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Abstract—With the increase in cyber-physical threats and
extreme weather events, resilience of the power system has
become a problem of utmost societal importance. In this paper,
we propose a novel approach for resilience improvement of
power distribution networks, based on the notions of persistent
homology and simplicial neural networks (SNNs) which are new
directions in graph learning. In particular, tools of persistent
homology allow us to capture the most essential topological
descriptors of the distribution network. In turn, extending the
convolutional operation to simplicial complexes on the distribu-
tion network, using the Hodge-Laplacian analytics, enables us to
describe complex interactions among multi-node higher order
graph substructures. Such higher order graph substructures
are of particular importance in distribution networks, since a
change in power demand at a load bus (or the power supplied
from a substation) will produce a corresponding perturbation
in nodal variables (such as the bus voltages) and edge variables
(such as branch currents). We validate our new Higher-Order
Topological Neural Networks (HOT-Nets) model for contingency
classification of three test distribution networks, the IEEE 37-
bus feeder, IEEE 123-bus feeder, and the 342-bus low voltage
network. Our experiment results on two case studies (i.e., (i) with
sensors placed at all the buses alone in the networks and (ii) with
partial observability in the networks) indicate that HOT-Nets
substantially outperforms 9 state-of-the-art methods, yielding
relative gains of up to 14.04% in terms of system resilience
classification.

Index Terms—Resilience, distribution network, graph neural
networks, graph learning.

I. INTRODUCTION

A resilient power network is crucial for the security and
prosperity of a society. The alarming increase of outages
in the power network due to extreme weather events and
cyber-physical attacks has further necessitated enhancing the
resilience of the power network infrastructure. This includes
strategies to prevent, detect, and mitigate outages caused
by contingency events. Outage detection in the distribution
network (DN) is hence an important facet for improving the
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resilience and provides the much needed real-time situational
awareness prior to implementing restorative actions [1], such
as distributed energy resource dispatch, network reconfigura-
tion [2] and sectionalizing into microgrids [3]. Additionally,
the knowledge of the operating status of the DN is critical for
state estimation, monitoring of distributed energy resources,
and management of demand response [4], [5].

Line failures or short circuit faults in the DN may be caused
due to natural reasons (such as aging and extreme weather)
or cyber-physical attacks. During such adverse conditions,
the protective devices function to automatically isolate the
faulted components, and disconnect the downstream network
with its connected loads from the main grid, thereby resulting
in an outage. Fault diagnostics (determining the location
and the type of failure) are often performed after detecting
an outage [6]. Hence, outage detection is preeminent and
corresponds to the task of finding the status of the network
functionality including that of the protective devices [7].

The transmission network is known to be a critical infras-
tructure and hence has a widespread presence of advanced
communication, metering, and sensor equipment (such as pha-
sor measurement units, PMUs). Several techniques have been
proposed for outage detection in transmission networks, such
as Bayesian regression [8] and sparse vector estimation [9].
In contrast, the DN outage detection is more challenging
considering the unobservability of the network [10]. This
is because until recently, the DN was overlooked in terms
of its criticality which is now changing with the transition
towards the smart grid concept and decentralization of the
grid. Unlike the transmission network, the DN traditionally
has a radial structure, larger reactance-resistance ratios, and is
spread out with hundreds of thousands of nodes. Hence, many
of the algorithms developed for the transmission networks
may not be suitable for DN outage detection. Additionally,
increasing the number of sensors to impart global observability
to the DN would result in high installation and mainte-
nance costs [11]. On the other hand, with innovations in
instrumentation technology, a decrease in total sensor cost
is expected over the years. Despite this, considering factors
such as latency and communication bottleneck with the DN
size [5], limited sensors placed optimally at select locations
are deemed to be sufficient to capture the system state. This
is because any information relayed to the distribution system
operator is desired to be real-time so as to enable instantaneous
control and transfer to the emergency management system if
necessary.

Sparse sensor placement is an area with a plethora of
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research surrounding the advancements in compressed sensing.
Sparse sensors and related network classification or signal
reconstruction are attributed to the behavior of complex high
dimensional dynamic systems to exhibit low dimensional
patterns [12]. These patterns can be exploited to learn the
system state using data-driven techniques. There exist different
streams of data in the DN. The supervisory control and data
acquisition (SCADA) system provides the electrical measure-
ments and status of the devices in the primary substations,
and is expected to cover the lower voltage networks in the
imminent future. Power consumption and generation of cus-
tomers in the DN are measured using the advanced metering
infrastructure (AMI). The smart meters in this class can also
provide the voltage and current magnitudes at several points
in the network. Others such as micro-PMUs and linewatch
sensors provide the real and reactive power flows along the
lines incident to the node at which these are placed [13].
Time series measurements from PMUs specifically designed
for DNs are also being employed for analytics and diagnostics.
Optimal placement of these devices in the DN has already
been studied in several works such as [1], [7] and is beyond
the scope of our paper.

The data from the sensors can be used for three different
categories of tasks, i.e., predictive, prescriptive, and descrip-
tive. In predictive approaches, historical data will be used
to predict the state of the network or events in the near
future. State estimation is a common task in this category.
Switching (network reconfiguration) and load shedding, etc.,
fall in the class of prescriptive tasks where suitable actions
and/or probable outcomes are prescribed based on the current
system state. Descriptive approaches are used to learn from
past behaviors to classify elements into groups [14]. Fault
diagnostics and outage detection are typical examples in this
category and usually encompass classification and clustering
techniques. In this paper, the authors propose a new graph
learning architecture for descriptive tasks, in particular outage
detection using available sensor measurements.

Until recently, the DN operators gathered information about
the network functionality from customer calls and crew inspec-
tions, or using the signals picked up by sensors in the sub-
station [7]. Following this, knowledge based systems utilizing
both customer calls and polling from AMI resources were used
for identifying DN outages [15]. This however, lacked in a
real-time identification of the overall system performance con-
sidering the expense of acquiring data and the computational
constraints associated with size. Further with the deployment
of smart sensors, direct monitoring of the status of some of the
network parameters and the substation electrical parameters
was made possible. Considering the requirement for timely
detection of network contingencies given sparsity in sensors,
machine learning (ML) models are considered as a good fit
and hence employed in several works such as that in [6].

Extreme events which result in network outages are known
to be high-impact, low-probability events. A major limitation
associated with this is the non availability of sufficient data
(from sensors during outages) to train the ML models. This is
often mitigated by the adoption of pseudo measurements (e.g.,
historical load forecasts and weather predictions) and physics

based (power flow) models. On the other hand, different outage
scenarios may have nearly similar observations in power flows,
thus resulting in a non-unique mapping, which is challenging
to learn [5]. Hence, using a naive ML approach with pseudo
measurements and power flow measurements may not be
sufficient. The actual power flow is essentially a function of
the network topology, load demand, and the outage scenario in
the network [7]. This implies that factoring in the topological
aspect of the DN is pertinent for the outage detection task and
has received relatively little attention in the literature.

