-test for some g1 (with the common generic group oracle, i.e., with respect to the dlog

map), we replace each Dh term in dlog[g1] with DLog[h] in the expression and see if the result is
identically zero. There are two cases to consider:

• No linear combination of Dh variables and 1 divides dlog[g1]. Then no matter what the values
of DLog[h] are, the result after substituting them will still be a nonzero symbolic expression,
and the zero-test will return false.

• Some linear combination of Dh variables and 1 divides dlog[g1]. If this is pre-compromise,
then by our previous reasoning, the only way this can happen is if dlog[g1] is of the form
SiKDh, where the corresponding OnlineZeroTest has been performed. A linear combination
containing more than one Dh variable cannot divide dlog[g1] because either the corresponding
Mc terms will be present as additive terms, or each Dh has been isolated from its Mc partner
but paired with different Si variables.

In the case dlog[g1] = SiKDh, if DLog[h] = 0 then the expression is identically zero and the
zero-test succeeds. Otherwise, the result is a symbolic expression that is not identically zero,
and the zero-test fails.

• If this is post-compromise, then the only way a linear combination of Dh values divides
dlog[g1], other than the case above, is if dlog[g1] = K(u0 +

∑
i uiDhi

). No Dh term can be
separated from K, and if any Dh is multiplied by Si, then no other Dh can be multiplied by
the same Si, and we are in the previous case. Again, if u0+

∑
i uiDLog[hi] = 0 then the entire

expression is identically zero and the zero-test succeeds. Otherwise, the result is a symbolic
expression that is not identically zero, and the zero-test fails.

34

Ideal interaction: The previous hybrid has identical behavior to the ideal interaction, only
with some operations delegated to the ideal functionality. One can see that the adversary is given
symbolic group elements following the description above. Upon compromise, all Mc variables are
replaced with their corresponding concrete values in dlog.

During OnlineMult, the interaction registers a new handle whose DLog is the sum of those for
canonical[c1] and canonical[c2]. In the simulation, the maintenance of DLog is handled by Fpgg.

Before compromise, if the adversary performs a zero-test on an element whose dlog contains a
Dh variable, that zero-test will fail unless a previous OnlineZeroTest was performed for the corre-
sponding c (such that canonical[c] = h) and succeeded. In the simulation, the simulator can issue
a OnlineZeroTest command to learn whether DLog[h] = 0, and simulate the result of the zero-test
accordingly.

After compromise, the adversary can perform its own zero-tests, but only for linear combinations
of handles. The simulator can handle this by sending an OfflineMult command (for the same linear
combination) and then sending a OfflineZeroTest command to learn whether the linear combination
is zero.

5.4 io2PC Protocol for Generic-Group Obfuscation

Finally, with a personalized generic group, we can realize io2PC for any function that has a suitable
VBB obfuscation in the generic group model. The protocol is essentially the same as our io2PC for
random-oracle obfuscation (Figure 4), but we replace the OPRF with a personalized generic group.
We give the details in Figure 12.

Theorem 10. Suppose (Obf,ObfEval, c) is a VBB obfuscation for Cf with simulation rate r, in
the generic group model. Then the io2PC protocol (Figure 12) realizes the FiO2PC functionality
computing Cf with simulation rate r (Figure 1) in the Fpgg-hybrid world.

The proof is essentially identical to that of Theorem 5, with the obvious changes replacing the
random oracle / OPRF with generic group / personalized group.

6 Compatible Obfuscations

In this section we discuss obfuscations that are compatible with our io2PC approach, namely those
that are input-independent, virtual black-box, and extractable.

6.1 Point Functions

For the point function, i.e. the function family Cf where f(x, y) = (x
?
= y), there is a simple

obfuscation in the random oracle model. We only sketch the scheme and its security argument: given

a random oracle H with range H, let Obf(x) output H(x), and ObfEval(Ox, y) output (H(y)
?
= Ox).

Clearly, this scheme is correct and input-independent with query rate c = 1. The VBB simulator
chooses Ox ← H and answers the adversary’s H(y) queries as follows: it learns whether y = x
via querying f(x, y), and if so, it returns Ox; otherwise it returns a random element in H. The
simulation rate is 1 as QS = QA.

