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Abstract—Information-theoretic stealth attacks are data injec-
tion attacks that minimize the amount of information acquired by
the operator about the state variables, while simultaneously lim-
iting the Kullback-Leibler divergence between the distribution
of the measurements under attack and the distribution under
normal operation with the aim of controling the probability of
attack detection. For Gaussian distributed state variables, attack
construction requires knowledge of the second order statistics
of the state variables, which is estimated from a finite number
of past realizations using a sample covariance matrix. Within
this framework, the attack performance is studied for the attack
construction with the sample covariance matrix. This results
in an analysis of the amount of data required to learn the
covariance matrix of the state variables used on the attack con-
struction. The ergodic attack performance is characterized using
asymptotic random matrix theory tools and the variance of the
attack performance is bounded. The ergodic performance and
the variance bounds are assessed with simulations on IEEE test
systems.

Index Terms—Data injection attack, information-theoretic
stealth attacks, statistical learning, random matrix theory, ergodic
performance, variance of performance.

I. INTRODUCTION

D
ATA injection attacks (DIAs) are a type of cyber-security
threat that aim to modify the data exchange between the

components of a power system by exploiting existing vul-
nerabilities of the sensing and communication systems [1].
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Specifically, DIAs alter the measurements acquired by mon-
itoring equipment, such as remote terminal units, to corrupt
state estimates without triggering bad data detection mecha-
nism used by the operator [2]. Attack construction strategies
vary for different estimation frameworks and abnormal data
detection approaches. For the conventional framework consist-
ing of least squares estimation and residual-based detection, it
is shown in [2] that attacks that lie in the column space of the
system Jacobian matrix are undetectable. However, the rapid
growth of the cyber layer in the smart grid enables novel esti-
mation and detection methods that incorporate system model
knowledge and integration of multiple data sources. As a
result, efficient attack strategies need to adapt in this chang-
ing landscape to multiple estimation paradigms. For instance,
within a Bayesian framework with minimum mean square
error (MMSE) estimation, the attack trades off mean square
error disruption for probability of detection [3], [4]. In particu-
lar, the attack construction leverages the linear MMSE estimate
to identify the signal subspace that is most vulnerable to addi-
tive distortion while minimizing the probability of detection
of a likelihood ratio test (LRT).

There are also multiple variants that incorporate different
operational constraints for the attacker. For instance, introduc-
ing the �0 norm of the attack vector as minimization objective
yields sparse attacks that decrease the number of sensors that
need to be compromised by the attacker to decrease the diffi-
culty of launching the attack [5], [6], [7], [8]. Sparse attacks
are constructed in a distributed settings with multiple attackers
in [9] and [10]. Information-theoretic attack constructions [11],
[12] stem from the aspiration of targeting universal disrup-
tion measures that pose a data-integrity threat for the operator
under a wide range of estimation frameworks. In this setting,
the attacker aims to limit the amount of information acquired
by the operator from the grid measurements by constructing
random attacks that minimize the mutual information between
the measurements and the state variables. These attack con-
structions require prior knowledge about the power system,
specifically the Jacobian matrix of the power system and the
distribution of the state variables, to determine the distri-
bution of the attack vectors. Under a Gaussian assumption
for the state variables [3], [4], [12], the knowledge required
reduces to the second order statistics of the state variables.
Naturally, perfect knowledge of the second order statistics of
the state variables is not attainable in practice, and as a result,
the performance of such attacks degrades as a result of hav-
ing imperfect statistics. With that motivation, we study the
performance loss faced by an attacker as a result of having
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access to imperfect knowledge about the distribution of the
state variables. Specifically, we study the setting in which the
attacker has access to a finite number of realizations of the
state variables, for instance obtained from historical data, and
learns the distribution of the state variables from them.

Imperfect system knowledge has been studied in differ-
ent settings. For example, it is shown in [13] that stealthy
attacks can be constructed when the attacker has only partial
information about the grid. Undetectable attack constructions
that rely on imprecise branch parameters are studied in [14].
Historical operation data can also be leveraged to infer the
power system parameters and obtain a statistical description
of the system, which can be capitalized by the attacker. For
instance, historical data is exploited to learn the topology
of the grid in [15]. Furthermore, different statistical learn-
ing algorithms, such as principal component analysis [16] and
independent component analysis [17], can successfully be used
to infer the statistical distribution of the state variables and the
measurements.

In this paper, we characterize the learning requirements
for the information-theoretic stealth attacks proposed in [11]
and [12] via asymptotic analysis tools from random matrix
theory (RMT). To that end, we adopt a sample covari-
ance matrix estimation framework as in [18]. In this setting,
the attacker computes the sample covariance matrix from
past realizations of the state variables and uses the estimate
of the covariance matrix to construct the attack vector. Since
the sample covariance estimate is asymptotically unbiased and
the information-theoretic attack construction is linear in the
covariance matrix [11], the attack construction resulting from
using the sample covariance matrix is asymptotically optimal.
Assuming that the historical samples form a sequence of inde-
pendent and identically distributed (i.i.d.) random variables,
the sample covariance matrix is a random matrix and the
performance of the attacks is a random variable. The non-
asymptotic performance, i.e., the case with a finite number
of realizations to compute the sample covariance matrix, is
studied in [18] but the study using RMT tools in [18] only
provides bounds on the expected value of the performance. In
this paper, we focus on the asymptotic regime and characterize
analytically the ergodic attack performance and its variance.
In doing so, we establish performance tradeoffs between the
size of the data set used for computing the sample covariance
matrix and the performance of the attacks. We also obtain
variance bounds on the attack performance to characterize the
distribution of the attack performance.

Asymptotic RMT tools are well suited for modeling power
systems with incomplete state information and provide good
performance evaluations of finite dimensional systems given
their rapid convergence properties [19]. RMT tools have been
successfully used in the analysis of power systems before,
for instance in [20], [21], [22], and [23] for the measure-
ments from the IEEE test systems. Specifically, [20] and [21]
show that the distribution of the singular values or eigen-
values of voltage data from IEEE test systems satisfies the
Marc̆enko–Pastur law and the circular law, which are used
in [22] to detect abnormal events and in [23] for data visual-
ization. In a cybersecurity context, RMT tools are used in [24]

to characterize the tradeoff between the sparsity of the attacks
and the probability of passing the detection mechanism when a
limited number of measurements are available for the attacker.

