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Abstract

Marine herbivorous protists are often the dominant grazers of primary production. We

developed a size-based model with flexible size-based grazing to encapsulate taxonomic

and behavioral diversity. We examined individual and combined grazing impacts by three

consumer sizes that span the size range of protistan grazers– 5, 50, and 200 μm—on a

size-structured phytoplankton community. Prey size choice and dietary niche width var-

ied with consumer size and with co-existence of other consumers. When all consumer

sizes were present, distinct dietary niches emerged, with a range of consumer-prey size

ratios spanning from 25:1 to 0.4:1, encompassing the canonical 10:1 often assumed.

Grazing on all phytoplankton size classes maximized the phytoplankton size diversity

through the keystone predator effect, resulting in a phytoplankton spectral slope of

approximately -4, agreeing with field data. This mechanistic model suggests the

observed size structure of phytoplankton communities is at least in part the result of

selective consumer feeding.

Introduction

Herbivorous protists are the dominant grazers of phytoplankton in much of the world’s

oceans [1, 2]. Through grazing, protists have the potential to impact planktonic community

size structure and composition, nutrient regeneration, carbon export, and food webs [3–6].

The diversity of species, feeding interactions, and prey preferences have made mathemati-

cal abstraction of protist grazing for ecosystem models difficult [7, 8], which leaves the

single largest loss factor of marine primary production poorly constrained in ecosystem

models.

Model representations of protist grazing often rely on assumptions that obscure consumer

diversity and behavior. For example, protists may be considered indistinct from mesozoo-

plankton (e.g., [9]), constrained to graze specific prey types (e.g., [10]), or prescribed to graze

prey approximately 1/10 the consumer’s size [11–13]. While these assumption are valid for

many predator-prey relationships in the plankton, protists have diverse feeding types with
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broad prey size spectra [14–17], sometimes including prey of equal or larger size than the con-

sumer [18–20]. For example, literature reviews of protistan consumers indicate that predator-

prey size ratios can be both above and below 1 [16, 17]. Furthermore, grazing rates often only

provide implicit information about prey [13, 21, 22]. Constraining consumer feeding behav-

iors and prey size ratios may obscure the mechanistic underpinnings of the effects consumers

have on phytoplankton communities.

Progress has been made to decipher the individual steps involved in planktonic grazing,

and idealized models that incorporate the details of the grazing process help determine the

underlying mechanisms that impact the planktonic community. For example, protistan graz-

ing has been broken down into the distinct but linked steps of searching, contact, capture, pro-

cessing, ingestion, and digestion [23]. Weisse et al. [15] suggested that encounter rates and

processing time drive the bulk of the numerical and functional responses of protists. Mitra

et al. [24] found that maximum ingestion and assimilation influenced temporal changes in

predator and prey biomass. Banas [25] found that the degree of prey selectivity in single and

multicellular grazers affected the variability in phytoplankton biomass, which additionally var-

ied with the timescale. Incorporating details of the feeding process thus has a demonstrable

effect on phytoplankton abundance and composition.

Building upon these efforts, we have developed a mechanistic model specifically focused on

single-celled eukaryotic grazers, a term we have used interchangeably with consumers and her-

bivorous protists. This model represents planktonic diversity via different size classes and

includes formulations based on first principles of consumers encountering and processing

prey. Compared to simpler, more prescriptive models, this flexible, empirically driven frame-

work allows for the diversity of protistan behavior to emerge and the ability to examine the

mechanistic underpinnings of the emergent results.

Here we have modeled herbivorous protist feeding behavior but recognize there are other

forms of resource acquisition besides herbivory [26, 27]. In this mechanistic model, we used

parameterizations that reflect empirical data specific to protistan behaviors (e.g., broad prey

size spectra, e.g. [15–17]). As more parameterizations emerge, different functional forms and

values can be incorporated to reflect this growing knowledge.

Within this framework, we examined the 1) prey preferences for different size consumers

and 2) how prey choice influenced phytoplankton abundances and biomass spectra. We show

how this model reflects properties of natural communities, including decreasing size spectra

[28–30], the keystone predator effect [31, 32], and dietary niche partitioning [33, 34]. These

insights highlight the top-down control herbivorous protists can have on plankton community

structure.