For the extractability property, Extract(O,H) checks if there is an x ∈ H such that H(x) = O.
If there is more than one such x, Extract aborts; if there is exactly one such x, it outputs x; if
there is no such x, it outputs ⊥. It is not hard to see that the probability of the bad event in the
definition of extractability is negligible (it happens only if A finds a collision in H, or finds O, y
with O = H(y) without querying H(y)).

35

Parameters:
• Obfuscation (Obf,ObfEval, c) for the class of functions Cf = {f(x, ·) | x ∈ {0, 1}∗}, in the

generic-group model.
• Client C and server S.

On command (Init, sid, x), S for S:
1. S: Send (Init, sid) to Fpgg

2. S: Receive response (Init, sid, h)
3. S: Run Ox ← Obf?(x), where each time Obf queries its oracle:

• If the query is of the form Mult(h1, h2):
– Send (OfflineMult, sid, ssid, 0, (1, h1), (1, h2)) to Fpgg

– Receive response (OfflineMult, sid, ssid, h3)
– Give h3 to Obf as the response to its oracle query

• If the query is of the form ZeroTest(h1):
– Send (OfflineZeroTest, sid, ssid, h1) to Fpgg

– Receive response (OfflineZeroTest, sid, ssid, b)
– Give b to Obf as the response to its oracle query

4. S: Store Ox.

On command (Compromise, sid) from A∗:
5. A∗ must also send (Compromise, sid) to Fpgg

6. A∗ learns Ox.

On command (IOEval, sid, ssid) for S:
7. S: Send (sid, ssid,Ox) to C.
8. Both parties set i := 0
9. C: Await command (IOEval, sid, ssid, y).

10. C: Run z := ObfEval?(Ox, y), where each time ObfEval queries its oracle:
• If the query is of the form Mult(h1, h2):

– C: Send (OnlineMult, sid, ssid‖i, h1, h2) to Fpgg

– S: Await (OnlineMult, sid, ssid‖i) from Fpgg

– S: Send (Deliver, sid, ssid‖i) to Fpgg

– C: Await response (OnlineMult, sid, ssid‖i, h3) from Fpgg

– C: Give h3 to Obf as the response to its oracle query
• If the query is of the form ZeroTest(h1):

– C: Send (OnlineZeroTest, sid, ssid‖i, q) to Fpgg

– S: Await (OnlineZeroTest, sid, ssid‖i) from Fpgg

– Both: set i := i+ 1
– S: If i > c: abort. Otherwise, send (Deliver, sid, ssid‖i) to Fpgg

– C: Await response (OnlineZeroTest, sid, ssid‖i, b) from Fpgg

– C: Give b to Obf as the response to its oracle query
11. C: Output (IOEval, sid, ssid, z)

Figure 12: The io2PC protocol for computing function f , based on a VBB obfuscation in the generic
group model.

36

6.2 Hyperplane Membership

Extending the idea of point-function obfuscation above, we may consider the same function in
higher dimensional spaces. In this section, we provide a new proof for a hyperplane membership
protocol in the generic group model.

Let p be a prime with ||p|| = κ and d = poly(κ). For x ∈ Z
d
p, define function Fx : Zd

p →
{false,true} as

Fx(y) =

{
true if 〈x,y〉 = 0

false otherwise

i.e. Fx computes membership in the subspace of Zd
p containing all vectors orthogonal to x. We use

Fd
p to denote the function family {Fx}. Obfuscation of Fd

p has been considered previously [CRV10],
and we recall the construction below.

6.2.1 Obfuscation

The obfuscation in Figure 13 is due to Canetti, Rothblum, and Varia [CRV10] whose proof is based
on strong DDH assumption proven in the GGM, but the proof constructs an inefficient simulator in
the dimension of the ambient space. We reconsider the protocol and prove for an efficient simulator
with access to a global GGM.