The rest of the paper is organized as follows: In Section II,
a Bayesian framework with linearized dynamics for DIAs is
presented. The learning scenario and some auxiliary asymp-
totic RMT results are presented in Section III. Using these
results, a closed-form expression for the ergodic attack
performance and bounds for the variance of the performance
are proposed in Section IV and Section V, respectively, for
the attack constructed using imperfect information. Section VI
numerically evaluates the results in Section IV and Section V
on IEEE test systems. The paper ends with conclusions in
Section VII.

II. SYSTEM MODEL

A. Bayesian Framework With Linearized Dynamics

The measurement model for state estimation with linearized
dynamics is given by

Ym = HXn + Zm, (1)

where Ym ∈ R
m is a vector of random variables describing

the measurements; Xn ∈ R
n is a vector of random variables

describing the state variables; H ∈ R
m×n is the linearized

Jacobian measurement matrix that is given by

H =
∂H(Xn)

∂Xn

∣

∣

∣

Xn=x0
, (2)

in which H : R
n → R

m models the nonlinear dynamics
between the state variables and the measurements and x0 is the
operating point; and Zm ∈ R

m is the additive white Gaussian
noise with distribution N (0, σ 2I) that is introduced by the
sensors as a result of the thermal noise, in which I denotes
the identity matrix of proper dimension and σ 2 is the variance
of the noise [25], [26].1

In the remaining of the paper, we assume that the vector
of state variables follows a zero-mean multivariate Gaussian
distribution given by

Xn ∼ N (0,�XX), (3)

where �XX ∈ Sn
+ is the covariance matrix of the distribution of

the state variables and Sn
+ denotes the set of positive semidef-

inite matrices of size n×n. As a result of the linearized model
in (1), the vector of measurements also follows a multivariate
Gaussian distribution denoted by

Ym ∼ N (0,�YY), (4)

where �YY = H�XXHT+σ 2I is the relative covariance matrix.
The formulation of the problem in a Bayesian setting

demands the introduction of a modeling assumption on the
distribution of the state variables. The rationale for adopt-
ing a Gaussian distribution over the state variables in this

1Note that the linearized model is not limited to the direct current (DC)
model in the power system state estimation. This model allows the operator
to include both bus voltage magnitudes and angles as state variables, such
as PMU-based state estimation case, in the linearized model, see [26, Table
15.4, Table 15.5].
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paper stems from a maximum entropy [27] approach. Indeed,
the distribution that maximizes the entropy for given sec-
ond order moments is the Gaussian distribution [28]. As a
result, by adopting a Gaussian model, we introduce the min-
imum amount of bias into our modeling, i.e., we adopt the
distribution that is maximally non-committal over the state
variables. From a modeling perspective, this is the distribu-
tion that assumes the least amount of prior over the problem
formulation given that we only have information about the
second order statistics. Gaussian models have been previously
used in power flow problems [29], [30] and DIAs [3], [4], [12].
Interestingly, Gaussian distributions have also been observed
in some of the smart grid processes. For instance, real data sug-
gests that distribution networks are well described by Gaussian
models for both state variables [31] and consumption measure-
ments [32]. This suggests that nodal active power injections
can be modeled as Gaussian but the fitness of the model to
other state variables, such as reactive power or PMU measure-
ments, requires further study. It is worth noting, therefore, that
the insight provided by the analytical results in this paper is
more reliable the closer the state variables are to following
a Gaussian distribution. In any case, the linear observation
model in (1) gives rise to Gaussian distributions over the
state variables whenever the observations follow a Gaussian
distribution or when the deviations with respect to the opera-
tion point of the state variables can be modeled by Gaussian
distributions.

Under our setting, DIAs corrupt the measurements available
to the operator by adding an attack vector of random variables
to the measurements. The resulting vector of compromised
measurements is given by

Ym
A = HXn + Zm + Am, (5)

where Am ∈ R
m is the attack vector and Ym

A ∈ R
m is the vector

containing the compromised measurements [2]. Following the
setting of [11] and [12], an attack vector which is independent
of the state variables is constructed under the assumption that
the attack vector follows a multivariate Gaussian distribution
denoted by

Am ∼ N (0,�AA), (6)

where �AA ∈ Sm
+ is the associated covariance matrix. Because

of the Gaussianity of the attack distribution, the vector of
compromised measurements is distributed as

Ym
A ∼ N (0,�YAYA

), (7)

where �YAYA
= H�XXHT + σ 2I + �AA.

The operator of the power system makes use of the acquired
measurements to detect the attack. The detection problem is
cast as a hypothesis testing problem with hypotheses

H0 : Ym ∼ N (0,�YY), versus (8)

H1 : Ym ∼ N
(

0,�YAYA

)

. (9)

The null hypothesis H0 describes the case in which the power
system is not compromised, while the alternative hypothesis
H1 describes the case in which the power system is under
attack. Note that by assuming that the operator knows the

distribution of the attack vector, the attacker aims to induce a
probability of detection that is close to the probability of false
alarm. When the probability of false alarm is comparable to
the probability of attack detection, the operator is unable to
distinguish between bad data events during normal operation
and bad data resulting from DIAs.

For the binary hypothesis testing problem in (8) and (9),
Neyman-Pearson lemma states that LRT is the most powerful
test under a prefixed significance level α, i.e., LRT achieves
the maximum probability of detection among all the tests
with probability of false alarm smaller that α [33, Proposition
II.D.1]. As a result, the LRT is used to decide between H0 and
H1 based on the available measurements. The LRT between
H0 and H1 takes following form:

L(y)
�
=

fYm
A
(y)

fYm(y)

H1
≷
H0

τ, (10)

where y ∈ R
m is a realization of the vector of random variables

modeling the measurements; fYm
A

and fYm denote the probability
density functions of Ym

A and Ym, respectively; and τ is the
decision threshold set by the operator to meet a given false
alarm constraint.

