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Abstract

Marine herbivorous protists are often the dominant grazers of primary production. We
developed a size-based model with flexible size-based grazing to encapsulate taxonomic
and behavioral diversity. We examined individual and combined grazing impacts by three
consumer sizes that span the size range of protistan grazers— 5, 50, and 200 ym—on a
size-structured phytoplankton community. Prey size choice and dietary niche width var-
ied with consumer size and with co-existence of other consumers. When all consumer
sizes were present, distinct dietary niches emerged, with a range of consumer-prey size
ratios spanning from 25:1 to 0.4:1, encompassing the canonical 10:1 often assumed.
Grazing on all phytoplankton size classes maximized the phytoplankton size diversity
through the keystone predator effect, resulting in a phytoplankton spectral slope of
approximately -4, agreeing with field data. This mechanistic model suggests the
observed size structure of phytoplankton communities is at least in part the result of
selective consumer feeding.

Introduction

Herbivorous protists are the dominant grazers of phytoplankton in much of the world’s
oceans [1, 2]. Through grazing, protists have the potential to impact planktonic community
size structure and composition, nutrient regeneration, carbon export, and food webs [3-6].
The diversity of species, feeding interactions, and prey preferences have made mathemati-
cal abstraction of protist grazing for ecosystem models difficult [7, 8], which leaves the
single largest loss factor of marine primary production poorly constrained in ecosystem
models.

Model representations of protist grazing often rely on assumptions that obscure consumer
diversity and behavior. For example, protists may be considered indistinct from mesozoo-
plankton (e.g., [9]), constrained to graze specific prey types (e.g., [10]), or prescribed to graze
prey approximately 1/10 the consumer’s size [11-13]. While these assumption are valid for
many predator-prey relationships in the plankton, protists have diverse feeding types with
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broad prey size spectra [14-17], sometimes including prey of equal or larger size than the con-
sumer [18-20]. For example, literature reviews of protistan consumers indicate that predator-
prey size ratios can be both above and below 1 [16, 17]. Furthermore, grazing rates often only
provide implicit information about prey [13, 21, 22]. Constraining consumer feeding behav-
iors and prey size ratios may obscure the mechanistic underpinnings of the effects consumers
have on phytoplankton communities.

Progress has been made to decipher the individual steps involved in planktonic grazing,
and idealized models that incorporate the details of the grazing process help determine the
underlying mechanisms that impact the planktonic community. For example, protistan graz-
ing has been broken down into the distinct but linked steps of searching, contact, capture, pro-
cessing, ingestion, and digestion [23]. Weisse et al. [15] suggested that encounter rates and
processing time drive the bulk of the numerical and functional responses of protists. Mitra
et al. [24] found that maximum ingestion and assimilation influenced temporal changes in
predator and prey biomass. Banas [25] found that the degree of prey selectivity in single and
multicellular grazers affected the variability in phytoplankton biomass, which additionally var-
ied with the timescale. Incorporating details of the feeding process thus has a demonstrable
effect on phytoplankton abundance and composition.

Building upon these efforts, we have developed a mechanistic model specifically focused on
single-celled eukaryotic grazers, a term we have used interchangeably with consumers and her-
bivorous protists. This model represents planktonic diversity via different size classes and
includes formulations based on first principles of consumers encountering and processing
prey. Compared to simpler, more prescriptive models, this flexible, empirically driven frame-
work allows for the diversity of protistan behavior to emerge and the ability to examine the
mechanistic underpinnings of the emergent results.

Here we have modeled herbivorous protist feeding behavior but recognize there are other
forms of resource acquisition besides herbivory [26, 27]. In this mechanistic model, we used
parameterizations that reflect empirical data specific to protistan behaviors (e.g., broad prey
size spectra, e.g. [15-17]). As more parameterizations emerge, different functional forms and
values can be incorporated to reflect this growing knowledge.

