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Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of a series of images at
multi-echo time points to estimate tissue field, which prolongs scan time and requires specific reconstruction
technique. In this paper, we present our new framework, called Learned Acquisition and Reconstruction Op-
timization (LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM.
Our approach involves optimizing a Cartesian multi-echo k-space sampling pattern with a deep reconstruc-
tion network. Next, this optimized sampling pattern was implemented in an mGRE sequence using Cartesian
fan-beam k-space segmenting and ordering for prospective scans. Furthermore, we propose to insert a recur-
rent temporal feature fusion module into the reconstruction network to capture signal redundancies along echo
time. Our ablation studies show that both the optimized sampling pattern and proposed reconstruction strategy
help improve the quality of the multi-echo image reconstructions. Generalization experiments show that LARO
is robust on the test data with new pathologies and different sequence parameters. Our code is available at

https://github.com/Jinweil209/LARO-QSM.git.

1. Introduction

Quantitative magnetic resonance imaging (MRI) provides biomark-
ers for clinical assessment of diverse diseases, including T1 and T2 relax-
ation time (Deichmann, 2005; Deoni et al., 2005), fat fraction (Yu et al.,
2008), quantitative susceptibility mapping (QSM) (de Rochefort et al.,
2010), etc. For QSM, a multi-echo gradient echo (mGRE) pulse sequence
is used to acquire signals at different echo times. A tissue-induced local
magnetic field map can be obtained by fitting the acquired complex
multi-echo signals (Kressler et al., 2009; Liu et al., 2013). Then, a tissue
susceptibility map can be computed using an inverse problem solver,
such as regularized dipole inversion (Liu et al., 2012).

For QSM, the range of echo times needs to be large enough to cover
both small and large susceptibilities in tissue (Wang and Liu, 2015), such
as in the application of QSM in multiple sclerosis (MS), where QSM has
been shown to be sensitive to myelin content as well as iron (Wang and
Liu, 2015), both of which are modified in MS. However, limited scan
time in clinics only allows for mGRE with a compromised spatial res-

olution, making visualization of smaller MS lesion more challenging.
Overcoming this compromise is a major motivation for this work.

The significantly increased scan time of mGRE sequence can be
partly overcome using classical acceleration techniques such as Paral-
lel imaging (PI) (Griswold et al., 2002; Pruessmann et al., 1999), com-
pressed sensing (CS) (Lustig et al., 2007), or their combination (PI-CS)
(Murphy et al., 2012; Otazo et al., 2010). Recently, deep learning has
been used to optimize k-space sampling patterns from training data,
such as in LOUPE (Bahadir et al., 2020) and its extension LOUPE-ST
(Zhang et al., 2020), experimental design with the constrained Cramer-
Rao bound (OEDIPUS) (Haldar and Kim, 2019) and greedy pattern se-
lection (Gozcii et al., 2018). Building on these prior works, we propose
here to learn an optimal sampling pattern to accelerate QSM acquisition
and improve reconstruction quality.

Reconstruction from under-sampled measurements can be solved
using regularization to exploit signal redundancies, such as low-rank
and/or sparsity constraints (Zhao et al., 2015; Peng et al., 2016;
Zhang et al., 2015). More recently, convolutional neural networks have
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been proposed for compressed sensing reconstruction. One popular neu-
ral network technique involves implementing the unrolled iterations of
an optimization process, coupled with a learned regularizer, as in MoDL
(Aggarwal et al., 2018) and VarNet (Aggarwal et al., 2018). These archi-
tectural designs have been applied to single-echo image reconstruction,
and extended to dynamic image sequence reconstruction via cascaded
(Schlemper et al., 2017) and recurrent networks (Qin et al., 2018). Re-
cently QSM acquisition was accelerated using 2D incoherent Cartesian
under-sampling and deep neural network reconstruction with a variable
density sampling pattern manually designed and fixed across echoes
(Gao et al., 2021).

We propose Learned Acquisition and Reconstruction Optimization
(LARO) to further optimize the sampling pattern across echoes by in-
ferring the temporal variation through adding a temporal dimension to
LOUPE-ST (Zhang et al., 2020) for the multi-echo case. Images are re-
constructed accordingly using an unrolled reconstruction network based
on alternating direction method of multipliers (ADMM) (Boyd et al.,
2011) to capture the signal evolution and compensate the aliasing pat-
terns of mGRE images with a temporal feature fusion module.

In this study, the learning based acquisition acceleration is not used
to increase the spatial resolution but to instead accelerate the clinical
protocol. For LARO training and testing experiments, we used retro-
spective under-sampling on fully sampled k-space data either simulated
from the existing clinical protocol by taking inverse Fourier transform
of the clinical mGRE images, or directly acquired from the scanner; the
fully sampled k-space data served as ground truth for LARO sampling
pattern optimization and under-sampled reconstruction. The optimized
sampling pattern was then implemented in a modified mGRE sequence
such that prospectively under-sampled data could be acquired and re-
constructed with LARO. This work is extended from our conference pa-
per (Zhang et al., 2021) where preliminary retrospective results were
shown as a proof of concept of LARO.