Materials and methods

Nutrient-phytoplankton-zooplankton model framework

We used a nutrient-phytoplankton-zooplankton (NPZ) model framework [35], modified to

include size (e.g., [22, 36]), represented as the cell diameter s:

dPðsiÞ
dt

¼ PðsiÞ mðsiÞ
N

N þ ksðsiÞ
� gðsj; siÞ

ZðsjÞ
PðsiÞ þ kzðb;Qp;i; h; cÞ

� mp

" #

; ð1Þ

dZðsjÞ
dt

¼ ZðsjÞ ggðsj; siÞ
PðsiÞ

PðsiÞ þ kzðb;Qp;i; h; cÞ
� Rðsj; v;Qz;jÞ � mzðsjÞ

" #

; ð2Þ
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NT ¼ N þ
Xn

i

PðsiÞ þ
Xm

j

ZðsjÞ; ð3Þ

Eqs (1), (2) and (3) describe the change with time t of the three state variables phytoplank-

ton biomass P, consumers biomass Z, and dissolved nutrient concentration N (Table 1). Eq

(1) describes the change in P for different size classes via growth, grazing, and general mor-

tality (symbols and dimensions in Table 2). Consumer biomass (Eq 2) varies with grazing

intake, respiration losses, and general loss (Tables 2 and 3). In this closed system, total nutri-

ents NT (Eq 3) is the sum of dissolved nutrients N and nutrients in all phytoplankton and

consumer size classes. Given our explicit inclusion of respiration, the model is parameterized

with carbon. However, we note that, throughout the entire model, we assume a Redfield

ratio of 106 C: 16 N: 1 P. Therefore, the choice of carbon is made for consistency across all

model parameters, and output and can be converted to nitrogen or phosphorous using the

appropriate conversion from the Redfield ratio. We elaborate on this point in the section

below.

Table 1. Model state variables. Model variables for the phytoplankton biomass, grazer biomass, nutrients, time, and

size.

Variable Units Description

t s time

P mM C phytoplankton biomass

si μm phytoplankton diameter for size class i

Z mM C herbivorous protist biomass

sj μm herbivorous protist diameter for size class j

i No units index for phytoplankton size class

j No units index for herbivorous protist size class

N mM C dissolved nutrients

NT mM C total nutrients

https://doi.org/10.1371/journal.pone.0280884.t001

Table 2. Size-dependent variables. The coefficient and exponent values typically correspond to a and b, respectively, in the allometric relationship r = asb for s the diame-

ter of the cell in μm and r the rate or property. Exceptions include g, which takes the form in Eq (4), h, which takes the form in Eq (5), and c, which takes the form in Eq

(7). NA means not applicable.

Variable Units Coefficient Exponent Description

μ day-1 1.36 -0.16 maximum phytoplankton growth rate

ks mM C 2.19 x 10-3 0.48 phytoplankton nutrient half saturation constant

g day-1 264.70 -1.83 herbivorous protist max grazing rate

Qp,i mmol C (phyto cell)-1 9.8 x 10-12 2.82 carbon per phytoplankton cell i

Qz,j mmol C (grazer cell)-1 9.8 x 10-12 2.82 carbon per herbivorous protist cell j

h day 4.4 x 10-3 -1.01 handling time

mp day-1 5.0 x 10-3 0 phytoplankton loss

γ No units 0.97 0 herbivorous protist assimilation efficiency

c No units 1 3 capture probability

mz,0 day-1 0.05 0 herbivorous protist basal loss

mz,v day-1 8.7 x 103 1 herbivorous protist motility-based loss

v μm day-1 1.73 x 106 1 herbivorous protist swimming speed

https://doi.org/10.1371/journal.pone.0280884.t002
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Phytoplankton variables and parameterization

Phytoplankton diameters varied from 1 to 512 μm on a logarithmic base 2 scale [37], creating

ten size classes. Growth was modeled with a Holling II form [38]. Phytoplankton maximum

growth rate μand nutrient uptake half saturation constant ks (Table 2) had an allometric form