Within this framework, we examined the 1) prey preferences for different size consumers
and 2) how prey choice influenced phytoplankton abundances and biomass spectra. We show
how this model reflects properties of natural communities, including decreasing size spectra
[28-30], the keystone predator effect [31, 32], and dietary niche partitioning [33, 34]. These
insights highlight the top-down control herbivorous protists can have on plankton community
structure.

Materials and methods
Nutrient-phytoplankton-zooplankton model framework
We used a nutrient-phytoplankton-zooplankton (NPZ) model framework [35], modified to
include size (e.g., [22, 36]), represented as the cell diameter s:
dp(s)) N Z(s)
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Table 1. Model state variables. Model variables for the phytoplankton biomass, grazer biomass, nutrients, time, and
size.

Variable Units Description

t s time

P mM C phytoplankton biomass

s; pum phytoplankton diameter for size class i

VA mM C herbivorous protist biomass

s pum herbivorous protist diameter for size class j
i No units index for phytoplankton size class

j No units index for herbivorous protist size class

N mM C dissolved nutrients

Nr mM C total nutrients

https://doi.org/10.1371/journal.pone.0280884.t001

N, =N+ iP(si) + i:Z(sj), (3)

Eqs (1), (2) and (3) describe the change with time ¢ of the three state variables phytoplank-
ton biomass P, consumers biomass Z, and dissolved nutrient concentration N (Table 1). Eq
(1) describes the change in P for different size classes via growth, grazing, and general mor-
tality (symbols and dimensions in Table 2). Consumer biomass (Eq 2) varies with grazing
intake, respiration losses, and general loss (Tables 2 and 3). In this closed system, total nutri-
ents Ny (Eq 3) is the sum of dissolved nutrients N and nutrients in all phytoplankton and
consumer size classes. Given our explicit inclusion of respiration, the model is parameterized
with carbon. However, we note that, throughout the entire model, we assume a Redfield
ratio of 106 C: 16 N: 1 P. Therefore, the choice of carbon is made for consistency across all
model parameters, and output and can be converted to nitrogen or phosphorous using the
appropriate conversion from the Redfield ratio. We elaborate on this point in the section
below.

Table 2. Size-dependent variables. The coefficient and exponent values typically correspond to a and b, respectively, in the allometric relationship r = as for s the diame-
ter of the cell in um and r the rate or property. Exceptions include g, which takes the form in Eq (4), h, which takes the form in Eq (5), and ¢, which takes the form in Eq
(7). NA means not applicable.

Variable Units Coefficient Exponent Description

u day™ 1.36 -0.16 maximum phytoplankton growth rate

ks mM C 2.19x107° 0.48 phytoplankton nutrient half saturation constant
g day™ 264.70 -1.83 herbivorous protist max grazing rate

Qp.i mmol C (phyto cell)™ 9.8x10™" 2.82 carbon per phytoplankton cell i

Q. mmol C (grazer cell)! 9.8x10"? 2.82 carbon per herbivorous protist cell j

h day 4.4x107 -1.01 handling time

m, day™ 50x107 0 phytoplankton loss

b4 No units 0.97 0 herbivorous protist assimilation efficiency
c No units 1 3 capture probability

My day™ 0.05 0 herbivorous protist basal loss

My, day™ 8.7 x 10° 1 herbivorous protist motility-based loss

v um day™! 1.73x 10° 1 herbivorous protist swimming speed

https://doi.org/10.1371/journal.pone.0280884.t002
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Table 3. Variables based on a compilation of size-dependent relationships. Variables that are a function of several
size-dependent relationships, as described in the main text.