2. Theory

In QSM data acquisition, multi-echo k-space sampling with multiple
receiver coils is modeled as:

b =U;FE;s; +nj. M)

where b, is the measured k-space data of the k-th receiver coil at the j-th
echo time, with N receiver coils and Ny echo times, U; is the k-space
under-sampling pattern at the j-th echo time, F is the Fourier transform,
E, is the sensitivity map of the k-th coil, s; is the complex image of the
Jj-th coil to be reconstructed, and n;; is the acquisition noise, assumed
to be Gaussian.

Having acquired b;, with fixed U;, we aim at reconstructing all s;
simultaneously with a cross-echo regularization loss R({s;}). Based on
Eg. (1), a solution {3;} can be obtained by solving the following opti-
mization

Np Nc¢
{3,} = argminE({s,}) =argmin22||UjFEksj - bjk“% + R({s,;})

{s;} s} j=lk=1

(2)
We denote the iterative reconstruction method solving Eq. (2) as
{8;1 = AU, }; {b, ). With this notation, the sampling pattern optimiza-
tion problem consists of finding, for a given under-sampling ratio y and
a given set of fully sampled training data {b;. o sj.}_ LN the sampling
=1...

pattern {U;} that solves:

{0;} =ar{§]rln}iﬂ a({u;}) =ar{%;:1}in% ;L({%}{S,})
subject to {f;} = A({Uj}; {Ujb;.k}) and Fj: y for all i and j 3)

where N is the total number of samples in the training dataset, {s;} is
the i-th fully sampled multi-echo image, {§j} is the i-th reconstructed
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under-sampled multi-echo obtained using solver A({U;}; {U; b; (Hand L
is the metric to quantify difference between {&;} and {s; }, such as the
L, loss. In the following section, we will propose a unified framework
called LARO (Learned Acquisition and Reconstruction Optimization) to

tackle both Egs. (2) and (3) using deep learning techniques.
2.1. Sampling pattern optimization (SPO)

For k-space sampling pattern optimization Eq. (3), we extend the pre-
viously proposed LOUPE-ST method (Zhang et al., 2020) to the multi-
echo setting. We consider 2D variable density Cartesian sampling pat-
terns in the k, — k. plane with a fixed under-sampling ratio as shown
in Fig. 1b, in which learnable weights {w;} are used to generate a
multi-echo probabilistic pattern {P;} through sigmoid transformation
and sampling ratio renormalization:

1
o) @

where a is the slope parameter of the sigmoid function and Renorm(-)
is a linear scaling operation to make sure the mean value of probabilis-
tic pattern is equal to the desired under-sampling ratio (Bahadir et al.,
2020). Assuming an independent Bernoulli distribution Ber(P) at each
k-space location, a binary under-sampling pattern U; is generated via
stochastic sampling from P;:

Uj=l.ep, ®)

where 1, is the indicator function on the truth value of x and z is uni-
formly distributed between [0, 1]. Then {U;} are used to retrospectively
acquire {b;;} from fully sampled multi-echo k-space data. The stochas-
tic sampling layer in Eq. (5) has zero gradient almost everywhere when
backpropagating through this layer, which makes updating {w;} in-
feasible (Gu et al., 2015). To solve this issue, LOUPE-ST implements
a straight-through estimator (Bengio et al., 2013) for backpropagation
through the stochastic sampling layer by using the probability distribu-
tion P instead:

Pj = Renorm<

dlz<Pj dPp;
7 - — (6)
w; dwj

which solves the zero gradient issue and performs better than other
gradient approximations, such as the one implemented in LOUPE
(Zhang et al., 2020).

2.2. Temporal feature fusion (TFF) for reconstruction

For image reconstruction Eq. (2), we propose an unrolled architec-
ture with a temporal feature fusion (TFF) module based on the plug-
and-play ADMM (Chan et al., 2016) strategy. In plug-and-play ADMM,
auxiliary variables v; = s; for each echo j were introduced and an off-
the-shelf image denoiser {uy”)} = D({ﬁy)}), where ﬁ;’) = sy) + iu;’) with

uy) the dual variable of the #-th outer loop and p the penalty parame-
ter in ADMM, was applied. We propose to unroll the iterative scheme
of plug-and-play ADMM as a data graph which we call “deep ADMM”

network as shown in Fig. 1a, where a CNN denoiser D({v;’) }; wp) with

weights w, is designed to replace D({ﬁ;’) D as:

U§r+1) _ D(ﬁﬁ’); wD>' %)

To incorporate the dynamic nature of multi-echo images into
D({ﬁ;’)}; wp), we propose a temporal feature fusion (TFF) module as
shown in Fig. 1c. In TFF, a recurrent module is repeated Ny times in
which at the j-th repetition (corresponding to the j-th echo), s; (real
and imaginary parts concatenated along the channel dimension) and
s;_1’s hidden state feature &;_, are fed into the module to generate s;’s
hidden state feature h;:

h; = ReLU(N,(s;) + Nj,(h;_1)), ®
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for under-sampled k-space reconstruction. (b): a sampling pattern optimization

(SPO) module was used to learn the optimal k-space under-sampling pattern. (c): a temporal feature fusion (TFF) module was inserted into deep ADMM to capture

the signal evolution along echoes.