Parameters:
Generic group G with handle space H.
Public generator g of prime order p.
Ambient space dimension d.
Obf(x):

Sample a generator γ of G.
Return Ox = (γxi)i∈[d].

ObfEval(Ox,y):

Interpret Ox as (oi)i∈[d] ∈ Hd.

Return
∏

i o
xi

i
?
= g0

Figure 13: VBB Hyperplane Membership Obfuscation

On input x = (xi)i∈[d] ∈ Z
d
p and input y = (yi)i∈[d] ∈ Z

d
p, correctness is immediately evident

as ObfEval(Obf(x),y) computes
∏

i (γ
xi)yi = γ〈x,y〉

?
= γ0. The obfuscation algorithm Obf(x) must

be careful about optimizing its generic group operations, however. Even if xi = xj for distinct i, j,
the obfuscation algorithm must ensure that distinct handles are generated for γxi and γxj ; e.g., by
separately multiplying by g0. Finally, note that depending on how Figure 13 is implemented, the
number of multiplication queries that ObfEval makes is data dependent. Specifically, when evalu-
ating exponentiation through squaring ObfEval will compute g2 with one query while computing
g127 will require 12 queries. To make the total number of multiplication queries a constant, we may
simply require a constant-time exponentiation algorithm.

In our previous definition for simulation rate, we stated that for an obfuscation to have sim-
ulation rate r, it must hold that QS ≤ r · QA

c . However, the GGM oracle has two interfaces for
queries: the multiplication query Mult and the zero test query ZeroTest. As we stated earlier
(see Section 5.2), it is much more important to measure an adversary’s effort in terms of zero-tests
and not group multiplications. If we only count ZeroTest queries, the obfuscation scheme is indeed
limited by a single query with QS = QA. In the theorem below, the statements about query rate
and simulation rate refer only to ZeroTest queries.

37

6.2.2 Virtual Black-Box Property

Theorem 11. The scheme in Figure 13 is a VBB obfuscation Definition 3 for F in the Generic
Group Model, with query rate c = 1 and simulation rate r = 1.

Proof Sketch:
The simulator Sim replaces the obfuscation Ox with uniformly sampled handles O ← Hd and then
plays the role of the two GG oracles Mult and ZeroTest. In the real world, the obfuscation uses a
sampled generator γ with uniform discrete logarithm and since this value is outside the adversary’s
view, we represent it with the formal variable K. Sim then catalogs the symbolic discrete logarithms
of all multiplications the adversary makes relative to handles {oi}i∈[d], comprising O, and the public
generator g. As the adversary can only gain information about relations between group elements
through a zero-test, it can’t tell if O was replaced until it interacts with the ZeroTest oracle. When
the adversary makes such a zero-test, Sim checks the discrete logarithm of that group element.
By construction, the discrete logarithm of these queries will take on the form of a polynomial
K (
∑

i aixi) + z, for coefficients ai, z ∈ Zp, relative to base g. Noting that
∑

i aixi is exactly 〈x,a〉,
Sim may then check if this combination is zero by querying the function oracle f(x,a). But since
the simulator does not need to know the xi to make the query, the simulator may run agnostic of
the input x.

Proof. Let A be any polynomial-time adversary. The simulator Sim = (Sim1, Sim2) is constructed
as follows:

• Sim1 samples O ← Hd and outputs (O,O).

• Sim2, on input O, creates formal variables K representing the discrete logarithm of γ relative
to base g, and {Oi}i∈[d] where each Oi represents the discrete logarithm of the ith handle of
O relative to base γ. Sim2 then acts as the Mult oracle relative to these variables. On query
(ZeroTest, h) from A, Sim2 interprets the discrete logarithm of h relative to base g as a linear
combination of bases {(KOi)i∈[d], 1}:

K

(
∑

i

aiOi

)
+ z

If z = 0, Sim2 sends a to its function oracle, and forwards the response to A. If z 6= 0, Sim2

responds with false.

Our proof of indistinguishability will be carried out through a series of hybrids starting from
the real interaction {Ox ← ObfG(x);AG(Ox)} and ending in the ideal interaction {(O, state) ←

Sim1;A
Sim

f(x,·)
2 (state)(O)}.