B. Information-Theoretic Stealth Attacks

The probabilistic modeling of the system variables enables
an information-theoretic analysis of the DIAs [11], [12].
The measurement model in (1) characterizes an information
acquisition procedure, in which the operator acquires the
information about the state variables from the gathered
measurements. To that end, the attacker disrupts the
information acquisition procedure by minimizing the amount
of information acquired by the operator, or mathematically,
by minimizing the mutual information between the vector of
state variables and the vector of compromised measurements,
i.e., minimizing I(Xn; Ym

A ) in (5), where I(· ; ·) denotes the
mutual information. Given that the smart grid paradigm envi-
sions a large array of data-driven processes taking place in
the system, the use of mutual information as the measure
of the utility of the data is reasonable given the fundamen-
tal character of the mutual information. Indeed, the links of
mutual information to detection [34], estimation theory [35],
and machine learning [36] problems facilitate results in an
attack disruption metric with operational meaning on a wider
range of applications.

From the perspective of the attacker, the attacker also needs
to guarantee the attacks to be stealthy under the detection
approach, which requires the minimization of the probabil-
ity of detection under the detection approach. In particular,
minimizing the probability of detection under the LRT in (10)
is achieved by minimizing the asymptotic value of the prob-
ability, and as a result of the Chernoff-Stein lemma [28, Th.
11.7.3] [12, (10)], it is equivalent to minimizing D(PYm

A
‖PYm),

where PYm
A

and PYm denote the probability distributions of Ym
A

and Ym, respectively, and D(·‖·) denotes the Kullback-Leibler
(KL) divergence.

The stealth attacks minimize the amount of information
acquired by the operator and the probability of attack detection
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simultaneously by minimizing the data integrity cost function
given by

min
Am

I
(

Xn; Ym
A

)

+ D
(

PYm
A
‖PYm

)

, (11)

which is equivalent to

min
Am

D
(

PXnYm
A
‖PXn PYm

)

(12)

after some algebraic operations [37], where PXnYm
A

is the joint
distribution of (Xn, Ym

A ). The unweighted sum in (11) is gen-
eralized into a weighted sum in [12]. Under the Gaussian
assumption for the state variables and the attack, it is shown
in [11] that the data integrity cost function in (12) is a con-
vex function of the attack covariance matrix �AA with optimal
solution

�
�
AA = H�XXHT. (13)

A detailed account of information-theoretic stealth attacks
and the tradeoff between disruption and probability of detec-
tion are provided in [11], [12], and [38].

III. LEARNING SCENARIO FOR STEALTH ATTACKS

A. Learning Scenario Setting

As shown in (13), the attacker needs to get access to the
system Jacobian matrix H and the covariance matrix of the
state variables �XX . Note that the setting in this paper differs
from the setting in [2] in that the attacker exploits knowledge
of the second order statistics of the state variables. To that end,
the attacker estimates the covariance matrix �XX based on the
available training data. The amount of training data governs
the accuracy of the covariance matrix estimate, and therefore,
in practical settings in which the attacker has access to a finite
number of historical data samples, the attack is constructed
with partial knowledge of the covariance matrix.

In the following, we study the performance of the attack
when the covariance matrix is not perfectly known by the
attacker but the linearized Jacobian measurement matrix is
known. We model the partial knowledge by assuming that the
attacker has access to a sample covariance matrix of the state
variables. Specifically, a training dataset consisting of an i.i.d.
sequence of k samples of the state variables, i.e., of {Xn

i }k
i=1,

is available to the attacker. This assumes that the attacker has
access to noiseless realizations of the state variables that can
be used to estimate the state variables without any error. While
in practical settings access to noiseless realizations is not fea-
sible, this assumption aims to model the worst-case scenario
attack for the operators, i.e., the case in which the attacker has
access to perfect historical data of the state variables.

That being the case, the attacker computes the unbiased
estimate of the mean and the covariance matrix of the state
variables via

kX̄n =

k
∑

i=1

Xn
i , (14)

(k − 1)SXX =

k
∑

i=1

Xn
i (Xn

i )T − kX̄n(X̄n)T, (15)

where X̄n is the sample mean and SXX is the sample covariance
matrix. Given that the vector of the state variables follows a
multivariate normal distribution, it is shown in [39, Proposition
7.1] that the sample covariance matrix in (15) is a random
matrix with a central Wishart distribution given by

(k − 1)SXX ∼ Wn(k − 1,�XX), (16)

where Wn(k−1,�XX) denotes the central Wishart distribution
with k − 1 degrees of freedom and covariance matrix �XX .

Given the optimal stealth attacks expression in (13), the
stealth attacks constructed using the sample covariance matrix
follow a multivariate Gaussian distribution conditioned on the
sample covariance matrix SXX , which is given by

Ãm ∼ N (0,�
ÃÃ

) (17)

with �
ÃÃ

= HSXXHT; and as a result of (16) and [39,
Proposition 7.4], it holds that

(k − 1)�
ÃÃ

= (k − 1)HSXXHT ∼ Wm(k − 1, H�XXHT). (18)

To that end, the measurements that are under attack are
given by

Ym

Ã
= HXn + Zm + Ãm, (19)

in which Ym

Ã
∈ R

m is the vector containing the measure-
ments that are compromised by the attacks in (17). As a
result, the compromised measurements follow a multivariate
Gaussian distribution conditioned on the sample covariance
matrix SXX , i.e.,

Ym

Ã
∼ N (0,�Y

Ã
Y

Ã
) (20)

with �Y
Ã

Y
Ã

= H�XXHT + σ 2I + �
ÃÃ

. Similarly, the cost
function in (12) is described in this case as

D
(

PXnYm

Ã
‖PXn PYm

)

, (21)

where PXnYm

Ã
is the joint distribution of (Xn, Ym

Ã
).