where N (-) and N,(-) are convolutional layers for s; and h;_;, and
ReLU is the Rectified Linear Unit activation function. The learnable
weights in N (-) or N,(-) are shared across recurrent repetitions. At the
Jj-th recurrent forward pass shown in Eq. (8), feature maps h; are gen-
erated by aggregating s; and h;_, through convolutions and nonlinear
activations, which implicitly capture the echo dynamics and fuses fea-
tures from the preceding echoes. After a full recurrent pass over echoes,

all feature maps h; are concatenated along the batch dimension and

fed into a denoising network to generate {v“*"}. The dynamic nature
of the signal over echo times is implicitly captured with the recurrent
forward process due to the parameter sharing mechanism which at-
tempts to exploit the relationship between a given echo and all earlier
echoes.

2.3. K-space under-sampling sequence design

The learned k-space sampling patterns U; were implemented in an
mGRE pulse sequence for prospective data acquisition. Gradient pulses
along the phase and slice encoding directions were added between con-
secutive echoes to allow for the modification of k-space sampling lo-
cations echo-by-echo during one TR. To avoid large changes in the
phase and slice encoding gradients between two echoes, the following
k-space ordering strategy was deployed: for each echo j, the sampled
k-space locations U; were first divided into multiple ordered segments
of equal size based on their angle with respect to the positive k, axis.
Within each segment, k-space locations were ordered based on their
distance with respect to the k-space center. Using such k-space order-
ing strategy, sampled locations will follow a similar trajectory for all
echoes, avoiding large changes in the phase and slice encoding gradi-
ents from echo to echo during one TR. Illustration of the proposed seg-
mented k-space ordering and pulse sequence design is shown in Fig. 2.
In this example, number of echoes N, = 10, acceleration factor R =8,
N, =206, N, = 80, N,(number of segments) = 11, N,,, (number of
k-space location per segment) = 188 so that N, X N;,; = N, X N_/R.
Fig. 2a exemplified the sampled ky-kz locations (yellow dots) in cur-
rent k-space segment (yellow hollow triangles) during a certain TR. Gy
and Gz gradients (blue solid triangles) in Fig. 2b are added between
two unipolar readouts in Gx to adjust next sampled location in ky-kz
plane.

3. Methods
3.1. Data acquisition and preprocessing

Data were acquired following an IRB approved protocol. All images
used in this work were de-identified to protect the privacy of human
participants.

3.2. Fully sampled acquired k-space data

Cartesian fully sampled k-space data were acquired in 13 healthy
subjects (3 females, age: 30.7 + 7.3) using a 3D mGRE sequence on a 3T
GE scanner with a 32-channel head coil. Imaging parameters included
FA = 15°, FOV = 25.6 cm, TE, = 1.972 ms, TR = 36 ms, #TE = 10,
ATE = 3.384 ms, acquisition matrix = 256 x 206 x 80 (readout x phase
encoding x phase encoding), voxel size = 1 x 1 x 2 mm3, BW = 64 kHz.
Total scan time was 9:30 mins per subject. 32-coil k-space data of
each echo were compressed into 8 virtual coils using a geometric sin-
gular value decomposition coil compression algorithm (Zhang et al.,
2013). After compression, coil sensitivity maps of each echo were es-
timated with a reconstruction null space eigenvector decomposition al-
gorithm ESPIRIT (Uecker et al., 2014) using a centric 20 x 20 x 20
self-calibration k-space region for each compressed coil. From the fully
sampled data, coil combined multi-echo images were computed using
the obtained coil sensitivity maps to provide the ground truth labels for
both network training and performance comparison. Training, valida-
tion and testing has been performed on 2D coronal slices. To this end,
the 200 central coronal slices per subject were selected along the readout
direction, as these contain mostly brain anatomy to avoid a bias from
slices that do not resemble the brain. 8/1/4 subjects (1600/200/800
slices) were used as training, validation, and test datasets, respectively.

To demonstrate the generalization ability of LARO, Cartesian fully
sampled k-space data were also acquired in one of the healthy test sub-
jects with the following sequence parameter modifications: another flip
angle (25°), number of echoes (7 echoes), voxel size (0.75 x 0.75 X

1.5 mm3), a second MRI scanner from the same manufacturer (GE, 12-
channel head coil) and a third MRI scanner from another manufacturer
(Siemens, 64-channel head coil). Same k-space processing was applied
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Fig. 2. Illustration of (a): the proposed segmented k-space ordering strategy of ten echoes and (b): pulse sequence design. In (a), segmented centric k-space ordering
is indexed by greyscale level. In a certain TR, sampled ky-kz locations (yellow dots) in current k-space segment (yellow hollow triangles) are exemplified. In (b),
additional Gy and Gz gradients (blue solid triangles) are added between two unipolar readouts in Gx to adjust next sampled location in ky-kz plane. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

to these data to get compressed 8-coil k-space, coil sensitivity maps and
ground truth labels.