Real interaction: The real world is characterized by the A’s interactions with the GGM oracle
G with public generator g and the real obfuscation Ox of Fd

p on input x. Ox is constructed by
sampling a generator γ and returning (γxi)i∈[d].

Hybrid 1: (Replacement of the Mult Oracle) In this hybrid, we introduce an algorithm Sim =
(Sim1, Sim2) which plays the role of the game challenger. Sim1 is identical to the first phase of the
real world, i.e. it generates Ox ← ObfG(x) and outputs Ox to A. Sim2 now simulates the GGM
oracle honestly, keeping track of the information between the interaction with Obf and with A.
Sim2 stores these query responses (handle, discrete logarithm) in a lookup table DL. Additionally,
Sim2 responds with uniform handles from H upon Mult queries and aborts when a handle sampled

38

by A gets assigned a discrete logarithm which collides with a known handle’s or when a new handle
collides with a previously generated handle.
A’s view diverges exactly when Sim2 aborts which occurs with negligible probability by a birth-

day bound.
Hybrid 2: (Replacement of the ZeroTest Oracle and Obfuscation) In this and future hybrids, x

is no longer used during the computation of Ox; instead, Sim1 generates a dummy obfuscation by
sampling O ← Hd.

Sim2 now simulates the Mult oracle by allowing DL to store polynomials over formal variables.
Specifically, Sim2 introduces formal variables K and (Oi)i∈[d], and stores DL[γ] := K and DL[oi] :=
KOi (where oi is the ith handle of Ox). Sim2 also keeps track of the mapping between Oi and xi.
When A makes a Mult(h1, h2) query whose response is h, Sim2 stores DL[h] := DL[h1] +DL[h2].

On query (ZeroTest, h) from A, Sim2 references DL[h] = S where S is a polynomial of the form

K

(∑
i∈[d] ai ·Oi

)
+ z for coefficients ai, z ∈ Zp. Sim2 then retrieves (xi)i∈[d], and returns true iff

z = 0 and
∑

i∈[d] aixi = 〈x,a〉 = 0. Equivalently,

1. Sim2 replaces each polynomial variable Oi with integer xi ∈ Zp.

2. If z = 0 and
∑

i∈[d] aixi ·K = 〈x,a〉 ·K is the zero polynomial of variable K, then Sim2 returns
true.

3. Otherwise, Sim2 returns false.

Clearly, adding the bookkeeping in Mult queries does not change A’s view. A’s view diverges
when Sim2 responds to ZeroTest with a different result than in the previous hybrid. This happens
only when 〈x,a〉 · K + z is not the zero polynomial of K, but the polynomial evaluates to 0 when
K is instantiated with logg γ — in which case the current hybrid returns false but the previous
hybrid returns true. Note that logg γ is uniform in Zq \ {0}, so for a single ZeroTest query, if

z = 0, the bad event above cannot happen; if z 6= 0, the probability of the bad event is 1
p . Overall,

the distinguishing advantage between Hybrid 2 and Hybrid 1 is upper-bounded by QA

p , where QA

is the number of A’s ZeroTest queries.
Hybrid 3: (Removing x from the ZeroTest Oracle) We may now note that the only step requiring

the xi in the previous hybrid is the computation of 〈x,a〉
?
= 0 in the simulation of ZeroTest. Instead

of computing the inner product locally, the simulator will now asks the function oracle to compute
the result: When A makes a (ZeroTest, h) query, Sim2 follows the same strategy as the previous
hybrid, but instead of replacing Oi with xi and calculating 〈x,a〉, Sim2 queries f(x,a) against
the function oracle f(x, ·) and returns the oracle’s response. Sim2 response to the zero-test does
not change as the only way 〈x,a〉 was used was to check whether or not the result was the zero
polynomial.

Ideal Interaction: Hybrid 3 is exactly the ideal world as in both cases:

• Sim1 samples O ← Hd.

• Sim2 answers multiplication queries symbolically and without collisions.