Under the Gaussianity assumption, (21) is equivalent to
[12, Proposition 1]

F
(

�
ÃÃ

) �
=

1

2

(

tr(�−1
YY �

ÃÃ
) − log |�

ÃÃ
+ σ 2I| + log |�YY |

)

.

(22)

Given the Wishart distribution of the attack covariance
matrix in (18), the KL divergence objective in (21) and the
cost functions in (22) are both random variables. Following on
the same steps as in [18], we defined the ergodic performance

of the attack as the performance obtained by averaging over
all realizations of the training data set, i.e., as E[F(�

ÃÃ
)].

The characterization of the objective and the cost function
using RMT can be conducted in the non-asymptotic scenario
and the asymptotic scenario. Note that under both scenarios
the characterization that uses the distribution of the Wishart
random matrices directly is not manageable, so we turn to
the distribution of the eigenvalues of Wishart random matri-
ces,2 which is more tractable. The non-asymptotic scenario

2The expression in right-hand side of (22) can be rewritten as a function
of the eigenvalues of �

ÃÃ
. We will show this later in Theorem 5.
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focuses on the case when the dimensions of the random matri-
ces are finite value, i.e., k − 1 and n are finite integers. Under
this scenario, only probabilistic bounds are available for the
eigenvalues of random matrices. To that end, we can only pro-
vide upper and lower bounds on the non-asymptotic ergodic
performance [18].

Unlike the non-asymptotic scenario, the asymptotic scenario
focuses on the case when the dimension of the random matri-
ces goes to infinite, i.e., when k − 1 → ∞ and n → ∞. The
rapid convergence of the non-asymtotic results to the asymp-
totic results guarantees that the asymptotic results approximate
the non-asymptotic results well even for small values of k − 1
and n, which will be shown later by the numerical simula-
tion result in Fig. 1. The eigenvalue distributions that arise for
these types of matrices in the asymptotic case are simpler to
describe, and therefore, amenable to be studied analytically.
In fact for this case, we are able to obtain a closed-form
expression for the ergodic performance, rather than bounds
as in the non-asymptotic case [18]. Also the variance of the
performance, i.e., var[F(�

ÃÃ
)], can also be characterized by

the corresponding bounds.
In the following, we analyze the performance of the attack

constructed using the sample covariance matrix for the asymp-
totic scenario. Before that, we introduce some auxiliary
asymptotic results from RMT to aid the analysis.

B. Auxiliary Results From RMT

Asymptotic RMT mainly investigates the spectral properties
of random matrices when the dimension tends to infinity [40].
As the dimension increases to infinity, the distribution of the
eigenvalues of random matrices converges to the fixed distri-
butions, such as the Marc̆enko–Pastur law for Wishart random
matrices. We first introduce some definitions from RMT.

Definition 1 [41]: The η-transform of a nonnegative ran-
dom variable X is

ηX(γ ) = E

[

1

1 + γ X

]

, (23)

where γ ≥ 0 and thus 1 ≥ ηX(γ ) > 0.
Definition 2 [41]: The Shannon transform of a nonnegative

random variable X is defined as

VX(γ ) = E
[

log(1 + γ X)
]

. (24)

Definition 3 [41]: The asymptotic eigenvalue distribution
(AED), FA(·), of an n × n Hermitian random matrix A is
defined as

FA(x) = lim
n→∞

1

n

n
∑

i=1

1{λi(A)≤x}, (25)

where 1{·} is the indicator function and λ1(A), . . . , λn(A) are
the eigenvalues3 of A.

The following theorems characterize the Shannon transform
of the spectral distribution of a certain type of random matrices
and the variance of the logarithm of the spectral distribution.
These results enable us to characterize the asymptotic case
better.

3The eigenvalues λ1, . . . , λn are unordered eigenvalues.

Theorem 1 [41, Th. 2.39]: Let L be an n × (k − 1) matrix
whose entries are zero-mean i.i.d. random variables with vari-
ance 1

k−1 . Let T be an n × n symmetric nonnegative random
matrix, independent of L, whose AED converges almost surely
to a nonrandom limit. The AED of LTTL converges almost
surely, as k − 1, n → ∞ with k−1

n
→ β, to a distribution

whose η-transform satisfies

1

β
=

1 − η

1 − ηT(γ η)
, (26)

where for notational simplicity we have abbreviated
η

LTTL
(γ ) = η. The corresponding Shannon transform satisfies

V
LTTL

(γ ) =
VT(γ η)

β
+ log

1

η
+ (η − 1) log e. (27)

Note that the definition of β here is the reciprocal of the
definition in [41].

Theorem 2 [42, Th. 4]: Let L be an n × (k − 1) matrix
defined as in Theorem 1. Let T be an n × n matrix defined as
in Theorem 1 whose the spectral norm is bounded. As k − 1,

n → ∞ with k−1
n

→ β, the random variable

�k−1 = log |I + γ LTTL| − (k − 1)V
LTTL

(γ ) (28)

is asymptotically zero-mean Gaussian with variance

E

[

�2
]

= − log

(

1 −
1

β
E

[(

Tγ η
LTTL

(γ )

1 + Tγ η
LTTL

(γ )

)])

, (29)

where the expectation is over the nonnegative random vari-
able T , whose distribution is the AED of T.

To obtain the result in Theorem 2, a central limit theorem
result is needed for the linear spectral statistics of random
matrices. We introduce it in the following theorem.