[39] with values from [40]. Values from that study were nitrogen-based and so were converted

to carbon for this study assuming Redfield ratio, 106 C:16 N (Table 2), to preserve consistency

with other model parameters. Therefore, phytoplankton nutrient uptake of carbon is con-
strained by the amount of nitrogen that can be taken up. However, we acknowledge that car-

bon and nitrogen do not necessarily behave similarly, namely that nitrogen is generally

limiting while carbon is not, and that these elements can be cycled through different processes

(e.g., respiration). The general loss term mp is a constant rate (Table 2) within the range of

empirically measured loss values [41].

Herbivorous protist variables and parameterization

Grazing explicitly represented several aspects of the feeding process, such as consumer motility

and handling time, which can have significant impacts on predation rate [42–46]. Similar to

phytoplankton, the distinguishing trait for consumers was cell diameter (Table 1), which we

limited to three sizes 5, 50, and 200 μm. We chose these size classes specifically to be within the

size range of protistan consumers [37]. To concisely highlight changes across this broad size

range, we chose size classes that differ by an order of magnitude. We note that a finer size reso-

lution is examined in the Supporting Information, which resulted in similar grazing dynamics

as those described in the main text. Responses of intermediately sized consumers may lie

somewhere between the results presented here; although, we do not assume linear dynamics.

Grazing (Eqs 1 and 2) was modeled with a Holling II form for which there is clear empirical

support [47]. However, we acknowledge other functional forms could be employed [48, 49].

Grazing intake included the assimilation efficiency γ, parameterized based on empirical data

as the average value at 15˚C in [50] (Table 2).

In empirical [47, 51] and modeling [13, 21, 22] studies, maximum grazing rate typically

decreases monotonically with grazer size and contains only implicit information about the

prey. Given our aim to examine grazer preference for different prey sizes, we explicitly

included both the prey and consumer sizes, si and sj, respectively:

gðsi; sjÞ ¼ g0

sj
si

� �ge

; ð4Þ

The parameterization (Table 2) was based on empirical values synthesized in [40], revised

to include the prey size S1 Fig, S1 Table.

Our model includes a specific representation of the handling time h. We modified the han-

dling time formulation of [46] to allow consumers to handle prey larger than themselves [15–

Table 3. Variables based on a compilation of size-dependent relationships. Variables that are a function of several

size-dependent relationships, as described in the main text.

Variable Units Description

kz mM C herbivorous protist grazing half saturation constant

β μm3 s-1 encounter kernel

Dp μm2 s-1 phytoplankton diffusion coefficient

Dz μm2 s-1 herbivorous protist diffusion coefficient

https://doi.org/10.1371/journal.pone.0280884.t003
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17]:

hðsi; sjÞ ¼ h0

sj
si

� �he

; ð5Þ

Handling time is often assumed to be the inverse of the maximum grazing rate g. However,

an inverse of the empirically-based g values (S1 Fig, S1 Table) would mean handling time

would increase as the consumer size increases relative to the prey size. Incongruously, the

opposite pattern is a common formulation, namely that h decreases with consumer size and

increases with prey size [46, 52–56]. Furthermore, indirect measurements like the maximum

grazing rate can mask other grazing-related processes such as digestion [57]. Therefore, we

examined the handling time parameterization with direct, empirical measurements for

protistan consumers S2 Fig, S2 Table. While the relationship was not statistically significant

(r2 = 0.1, p = 0.3), we used that parameterization here as it is likely due to measurement vari-

ability rather than a lack of an effect. We did perform a sensitivity analysis using the average

handling time of 3.0x10-3 days S3 Fig. The general patterns still held; although, normalized

biomass values were not always monotonically decreasing and grazing preferences were trun-

cated for the 5-μm grazer and expanded for the multi-sized consumer system (Supporting

information).

The grazing half saturation constant kz was based on an analogy with enzyme kinetics [58].