• Sim2 answers all ZeroTest(h) queries by extracting the discrete logarithm
∑

i aiOi relative to
a symbolic γ — this process is independent of x — and querying against the function oracle
on a.

• When Sim2 fails to extract a, it returns false.

39

6.2.3 Extractability

The construction in Figure 13 is extractable (Definition 4) through the following algorithm:

• Extract on input (O,H) iterates through all handles inH and catalogs their discrete logarithms
relative to g in a list DL.

– If any handles h were sampled by A, Extract samples a uniform discrete logarithm
DL[h]← Zp.

• Extract, interprets O as (oi)i∈[d] ∈ Hd, and for each oi:

– If DL[oi] is defined, Extract sets xi := DL[oi].

– Otherwise, Extract samples xi ← Zp.

• Extract finally returns x = (xi)i∈[d].

References

[ADDS21] Martin R. Albrecht, Alex Davidson, Amit Deo, and Nigel P. Smart. Round-optimal
verifiable oblivious pseudorandom functions from ideal lattices. In Juan Garay, editor,
PKC 2021, Part II, volume 12711 of LNCS, pages 261–289. Springer, Heidelberg, May
2021.

[BGI+14] Amos Beimel, Ariel Gabizon, Yuval Ishai, Eyal Kushilevitz, Sigurd Meldgaard, and
Anat Paskin-Cherniavsky. Non-interactive secure multiparty computation. In Juan A.
Garay and Rosario Gennaro, editors, CRYPTO 2014, Part II, volume 8617 of LNCS,
pages 387–404. Springer, Heidelberg, August 2014.

[BLMZ19] James Bartusek, Tancrède Lepoint, Fermi Ma, and Mark Zhandry. New techniques
for obfuscating conjunctions. In Yuval Ishai and Vincent Rijmen, editors, EURO-
CRYPT 2019, Part III, volume 11478 of LNCS, pages 636–666. Springer, Heidelberg,
May 2019.

[BM93] Steven M. Bellovin and Michael Merritt. Augmented encrypted key exchange: A
password-based protocol secure against dictionary attacks and password file compro-
mise. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93, pages 244–250. ACM Press, November 1993.

[BR13] Zvika Brakerski and Guy N. Rothblum. Obfuscating conjunctions. In Ran Canetti and
Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 416–434.
Springer, Heidelberg, August 2013.

[BR14] Zvika Brakerski and Guy N. Rothblum. Virtual black-box obfuscation for all circuits
via generic graded encoding. In Yehuda Lindell, editor, TCC 2014, volume 8349 of
LNCS, pages 1–25. Springer, Heidelberg, February 2014.

[Can97] Ran Canetti. Towards realizing random oracles: Hash functions that hide all partial
information. In Burton S. Kaliski Jr., editor, CRYPTO’97, volume 1294 of LNCS,
pages 455–469. Springer, Heidelberg, August 1997.

40

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CD08] Ran Canetti and Ronny Ramzi Dakdouk. Obfuscating point functions with multibit
output. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
489–508. Springer, Heidelberg, April 2008.

[CRV10] Ran Canetti, Guy N. Rothblum, and Mayank Varia. Obfuscation of hyperplane mem-
bership. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages 72–89.
Springer, Heidelberg, February 2010.

[FIPR05] Michael J. Freedman, Yuval Ishai, Benny Pinkas, and Omer Reingold. Keyword search
and oblivious pseudorandom functions. In Joe Kilian, editor, TCC 2005, volume 3378
of LNCS, pages 303–324. Springer, Heidelberg, February 2005.

[GMR06] Craig Gentry, Philip MacKenzie, and Zulfikar Ramzan. A method for making
password-based key exchange resilient to server compromise. In Cynthia Dwork, editor,
CRYPTO 2006, volume 4117 of LNCS, pages 142–159. Springer, Heidelberg, August
2006.

[GMRW13] S. Dov Gordon, Tal Malkin, Mike Rosulek, and Hoeteck Wee. Multi-party computation
of polynomials and branching programs without simultaneous interaction. In Thomas
Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 575–591. Springer, Heidelberg, May 2013.