The DN has an inherent graph structure, with buses as
nodes, and lines or transformers as edges. There also exists
a strong interdependence among state variables such as bus
voltages, and line flows which can be modeled as node
and edge variables respectively. Considering that component
failures result in changes in the topology of the distribution
feeder, and the underlying network connectivity also affects
the scale of system degradation, we adopt a learning-over-
graph approach to detect power disruption in the network.

To address the above mentioned limitations, and in partic-
ular, to account more accurately for the role of local topolog-
ical information in the DN as well as the latent multi-node
interactions among loads, substation buses and the subsequent
branch flows, we propose a novel deep neural architecture,
namely, Higher-Order Topological Neural Networks (HOT-
Nets) which fuses two emerging directions in graph learning,
ie., a fully trainable topological layer and a convolution
operation on simplicial complexes. We extensively validate
the HOT-Nets architecture for outage detection on power dis-
tribution networks. Our findings show that HOT-Nets delivers
significant improvements in the classification of distribution
system outages, with relative gains up to 14.04%, compared
to 9 state-of-the-art deep learning methods.

The main contributions of this work can be summarized as
follows:

+ We introduce the concepts of topological signatures and
higher order interactions among multi-node graph sub-
structures into learning of power distribution systems, by
aggregating the benefits of persistent homology, Hodge
theory, and deep neural networks. To the best of our
knowledge, neither tools of persistence homology nor
Hodge-Laplacians alongside graph neural networks have
previously been applied in conjunction with any resilience
related task in distribution grids.

o To the best of our knowledge, this is the first deep neural
architecture that leverages both the utility of a simpli-
cial convolutional layer and a fully trainable topological
layer. Considering the slow adoption of graph learning
techniques in power system applications, our work goes
even beyond this to leverage tools of topological data
analysis in characterizing distribution networks.

« To enable the resilient operation of the distribution net-
work, we develop a model for detecting outages in a
practical distribution network with sparse sensors. The
model is validated on two conventional radial and one
urban, low voltage meshed distribution networks. Addi-
tionally, two case studies, i.e., one with sensors placed at
all the buses alone in the networks and another one with
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partial observability in the networks are performed. The
performance of the model is compared with state-of-the-
art learning models.

II. RELATED WORK

Outage detection and resilience in power distribution
networks The degradation of the system state with the evo-
lution of high impact, low probability extreme events in
the DN is a temporal process, which can be categorized as
before, during, and after an event. Hence, the tasks associated
with outages can be classified as prediction, detection, and
mitigation accordingly. It is important to infer the system status
during or immediately following line outages prior to taking
restorative actions such as network reconfiguration, intentional
islanding [16], etc. Generally, outage detection relies on using
sensors allocated in the DN as, for example, discussed in [5],
[6].

In related tasks such as state estimation and topology iden-
tification, several works have employed classical approaches
such as weighted least square and weighted least absolute
value methods. In these methods, state estimation or topol-
ogy identification is modeled as optimization (usually mixed-
integer linear programming) problems that can be solved using
suitable solvers. In [17], for example, a reformulated version
of the weighted least absolute value (WLAV) method has been
used for topology identification. Although the WLAV is more
robust against bad data (compared to weighted least square op-
timization methods), they are computationally expensive and
sensitive to measurement uncertainty, making it unsuitable for
real-time online state estimation. Additionally, the robustness
and bad data rejection by the WLAV method are also attributed
to measurement redundancy which may not be present in
the distribution networks [17]. The distribution networks are
often only partially observable due to limited sensor placement
in the network. This is because the distribution network is
considerably large with hundreds of thousands of nodes/lines
and it may not be economically feasible to allocate sensors
for each component. However, the limited sensors are placed
optimally such that the network state can be derived from the
sparse signals. This principle of compressed or sparse sensing
is used in [18], however, with a mixed integer non-linear
programming approach which is computationally intensive,
given the NP-hard nature of the state estimation problem. In
contrast, some works use the principle of compressed or sparse
sensing as in [18], however, with a mixed integer non-linear
programming approach which is computationally intensive,
given the NP-hard nature of the state estimation problem.

Considering outage-specific tasks in DN, in [5], a strat-
egy of partitioning DN into sub networks which are further
divided into multiple control areas is adopted. Similarly,
in [6], optimally placed power flow sensors and the load
estimates acquired from the advanced metering infrastructure
(AMI) are used for outage detection by dividing the tree
network into subtrees with sensors placed at the root and
boundaries of subtrees. The detector is based on a maximum
a-posteriori probability (MAP) formulation and particularly,
the graph (tree) structure of the DN is also considered with
the power flow measurements as the edge variables, and the

load forecasts as the node variables. However, as mentioned
earlier, taking into account the partial observability of the
DN with limited sensors, the non-scalability, and the latency
associated with such approaches, ML based techniques can
alternatively be adopted for real-time outage detection and
situational awareness. In this light, [19], [20] have adopted
ML approaches where the historical outage data for specific
extreme weather events is collected, analyzed, and used for
training a deep neural network to predict repair time and
restoration time. Such models are useful for post-disaster
decision making such as optimal repair and crew scheduling.
Many outage prediction models using weather data and ML
models are also available in the literature such as [21], [22]. In
particular, a graph embedding model in [22] has been adopted,
where a DN overlaying a geographical area has been modeled
as a graph to account for the spatial information and the
variation in weather with geography, while performing outage
prediction. These models can be used for early warning and
preparation for outages such as increasing storage, prosumers
trading renewable energy [23], etc. Alternatively, the outage
detection problem is addressed in [24], where social media
(tweets) are used as sensors. Although being a practical and
interesting approach, this lacks spontaneous detection as the
human response to such events is much slower compared to
the speed of outages and cascading effects in DN. There exist
models such as [25], where a data-driven scheme with smart
meter data and ML models are used for outage detection.
Alternatively, in [26], the authors propose a deep learning
(DL)-based approach for topology identification (TI) and state
estimation for an unbalanced three-phase distribution system.
These models are however purely data-driven and do not con-
sider any underlying topological functionalities to accurately
capture network dynamics.

As opposed to the large amount of work concerning out-
age prediction, outage location, and prediction of repair and
restoration time, outage detection using ML is comparatively
limited. It is, however, essential to know if there are indeed any
load outages (i.e., loads not served) and the risks associated
with line outages in real time. To enhance the accuracy of
the model used for situational awareness, incorporating the
topological information along with the physics-based power
flow information for each outage scenario in the learning
framework has not yet been explored. This is necessary
especially considering the variation in topology with outages
and the inherent graph structure of the DN with correlation
among different nodal variables.