The parameter was the ratio of the carbon content per prey cell Qp,i and the encounter kernel

β, handling time h, and capture probability c:

kz ¼
Qp;i

bhc
; ð6Þ

Qp,i is the amount of carbon in the phytoplankton cell of size class i [59]. β is the encounter

kernel, the volume of water in which the consumer can graze its prey [12]. The handling time

h indicates the amount of time it takes for the consumer to process its prey [23], and c is the

capture probability, the probability of a prey being encountered and not captured [46]. Below,

we detail the formulation of each of these functions.

The carbon content per cell was modeled for a generic plankton [59] (Table 2). The capture

probability [46] accounted for situations in which prey was encountered but not captured:

c ¼ 1 �
si

si þ sj

 !ce

; ð7Þ

This form was modified from [46] to allow diversity in predator prey sizes (Table 2). For a

grazer of a certain size, the probability of capturing prey decreased with increasing prey size

[53].

We assumed the encounter kernel (Table 3) depends on the processes of swimming and dif-

fusion [12]. The encounter kernel for swimming was modeled as

bv ¼ pðsi þ sjÞ
2v; ð8Þ

[12] for v the swimming speed of the grazer, which increased linearly with size, swimming

20 bodylengths s-1 (Table 2). For simplicity, prey did not swim. The diffusion encounter kernel

took the form

bD ¼ 4pðDP þ DZÞðsi þ sjÞ; ð9Þ

for DP and DZ the diffusion coefficients for phytoplankton and herbivorous protists,
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respectively (Table 3) [12]. The diffusion coefficient for both consumer and prey were calcu-

lated from D ¼ kT
3pZs [12] for κ Boltzman’s constant, T temperature, η dynamic viscosity (see

Supporting information). The final encounter kernel β [12] is:

b ¼ bv þ bD; ð10Þ

For a motile predator, βD is negligible compared to βv.
Respiration was the sum of both a basal R0 and motility-associated Rv rate:

R ¼ R0 þ Rv; ð11Þ

R0 varied linearly with grazing intake, with a coefficient of 0.63 [50]. Rv was based on the

idealized movement of a sphere of radius r through water with viscosity η at a velocity v [60].

Converting to a specific rate, the motility-based respiration had the form

Rv ¼ Rv;0

sjv2Z

Qz;jq
; ð12Þ

for Rv,0 a respiration coefficient of 0.041/day [60] and q the efficiency of transforming chemical

work into mechanical work, which was taken as 1% [61]. η was as above for the diffusion coef-

ficient (Supporting information).

Herbivorous protists mortality mz was composed of a constant basal value mz,0 and a motil-

ity-associated mortality denoted mz,v, that increased with motility (Table 2) [62], leading to an

increase in this parameter with increasing size. The total mortality mz was the sum of these

two rates:

mz ¼ mz;0 þ mz;v; ð13Þ

Overall, this model explicitly formulated trade-offs such that, for a given prey size, a larger

consumer had the advantage of a shorter handling time and higher encounter probability com-

pared to smaller consumers. However, larger organisms also had, for a given prey size, a lower

maximum grazing rate and higher mortality rate compared to smaller consumers. Therefore,

these parameterizations conferred trade-offs for different size grazers that a priori make their

fitness implications unclear.

Configuration of simulations

Using this model framework, we ran four model simulations. In three model runs, only

one size class of grazer was present: 5, 50, or 200 μm in diameter. A fourth simulation

included all three size classes of consumers together. All simulations were initialized with

ten phytoplankton sizes. While we appreciate the effect of total nutrient, NT, concentration

on planktonic size spectra [13, 63–65], we examined only one nutrient concentration,

within the range of another size-based NPZ model with protistan consumers [40], to focus

on grazing dynamics. Each model was integrated in time for * 30 years with a 100-second

time step and reached a steady-state in *7 years or less. The optimal prey size, defined as

the phytoplankton size that led to the greatest biomass intake independent of loss, was

determined at each time step and used as the prey choice for that entire time step. This for-

mulation increased tractability and also allowed for adaptive feeding on a relatively short

time scale, particularly in comparison to many grazing studies, which are generally on the

order of several hours to a day (e.g., [66, 67]). The single size grazer systems showed con-

stant biomass values in steady state. In the multiple sized grazer systems, the consumers

and phytoplankton showed regular oscillations with a periodicity of 24.5 days S4 Fig. We
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focus on the average biomass values from the last three years of the 30-year model run for

each system.