3.3. Fully sampled synthetic k-space data

To demonstrate LARO’s improvement on pathologic reconstruction,
supplementary synthetic k-space datasets from healthy subjects, mul-
tiple sclerosis (MS) and intracerebral hemorrhage (ICH) patients were
simulated, considering unavailability of acquired fully sampled k-space
data from patients. Multi-echo complex images of 7 healthy subjects,
4 MS patients and 1 ICH patient were acquired using a 3D mGRE se-
quence on a 3T GE scanner. Imaging parameters included FA = 15°,
FOV = 25.6 cm, TE; = 6.69 ms, TR = 49 ms, #TE = 10, ATE = 4.06 ms,
acquisition matrix = 256 x 206 x 68 (readout x phase encoding x phase
encoding), voxel size = 1 x 1 x 2 mm3, BW = 64 kHz. Synthetic single-
coil k-space data was generated through Fourier transform of the com-
plex multi-echo images. Retrospective Cartesian under-sampling was
applied on the synthetic k-space data along two phase encoding di-
rections. Training, validation and testing has been performed on 2D
coronal slices. To this end, the 200 central coronal slices per subject
were selected along the readout direction, as these contain mostly brain
anatomy to avoid a bias from slices that do not resemble the brain.
Data from 6/1 healthy subjects (1200/200 slices) was used as train-
ing/validation. Data from the MS (800 slices) and ICH (200 slices) pa-
tients was used as two test datasets.

3.4. Under-sampled k-space data in both retrospective and prospective
studies

For a retrospective study, an acceleration factor R = 8 (12.5% under-
sampling ratio) was applied on the fully sampled acquired k-space
dataset and acceleration factor R = 4 (25% under-sampling ratio) was
applied on the fully sampled synthetic k-space dataset. For a prospec-
tive study, Cartesian under-sampled k-space data was prospectively ac-
quired in 10 healthy test subjects (3 females, age: 28.4 + 4.1) using a
modified 3D mGRE sequence with the same 3T GE scanner and imaging
parameters. Different sampling patterns with R = 8 were applied during
prospective scans and compared. For the optimized k-space sampling
pattern, each echo was divided into 11 segments with 188 locations in

each segment, resulting in 188 x 11 = 2068 k-space locations to sam-
ple in total. Corresponding scan time was 1:20 mins. For reference, the
default imaging protocol using the same imaging parameters except for
elliptical R = 2 uniform under-sampling reconstruction using the SENSE
implementation (Pruessmann et al., 1999) on the scanner was performed
on the same subjects.

3.5. Implementation details

3.5.1. Network architecture

The proposed network architecture is shown in Fig. 1. Real and imag-
inary parts of multi-echo images were concatenated along the channel
dimension, yielding 20 channels to represent multi-echo complex im-
ages in the network. Under-sampled k-space data was zero-filled and
Fourier-transformed to be used as input for deep ADMM (Fig. 1a) with
N; =10 unrolled iterations. In deep ADMM, the denoiser D(-; wp) con-
sisted of five convolutional layers equipped with 320 channels with in-
stance normalization (Ulyanov et al., 2016) + ReLU activation after con-
volution for each hidden layer. The TFF module (Fig. 1c) used 64 chan-
nels in both convolutional layers for s; and 4;. The hidden state fea-
ture maps h; were concatenated along the channel dimension and fed
into D(-; wp) to generate denoised multi-echo images. The SPO module
(Fig. 1b) was used to learn optimal sampling patterns, where weights
{w;} (with matrix size 206 x 68 x 10 for synthetic k-space data and
206 x 80 x 10 for the acquired k-space data) were initialized as zeros
and slope parameter « in sigmoid function was 0.25. After generating
binary patterns {U;} from probabilistic patterns {P;}, values in central

J
20 x 20 locations of {U;} were set as ones for self-calibration.

3.5.2. Training strategy

The training process consists of two phases. In phase one, weights
in the deep ADMM network and SPO module were updated simultane-
ously by maximizing a channel-wise structural similarity index measure

N Np o
(SSIM) (Wang et al., 2004): 1 > ¥ SSTM(8%, ') with the measure be-
i j=1
tween two windows x and y of common size (10 x 10) and location in
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§; and s;. as:
(Zﬂxﬂy + cl)(ZGXy + c2)

SSIM(x,y) =
(y§+ﬂ§+cl><6§+a§+cz>

, C)]

where y,, u, and o, o, are the mean and variance of x and y, o,,, is the
covariance between x and y, ¢, = 0.01? and ¢, = 0.03%. In phase two, the
pre-trained deep ADMM network from phase one was fine-tuned with
fixed binary sampling patterns {U;} either manually designed using a
multi-level sampling scheme (Roman et al., 2014) or generated from
the learned probabilistic patterns { P;} in phase one. We implemented
in PyTorch using the Adam optimizer (Kingma and Adam, 2014) (batch
size 1, number of epochs 100 and initial learning rate 1073) on a RTX
2080Ti GPU. Our code is available at https://github.com/Jinweil209/
LARO-QSM.git.