Persistent Homology Persistent homology [27], [28] is a
suite of tools within topological data analysis (TDA) that
has shown substantial promise in a broad range of study
domains, from bioinformatics to material science to social
networks to energy systems [29], [30]. Persistent homology
(PH) has also been successfully integrated as a fully trainable
topological layer into various deep learning models, addressing
tasks such as node and graph classification, link prediction, and
anomaly detection (see, e.g., overviews in [30], [31]). More
specifically, the goal of PH is to study properties of observed
data that are invariant under continuous transformations such
as twisting, stretching, and compressing. Such properties are
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broadly referred to as shape, or topological characteristics of
the data. Nevertheless, persistent homology and TDA have
not yet been employed for resilience related tasks in power
distribution systems.

Simplicial Neural Networks Modeling higher-order inter-
actions on graphs is an emerging direction in graph repre-
sentation learning. While the role of higher-order structures
for graph learning has been documented for a number of
years [32], [33] and involves diverse applications such as
graph signal processing in electricity networks [34], [35],
dynamics of disease transmission and biological networks,
the integration of higher-order graph substructures into deep
learning on graphs has emerged only in 2020. As shown
in [36], [37], higher-order network structures can be leveraged
to improve the performance of link and trajectory prediction
tasks. Indeed, several recent studies [38]-[41] propose to lever-
age simplicial information to train neural networks on graphs.
However, none of these so-called Simplicial Neural Networks
(SNNG5s) is integrated with a fully trainable topological layer
allowing them to learn both persistent topological features
and simplicial geometry of graphs. In this paper, HOT-Nets
is proposed to address this limitation.

Graph Classification with Graph Neural Networks The
field of applying graph neural networks for graph classification
has received considerable attention in recent years. Graph Con-
volutional Networks (GCNs) [42] employs a simplified graph
convolution by aggregating the target node feature information
from its neighbors. GraphSage [43] performs sum, average,
or max-pooling neighborhood aggregation and updates the
node representation by applying a linear transformation on top
of graph convolution. Graph Attention Networks (GAT) [44]
combines graph neural networks with attention mechanism
by computing attention scores using each node’s features and
those of its one-hop neighbors. Adaptive Multi-channel Graph
Convolutional Networks (AM-GCN) [45] extract different
embeddings from node features, topological structures and
use an attention mechanism to learn the importance weights
for different embeddings. Moreover, some graph neural net-
works (GNN)-based models exploit a pooling architecture
which addresses the limitations of traditional graph pooling
architectures, i.e., being incapable of capturing the graph
substructure information. For instance, DiffPool [46] develops
a differential pooling operator that learns a soft assignment
at each graph convolutional layer. A similar idea is utilized in
EigenGCN [47], which introduces a pooling operator based on
the graph Fourier transform. Compared with these approaches,
our proposed HOT-Nets architecture can capture both the most
characteristic topological features of the graph and complex
interactions among higher-order graph structures described via
simplices. As such, HOT-Nets is the first architecture within
geometric deep learning that combines a topological layer with
learning on simplices.

III. METHODOLOGY

In this section, we present our proposed HOT-Nets model
for the graph classification task. The failure of lines in the
power DN affects the network connectivity and may result
in the isolation of buses from the main grid. Fault isolation

by the DN protection system may disintegrate it into islands
with no power generating resource, resulting in disruption of
supply at the load buses, thereby creating a network outage.
A line failure in the equivalent graph representation of the
DN corresponds to the removal of the particular edge. Despite
the removal of some edges (lines), the network may still be
functioning. This can be attributed to the meshed structure
of some networks and the presence of zero injection nodes
in the DN which carry no load. However, the power flow
variables are also required to provide an accurate description
of the system state. Further, any instance with unserved energy
is considered as an outage and those with no loss of energy
indicate the converse. This detection task is formulated as a
graph classification problem. Fig. 1 shows the overall frame-
work of our proposed model. The key idea is that HOT-Nets
incorporates both higher-order structures and local topological
information about the distribution network into the neural
network architecture. The attention mechanism then captures
dependencies among different topological representations ex-
plicitly. We start from outlining the HOT-Nets approach and
show how the proposed framework is used to learn higher-
order representations and topological signatures of distribution
networks.

Problem Definition We consider an undirected graph G =
(V, &€, A) as a model of a distribution system with nodes V and
edges £. Here [V| = N is the number of nodes and |£] = M
is the number of edges. Let A € RV*Y denote a symmetric
adjacency matrix with N nodes, X, € RV*% be a node
feature matrix, and X, € RM*? be an edge feature matrix,
where d,, and d. are the dimensions of node and edge features,
respectively. Specifically, A,, = 1 implies that there exists an
edge between nodes (buses) u and v, and A,,, = 0, otherwise.
Let D € RV*¥ be a diagonal matrix with D,,,, = >0 Auo.

The function of the proposed model is to detect the presence
of outages in the distribution network. Thus, an outage detector
is a binary classifier with ‘0’ representing a normal operation,
and ‘1’ representing power disruption. Although the outages
result in a change of network connectivity, the base network
topology is only known prior to the detection and location
of outages. However, the sensor signals superimposed on the
graph, i.e., the node variables (bus voltage and active power
supplied) and the edge variable (branch flow) vary with each
scenario and can be measured. Additionally, some of the edge
properties (such as phases, resistance, reactance, etc.) can
also be considered as edge features. Outage detection is a
graph classification task which consists of viewing the graph
(including its node and edge features) as input and predicting
its corresponding label. We assume that each graph belongs
to one of ¢ classes (here 2).

A. Preliminaries on Persistent Homology

The key approach of PH is to first associate a graph G
with some filtration: G; € Go C ... C G, = G, and then to
count various shape patterns of G; (where i = {1,2,...,k})
such as the number of connected components, triangles, and
voids, throughout this nested sequence. To make the counting
process systematic, we equip each G; with a combinatorial
object, called an abstract simplicial complex.
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Fig. 1: Framework of our HOT-Nets model for graph classification. Top row: The higher-order simplices convolution (HoSC) module is used to extract higher-
order simplices embeddings and form a primary higher-order simplex descriptor (i.e., Zf7) via the concatenate operation &. Bottom row: First, we generate
a persistence image PI; for the input graph using the filtration Slg (where ¢ = {1, 2,3}, i.e., here we display 3 different filtrations including degree-based,
betweenness-based, and closeness-based filtrations); we then feed these PIs into a CNN based model to obtain the image-level topological features. An attention
mechanism is used to adaptively learn the correlation information among higher-order structures and different topological representations.