Theorem 3 [42], [43]: Let L be an n × (k − 1) matrix
defined as in Theorem 1. Let T be an n × n matrix defined as
in Theorem 1 whose the spectral norm is bounded. Let g(·)

be a continuous function on the real line with bounded and
continuous derivatives, analytic on an open set containing the
interval
[

lim inf
n

φnmax
{

0, 1 −
√

1/β

}2
, lim sup

n
φ1(1 +

√

1/β)2
]

(30)

where φ1 ≥ · · · ≥ φn are the eigenvalues of T. Denoting the
i-th eigenvalue and asymptotic AED of LTTL by λi(L

TTL)

and F
LTTL

(·), the random variable

�k−1 =

k−1
∑

i=1

g
(

λi(L
TTL)

)

− (k − 1)

∫

g(x)dF
LTTL

(31)

converges, as k − 1, n → ∞ with k−1
n

→ β, to a zero-mean
Gaussian random variable with variance

E

[

�2
]

= −
1

2π2

∮ ∮

ġ(Z(u1))g(Z(u2))

u2 − u1
du1du2 (32)

or

E

[

�2
]

= −
1

2π2

∮ ∮

g(Z(u1))g(Z(u2))

(u2 − u1)2
du1du2, (33)
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where ġ(x) = d
dx

g(x) while

Z(u) = −
1

u

(

1 −
1 − ηT(u)

β

)

. (34)

In (32) and (33), the integration variables u1 and u2 follow
closed contours, which we may take to be non-overlapping and
conterclockwise, such that the corresponding contours mapped
through Z(u) enclose the support of F

LTTL
(·).

Here (32) follows from [42, Th. 3] and (33) follows
from [43, Th. 1.1]. These two expressions are equivalent. The
difference is that (32) is suitable for some logarithm functions,
such as g(x) = log(1+γ x) that is used for Theorem 2 and (33)
is suitable for some linear functions, such as g(x) = x that we
will discuss later in Theorem 4.

It is worth mentioning that the results in Theorem 1, 2,
and 3, including Theorem 4 in the following section, are
general results, in which the distribution of entries in L is
not specified. The only requirement is that the matrix L is
composed of zero-mean i.i.d. entries with normalized variance.

C. Asymptotic Results for Trace Terms

Using the result in Theorem 3, we introduce an analytical
expression for the variance of tr(LTTL), which we use later
in the performance analysis.

Theorem 4: Let L be an n × (k − 1) matrix defined as in
Theorem 1. Let T be a symmetric nonnegative definite ran-
dom matrix independent of Z with bounded spectral norm and
whose asymptotic AED converges almost surely to a nonran-
dom limit. As k − 1, n → ∞ with k−1

n
→ β, the random

variable

�k−1 = tr
(

LTTL
)

− (k − 1)
E[T]

β
(35)

is asymptotically zero-mean Gaussian with variance

E

[

�2
]

=
2

β
E

[

T2
]

, (36)

where the distribution of T is the AED of T.
Proof: Firstly, we note that the mean of tr(LTTL) is

given by

E

[

tr
(

LTTL
)]

= E

[

tr
(

TLLT
)]

= E[tr(T)] → nE[T], (37)

where the first equality follows from the cyclic permutation
property of the trace operator; the second equality follows
from the fact that T is independent of L, the trace is a linear
operator, and E[LLT] = I.

Secondly, we turn to obtain the variance. Taking g(x) = x

into (33) yields

E

[

�2
]

= −
1

2π2

∮ ∮

Z(u1)Z(u2)

(u2 − u1)2
du1du2 (38)

with Z(u) in (34). Without loss of generality, we assume that,
besides satisfying the condition of Theorem 3, the u1 and u2
contours do not overlap and that the u2 contour encloses the
u1 contour. Consequently, E[�2] is rewritten as

E

[

�2
]

= −
1

2π2

∮

Z(u2)

[∮

Z(u1)

(u2 − u1)2
du1

]

du2. (39)

To calculate the inner integral, we need to use Cauchy’s
residue theorem. The first step is to find the zeros and poles
of Z(u1). Finding the zeros of Z(u1) is equivalent to solving

−
1

u

(

1 −
1 − ηT(u)

β

)

= 0. (40)

Note that, for the case γ = 1, (26) can be rewritten as

1 −
1 − ηT(u)

β
= η. (41)

Given the fact that η ∈ (0, 1], as Definition 1, so Z(u1) has
no zeros. Without lost of generality, the u1 contour can be
chosen such that only the simple pole at u1 = 0 is enclosed.
As a result, the inner integral is calculated using Cauchy’s
residue theorem and is given by

∮

Z(u1)

(u2 − u1)2
du1 = 2π i

−1

u2
2

. (42)

Taking the value of the inner integral into (39) yields

E

[

�2
]

= −
1

π i

∮ (

−
1

u2

(

1 −
1 − ηT(u2)

β

))

1

u2
2

du2. (43)

The proof is completed by applying Cauchy’s residue theorem
again for (43), in which u2 = 0 is a pole of order 3.

IV. EXPLICIT EXPRESSION FOR THE ASYMPTOTIC

ERGODIC DATA INTEGRITY

As shown in (22), the objective function of the stealth
attacks constructed using the sample covariance matrix is given
by

F
�
= F

(

�
ÃÃ

)

=
1

2

(

tr(�−1
YY �

ÃÃ
) − log |�

ÃÃ
+ σ 2I| + log |�YY |

)

, (44)

where

(k − 1)�
ÃÃ

= (k − 1)HSXXHT ∼ Wm(k − 1, H�XXHT). (45)

Note that the objective given in (44) is a random variable.
Here without loss of generality, we assume that the rank

of matrix H�XXHT is equal to n, which implies that �XX

is full rank. The rationale for this assumption comes from
the observability check set by the operator, which guaran-
tees that H is a full column rank matrix with m ≥ n for
the state estimation procedure. As a result, it holds that
rank(H�XXHT) = rank(�XX).

A. Distribution of the Data Integrity

To characterize the performance of the attacks, we obtain an
equivalent expression for the performance in (44) that shares
the same distribution.

Theorem 5: The data integrity performance of the attack
constructed using the sample covariance matrix is equivalent
in distribution to the random variable given by

F
d
= tr

(

ZT
(

�̃ + I
)−1

�̃Z

)

− log
∣

∣

∣
ZT

�̃Z + I

∣

∣

∣
+ log

∣

∣

∣
�̃ + I

∣

∣

∣
,

(46)
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where
d
= denotes equivalence in distribution; Z is an n×(k−1)

matrix whose entries are zero-mean i.i.d. Gaussian random
variables with variance 1

k−1 ; �̃
�
= 1

σ 2 � ∈ R
n×n, in which �

is the diagonal matrix formed with the non-zero eigenvalues
of H�XXHT.