3.5.3. Ablation study

An ablation study regarding the effectiveness of TFF and SFO mod-
ules were investigated by removing one or more of these modules
and quantifying the corresponding loss in performance. First, a man-
ually designed variable density sampling pattern was generated based
on a multi-level sampling scheme (Roman et al., 2014) and used to
train a baseline deep ADMM network without TFF or SPO (denoted by
TFF = 0/SPO = 0). Then TFF (denoted as TFF = 1), single-echo SPO (op-
timized sampling pattern was fixed across echoes, denoted as SPO = 1)
and multi-echo SPO (denoted as SPO = 2) were progressively added
to the baseline deep ADMM network to check the effectiveness of each
module, with LARO representing TFF with multi-echo SPO (i.e., TFF =1,
SPO = 2). For baseline deep ADMM without TFF, Eq. (8) was replaced
with i; = ReLU(N(s;)) by removing N,(h;_,) to show the effectiveness
of recurrent forward pass of hidden state features {4;} in TFF, where
two 64-channel convolutional layers in N(-) were used to match the
memory usage of TFF during ablation study.

3.5.4. Performance comparison

Iterative method locally low rank (LLR) (Zhang et al., 2015) and
a deep learning method MoDL (Aggarwal et al., 2018) were used as
two benchmark reconstruction methods, where MoDL was modified to
reconstruct multi-echo images simultaneously with concatenated real
and imaginary parts of multi-echoes along channel dimension. Manu-
ally designed and optimized sampling patterns were applied to all re-
construction methods and compared. From the resulting gradient echo
images, R2* was estimated using ARLO (Pei et al., 2015) and QSM using
morphology enabled dipole inversion with CSF-0 reference (Liu et al.,
2018) from relative difference local field (RDF), which was estimated
using nonlinear field estimation (Liu et al., 2013), phase unwrapping
and background field removal (Liu et al., 2011).

For all retrospectively under-sampled datasets, quantitative compar-
isons were presented with fully sampled data as reference, where PSNR
(Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index)
(Wang et al., 2004) metrics per reconstructed coronal slice were used to
measure the reconstruction accuracy of the echo-combined magnitude

[Ny
image 4/ X |s I |2, R2* and RDF maps. RMSE (Root-Mean-Square Error),
j=1

HFEN (High-Frequency Error Norm) (Ravishankar and Bresler, 2010)
and SSIM (Wang et al., 2004) per 3D volume were used to measure the
reconstruction quality of QSM.

For the MS patient dataset, lesions were manually segmented by an
experienced neuroradiologist based on the corresponding T2-weighted
FLAIR images which were spatially registered to the magnitude of mGRE
data. A linear regression was performed of the mean susceptibility of all
lesions between fully sampled and under-sampled test data.

For the prospectively under-sampled dataset, reconstructions were
performed by LLR, MoDL and TFF reconstructions with different sam-
pling patterns. The SENSE reconstruction from the scanner with acceler-
ation factor 2 was used as a reference for comparison. Detailed structures
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in QSM and R2* such as white matter tracts were qualitatively com-
pared. The perivascular spaces were segmented manually into a single
region of interest ROIp. From this ROIp, a border ROIb was computed
by dilating ROIp by 1 pixel and removing the original ROIp. The sharp-
ness was defined as the difference of average susceptibility of ROIp and
ROIb. Mean QSM and R2* values and standard deviations in manually
drawn ROIs including Globus pallidus (GP), Substantia Nigra (SN), Red
Nucleus (RN), Caudate Nucleus (CN), Putamen (PU), thalamus (TH), op-
tic radiation (OR) and cerebral cortex (CC, starting from the top of the
brain, drawn on the tenth slice of QSMs covering some part of frontal
and parietal lobes) were computed and compared.

3.5.5. Generalization experiments

When acquiring the fully sampled test data with sequence parame-
ter modifications, only one parameter was modified in each scan, ex-
cept for a different voxel size, where increased spatial resolution also
increased echo spacing ATE to 4.728 ms and acquisition matrix to
320 x 258 x 112 (readout x phase encoding x phase encoding). Sam-
pling patterns of this voxel size were obtained by bicubic interpolation
of the pre-trained probabilistic sampling distribution P; with matrix size
206 x 80 in Eq. (4) to Pj’ with matrix size 258 x 112 for the new voxel
size. Then the new binary sampling patterns U; were generated using
Eq. (5):U;' =1, P> where 1 is the indicator function on the truth value
of x and z is uniformly distributed between [0, 1]. For the test data with
7 echoes, the first 7 sampling patterns were used when applying LARO
with SPO = 2. Fully sampled data were used as the reference for quan-
titative comparison in R2*, RDF and QSM, except in magnitude due to
signal intensity variations of different scans.

4. Results

For abbreviations, “TFF = 0” or “1” denotes “with” or “without” tem-
poral feature fusion module; “SPO = 0”, “1” or “2” denotes “without”,
“with single-echo”, or “with multi-echo” sampling pattern optimization.
In terms of reconstruction methods, “TFF” denotes the proposed recon-
struction with “TFF = 1” under different sampling patterns; “LARO” de-
notes “TFF” reconstruction specifically under “SPO = 2” sampling pat-
tern, i.e., the proposed learned acquisition and reconstruction optimiza-
tion framework.