Using the averaged data, we examined the biomass distribution for the phytoplankton and

herbivorous protist size classes. For the phytoplankton, the biomass per size class was normal-

ized by the width of the size class. For the consumers, because there are only one or three size

classes, we divided biomass values by the grazer size to obtain normalized values.

Results

Under predation pressure by only the smallest protists (5 μm) phytoplankton biomass was dis-

tributed throughout all size classes (Fig 1). Normalized phytoplankton biomass values ranged

from 1.07 μM C μm-1 to 0.09 μM C μm-1, decreasing with increasing size (Fig 1). The normal-

ized consumer biomass was 5.85 μM C μm-1 (Fig 1). The grazer-prey biomass ratio was 0.31.

To investigate prey size selection, we calculated the proportion of times each prey size class

was grazed in the last three years of the model run (Fig 2). The 5-μm grazers consumed all prey

size classes, with generally similar preferences for all size classes, 13% of the time for the most

(1-μm) and 8% for the least (8-μm) frequently grazed phytoplankton (Fig 2a). These grazing

preferences correspond to an inversion of consumer-prey size ratios from 5:512 (* 0.01: 1)

to 5:1. While this prey size range is extremely broad, these results highlight the underlying

Fig 1. Planktonic biomass for nutrient-phytoplankton-zooplankton model systems with grazers of different sizes. The model systems include

grazers of either 5, 50, or 200 μm diameter, and the multi-consumer model system corresponds to a system with all three sized consumers. The blue

symbols correspond to the phytoplankton biomass for each of those systems (diamond for the 5-μm consumer system, upward triangle for 50-μm

consumer, downward triangle for 200-μm consumer, and square for multi-consumer system). The yellow symbols correspond to consumer normalized

biomass values (circle for the 5-μm consumer, and plus sign for the multi-consumer system). The 50- and 200-μm grazers did not survive in single

consumer size class simulations and thus no results are shown.

https://doi.org/10.1371/journal.pone.0280884.g001
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dynamics, namely generalist prey size selection, that impact the size diversity of the system

when compared to the other model runs, described below.

For scenarios including the 50- or 200-μm grazers, they exclusively grazed the 1- and 2-μm

phytoplankton size classes, respectively (Fig 2b and 2c), corresponding to 50:1 and 100:1

grazer-prey size ratios, respectively. However, the consumers were not able to persist

(biomass < 10−6 μM μm-1) in this generalized, size-dependent model for protistan consumers

since the smallest producers dominated production but were too small to meet the nutritional

requirements of the large predators. Consequently, only the smallest 1-μm phytoplankton size

class had appreciable biomass, 125 μM C μm-1, in the steady-state solution (Fig 1).

Diversity in grazer size classes imparted stability on the community composition: when all

three grazer classes were present, they co-existed along with all phytoplankton size classes (Fig

1). The normalized phytoplankton size spectrum decreased monotonically from 1.1 μM C μm-

1 to 3.7x10-3 μM C μm-1. The normalized grazer biomass values were 3.05, 0.17, and 0.06 μM

C μm-1 for the 5-, 50-, and 200-μm consumers, respectively (Fig 1). The grazer-prey biomass

ratio was 4.1.

Consumer grazing preferences in the multi-consumer simulation were different than the

single-sized grazer systems (Fig 2d). The 5-μm consumer preferred the two smallest phyto-

plankton size classes, 1 and 2 μm, in approximately equal amounts of 52% and 48%, respec-

tively. The 50-μm consumer preferentially consumed the 4- and 8-μm phytoplankton in

roughly equal amounts, about 54% and 43% of the time, respectively. The 50-μm consumer

Fig 2. Proportion of times consumers grazed different sized phytoplankton during the last 3 years of a * 30 year model run time. Model run in

which the grazers are all a. 5-μm, b. 50-μm or c. 200-μm in diameter, and d. multi-size class grazers with 5-, 50-, and 200-μm grazers combined.

https://doi.org/10.1371/journal.pone.0280884.g002
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occasionally consumed the 2- and 16-μm size classes, each about 1% of the time. The largest

200-μm consumer preferred the 16-μm size class of phytoplankton, grazing it about 21% of the

time. The largest grazer also consumed all larger phytoplankton, between 17% and 14% of the

time. The grazer-prey size ratios varied from 25:1 to 200:512 (* 0.4: 1).