Proof: Note that

F
d
= tr

(

�
−1
YY V�

1
2
s ZmZT

m�

1
2
s VT

)

+ log |�YY |

− log

∣

∣

∣

∣

V�

1
2
s ZmZT

m�

1
2
s VT + σ 2I

∣

∣

∣

∣

(47)

d
= tr

(

(

�s + σ 2I
)−1

�sZmZT
m

)

+ log

∣

∣

∣

∣

�s

σ 2
+ I

∣

∣

∣

∣

− log

∣

∣

∣

∣

�s

σ 2
ZmZT

m + I

∣

∣

∣

∣

(48)

d
= tr

(

ZT
(

�̃ + I
)−1

�̃Z

)

− log
∣

∣

∣
ZT

�̃Z + I

∣

∣

∣
+ log

∣

∣

∣
�̃ + I

∣

∣

∣
, (49)

where (47) follows from the fact that (k − 1)�
ÃÃ

=

(k − 1)HSXXHT ∼ Wm(k − 1, H�XXHT), so it holds that

HSXXHT d
= V�

1
2
s ZmZT

m�

1
2
s VT, (50)

in which �s and V are the matrix of eigenvalues and the
unitary matrix of corresponding eigenvectors, respectively, of
H�XXHT, and Zm is a matrix of dimension m× (k−1) whose
entries are zero-mean i.i.d. Gaussian random variables with
variance 1

k−1 ; Given the fact that �YY = H�XXHT+σ 2I shares
the same eigenvectors as H�XXHT and log |�YY | = log |�s +

σ 2I|, (48) follows from applying the cyclic permutation to the
trace term in (47) and applying the Sylvester’s determinant
identity for the logarithm of the determinant term in (47); (49)
follows from the fact �s is a rank deficient matrix with rank
n and applying the cyclic permutation for the trace term and
the logarithm determinant term. This completes the proof.

B. Asymptotic Behaviors of Matrices

To obtain the asymptotic performance, the asymptotic
behavior of diagonal matrix �̃ ∈ R

n×n needs to be defined.
Given the definition of �̃ in Theorem 5, the asymptotic behav-
ior of �̃ can be obtained by defining the asymptotic behavior
of H and �XX . Increasing the number of buses and trans-
mission lines in the power system leads to the increase in
the dimensions of H and �XX , but the values of the additive
entries in H and �XX are determined by the arrangement and
the admittance of the transmission lines that connect the added
bus with the existing buses. To that end, there is no general
model to characterize the behavior of H and �XX when the
dimensions increase. That being the case, we choose to define
the asymptotic behavior of �̃ directly.

Let n0 denote the number of state variables within the prac-
tical power system that we are analysing and �̃n0 ∈ R

n0×n0

denote the corresponding �̃ in this system. For example, when
the voltage angles of the buses are chosen to be the state vari-
ables, there are 29 state variables for the IEEE 30-Bus test
system, which implies that n0 = 29. As a result, there are

29 positive eigenvalues of the matrix H�XXHT and �̃n0 is
of dimension 29 × 29. The empirical cumulative distribution
function (c.d.f.) of the diagonal elements of �̃n0 is given by

F
n0

�̃n0
(x) =

∑n0
i=1 1

{

λi(�̃n0 )≤x)
}

n0
, (51)

which is obtained from the parameters of the power system.
For the asymptotic scenario, we define

�̃ = �̃n0 ⊗ I, (52)

where ⊗ is the Kronecker product. Under this setting, the
dimension of �̃ is n × n with n = ln0, in which l is the
dimension of the identity matrix I. As a result, when l → ∞

in (52), the AED of �̃, i.e., F
�̃
(x), is given by

F
�̃
(x) = lim

n→∞

∑n
i=1 1

{

λi(�̃)≤x
}

n
=

∑n0
i=1 1

{

λi(�̃n0 )≤x
}

n0
, (53)

which states that the AED of �̃ is the same as the empirical
c.d.f. of the eigenvalues of �̃n0 .

Under the asymptotic setting in (52), we also have that

log |�̃ + I| =
n

n0
log |�̃n0 + I| = n�c, (54)

where

�c =
log |�̃n0 + I|

n0
. (55)

Given the fact that �̃n0 and n0 are determined by the power
system, �c is a constant for the asymptotic scenario.

C. Asymptotic Ergodic Data Integrity

The following theorem provides the asymptotic characteri-
zation of the ergodic performance of the attacks constructed
using the sample covariance matrix.

Theorem 6: Let k → ∞ with n
m

→ α and k−1
n

→ β, then
the ergodic data integrity of the stealth attacks given by

F̄n
�
= 1

n
F (56)

converges almost surely to

F̄∞
�
=

1

2

(

λ
ZT

(

�̃+I
)−1

�̃Z
− log

(

1 + λ
ZT

�̃Z

)

+ �c

)

(57)

with

E
[

F̄∞

]

=
1

2

(

� + �c

)

−
1

2

(

V
�̃
(η) − β log η + β(η − 1) log e

)

, (58)

where λA is the unordered eigenvalue of A, �c is defined
in (55),

�
�
= lim

n→∞

1

n
tr

(

(

�̃ + I
)−1

�̃

)

= E

[

�̃

�̃ + 1

]

(59)

with �̃ denoting a random variable distributed as the AED of
�̃ in (53), and η is the abbreviation for the η-transform of
ZT

�̃Z that is solved from (26) for γ = 1.
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Proof: Starting from (46) and (56), we have that

F̄∞ = lim
n→∞

1

n
F (60)

=
1

2n

(

tr

(

ZT
(

�̃ + I
)−1

�̃Z

)

− log
∣

∣

∣
ZT

�̃Z + I

∣

∣

∣
+ log

∣

∣

∣
�̃ + I

∣

∣

∣

)

(61)

→
1

2

(

λ
ZT

(

�̃+I
)−1

�̃Z
− log

(

1 + λ
ZT

�̃Z

)

+ �c

)

. (62)

We now characterize the ergodic performance, i.e., the
expected value of (62). Following the same procedure as
in (37), we have

E

[

λ
ZT

(

�̃+I
)−1

�̃Z

]

= lim
n→∞

1

n
E

[

tr

(

(

�̃ + I
)−1

�̃ZZT

)]

= �. (63)

Note that E[ log(1 + λ
ZT

�̃Z
]) is the Shannon transform of the

AED of ZT
�̃Z, which is characterized in Theorem 1. The

proof is completed by taking (27) and (63) into (62).
It follows from Theorem 6 that we need to obtain the

η-transform of ZT
�̃Z from (26) to finalize the asymptotic

characterization of the ergodic performance. The following
proposition shows that (26) has a unique solution of η.