Definition 3.1: A family of sets J# with a collection of
subsets .S is an abstract simplicial complex if for every o € S
and every non-empty subset 7 C o, we have 7 € £, that is,
J is closed under the operation of taking subsets. Elements
of ¢ are called simplices. An element o € J# such that
lo| = k + 1, is called a k-simplex. Every subset 7 C o such
that |o| = k is called a face of o. All simplices in ¢ that
have o as a face are called co-faces. Finally, the dimension d
of ¢ is the largest dimension of any of its faces.

As a result, we represent the graph filtration G; C Gy C
... € Gy = G as a filtration of abstract simplicial complexes
H(G1) € H(G2) C ... C H(Gk), which allows us to use
tools of simplicial homology, offering us with computational
techniques to study shape characteristics of G in an efficient
manner. In particular, we track which shape patterns appear in
this filtration of complexes and record indices of the first and
last appearance of each topological feature (i.e., its birth ¢, and
death ¢4, respectively). All extracted topological information
can be then summarized in a form of persistent diagram
(PD) which is a multi-set D of points in R?, such that
the x coordinate is the birth (i.e., i;) of the ¢-dimensional
topological feature (0 < ¢ < d) and the y coordinate is
the death (i.e., ¢4) of this topological feature. Since g > i,
all points in D are in the half-space on or above y = =z.
Lifespan, or persistence of a g-dimensional topological feature

is defined as iy — 7. The longer the lifespan, the likelier
the topological feature contains some important information
about the structural organization of G [48], [49]. Features with
shorter lifespans are often referred to as topological noise.

In general, there are multiple ways that a graph filtration can
be constructed (see, e.g., [S0]). Here we consider a sublevel
filtration induced by a continuous function § defined on nodes
of G. Thatis, let F : V — Rand 11 < 1n < ... < 1y
be a sequence of sorted filtered values, then % = {o € ¢ :
max,ec, §(v) < v;}. (A filtration on edges of G can be defined
in a similar manner.) As %, we use a Vietoris-Rips abstract
simplicial complex [51] due to its computational benefits. In
our study, we consider § to be a function of node degree,
betweenness, and closeness. Such an architecture with multiple
types of filtration functions allows us to better learn multi-scale
network properties along different geometric dimensions. In
particular, since in practice the power distribution network is
designed to deliver power from the substation to the consumers
connected at the different load buses, metrics such as degree
and betweenness can identify buses that carry maximal power
in the network. In turn, node closeness can identify buses
that connect the loads to the substation and hence result in
maximum disruption in case of outages.

To encode topological information presented in PD D into
GNNs, we use its vectorized representation, i.e., persistence
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image (PI) [52]. The PI is defined as a finite-dimensional
vector representation derived by a weighted kernel density
function and can be formulated in two steps. First, we map
D to an integrable function pp : R? — R2, which is called
a persistence surface. The persistence surface pp is given by
sums of weighted Gaussian kernels that are centered at each
point in D. Second, we integrate the persistence surface pp
over each grid box to obtain PIL.

More specifically, the value of each pixel z within the PI is
formed as

_ (1'*#:1:)2_*_(1‘7“!/)2
PI(Z) :// Z 2:,3(57”3;6 < 20% 25y >dydg;7 (D
2 per() T

where T'(D) is the transformation of D (i.e., T(z,y) =
(z,y — x)), g(u) is a weighting function (where the mean
p = (s, ptyy) € R?), and 6, and d, are the standard deviations
of the Gaussian kernels in the = and y direction. To gain a
better understanding of the complex representations of graph
data, we consider multiple types of filtration functions and
each filtration function corresponds to a persistence image.

B. Higher-order Simplices Convolution Module

A closely related concept to simplicial homology is the
Hodge theory, allowing us to extend the notion of a stan-
dard combinatorial graph Laplacian, which addresses diffusion
from node to node of G through edges, to diffusion over
higher-order substructures of G, described by k-simplices
of G. The generalization of graph Laplacians enables us to
account for complex multi-node interactions in G, beyond
the node level [36], [53]. Such higher-order interactions are
particularly important in the analysis of DN, where the buses
(corresponding to nodes in the graph) interact with one another
and the power flow through the branches or edges is a result
of this interaction. Any change introduced at the buses, such
as variation in load demand or power generation, affects the
state of all the system variables such as voltage, current, etc.

Definition 3.2: Let C* be a real-valued vector space en-
dowed with a basis from the oriented k-simplices. (By orienta-
tion of simplices, we mean selecting some (arbitrary) order for
its nodes, where two orderings are said to be equivalent if they
differ by an even permutation.) A linear map 0y, : C¥ — C*~!
is called a boundary operator. The adjoint of the boundary map
induces the co-boundary operator 9f : C* — C*1. Matrix
representations of 0y and 8,: are B, and B, , respectively.
In Fig. 2, we illustrate an example of generating simplicial
complexes from a synthetic power network.

An operator over oriented k-simplices Ly : C* — CF is
called the k-Hodge Laplacian, and its matrix representation is
given by

Ly, = B} By, + By11B), 1. 2)

where B,;r By, and Bk+1B,L_1 are often referred to LZO“’” and
L;*, respectively.

For example, the standard graph Laplacian Ly = BB €
RN XN s a special case of the above k-th combinatorial Hodge
Laplacian and the matrix L; € RM>*M is the Hodge 1-
Laplacian. In our experiments, following the spectral prop-

erties of the normalized Laplacian operator (see Schaub et
al. [37]), we consider the normalized Hodge 1-Laplacian

Ly = DyB] DT'By + ByD3B, Dy, 3)

where Do = max (diag(|B2|1),I) represents a diagonal
degree matrix of the edges, D1 = 2diag(|B;|D>1) represents
a diagonal degree matrix of the nodes, and D3 = %IL. For the
sake of simplicity and without loss of generality, we set k = 1.
Furthermore, we define the propagation rule for the normalized
Hodge 1-Laplacian, i.e., higher-order simplices convolution
(HoSC) module as follows:

ZG = max (W(L, 25 0%))), )
where Z;f) € RMxde is the input activation matrix to the
(-th hidden layer (where Z;IO) = X,), @fq € Rdexder
is the ¢-th layer trainable weight matrix, max (-) denotes
the element-wise max operator, and ¥(-) is a non-linear
transform consisting of a Batch Normalization followed by
a ReLU activation. In this case, the message passing scheme
on simplicial complexes are (i) from edges to edges through
nodes and (ii) from edges to edges through triangles — i.e.,
capturing how information from the edge propagates through
the surrounding nodes and faces.

