






4. RESULT AND DISCUSSION

In this study, we investigated the performance of the trans-
former architecture to radar echogram images using different
patching schemes. To evaluate the model’s performance, the
sigmoid outputs were first thresholded to generate a binary
(layer or no-layer pixel) output. These binary outputs are sub-
sequently post-processed to uniquely identify and track each
accumulation layer.

The mean absolute error of each layer in the 128 echograms
in the L1 test set was calculated by comparing each layer to
the corresponding manually annotated ground truth. No-
tably, when using the cropped patch, as depicted in Figure
3, the model exhibited poor performance and failed to ac-
curately identify the snow layers in a distinctive manner.
The cropped patching scheme, although trained with similar
hyper-parameters and model architecture, falls short when
compared to the other schemes. This is likely because the
rectangular cropping of the echograms distorts the natu-
rally occurring spatial and temporal patterns captured by the
echogram images.

5. CONCLUSION

The EchoViT (Echogram Vision Transformer) model takes its
inspiration from the classic ViT designed to investigate dif-
ferent “patchifying” schemes for remotely-sensed echogram
images. To generate the desired dense pixel-wise classi-
fication output, we designed a simple fully convolutional
prediction module to process the output of the encoder. Our
experiments reveal that fast-time and slow-time patching
schemes correctly model the input-output relationship of the
echograms and the internal layers by correctly tracking the
snow accumulation layers in the echograms.

More so, the EchoViT establishes a new state-of-the-art
performance of 3.3 overall mean absolute error (MAE) on the
L1 test segment of the CREED dataset which is equivalent
to a sterling submeter (∼ 14cm) tracking error. This sur-
passes the previous benchmarks by top convolutional-based
models such as UNet and FCN. This demonstrates the viabil-
ity of Transformer architectures to solve the radar echogram
layer tracking (RELT) problem prompting the need to explore
transformer-based semi-supervised and unsupervised models
to take advantage of the ever-growing large repertoire of un-
labelled remotely-sensed data.
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