Proposition 1: As a function of η, (26) in Theorem 1 has
a unique solution.

Proof: Note that in (26) we have

ηT(γ η) = E

[

1

1 + γ ηT

]

, (64)

where η
LTTL

(γ ) is abbreviated as η and the expectation is
over random variable T whose distribution is the AED of T.
After some algebraic manipulation, (26) can be expressed as

βη − E

[

1

1 + γ ηT

]

= β − 1. (65)

Note that γ > 0, T ∈ R
+, and the range of η is within the

interval (0, 1], see Definition 1, the left-hand term of (65) is a
monotonically increasing function of η ∈ (0, 1] and its range
contains the value β − 1. This completes the proof.

V. VARIANCE BOUNDS OF THE ASYMPTOTIC

DATA INTEGRITY

In the previous section, Theorem 6 characterizes the ergodic
performance of the attack, which is described via the equiva-
lent distribution obtained in Theorem 5. However, the ergodic
performance defined there only yields the average performance
of the attacks. The variance of the performance provides
insight into the probability that the performance concentrates
around the averaged performance. In the following, we pro-
pose the lower and upper bounds for the variance of the
asymptotic performance of attack.

Note that it would be ideal to characterize the distribu-
tion of F in (44) in a closed-form manner via Theorem 3.
However, the diagonal matrix within the trace term in (46),

i.e., (�̃ + I)−1
�̃, is different from the one within the loga-

rithm of the determinant term, i.e., from �̃. So here we choose
to bound the variance of the performance.

Given the fact that �c defined in (54) and (55) is a constant
term, we only need to characterize the variance introduced by
the first two terms on the left-hand side of (46). Using the
equivalent distribution in Theorem 5 and further denoting

Fa
�
= tr

(

ZT
(

�̃ + I
)−1

�̃Z

)

(66)

Fb
�
= log

∣

∣

∣
ZT

�̃Z + I

∣

∣

∣
, (67)

the variance of F in (44) is given by

var[F] = var[Fa] + var[Fb]

− 2ρ(Fa, Fb)
√

var[Fa]
√

var[Fb], (68)

where ρ(·, ·) denotes the Pearson correlation.
We proceed by proving that ρ(Fa, Fb) ∈ [0, 1].
Lemma 1: Let Z is an n × (k − 1) matrix whose entries are

zero-mean i.i.d. Gaussian random variables with variance 1
k−1 .

Let �̃ be an n × n diagonal and nonnegative random matrix,
which is independent of Z. Then it holds that

0 ≤ ρ(Fa, Fb) ≤ 1, (69)

where Fa and Fb are defined in (66) and (67), respectively.
Proof: Note that

Fa = tr

(

(

�̃ + I
)−1

�̃

1
2 Z

(

�̃

1
2 Z

)T
)

=

n
∑

i=1

1

1 + λσ (i)(�̃ + I)
λ̄i, (70)

where the first equality follows from the fact that �̃ is a diago-
nal matrix and from applying cyclical permutation to the trace
term; the second equality follows from [44, 6.57], in which
σ ∈ N

n is a permutation of [1, 2, . . . , n]T, and λ̄i is the i-th

eigenvalue of �̃

1
2 Z(�̃

1
2 Z)T.

Furthermore, we have

Fb = log

∣

∣

∣

∣

�̃

1
2 Z(�̃

1
2 Z)T + I

∣

∣

∣

∣

=

n
∑

i=1

log(1 + λ̄i), (71)

where (71) follows from Sylvester’s determinant identity.
From (70) and (71), it is easy to show that both Fa and Fb

are coordinatewise monotonically increasing functions of the
vector �̄ = [λ̄1, . . . , λ̄n]T. Note that �̄ is the vector of eigen-
values of a Wishart random matrix distributed as Wn(k−1, �̃).
It is proved in [45, Th. 3] that the distribution of the eigenval-
ues of a Wishart random matrix is multivariate totally positive
of order 2 (MTP2). Adding the fact that two coordinatewise
monotonically increasing or decreasing functions of a vec-
tor whose distribution is MTP2 are positively correlated [46,
(1.9)], the conclusion that 0 ≤ ρ(Fa, Fb) ≤ 1 holds for any
realizations of �̃. The theorem follows from the independence
between �̃ and Z.

Using the result in Lemma 1, the upper bound in (68) is
transformed into
(

√

var[Fa] −
√

var[Fb]
)2

≤ var[F] ≤ var[Fa] + var[Fb], (72)
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where the upper bound is achieved when ρ(Fa, Fb) = 0, and
the lower bound is achieved when ρ(Fa, Fb) = 1.

The following theorem provides a lower bound and an upper
bound for the variance of the performance.

Theorem 7: The variance of the data integrity of the attacks
constructed using sample covariance matrix, i.e., var[F] with
F defined in (44), is bound by

1

4

(

√

var[Fa]−
√

var[Fb]
)2

≤var[F]≤
1

4
(var[Fa]+var[Fb])

(73)

with

var[Fa] =
2

β
E

⎡

⎣

(

�̃

�̃ + 1

)2
⎤

⎦ (74)

var[Fb] = − log

(

1 −
1

β
E

[(

�̃η
ZT

�̃Z
(1)

1 + �̃η
ZT

�̃Z
(1)

)])

, (75)

where the expectation is over the nonnegative random vari-
able �̃, whose distribution is the AED of �̃ defined in (53);
and the value of η

ZT
�̃Z

(1) is solved from (26), which is proved
to be always solvable in Proposition 1.