The power distribution network is a real-world structure
with complex interdependencies among its key constituents
such as power flow through branches and the load (or genera-
tion) at the buses. Hence, the state of the power grid network
can be described by properties of buses (node features),
flow through branches (edge features) and network topology.
Encompassing all these within the same framework is pertinent
for realistic decision making as opposed to conceptual graphs
where one category of features is more relevant than others.
Hence, we use a Hodge 1-Laplacian considering the electrical
and topological properties of the distribution grid. From a deep
learning perspective, all learned higher-order simplices embed-
dings in different levels (layers) are combined to be a primary
higher-order simplices descriptor. That is, we concatenate the

(1,2) (2,3) (2,5) (2,7) (3.4) (3,7) (5,6) (7.8) (7,10) (7,11) (8,9) (11,12) (11,13)
1 -1 0 0 0 0 0 0 0 0 0 0 0 0

2
30 1 0 0 -1 -1 0 0 0 0 0 0 0
40 0 0 0 1 0 0 0 0O 0 0 0 0

= 6 0 0 0 0 0 1 0 0 0 0 0 =
By 70 0 0 1 0 1 0 -1 -1 -1 0 0 B;
IO A T T T T T S N
9 0 0 0 0 0 0 0 0 0 0. 1 0 0
10 0 0 0 0 0 0 0 0 1 0 0 0 0
11 0 0 0 0 0 0 0 0 0 1 0 -1 -1
12 0 0 [ 0 0 0 0 0 ) 0 0 0
T I T T A A A A I
11 11
/ \13 / \13
12 12

Fig. 2: An example of generating simplicial complexes from a synthetic
power network, where each node represents a bus. (a) By is the node-to-
edge incidence matrix; (b) Bz is the edge-to-face incidence matrix; (c) the
graph structure of the synthetic power network; (d) the simplicial complexes
of the synthetic power network.
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output of the £ higher-order simplices convolution modules
along the column dimension as

where & denotes concatenate operation.

C. Topological Signatures Representation Learning

In our experiments, we use a convolutional neural network
(CNN) based model to learn the topological features of a
persistence image. Given the persistence image of resolution
p, i.e., PI; € RP*P (where ¢ = {1,---,&} and & represents
the number of different types of filtrations), we employ a CNN
based model and global max pooling to obtain the image-level
local topological feature Z7, as

Zr, = fome(fo,(PI;)), (6)

where fomp is the global max pooling, fg, is a CNN based
neural network with parameter set 6;, and Zr, € R is the
output for the i-th persistence image PI;. Hence, we obtain
¢ different learned topological representations [Zr,, -, Zr.]
of a graph, which enables us to capture graph properties along
various geometric dimensions.

D. Attention Mechanism

To adaptively learn the intrinsic dependencies among differ-
ent higher-order simplices and topological representations, we
utilize the attention mechanism to focus on the importance of
task relevant parts of the learned representations for decision
making, i.e., (OéH, oy, ,CtTg) = Att(ZH7 ZT1 R ZT5>~
In practice, we compute the attention coefficient as follows:

a; = softmax; (Y aq tanh (27;))
exp (Y ay tanh (27;)) 7
D e {H Ty o 1e} €xP (Yau tanh (EZ;)) ’

where Yay € R is a linear transformation, = is the
trainable weight matrix, and the softmax function is used
to normalize the attention vector. Then, we obtain the final
embedding Z by combining all embeddings

Z:()LHXZH+QT1XZT1+'~~+CMTE><ZTE. (8)

Lastly, we feed the final embedding Z into a multilayer
perceptron (MLP) layer and use a differentiable classifier (here
we use a softmax layer) to make graph classification.

IV. EXPERIMENTS

A. Test Networks

The HOT-Nets model is validated on three different dis-
tribution test networks, namely the IEEE 37-bus, IEEE 123-
bus, and 342-bus low voltage networks [54]. The IEEE 37-bus
distribution network is a small size, three-phase, unbalanced,
and delta configured medium voltage network rated at 4.8 kV.
The 123-bus network is also a three-phase, unbalanced system
that operates at 4.16 kV, and has multiple shunt capacitors
and voltage regulators. The 342-bus low voltage network
(LVN) on the other hand, is a moderate size urban network
that has a meshed structure found in North America and is
unlike the traditional radial feeders. The total load on the
342-bus LVN is approximately 50 MVA and is supplied by

a 230 kV substation. The power flow and the state for the
test networks with varying scenarios are evaluated using the
OpenDSS simulation software [55].

B. Dataset Generation

Due to the lack of available data comprising of signal mea-
surements for different outage scenarios, a synthetic approach
is used to train the HOT-Nets model. This includes a scenario
generation method and evaluation of network behavior by
implementing the scenarios on the equivalent DN model in the
OpenDSS simulation tool. The network state in each scenario
includes measurements such as bus voltage, power supplied at
the buses and branch flows through the lines or transformers.
These measurements are extracted only for those buses or lines
which have a sensor installed so as to emulate a practical
distribution network. The buses and lines with existing sensors
are assumed in our study whereas this is available information
in the real-world DNs.

The scenario generation method accounts for variations in
line failures and load profiles. This also encompasses scenarios
with normal operating conditions but with load variations to
be able to differentiate the outage from normal operation.
The degradation of the distribution system due to component
failures can be approximated by randomly disconnecting com-
ponents from the network [56]. A random edge or component
removal approach can be used to obtain a generalized model
which is independent of the type of the disturbance or the
specificity of the weather-related event causing the outage in
the feeder. The nature of outages in the distribution network,
however, is often localized with a cascading effect. To emulate
the behavior of degradation of a real-world distribution feeder,
we adopt a subgraph-based random edge removal as in [57].
For the graph model representing the DN, considering the
localized effect of contingency events, a subgraph of radius
r% can be initiated around a node wu; selected at random.
Following this, a fraction of edges f*® are randomly removed
within this subgraph. Since the distribution network tends
to be geographically constrained, the probability of failure
of the edges due to extreme events can be drawn from a
uniform random distribution. The radius of the subgraph r°, a
fraction of edge failure f°, and the central node u; are varied
to obtain multiple scenarios. Additionally, annual historical
load data with an hourly resolution is used to account for
the variation in load in the DN. The time of outage for
scenarios with line failures is drawn randomly from a uniform
distribution, and the corresponding load profile is used in each
scenario. In situations where outage data for weather-related
events are available, contingency scenarios could also be
generated by simulating edge failures drawn from probability
distributions derived from the historical data. However, such a
Bayesian inference approach is beyond the scope of this work.
Equivalent graphs of the distribution feeders are constructed
by representing the substation, distribution transformers, and
other interconnecting buses as the nodes. The distribution lines
and primary transformers in the network are considered as the
edges.