Variable Units Description

k, mM C herbivorous protist grazing half saturation constant
B um?®s™! encounter kernel

D, um?s™ phytoplankton diffusion coefficient

D, um?s™ herbivorous protist diffusion coefficient

https://doi.org/10.1371/journal.pone.0280884.t003

Phytoplankton variables and parameterization

Phytoplankton diameters varied from 1 to 512 pum on a logarithmic base 2 scale [37], creating
ten size classes. Growth was modeled with a Holling II form [38]. Phytoplankton maximum
growth rate pand nutrient uptake half saturation constant k, (Table 2) had an allometric form
[39] with values from [40]. Values from that study were nitrogen-based and so were converted
to carbon for this study assuming Redfield ratio, 106 C:16 N (Table 2), to preserve consistency
with other model parameters. Therefore, phytoplankton nutrient uptake of carbon is con-
strained by the amount of nitrogen that can be taken up. However, we acknowledge that car-
bon and nitrogen do not necessarily behave similarly, namely that nitrogen is generally
limiting while carbon is not, and that these elements can be cycled through different processes
(e.g., respiration). The general loss term m1,, is a constant rate (Table 2) within the range of
empirically measured loss values [41].

Herbivorous protist variables and parameterization

Grazing explicitly represented several aspects of the feeding process, such as consumer motility
and handling time, which can have significant impacts on predation rate [42-46]. Similar to
phytoplankton, the distinguishing trait for consumers was cell diameter (Table 1), which we
limited to three sizes 5, 50, and 200 pm. We chose these size classes specifically to be within the
size range of protistan consumers [37]. To concisely highlight changes across this broad size
range, we chose size classes that differ by an order of magnitude. We note that a finer size reso-
lution is examined in the Supporting Information, which resulted in similar grazing dynamics
as those described in the main text. Responses of intermediately sized consumers may lie
somewhere between the results presented here; although, we do not assume linear dynamics.

Grazing (Eqgs 1 and 2) was modeled with a Holling II form for which there is clear empirical
support [47]. However, we acknowledge other functional forms could be employed [48, 49].
Grazing intake included the assimilation efficiency y, parameterized based on empirical data
as the average value at 15°C in [50] (Table 2).

In empirical [47, 51] and modeling [13, 21, 22] studies, maximum grazing rate typically
decreases monotonically with grazer size and contains only implicit information about the
prey. Given our aim to examine grazer preference for different prey sizes, we explicitly
included both the prey and consumer sizes, s; and s;, respectively:

o) =5(2) (@

The parameterization (Table 2) was based on empirical values synthesized in [40], revised
to include the prey size S1 Fig, S1 Table.

Our model includes a specific representation of the handling time 4. We modified the han-
dling time formulation of [46] to allow consumers to handle prey larger than themselves [15-
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17]:

s = (2) 5

1

Handling time is often assumed to be the inverse of the maximum grazing rate g. However,
an inverse of the empirically-based g values (S1 Fig, S1 Table) would mean handling time
would increase as the consumer size increases relative to the prey size. Incongruously, the
opposite pattern is a common formulation, namely that & decreases with consumer size and
increases with prey size [46, 52-56]. Furthermore, indirect measurements like the maximum
grazing rate can mask other grazing-related processes such as digestion [57]. Therefore, we
examined the handling time parameterization with direct, empirical measurements for
protistan consumers S2 Fig, S2 Table. While the relationship was not statistically significant
(r* = 0.1, p = 0.3), we used that parameterization here as it is likely due to measurement vari-
ability rather than a lack of an effect. We did perform a sensitivity analysis using the average
handling time of 3.0x107 days S3 Fig. The general patterns still held; although, normalized
biomass values were not always monotonically decreasing and grazing preferences were trun-
cated for the 5-pm grazer and expanded for the multi-sized consumer system (Supporting
information).

The grazing half saturation constant k, was based on an analogy with enzyme kinetics [58].
The parameter was the ratio of the carbon content per prey cell Q,; and the encounter kernel
S, handling time h, and capture probability ¢:

Qp),’
k, = Bhe’ (6)

Qp,i is the amount of carbon in the phytoplankton cell of size class i [59]. B is the encounter
kernel, the volume of water in which the consumer can graze its prey [12]. The handling time
h indicates the amount of time it takes for the consumer to process its prey [23], and c is the
capture probability, the probability of a prey being encountered and not captured [46]. Below,
we detail the formulation of each of these functions.