Proof: Note that Fa − Fb is the only term that introduces
the randomness into the objective, as described in (68). As a
result, the theorem follows directly from combining the results
in Theorem 2 and Theorem 4 with (72).

For the variance bounds in Theorem 7, the difference
between the upper bound and lower bound is further upper

bounded by 1
2

√

2
β

√

− log(1 − 1
β
), regardless of the distribu-

tion of �̃. In particular, the difference between the bounds is
smaller than 0.0726 when β = 10 and is smaller than 0.0071
when β = 100 for the natural logarithm case.

VI. NUMERICAL SIMULATION

In this section, we present simulations to evaluate the
performance of the attacks constructed using the sam-
ple covariance matrix in practical state estimation settings.
In particular, we use the IEEE 30-Bus and 118-Bus test
systems, whose parameters and topology are obtained from
MATPOWER [47]. We assume a DC state estimation sce-
nario [25], [26], for which the bus voltage angle is chosen
to be the state variables.

It is worth mentioning that our results in this paper hold for
any covariance matrix of the state variable and for any β > 0,
regardless of the structure of the matrix. In the simulations,
the covariance matrix of the state variables is assumed to be
a Toeplitz matrix with exponential decay parameter r ∈ [0, 1],
i.e., �XX = [sij = r|i−j|; i, j = 1, 2, . . . , n], where the expo-
nential decay parameter r determines the correlation strength
between different entries of the state variable vector. And
for β, we assume that the number of samples available to the
attacker is larger than the dimension of the state variables, i.e.,
k−1 ≥ n or β ≥ 1. This guarantees that the objective function
in (22) is always computable for the nonasymptotic case, i.e.,
for the practical IEEE test systems. The Signal-to-Noise Ratio

Fig. 1. Performance of the asymptotic ergodic data integrity in Theorem 6
for r = 0.1 and r = 0.8 when SNR = 30dB on IEEE 30-Bus test system.

Fig. 2. Performance of the asymptotic ergodic data integrity in Theorem 6
for r = 0.1 and r = 0.8 when SNR = 30dB on IEEE 118-Bus test system.

Fig. 3. Performance of the asymptotic ergodic data integrity in Theorem 7
for r = 0.1 and r = 0.8 when SNR = 30dB on IEEE 30-Bus test system.

(SNR) of the power system is defined as

SNR
�
= 10 log10

(

tr(H�XXHT)

mσ 2

)

. (76)

Fig. 1 depicts the performance of the asymptotic ergodic
data integrity in Theorem 6 on IEEE 30-Bus test system for
r = 0.1 and r = 0.8 when SNR = 30dB, in which the
Monte Carlo performance value is the averaged performance
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Fig. 4. Performance of the asymptotic ergodic data integrity in Theorem 7
for r = 0.1 and r = 0.8 when SNR = 30dB on IEEE 118-Bus test system.

through one thousand realizations, and the optimal utility func-
tion value is the utility function value when the attacker has
perfect knowledge about the system. It is found that when the
number of samples increases, the performance of the attacks
constructed with the sample covariance matrix converges to the
optimal value. More importantly, the asymptotic characteriza-
tion approximates the non-asymptotic case described by the
real power system well. It is worth to mentioning that the
superb approximation still holds when the SNR changes. The
same phenomenon is observed for the simulation on IEEE
118-Bus test system, which is shown in Fig. 2.

Fig. 3 depicts the performance of the bounds that are
proposed in Theorem 7 for the IEEE 30-Bus test system when
r = 0.1 and r = 0.8 with SNR = 30dB. Compared with
the case when SNR = 10dB, it is found that the bounds,
especially the lower bound, is tighter when the SNR value is
high. Furthermore, the variance obtained by the Monte Carlo
approach is closer to the upper bound when the number of
samples is small compared with the dimension of the system,
i.e., β is small, and when SNR is high. The same phenomenon
is observed for the simulation on IEEE 118-Bus test system,
which is shown in Fig. 4. Interestingly, the variance and the
upper and lower bounds are comparable for both the IEEE
30-Bus test system and the IEEE 118-Bus test system. This
suggests that the tightness of the bounds does not change with
the size of the system.

It is worth mentioning that the conclusions in the preceding
context also hold for the linearized AC model in (2). From a
practical point of view, the results indicate that when the num-
ber of samples in the training set is at least 10 times larger than
the dimension of the vector of state variables, the performance
of the stealth attacks is close to that of the attack construction
with perfect knowledge. Moreover, for that case the variance is
smaller than 0.1, which suggests that the attack performance is
close to the optimal case for most training data set realizations.
This insight provides a guideline for operators on how much
historical data is safe to share between different stakeholders
in the power system. For instance, the historical data, such as
voltage angle and magnitude, owned by Transmission System
Operators or by Distribution System Operators might pose a
risk depending on the size of the data set determined by β. Our
analytical results provide a quantitative framework to assess

the risk of sharing historical data in platforms such as the data
exchange hubs of the National Regulatory Authority [48].

VII. CONCLUSION

In this paper, the learning requirements for information-
theoretic DIAs have been analyzed using asymptotic RMT
tools. Specifically, in this framework the attacker learns the
second-order statistics of the state variables from a limited
number of past realizations of the state variables and constructs
the attacks using the estimated statistics. Since the sample
covariance matrix is a random matrix, the performance of
the attacks using the estimated statistics is a random variable.
The ergodic performance of the attacks using the estimated
statistics has been characterized in closed-form and the vari-
ance of the performance is bounded to obtain insight into the
distribution of the performance. It is observed from the numer-
ical simulations that the non-asymptotic ergodic performance
exhibits an exponential convergence to the asymptotic case,
and therefore, the asymptotic characterization provides prac-
tical insight into the performance of stealth attacks even with
small datasets.
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