Comparing among these modeled systems, the allometric scaling of phytoplankton parame-

ters allowed the smallest phytoplankton to outcompete larger phytoplankton when relieved of

top-down control (Fig 3). When consumers did persist, they were able, either singly or collec-

tively, to graze all size classes and increase the size diversity of their systems. This pattern

persisted even with a constant handling time and when eight consumer size classes were con-

sidered (Supporting information).

Discussion

Using an empirically motivated framework that models the mechanisms underlying feeding,

we examined the emergent plankton abundance and size structure as a function of grazing

behavior of herbivorous protists. This approach is in the same vein as the diet breadth [68] and

allometric diet breadth models [69, 70]. In our study, we modeled, separately and together,

three different sized consumers that each had the ability to graze any phytoplankton prey. This

flexible framework, as opposed to a more rigid, prescribed formulation of grazing, allowed us

to examine the interplay between emergent prey size choice and phytoplankton community

structure. Comparing the different systems, some fundamental features became apparent, such

as distinct grazer-prey size ratios, the keystone predator effect, and dietary niche partitioning.

The canonical 10:1 predator-prey size ratio [11, 12] did not systematically emerge, but the

simulated range when all grazer sizes co-existed (25:1 to 0.4:1) encompassed this often-

assumed value. Inversions with prey size exceeding consumer size were also supported, as has

been observed among protistan consumers [15–17]. Prey size selection was dynamic and

depended on grazer size and whether other grazers were present. Prey size selection, in turn,

had strong implications for consumer and prey survival and, consequently, the diversity of the

system.

When grazers did not consume enough prey to survive in this protistan model formulation,

only the smallest, most competitive phytoplankton persisted [65]. When consumers did sur-

vive, they grazed the smallest, most competitive prey, freeing up resources for the larger, less

competitive phytoplankton [71]. Larger phytoplankton grew until they were abundant enough

Fig 3. Changes in the size diversity of the planktonic community among four modeled systems, with each of three consumers separately or all

together. Initial conditions are in the top panels and steady-state solutions in the bottom panels. A keystone predator effect facilitates competitive

abilities of different size classed phytoplankton. The most diverse grazer community supports a diverse phytoplankton community. Sizes of symbols are

relative sizes and not to scale.

https://doi.org/10.1371/journal.pone.0280884.g003
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to be grazed. Thus, the balance between top-down and bottom-up forcing at equilibrium

determined the prey size distribution [22].

This top-down control resembled the keystone predator effect [31, 32]. In the most general

sense, a keystone predator allows competing prey to coexist [72]. More specifically, a keystone

predator consumes the most competitive prey, resulting in the survival of less competitive

prey. The concept was introduced in marine intertidal and aquatic settings [31, 73] and has

since been observed in aquatic and terrestrial ecosystems [72, 74, 75] and recreated in model-

ing studies [32, 76]. Similar to those studies, the model system in this study indicated that

selective feeding by consumers increased the size-diversity of prey by grazing the smallest,

most competitive prey, subsequently releasing resources for larger phytoplankton. Thus, more

size classes coexisted when all size classes were grazed.

Another ecological property that emerged specifically from the multiple-size grazer system

was dietary niche partitioning [33, 34]. That is, each size consumer selected largely non-over-

lapping sizes of phytoplankton to graze. The emergent, distinct grazing size preferences per-

sisted even when eight sized grazers were included S5 Fig.

Our modeled results were similar to the empirical observations of the impact of zooplank-

ton on phytoplankton in the East China Sea [77]. In that study, the size diversity of mesozoo-

plankton was the most important factor determining the top-down control on phytoplankton,

which was attributed to dietary niche partitioning.