The carbon content per cell was modeled for a generic plankton [59] (Table 2). The capture
probability [46] accounted for situations in which prey was encountered but not captured:

. e
=12 7
Cc < s, +Sj> ) ( )

This form was modified from [46] to allow diversity in predator prey sizes (Table 2). For a
grazer of a certain size, the probability of capturing prey decreased with increasing prey size
[53].

We assumed the encounter kernel (Table 3) depends on the processes of swimming and dif-
fusion [12]. The encounter kernel for swimming was modeled as

B, =nls +5)". (®)

[12] for v the swimming speed of the grazer, which increased linearly with size, swimming
20 bodylengths s (Table 2). For simplicity, prey did not swim. The diffusion encounter kernel
took the form

Bp = 4n(Dy + D,)(s; + Sj)a )

for Dp and Dy, the diffusion coefficients for phytoplankton and herbivorous protists,
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respectively (Table 3) [12]. The diffusion coefficient for both consumer and prey were calcu-
lated from D = 2L [12] for k Boltzman’s constant, T temperature, 77 dynamic viscosity (see

3mys

Supporting information). The final encounter kernel g [12] is:
B=P,+PBp, (10)

For a motile predator, S is negligible compared to S,.
Respiration was the sum of both a basal Ry and motility-associated R, rate:

R=R,+R, (11)

R, varied linearly with grazing intake, with a coefficient of 0.63 [50]. R, was based on the
idealized movement of a sphere of radius r through water with viscosity 7 at a velocity v [60].
Converting to a specific rate, the motility-based respiration had the form

R =R, 2 (12)
v W0 QZJ q )
for R, o a respiration coefficient of 0.041/day [60] and g the efficiency of transforming chemical
work into mechanical work, which was taken as 1% [61]. 17 was as above for the diffusion coef-
ficient (Supporting information).

Herbivorous protists mortality m, was composed of a constant basal value m,, and a motil-
ity-associated mortality denoted m,,, that increased with motility (Table 2) [62], leading to an
increase in this parameter with increasing size. The total mortality m, was the sum of these
two rates:

mz = mz,() + mz,w (13)

Overall, this model explicitly formulated trade-offs such that, for a given prey size, a larger
consumer had the advantage of a shorter handling time and higher encounter probability com-
pared to smaller consumers. However, larger organisms also had, for a given prey size, a lower
maximum grazing rate and higher mortality rate compared to smaller consumers. Therefore,
these parameterizations conferred trade-offs for different size grazers that a priori make their
fitness implications unclear.

Configuration of simulations

Using this model framework, we ran four model simulations. In three model runs, only
one size class of grazer was present: 5, 50, or 200 pm in diameter. A fourth simulation
included all three size classes of consumers together. All simulations were initialized with
ten phytoplankton sizes. While we appreciate the effect of total nutrient, N7, concentration
on planktonic size spectra [13, 63-65], we examined only one nutrient concentration,
within the range of another size-based NPZ model with protistan consumers [40], to focus
on grazing dynamics. Each model was integrated in time for ~ 30 years with a 100-second
time step and reached a steady-state in ~ 7 years or less. The optimal prey size, defined as
the phytoplankton size that led to the greatest biomass intake independent of loss, was
determined at each time step and used as the prey choice for that entire time step. This for-
mulation increased tractability and also allowed for adaptive feeding on a relatively short
time scale, particularly in comparison to many grazing studies, which are generally on the
order of several hours to a day (e.g., [66, 67]). The single size grazer systems showed con-
stant biomass values in steady state. In the multiple sized grazer systems, the consumers
and phytoplankton showed regular oscillations with a periodicity of 24.5 days S4 Fig. We
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focus on the average biomass values from the last three years of the 30-year model run for
each system.