Although the line failures are known while generating
scenarios for training, in the real-world network operation, this
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information is not known a-priori. Rather, the purpose of our
model is to detect the presence of one such failure. Relying
on the knowledge of the fully functional network topology,
and the varying node and edge attributes, the outage detection
model determines if edges (lines) have failed, and thus detects
the topology change due to line failures. Therefore, the graph
scenarios are dynamic in that the signals associated with nodes
and edges are varying. Note that, our topological features (e.g.,
persistence images) are extracted by using various filtration
functions (on line features and bus features) and thus the
topological signature is varying with nodes and edges in a
dynamic system.

We validate the effectiveness of our model using two
separate case studies, resulting in two different datasets. In
the first case, we assume that the actual power supplied at all
the buses can be measured by the sensors. Hence, the active
power supplied and demand estimate are considered as the
descriptive node features. The edges, however, do not have
sensors, and hence different properties (such as resistance,
reactance, phase interconnections, maximum capacity rating,
baseload and residual capacity) are used as representative edge
features.

The following are the properties used to describe an edge
(u,v):

« The phase interconnection.

o The resistance R(,,) is the equivalent line resistance

evaluated from the three phase matrix of each DN branch.

o The reactance X(,,) is the equivalent line reactance

evaluated from the three phase matrix of each DN branch.

« The base load capacity Z{} ) is the flow through the

distribution line or transformer for base load condition
without contingency.

o The maximum capacity gj“f) is the maximum permissi-

ble flow through the line or transformer.

« The residual capacity Z%, is (|Z{;%) — i o)

A statistical overview of the dataset for all three networks in
the first case study is given in Table L

For the second case, we assume partial observability in
the network with sensors placed at 45-50% of the buses and
lines in the network. Here the node features include the three-
phase voltage, active power supplied, and the demand estimate
at the buses. Of these, the former two measurements are
available in real-time only at the nodes with sensors placed.
On the other hand, the demand estimate, i.e., the demand
forecasted at the load buses is a pseudo measurement. The
edge features include resistance, reactance, maximum capacity,
residual capacity at base load, and power flow through the
branch. Except for the branchflow, the others are properties
available to the distribution system operator for all edges. The
branchflow, on the other hand, is measured continuously only
at those edges with line sensors and varies with outages. In the
synthetic approach that we adopt, the sensor measurements are
acquired from the powerflow simulator. Table II summarizes
the statistics of the dataset for all three networks considered
in the study with partial observability.

A graphical representation of the 342-bus LVN used in the
study is shown in Fig. 3. A representative failure scenario in
the 342-bus LVN is illustrated in Fig. 4. Similarly, the IEEE

37-bus network along with a contingency event induced on
the network is represented in Fig. 5.

Fig. 3: Graphical representation of the 342-bus low voltage North American
distribution network. The source node is marked ‘S’ and represented in green,
blue nodes are buses with loads, and black nodes are the interconnecting buses.

Fig. 4: Tllustration of a contingency event on the 342-bus low voltage network.
Nodes and edges are color coded. Grey nodes are buses isolated by the
network failure, black edges are functioning lines or transformers, and the
failed components or edges are represented in red.

TABLE I
SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
FULL OBSERVABILITY AT BUSES.

Dataset Graphs Nodes Edges' Features,, Featuresg Classes
IEEE 37 Bus 200 39 3534 2 8 2
IEEE 123 Bus 300 132 126.56 2 8 2
342 Bus LVN 500 390 432.39 2 8 2

The [f] means the average number of edges in a distribution network under
contingency (edge failed).
C. Baselines

We compare our proposed HOT-Nets with 11 state-of-the-art
(SOA) models, including (i) Random Forest (RF) [58], which
is a combination of a series of tree structure classifiers, (ii)
Artificial Neural Networks (ANN), which is a feedforward
multilayer percepetron (MLP) and can capture both linear
and nonlinear features; (iii) GCN, which learns node repre-
sentations by aggregating representations from neighbors; (iv)
GAT [59], which extends the graph convolutional operations
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TABLE 11
SUMMARY OF DATASETS USED IN GRAPH CLASSIFICATION TASK WITH
PARTIALLY OBSERVABLE BUSES AND LINES.

Dataset Graphs Nodes Edges' Featuresy, Featuress Classes
IEEE 37 Bus’ 300 39 3734 5 6 2
IEEE 123 Bus’ 300 132 122.87 5

342 Bus LVN’ 300 390 446.74 5 6 2

The [f] means the average number of edges in distribution network under
contingency (edge failed).

(a) Base network without contingency. (b) Network with a contingency scenario.

Fig. 5: Graphical representation of the IEEE 37-bus distribution network and
an illustration of a contingency event on the network. The source node is
represented in green and marked ‘S’, the blue nodes indicate load buses and
the black nodes are interconnecting buses. The failed components or edges
are marked in red and grey nodes are buses isolated by the failure.

in GCN with masked self-attentional layers; (v) Graph Iso-
morphism Network (GIN) [60], whose representation power
is well-matched with the Weisfeiler-Lehman test for graph
isomorphism; (vi) GraphSage [43], a graph convolutional
network framework that proposes different types of aggregator
functions; (vii) Set2Set [61], a graph convolutional network
framework, which further replaces the global mean-pooling by
global pooling operation through Long Short-Term Memory
(LSTM) networks; (viii) DiffPool [46], a graph convolu-
tional network model designed for graph level representation
learning with differential pooling layers which coarsens the
graph in a hierarchical manner; (ix) EigenGCN [47], a graph
convolutional network that deploys pooling operator based on
the graph Fourier transform; (x) Adaptive Multi-channel Graph
Convolutional Networks (AM-GCN) [45], an adaptive multi-
channel graph convolutional network model that learns the
node embedding based on both node features and topological
structures with attention mechanism; (xi) SNNs [38], a con-
volutional neural architecture for data supported on simplicial
complexes.

D. Experimental Setups

All the SOAs, including our HOT-Nets, are implemented in
Python with Pytorch 1.8.0 and executed on a server with one
NVIDIA RTX 3090 GPU card. We optimize all the models
by the Adam optimizer for a maximum of 50 epochs. We
conduct our experiments using 10-fold cross-validation and
report the average accuracy. The learning rate is searched in
{0.1,0.01,0.001, le—4, 1e—5} and layers of higher-order sim-
plices convolution module £ € {1,2,...,5} with the hidden
layer dimension nhidi°SC € {8,16,32,64}, and the dropout
rate is 0. For PI representation learning (i.e., PIs from 3
different filtrations), we train three 2-layer CNN based models
with the same hidden layer dimension nhid{™N € {8, 16,32}
and the same output dimension nhidS™"N € {16,32,64}
simultaneously. Energy is said to be unserved at a node if

the estimated load demand at the particular node is not met.
The total energy unserved for the network is the sum of the
energy unserved at all the nodes and it indicates an outage
in the network. The opposite is true if there is no unserved
energy. Hence, we label each network scenario in the outage
detection task, thereby resulting in a graph classification
with 2 classes. In our experiments, we consider ¢ = 3
different filtrations (i.e., degree-based, betweenness-based, and
closeness-based filtrations via setting the grid size of the PIs
to 50 x 50) and note that the proposed topological signatures
representation learning module can learn an arbitrary number
of filtrations on the graph. The source code is available
at https://github.com/hotnets/HOT-Nets.git.