When examining protistan grazers, there is strong evidence for size selective grazing [14,

78–80], which can lead to resource niche partitioning [55]. However, the impact of selective

feeding on the planktonic community structure can be more varied [55, 66, 81]. For example,

in a microcosm experiment, two protistan grazers showed coexistence by size-selective

resource partitioning [55]. While grazer size-selection changed the prey community struc-

ture, there was no consequent change in biomass. Our multiple sized grazer system also

showed emergent size-selective feeding, but we saw an increase in total grazer biomass

compared to the single grazer systems. Therefore, our model results are more in alignment

with the idea of complementarity [82] in which ecosystem function increases with increased

diversity.

In all our modeled systems, the normalized phytoplankton biomass spectrum decreased

as the size of the phytoplankton increased, similar to natural ecosystems [28, 29]. When the

normalized phytoplankton biomass spectrum from the multi-sized consumer system was con-

verted to units of cells per ml per size class, the spectral slope was -3.97. This slope is remark-

ably similar to the spectral slope of -4 for field data from stable mesotrophic and oligotrophic

environments ([30] and references therein). This size distribution is noticeably steeper than

that proposed by the metabolic theory of ecology for a trophic level [83].

The shape of the phytoplankton biomass spectra was attributed to consumers that grazed

larger sized phytoplankton additionally grazing larger size ranges of phytoplankton [30]. This

patterning, supported by empirical measurements [36], was an emergent property of the mod-

eled multi-sized consumer system in this study and held even when more size classes of con-

sumers were included S5 Fig. However, the steady-state biomass for the phytoplankton in this

study’s modeled systems was not only due to grazing pressure but also to phytoplankton com-

petitive ability, which was made clear from a comparison with the single-grazer systems, thus

broadening the factors that need to be considered and experimentally investigated.

Overall, this study’s model formulation includes flexible grazing behavior based on first

principles, which allowed us to investigate the impact of top-down processes in structuring the

community without the level of prescription common in planktonic grazer models. The frame-

work shown here could be used to accommodate more complex interactions and processes,

such as different resource acquisition strategies and feeding modes [54, 84] and changes in
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nutrient content of prey [24, 85] or trade-offs between phytoplankton competitive ability and

grazer defenses, including mixotrophic species [86]. These detailed representations of complex

grazer dynamics have highlighted important, grazer mediated forcing functions that structure

phytoplankton communities, which have ramifications for biogeochemical cycles.

Supporting information

S1 Fig. Regression of the ratio of consumer and prey radius against maximum grazing

rate.

(TIF)

S2 Fig. Regression of the ratio of consumer and prey radius against handling time.

(TIF)

S3 Fig. Normalized phytoplankton and grazer biomass and size classes grazed for four dif-

ferent systems in which the grazers are 5-, 50- or 200-μm in diameter, or all three grazers

sizes are present. A. Normalized biomass. The blue symbols represent normalized phyto-

plankton biomass, and the yellow symbols correspond to consumer normalized biomass. No

consumers survived when they were only of 50 or 200 μm in size, and thus those biomass val-

ues are not shown. B-E. Proportion of times each size class was grazed by the 5-μm consumer

(B), 50-μm consumer (C), 200-μm consumer (D), and all consumers together (E).

(TIF)

S4 Fig. Time-dependent normalized phytoplankton and protistan grazer biomass values

for last three years of model run. A. 5 μm grazer system. B. 50- and 200-μm grazer systems.

Note that only the 1-μm phytoplankton survived in both systems, and only those two groups

are shown. C. Multi-sized consumer system.

(TIF)

S5 Fig. Community structure for a modeled system with grazers of eight different sizes. A.

Normalized plankton size spectra. B. prey size selections for each consumer.

(TIF)

S1 Table. Measurements of maximum grazing rate.

(PDF)

S2 Table. Handling time measurements. Values for handling time, consumer radius, and

prey radius were taken from the same source. The only exception is that the prey radius for

Ochromonas in (Fenchel 1982a) which came from (Fenchel 1982b).

(PDF)
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