Using the averaged data, we examined the biomass distribution for the phytoplankton and
herbivorous protist size classes. For the phytoplankton, the biomass per size class was normal-
ized by the width of the size class. For the consumers, because there are only one or three size
classes, we divided biomass values by the grazer size to obtain normalized values.

Results

Under predation pressure by only the smallest protists (5 um) phytoplankton biomass was dis-
tributed throughout all size classes (Fig 1). Normalized phytoplankton biomass values ranged
from 1.07 uM C um™ to 0.09 puM C um™', decreasing with increasing size (Fig 1). The normal-
ized consumer biomass was 5.85 uM C um™" (Fig 1). The grazer-prey biomass ratio was 0.31.
To investigate prey size selection, we calculated the proportion of times each prey size class
was grazed in the last three years of the model run (Fig 2). The 5-um grazers consumed all prey
size classes, with generally similar preferences for all size classes, 13% of the time for the most
(1-um) and 8% for the least (8-pm) frequently grazed phytoplankton (Fig 2a). These grazing
preferences correspond to an inversion of consumer-prey size ratios from 5:512 (~ 0.01: 1)
to 5:1. While this prey size range is extremely broad, these results highlight the underlying

Phyto, 5-um
consumer
Phyto, 50-um |
consumer
Phyto, 200-um
consumer
Phyto, multi-
consumer

5-um consumer

+ Multi-consumer

TR A N T

|E 0
S 10
O
s
3
"
)]
©
&
S
Q49+
[
(@]
<
c
ks
).
10°

10 102 10°
plankton diameter, um

Fig 1. Planktonic biomass for nutrient-phytoplankton-zooplankton model systems with grazers of different sizes. The model systems include
grazers of either 5, 50, or 200 pm diameter, and the multi-consumer model system corresponds to a system with all three sized consumers. The blue
symbols correspond to the phytoplankton biomass for each of those systems (diamond for the 5-um consumer system, upward triangle for 50-pm
consumer, downward triangle for 200-um consumer, and square for multi-consumer system). The yellow symbols correspond to consumer normalized
biomass values (circle for the 5-um consumer, and plus sign for the multi-consumer system). The 50- and 200-pm grazers did not survive in single
consumer size class simulations and thus no results are shown.

https://doi.org/10.1371/journal.pone.0280884.9001
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https://doi.org/10.1371/journal.pone.0280884.g002

dynamics, namely generalist prey size selection, that impact the size diversity of the system
when compared to the other model runs, described below.

For scenarios including the 50- or 200-um grazers, they exclusively grazed the 1- and 2-um
phytoplankton size classes, respectively (Fig 2b and 2c), corresponding to 50:1 and 100:1
grazer-prey size ratios, respectively. However, the consumers were not able to persist
(biomass < 10~° uM pm") in this generalized, size-dependent model for protistan consumers
since the smallest producers dominated production but were too small to meet the nutritional
requirements of the large predators. Consequently, only the smallest 1-um phytoplankton size
class had appreciable biomass, 125 uM C pum™, in the steady-state solution (Fig 1).

Diversity in grazer size classes imparted stability on the community composition: when all
three grazer classes were present, they co-existed along with all phytoplankton size classes (Fig
1). The normalized phytoplankton size spectrum decreased monotonically from 1.1 uM C um’
"t03.7x10” uM C pum™". The normalized grazer biomass values were 3.05, 0.17, and 0.06 uM
C um™ for the 5-, 50-, and 200-um consumers, respectively (Fig 1). The grazer-prey biomass
ratio was 4.1.