E. Graph Classification

The evaluation results are summarized in Table III. In partic-
ular, on all three networks, the improvement gain of HOT-Nets
over the runner-ups ranges from 2.88% to 7.63%. In terms of
baseline methods, GCN only takes information from 1-hop
neighbors into consideration and is not capable of learning
topological representations of a graph. GraphSage learns a
principle of aggregation to extend GCN into the inductive
setting and shows stable improvement over GCN. Besides,
Set2Set, DiffPool, EigenGCN, and AM-GCN are SOA GCN-
based models (including global pooling, hierarchical pooling,
attention mechanism implemented over a graph network archi-
tecture, or an extension of GCN architecture to process data
supported on simplicial complexes), and SNNs are SNN-based
model. A common limitation of these SOA methods is that
they are incapable of incorporating both higher-order features
and multi-scale local topological structures. Therefore, it is
natural that HOT-Nets shows much better performance against
these SOA baselines.

The results on the case study with partially observ-
able test networks (i.e., IEEE 37 Bus’, IEEE 123 Bus’,
and 342 Bus LVN’) are summarized in Table IV. For
IEEE 37 Bus’, we observe that our HOT-Nets yields signif-
icant relative gains of 2.37% on average compared to all 9
baselines. Specifically, HOT-Nets surpasses the performances
of GNN-based models by a notable margin to reach 5.36% and
outperforms the simplicial complex-based model (SNNs) by
3.09%. For IEEE 123 Bus’, we find that our HOT-Nets model
significantly outperforms all baselines, i.e., p-value < 0.01 by
t-test. Specifically, HOT-Nets can improve upon the runner-
up of attention-based GNNs (i.e., AM-GCN) and simplicial
complex-based model (i.e., SNNs) by a margin of 2.54 and
2.36 on IEEE 123-Bus’ dataset (i.e., with unobservable distri-
bution grids scenario), respectively. Furthermore, it is apparent
to see that, our proposed HOT-Nets significantly outperforms
all baselines. HOT-Nets brings more than 4% relative im-
provement to the runner-up (i.e., DiffPool) in accuracy on
342 Bus LVN'.

Furthermore, we have also considered that real-time mea-
surements are acquired from the node and line sensors placed
in the network as in [5]. Taking into account the suggestion of
the reviewer, we have conducted another experiment for 123
bus network (denoted by IEEE 123 Bus”) with 30% sensor
density which is also used in [5]. The results of this experiment
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TABLE III
OVERALL CLASSIFICATION PERFORMANCE (%) (& STANDARD DEVIATION) OF DIFFERENT METHODS ON TEST NETWORKS FOR A CASE WITH ALL BUSES
OBSERVABLE. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

Datasets RF ANN GCN GAT GIN GraphSage  Set2Set DiffPool EigenGCN AM-GCN SNNs HOT-Nets (ours)

IEEE 37 Bus 77.61+1.55 78.21+1.48 84.451+1.67 85.024+1.74 87.284+1.97 86.9642.25 88.2041.94 90.2542.32 87.5042.36 83.98+2.03 86.65+1.80 ***97.70+1.64
IEEE 123 Bus 68.50+0.25 73.1540.85 84.331+0.77 83.80£0.76 81.91+0.79 86.00+1.30 76.67+0.82 87.674+0.90 87.73£0.89 87.68+0.15 86.69+£1.01 ***90.33+£0.73
342-bus LVN  63.3240.18 68.074+0.72 75.05+1.70 73.62£1.98 74.80+£1.91 76.47+1.67 78.39+£1.79 77.93+1.22 80.61£1.97 76.20+2.00 79.26+1.31 ***83.68+£2.03

TABLE IV
CLASSIFICATION PERFORMANCE (%) (£ STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 37 Bus’, IEEE 123 Bus’, AND 342 Bus LVN’ (LE., NEW
TEST CASE ON NETWORKS) WITH PARTIALLY OBSERVABLE DISTRIBUTION GRIDS. *** DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

Datasets RF ANN GCN GAT GIN

GraphSage

Set2Set DiffPool  EigenGCN AM-GCN SNNs HOT-Nets (ours)

IEEE 37 Bus’

83.6010.16 85.2840.49 91.9610.37 93.824+0.25 92.814+0.63 93.701+0.50 92.00+0.26 94.60+0.40 93.66 £0.23 94.2440.25 94.4240.19
IEEE 123 Bus’ 84.2940.30 87.2640.92 93.50+0.50 94.44-+0.75 94.62+0.73 95.03+£0.37 91.43+0.22 95.29+0.43 94.334+0.86 95.12+0.66 95.30+-0.43
342 Bus LVN’ 76.4940.20 76.57+0.30 83.11+0.34 83.95+0.46 85.44+0.52 84.67+0.59 83.95+0.93 87.24+0.78 83.76+0.50 85.95+0.61 89.47+0.17

**%95.67+0.15
**%97.66+0.33
**%91.11+0.46

is presented in Table V. We observe that our HOT-Nets clearly
outperforms all baselines, leading to a relative gain of 3.57%
compared to the runner-up (i.e., SNNs). As with the case study
for 50% sensor density, here the sensors have been randomly
pre-allocated at specific buses and lines. The node features and
edge features remain the same as with previous studies. The
voltage, power supplied at buses, and the power flow through
branches are available in real-time only for those nodes and
edges with sensors.