4.1. Sampling patterns

Fig. 3 shows SPO = 2 sampling pattern of the first echo (Echol) and
difference maps between two adjacent echoes (Agq,02) in (a): acquired
k-space data (acceleration factor R = 8) and (b): synthetic k-space data
(acceleration factor R =4). Different k-space sampling patterns were
generated from the learned probabilistic patterns per echo, introducing
additional incoherency along the temporal dimension.

Acquired k-space data

4.1.1. Ablation study

Reconstructed magnitude, R2*, RDF and QSM in one representative
slice are shown in Fig. 4. As TFF and SPO modules were gradually added
to the baseline deep ADMM architecture, reconstruction errors (2nd,
4th, 6th and 8th rows) were progressively reduced in magnitude, R2*,
RDF and QSM maps, where LARO (TFF = 1, SPO = 2) performed the
best. Depictions of white matter tracts (insets) in R2* and QSM maps
were improved as more modules were added. Quantitative metrics of
the ablation study is shown in Table S1. Reconstruction accuracies of
magnitude, R2*, RDF and QSM maps were progressively improved as
more modules were introduced, where LARO (TFF = 1, SPO = 2) per-
formed the best.

4.2. Performance comparison

Reconstructed magnitude, R2*, RDF and QSM with SPO = 2 sampling
pattern (Fig. 3a) in one representative slice are shown in Fig. 5. LLR had
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Fig. 3. SPO = 2 sampling pattern of the first echo (Echol) and difference maps between two adjacent echoes (Agq,,4) in (a): acquired k-space data (acceleration
factor R = 8) and (b): synthetic k-space data (acceleration factor R = 4). Different k-space sampling pattern was generated from the learned probabilistic pattern per

echo, introducing additional incoherency along temporal dimension.

larger reconstruction errors with heavy block-like artifacts in RDFs and
QSMs compared to MoDL and LARO. Pronounced noise in QSMs and
R2* (insets) were showed in MoDL, which were not seen in LARO. Re-
constructions with SPO = 0 and 1 sampling patterns are shown in Fig-
ure S1. Quantitative metrics are shown in Table S2. For each method,
reconstruction accuracies of magnitude, R2* and QSM maps were pro-
gressively improved from sampling pattern SPO = 0, 1 to 2. For each
sampling pattern, TFF reconstruction consistently outperformed MoDL
and LLR.

4.3. Synthetic k-space data

4.3.1. Ablation study

Reconstructed magnitude, R2*, RDF and QSM at one representative
slice of MS test dataset are shown in Figure S2 with quantitative metrics
of ablation study in Table S3. Similar to the acquired k-space data, re-
construction accuracies were progressively improved as more modules
were added. In Figure S2, putamen in QSMs (insets in QSMs) were better
depicted as more modules were added.

4.3.2. Performance comparison on MS dataset

Reconstructed magnitude, R2*, RDF and QSM with SPO = 2 sam-
pling pattern (Fig. 3b) in one representative slice are shown in Fig. 6.
LLR had much larger errors compared to MoDL and TFF. TFF slightly
outperformed MoDL. Reconstructions with SPO = 0 and 1 sampling pat-
terns are shown in Figure S3. Quantitative metrics are shown in Table
S4. Both TFF and SPO = 2 outperformed other baseline reconstruction
methods and sampling patterns.

Linear regressions of lesion-wise mean susceptibility values between
fully sampled and reconstructed QSMs are shown in Figure S4. For
SPO = 0, 1 and 2, linear coefficients for TFF were 1.08, 0.96, and 0.97
with the highest R?: 0.95, 0.98 and 0.99 compared to LLR and MoDL un-
der each sampling pattern. LLR had linear coefficients 1.13, 0.98, 0.95
with the lowest R%: 0.84, 0.81 and 0.92. MoDL had linear coefficients
1.20, 1.07 and 1.10 with R? in between: 0.89, 0.94 and 0.95. Both TFF
and SPO = 2 outperformed other baselines.

4.3.3. Performance comparison on ICH dataset

The pre-trained models were tested on the ICH patient data with ac-
celeration factor R =4 and compared. Reconstructed magnitude, R2*,
RDF and QSM in one representative slice containing hemorrhage are
shown in Figure S5. LLR had the highest errors among the three meth-
ods. MoDL showed some errors (red solid arrows) in QSMs which were
not seen in TFF. Quantitative metrics show that both TFF and SPO = 2
outperformed their baselines.

4.4. Prospective study

Prospectively under-sampled scans with acceleration factor R =8
were acquired using the modified sequence (Fig. 2) with sampling pat-
terns SPO = 0, 1 and 2. TFF reconstructions with different sampling
patterns are shown in Fig. 7, where SENSE reconstructions with R =2
were used as reference. Depictions of white matter tracts in R2* maps
(insets in R2* maps) were progressively improved from SPO =0, 1 to 2.
Sharpness scores of perivascular spaces inside putamen (insets in QSMs)
were 0.0270, 0.0111, 0.0247 and 0.0411 for SENSE, SPO =0, 1 and 2.
LARO achieved comparable image quality with R = 2 SENSE reference.
LLR, MoDL and LARO reconstructions with SPO = 2 sampling pattern
(Fig. 3a) are shown in Fig. 8. LLR had the largest errors with heavy
block-like artifacts. LARO outperformed MoDL in the depiction of white
matter tracts in R2* maps (insets) and vein structures in QSMs (insets).
ROI analyses are shown in Tables S5 and S6. In Table S5, with R = 2
SENSE as reference, QSM under-estimations in SN, RN, CN and CC re-
constructed by MoDL and TFF were observed when SPO = 0 and 1 but
were reduced or recovered when SPO = 2. LLR had more deviations
than MoDL and TFF. In Table S6, R2* over-estimations in GP, PU and
CC were seen when SPO = 0 and 1 but were recovered when SPO = 2
for LLR, MoDL and TFF.