Consumer grazing preferences in the multi-consumer simulation were different than the
single-sized grazer systems (Fig 2d). The 5-pm consumer preferred the two smallest phyto-
plankton size classes, 1 and 2 pm, in approximately equal amounts of 52% and 48%, respec-
tively. The 50-um consumer preferentially consumed the 4- and 8-um phytoplankton in
roughly equal amounts, about 54% and 43% of the time, respectively. The 50-um consumer
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occasionally consumed the 2- and 16-pm size classes, each about 1% of the time. The largest
200-um consumer preferred the 16-pm size class of phytoplankton, grazing it about 21% of the
time. The largest grazer also consumed all larger phytoplankton, between 17% and 14% of the
time. The grazer-prey size ratios varied from 25:1 to 200:512 (~ 0.4: 1).

Comparing among these modeled systems, the allometric scaling of phytoplankton parame-
ters allowed the smallest phytoplankton to outcompete larger phytoplankton when relieved of
top-down control (Fig 3). When consumers did persist, they were able, either singly or collec-
tively, to graze all size classes and increase the size diversity of their systems. This pattern
persisted even with a constant handling time and when eight consumer size classes were con-
sidered (Supporting information).

Discussion

Using an empirically motivated framework that models the mechanisms underlying feeding,
we examined the emergent plankton abundance and size structure as a function of grazing
behavior of herbivorous protists. This approach is in the same vein as the diet breadth [68] and
allometric diet breadth models [69, 70]. In our study, we modeled, separately and together,
three different sized consumers that each had the ability to graze any phytoplankton prey. This
flexible framework, as opposed to a more rigid, prescribed formulation of grazing, allowed us
to examine the interplay between emergent prey size choice and phytoplankton community
structure. Comparing the different systems, some fundamental features became apparent, such
as distinct grazer-prey size ratios, the keystone predator effect, and dietary niche partitioning.

The canonical 10:1 predator-prey size ratio [11, 12] did not systematically emerge, but the
simulated range when all grazer sizes co-existed (25:1 to 0.4:1) encompassed this often-
assumed value. Inversions with prey size exceeding consumer size were also supported, as has
been observed among protistan consumers [15-17]. Prey size selection was dynamic and
depended on grazer size and whether other grazers were present. Prey size selection, in turn,
had strong implications for consumer and prey survival and, consequently, the diversity of the
system.

When grazers did not consume enough prey to survive in this protistan model formulation,
only the smallest, most competitive phytoplankton persisted [65]. When consumers did sur-
vive, they grazed the smallest, most competitive prey, freeing up resources for the larger, less
competitive phytoplankton [71]. Larger phytoplankton grew until they were abundant enough
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to be grazed. Thus, the balance between top-down and bottom-up forcing at equilibrium
determined the prey size distribution [22].

This top-down control resembled the keystone predator effect [31, 32]. In the most general
sense, a keystone predator allows competing prey to coexist [72]. More specifically, a keystone
predator consumes the most competitive prey, resulting in the survival of less competitive
prey. The concept was introduced in marine intertidal and aquatic settings [31, 73] and has
since been observed in aquatic and terrestrial ecosystems [72, 74, 75] and recreated in model-
ing studies [32, 76]. Similar to those studies, the model system in this study indicated that
selective feeding by consumers increased the size-diversity of prey by grazing the smallest,
most competitive prey, subsequently releasing resources for larger phytoplankton. Thus, more
size classes coexisted when all size classes were grazed.

Another ecological property that emerged specifically from the multiple-size grazer system
was dietary niche partitioning [33, 34]. That is, each size consumer selected largely non-over-
lapping sizes of phytoplankton to graze. The emergent, distinct grazing size preferences per-
sisted even when eight sized grazers were included S5 Fig.

Our modeled results were similar to the empirical observations of the impact of zooplank-
ton on phytoplankton in the East China Sea [77]. In that study, the size diversity of mesozoo-
plankton was the most important factor determining the top-down control on phytoplankton,
which was attributed to dietary niche partitioning.