[Hes20] Julia Hesse. Separating symmetric and asymmetric password-authenticated key ex-
change. In Clemente Galdi and Vladimir Kolesnikov, editors, SCN 20, volume 12238
of LNCS, pages 579–599. Springer, Heidelberg, September 2020.

[HIJ+17] Shai Halevi, Yuval Ishai, Abhishek Jain, Ilan Komargodski, Amit Sahai, and Eylon
Yogev. Non-interactive multiparty computation without correlated randomness. In
Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 181–211. Springer, Heidelberg, December 2017.

[HLP11] Shai Halevi, Yehuda Lindell, and Benny Pinkas. Secure computation on the web: Com-
puting without simultaneous interaction. In Phillip Rogaway, editor, CRYPTO 2011,
volume 6841 of LNCS, pages 132–150. Springer, Heidelberg, August 2011.

[JKK14] Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-
protected secret sharing and T-PAKE in the password-only model. In Palash Sarkar
and Tetsu Iwata, editors, ASIACRYPT 2014, Part II, volume 8874 of LNCS, pages
233–253. Springer, Heidelberg, December 2014.

[JKX18] Stanislaw Jarecki, Hugo Krawczyk, and Jiayu Xu. OPAQUE: An asymmetric PAKE
protocol secure against pre-computation attacks. In Jesper Buus Nielsen and Vincent
Rijmen, editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 456–486.
Springer, Heidelberg, April / May 2018.

[JL09] Stanislaw Jarecki and Xiaomin Liu. Efficient oblivious pseudorandom function with
applications to adaptive OT and secure computation of set intersection. In Omer Rein-
gold, editor, TCC 2009, volume 5444 of LNCS, pages 577–594. Springer, Heidelberg,
March 2009.

41

[JS08] Tibor Jager and Jörg Schwenk. On the equivalence of generic group models. In
Joonsang Baek, Feng Bao, Kefei Chen, and Xuejia Lai, editors, ProvSec 2008, volume
5324 of LNCS, pages 200–209. Springer, Heidelberg, October / November 2008.

[LPS04] Ben Lynn, Manoj Prabhakaran, and Amit Sahai. Positive results and techniques for
obfuscation. In Christian Cachin and Jan Camenisch, editors, EUROCRYPT 2004,
volume 3027 of LNCS, pages 20–39. Springer, Heidelberg, May 2004.

[Mau05] Ueli M. Maurer. Abstract models of computation in cryptography (invited paper).
In Nigel P. Smart, editor, 10th IMA International Conference on Cryptography and
Coding, volume 3796 of LNCS, pages 1–12. Springer, Heidelberg, December 2005.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[TPY+19] Kurt Thomas, Jennifer Pullman, Kevin Yeo, Ananth Raghunathan, Patrick Gage Kel-
ley, Luca Invernizzi, Borbala Benko, Tadek Pietraszek, Sarvar Patel, Dan Boneh, and
Elie Bursztein. Protecting accounts from credential stuffing with password breach alert-
ing. In 28th USENIX Security Symposium (USENIX Security 19), pages 1556–1571,
Santa Clara, CA, August 2019. USENIX Association.

[Wee05] Hoeteck Wee. On obfuscating point functions. In Harold N. Gabow and Ronald Fagin,
editors, 37th ACM STOC, pages 523–532. ACM Press, May 2005.

42

	Introduction
	Overview of Our Results
	Related Work

	Preliminaries
	Idealized Models
	Obfuscation

	Defining io2PC
	Simulation Rate
	Server Compromise and Offline Evaluation
	Preventing Precomputation

	io2PC for Random-Oracle-Model Obfuscation
	Oblivious PRF
	io2PC Protocol
	Using Verifiable OPRF

	io2PC for Generic-Group Obfuscations
	Generic Groups
	Personalized Generic Group
	Protocol for Personalized Generic Groups
	Proof

	io2PC Protocol for Generic-Group Obfuscation

	Compatible Obfuscations
	Point Functions
	Hyperplane Membership
	Obfuscation
	Virtual Black-Box Property
	Extractability