4.5. Generalization study

Reconstructions of different test datasets retrospectively under-
sampled by SPO = 2 were shown in Fig. 9. Error maps and quantitative
metrics were computed in R2*, RDF and QSM according to their fully
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Fig. 4. Ablation study on acquired k-space dataset with acceleration factor R = 8. Reconstruction errors were progressively reduced in magnitude, R2* and QSM as
more modules were added. White matter tracts (insets) were blurry in all reconstructed R2* and QSMs except LARO (TFF = 1, SPO = 2). Abbreviation: TFF = 0 or
1, with or without temporal feature fusion module; SPO = 0, 1 or 2, “without”, “with single-echo”, or “with multi-echo” sampling pattern optimization.
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Fig. 5. Performance comparison of acquired k-space test dataset under-sampled
by the optimized sampling pattern with acceleration factor R = 8 (Fig. 3a). LLR
had heavy block-like artifacts in RDFs and QSMs with larger errors compared to
MoDL and LARO. Insets in QSMs and R2* showed pronounced noise in MoDL,
which were not seen in LARO.

Neurolmage 268 (2023) 119886

R=4, SPO=2
LR MoDL LARO

Fully sampled

Magnitude

Abs error
%20 : o

50
*
&
Hz
0
39.87 40.89
0.9680 0.9721
0.05
L.
[a] ppm
o
-0.05
36.58
0.9283
0.15
=
m
& PP
-0.15

32.89 30.32
29.40 20.99 19.25

SSIM: 0.9877 0.9929 0.9936

Fig. 6. Performance comparison of MS lesion dataset under-sampled by the op-
timized sampling pattern with acceleration factor R =4 (Fig. 3b). MoDL and
LARO dramatically outperformed LLR in terms of reconstruction accuracy, while
LARO was slightly better than MoDL.

sampled references except in magnitude due to signal intensity varia-
tions of different datasets. No visible artifacts were seen when apply-
ing the pre-trained reconstruction network to the datasets with another
flip angle (25°, 2nd column), number of echoes (7 echoes, 1st column)
and a second MRI scanner from the same manufacturer (GE, 3rd col-
umn). Moderate noise appeared (red arrows in the last column) when
tested with another voxel size (0.75 x 0.75 x 1.5 mm?3, last column),
while moderate residual aliasing artifacts existed when tested with a
third MRI scanner from another manufacturer (Siemens, 4th column).
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Fig.7. TFF reconstructions on prospectively under-sampled raw k-space data of one healthy subject with acceleration factor R = 8. Compared to SENSE reconstruction
with R = 2 as reference, depictions of white matter tracts in R2* maps (insets in R2* maps) were progressively improved from SPO = 0, 1 to LARO (SPO = 2). Sharpness
scores of perivascular spaces inside putamen (insets in QSMs) were 0.0270, 0.0111, 0.0247 and 0.0411 for SENSE, SPO = 0, 1 and 2. Abbreviation: TFF= 1, with
temporal feature fusion module; SPO = 0, 1 or 2, without, with single-echo or with multi-echo sampling pattern optimization.

Reconstructions retrospectively under-sampled by SPO = 0 and 1 were
shown in Figures S6 and S7. For each test dataset, reconstruction per-
formance was consistently improved from sampling pattern SPO = 0, 1
to 2.

5. Discussion

In this work, we demonstrated the feasibility of learning a sampling
pattern and reconstruction process specifically designed to accelerate
the acquisition of multi-echo gradient echo data for the purpose of com-
puting a susceptibility map (QSM). R = 8 acceleration was achieved
while maintaining QSM quality in both healthy subjects as well as in an
MS patient. Both retrospective and prospective acceleration was demon-
strated. Finally, reconstruction performance was observed to be superior
when compared to previously proposed acceleration techniques.

The original LOUPE (Bahadir et al., 2020)/LOUPE-ST (Zhang et al.,
2020) learned an optimized variable density sampling pattern from
fully sampled single-echo k-space data. In the SPO = 1 method in this
work, LOUPE-ST was performed to learn a single optimized sampling
pattern from fully sampled multi-echo k-space data and the obtained

sampling pattern and reconstruction was applied to all echoes. The
SPO = 2 method differs from SPO = 1 by learning a sampling pattern for
each echo, allowing the introduction of additional sampling incoherency
along echoes. LOUPE/LOUPE-ST (SPO = 1) outperformed manually de-
signed variable density patterns (SPO = 0) in that LOUPE/LOUPE-ST
optimized the sampling pattern variable density by learning a proba-
bilistic density distribution in Eq. (4) that was updated during training
to improve the reconstruction performance.