When examining protistan grazers, there is strong evidence for size selective grazing [14,
78-80], which can lead to resource niche partitioning [55]. However, the impact of selective
feeding on the planktonic community structure can be more varied [55, 66, 81]. For example,
in a microcosm experiment, two protistan grazers showed coexistence by size-selective
resource partitioning [55]. While grazer size-selection changed the prey community struc-
ture, there was no consequent change in biomass. Our multiple sized grazer system also
showed emergent size-selective feeding, but we saw an increase in total grazer biomass
compared to the single grazer systems. Therefore, our model results are more in alignment
with the idea of complementarity [82] in which ecosystem function increases with increased
diversity.

In all our modeled systems, the normalized phytoplankton biomass spectrum decreased
as the size of the phytoplankton increased, similar to natural ecosystems [28, 29]. When the
normalized phytoplankton biomass spectrum from the multi-sized consumer system was con-
verted to units of cells per ml per size class, the spectral slope was -3.97. This slope is remark-
ably similar to the spectral slope of -4 for field data from stable mesotrophic and oligotrophic
environments ([30] and references therein). This size distribution is noticeably steeper than
that proposed by the metabolic theory of ecology for a trophic level [83].

The shape of the phytoplankton biomass spectra was attributed to consumers that grazed
larger sized phytoplankton additionally grazing larger size ranges of phytoplankton [30]. This
patterning, supported by empirical measurements [36], was an emergent property of the mod-
eled multi-sized consumer system in this study and held even when more size classes of con-
sumers were included S5 Fig. However, the steady-state biomass for the phytoplankton in this
study’s modeled systems was not only due to grazing pressure but also to phytoplankton com-
petitive ability, which was made clear from a comparison with the single-grazer systems, thus
broadening the factors that need to be considered and experimentally investigated.

Opverall, this study’s model formulation includes flexible grazing behavior based on first
principles, which allowed us to investigate the impact of top-down processes in structuring the
community without the level of prescription common in planktonic grazer models. The frame-
work shown here could be used to accommodate more complex interactions and processes,
such as different resource acquisition strategies and feeding modes [54, 84] and changes in
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nutrient content of prey [24, 85] or trade-offs between phytoplankton competitive ability and
grazer defenses, including mixotrophic species [86]. These detailed representations of complex
grazer dynamics have highlighted important, grazer mediated forcing functions that structure
phytoplankton communities, which have ramifications for biogeochemical cycles.

Supporting information

S1 Fig. Regression of the ratio of consumer and prey radius against maximum grazing
rate.
(TIF)

S2 Fig. Regression of the ratio of consumer and prey radius against handling time.
(TIF)

$3 Fig. Normalized phytoplankton and grazer biomass and size classes grazed for four dif-
ferent systems in which the grazers are 5-, 50- or 200-um in diameter, or all three grazers
sizes are present. A. Normalized biomass. The blue symbols represent normalized phyto-
plankton biomass, and the yellow symbols correspond to consumer normalized biomass. No
consumers survived when they were only of 50 or 200 pm in size, and thus those biomass val-
ues are not shown. B-E. Proportion of times each size class was grazed by the 5-um consumer
(B), 50-pm consumer (C), 200-pm consumer (D), and all consumers together (E).

(TIF)

$4 Fig. Time-dependent normalized phytoplankton and protistan grazer biomass values
for last three years of model run. A. 5 um grazer system. B. 50- and 200-um grazer systems.
Note that only the 1-um phytoplankton survived in both systems, and only those two groups
are shown. C. Multi-sized consumer system.

(TTF)

S5 Fig. Community structure for a modeled system with grazers of eight different sizes. A.
Normalized plankton size spectra. B. prey size selections for each consumer.
(TIF)

S1 Table. Measurements of maximum grazing rate.
(PDF)

S2 Table. Handling time measurements. Values for handling time, consumer radius, and
prey radius were taken from the same source. The only exception is that the prey radius for
Ochromonas in (Fenchel 1982a) which came from (Fenchel 1982b).

(PDF)
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