F. Ablation Study

To better evaluate the performance of Hodge Laplacian
representation, persistence images from multiple filtrations
(i.e., multifiltrations), and attention mechanism, we conduct
a comprehensive ablation study and the results are presented
in Table VI. The results show that HOT-Nets has better per-
formance over NT-Nets (i.e., instead of using the normalized
Hodge 1-Laplacian, NT-Nets uses the normalized node-level
Laplacian), ET-Nets (i.e., instead of using the normalized
Hodge 1-Laplacian, ET-Nets uses the normalized edge-level
Laplacian), HOT-Nets without attention mechanism (HOT-
Nets W/o Atrt.), HOT-Nets with only one PI for topologi-
cal signatures representation learning (HOT-Nets With One
Topo.), or HOT-Nets without any PI for topological signatures
representation learning (HOT-Nets W/o Topo.). Specifically,
we observe that when replacing the Hodge 1-Laplacian with
the node or edge-level Laplacian, the graph classification
accuracy is affected significantly, i.e., HOT-Nets outperforms
NT-Nets with relative gains of 12.99% and 4.12% for IEEE
37-bus and IEEE 123-bus networks, respectively. Moreover,
the results indicate the utility of the proposed attention mech-
anism and integration of multiple PIs into the representation
learning of topological information, in conjunction with the
classification of distribution grid status. Furthermore, we find
that combining the simplicial convolutional layer and the fully
trainable topological layer results in more informative learning
of the underlying graph structure, yielding more competitive
classification performance (where HOT-Nets achieves relative
gains of up to 7.83% and 12.99% over HOT-Nets W/o Topo.
and HOT-Nets W/o HoSC (NT-Nets), respectively).

Similarly, to demonstrate the effectiveness of our HOT-
Nets model in the IEEE 123 Bus’' dataset, we have added

the ablation study. From Table VII, the results show that all
the components are indispensable. Specifically, NT-Nets (i.e.,
without using the normalized Hodge 1-Laplacian) indicates
the importance of higher-order structures information for con-
tingency classification of distribution networks. Furthermore,
HOT-Nets w/o Topo. (i.e., without any PI for topological
signatures representation learning) shows the advantage of
leveraging topological summaries to capture hidden structural
and local topological information in distribution networks.

Our experiments demonstrate that HOT-Nets, if employed
in power distribution networks, can detect outages caused due
to single and multi component failures with higher accuracy
than SOA graph and simplicial based learning techniques. This
provides the much needed situational awareness for the net-
work under contingency, thereby enabling distribution system
operators (DSOs) to take suitable actions to mitigate outages.
Our model can also be used to assess the risk associated with
potential failure scenarios since it predicts the occurrence of
an outage. In cases where the component failures do not result
in load disruptions, the DSO can simply ensure that the faulty
area is isolated and continue to monitor power balance in the
functioning network component. However, if the failure event
results in power outage, immediate actions following isolation
such as dispatch of energy resources, repair crews, and other
control & switching actions may be required.

G. Computational Complexity

For higher-order simplices, incidence matrices B; and Bs
can be calculated efficiently with computational complexity
O(N+M) and O(M+Q) respectively, where N is the number
of O-simplices (i.e., nodes), M is the number of 1-simplices
(i.e., edges), and @ is the number of 2-simplices (i.e., filled
triangles). Persistent homology can be calculated efficiently
for dimensions 0 and 1 (i.e., having a worst-case complexity
of O(Mn(M)) with M sorted edges and 7)(-) denotes the
extremely slow growing inverse Ackermann function) and the
complexity of calculating persistent features from a filtration
is dominated by the complexity of sorting all edges, i.e.,
O(M log M).

H. Application to Practical Distribution Networks
Real-world distribution networks are widespread with hun-
dreds of thousands of nodes. Hence, sensor placement at each
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TABLE V
OVERALL CLASSIFICATION PERFORMANCE (%) (&= STANDARD DEVIATION) OF DIFFERENT METHODS ON IEEE 123 BUS”’ WITH 30% SENSOR DENSITY. ***
DENOTES THE HIGHLY STATISTICALLY SIGNIFICANT RESULT.

Datasets RF ANN GCN GAT GIN

GraphSage

Set2Set DiffPool EigenGCN AM-GCN SNNs  HOT-Nets (ours)

IEEE 123 Bus” 70.43+0.34 78.23+0.20 81.53+0.57 82.37+0.72 83.92+0.56 83.75+0.38 84.53+0.58 85.20+0.43 86.36+0.75 87.69+0.74 88.11+0.69

***91.371+0.67

TABLE VI
ABLATION STUDY OF THE NETWORK ARCHITECTURE.

Architecture Datasets

Method
Hodge Topo. Att. IEEE 37 Bus IEEE 123 Bus

HOT-Nets v v v 49770 **%90.33
Node & Topo.-Nets (NT-Nets) X v v 85.00 86.61
Edge & Topo.-Nets (ET-Nets) X v v 86.93 87.71
HOT-Nets W/o Att. v v X 93.49 88.59
HOT-Nets With One Topo. v X v 92.75 89.00
HOT-Nets W/o Topo. v X v 90.05 88.11

TABLE VII

ABLATION STUDY OF THE NETWORK ARCHITECTURE ON IEEE 123-Bus’. *
DENOTES THE SIGNIFICANT RESULT.

Method Architecture Datasets
Hodge Topo. Att. IEEE 123 Bus’
HOT-Nets v v v *97.66
Node & Topo.-Nets (NT-Nets) X v v 86.33
Edge & Topo.-Nets (ET-Nets) X 4 v 96.17
HOT-Nets W/o Att. v v X 94.53
HOT-Nets With One Topo. v X v 95.65
HOT-Nets W/o Topo. v X v 92.35

line or bus is impractical, considering the installation and
maintenance cost, and also the communication bottleneck.
Therefore, sparse signals collected from a few sensors are to
be used to accurately detect the network status in real time.
Learning based methods can be used to address these issues.
Most traditional learning techniques are however solely data-
driven without accounting for the topological interdependence
of the complex network. Factoring in topology and also
learning from both the global and local structural information
is pertinent to derive accurate conclusions about the system
state. This is evident from the performance of the HOT-
Nets and the ablation study. One such trained model could
be deployed in distribution networks where the sparse signal
measurements are continuously used to monitor the network
status.

V. CONCLUSION

To enable the resilient operation of power distribution
systems, we have proposed a new graph learning model that
leverages the utility of persistent homology on graphs and
extends the convolutional operation to simplicial complexes
on the distribution network using Hodge-Laplacian analytics.
Integrating persistent homology into learning distribution net-
works allow us to extract the most characteristic topological
descriptors of the distribution grid, while the Hodge-Laplacian
analytics account for complex interactions among the higher-

order substructures of the grid. Compared to the state-of-
the-art learning methods, the new HOT-Nets model has been
shown to deliver highly competitive performance in resilience
analysis of power distribution networks by predicting the out-
age status of a network under varying operating conditions. In
the future, we plan to exploit these concepts to also determine
the locations of outages and estimate the scale of disruption
(energy not served). Additionally, we also plan to explore the
advantages and limitations of HOT-Nets and, more generally,
simplicial neural networks with a fully trainable topological
layer for optimal design problems in general cyber-physical
systems.
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