In this work, multi-echo sampling pattern optimization SPO =
(Eq. (3)) was learned, achieving both optimized k-space variable den-
sity as in SPO = 1 and additional incoherency along echoes, which may
result in better aliasing patterns for gradient echo images of different
echoes that can be combined and compensated during reconstruction.
SPO = 2 sampling pattern distinguishes the proposed framework from
another deep learning based mGRE acceleration method (Gao et al.,
2021), where manually designed 2D variable density sampling pattern
(SPO = 0) was applied, which may not be optimal for mGRE acquisition.
We extend our conference paper (Zhang et al., 2021) by implement-
ing SPO = 2 sampling pattern into the existing mGRE sequence. The
proposed multi-echo adaptive fan-beam ordered strategy (Fig. 2a) pre-
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Fig. 8. Performance comparison on the prospectively under-sampled raw k-space data of one healthy subject with SPO = 2 and acceleration factor R = 8 (Fig. 3a).
SENSE reconstructions with R = 2 were used as references. LLR had heavy block-like artifacts in RDFs and QSMs. White matter tracts in R2* maps (insets in R2*
maps) and vein structures in QSMs (insets in QSMs) were blurrier in MoDL than LARO.

vented large changes in the phase and slice encodings between echoes
within one TR, improving image quality (Spincemaille et al., 2004;
Spincemaille et al., 2006). The prospective results in Figs. 6 and 7 show
the feasibility of achieving R = 8 factor acceleration using the modified
mGRE sequence with QSM image quality comparable to R = 2 SENSE.

Our reconstruction architecture (Fig. 1) was based on unrolling a
plug-and-play ADMM iterative scheme (Chan et al., 2016) and replac-
ing the regularization step with a deep neural network denoiser. This
idea is inspired by MoDL (Aggarwal et al., 2018) where quasi-Newton
iterative scheme was unrolled as a network architecture and a five-
convolution-layer neural network denoiser was applied. In (Gao et al.,
2021), a MoDL-like architecture (Fig. 1 in (Gao et al., 2021)) was pro-
posed but only one repetition of unrolling was applied. As reported
in MoDL (Aggarwal et al., 2018), more iterations/repetitions of the
unrolled architecture helped improve reconstruction performance. We
used N; = 10 unrolled iterations same as MoDL to ensure good perfor-
mance.

Recently, using convolutional neural networks to solve inverse prob-
lems related to multi-echo MRI signals has been explored in (Kim et al.,
2022; Cho et al.,, 2022; Zhang et al., 2021; Zhang et al.,, 2021;
Jafari et al., 2021; Zhang et al., 2020; Zhang et al., 2020; Zhang et al.,
2020), where the established U-Net architecture (Ronneberger et al.,
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2015) was always applied. LARO is novel here because it introduces a
TFF module (Fig. 1c) to implicitly capture the multi-echo correlation
and effectively compensate temporally incoherent aliasing patterns of
the GRE echo signals when SPO = 2. The benefit of the TFF module was
apparent in our ablation study (Fig. 4 and Fig. S2, Tables S1 and S3) and
comparison to MoDL (Fig. 7, Figs. S1, S3 and S5). This distinguishes the
proposed framework from (Gao et al., 2021) as well, since in (Gao et al.,
2021) multi-echo images were only concatenated into channel dimen-
sion for convolution.

Pathologies such as hemorrhagic lesions which were not seen in the
healthy training data were still effectively reconstructed by LARO and
MoDL with low reconstruction error (2nd row in Figure S5). We specu-
late that the use of the data consistency module in the proposed method
allows for accurate image reconstruction of pathologies not seen during
training. Generalization experiments of LARO (Fig. 9, Figs. S6 and S7)
demonstrate that changing the flip angle, number of echoes or using a
different scanner from the same manufacturer led to small image recon-
struction errors. At the same time, using a smaller voxel size or a scanner
from a different manufacturer led to a moderate increase in image noise
(red arrows in the last column of Fig. 9) or residual aliasing (4th col-
umn in Fig. 9). One potential cause for the decreased performance when
changing the voxel size is that it currently requires interpolating the op-
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timal sampling pattern. For optimal performance, LARO may need to
be retrained. It is however possible that fine-tuning the existing weights
using a small set of fully sampled data acquired with the new resolution
may be sufficient, the details of which should be the subject of future
research.

Despite the limitations, pre-trained sampling patterns from SPO = 0,
1 to 2 consistently improved the reconstruction performance on all test LARO.
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Fig. 9. Generalization experiments of LARO
with different imaging parameters retrospec-
tively under-sampled by SPO = 2 sampling
pattern. Fully sampled reference of each test
dataset was used to compute error maps and
quantitative metrics. Magnitude images were
not considered for quantitative comparison
due to signal intensity variations among scans.
LARO performed well without visible artifacts
on test datasets with another flip angle (25°,
2nd column), number of echoes (7 echoes, 1st
column) and a second MRI scanner from the
same manufacturer (GE, 3rd column), but had
moderate noise (red arrows in the last column)
on another voxel size (0.75 x 0.75 x 1.5 mm?,
last column) and moderate residual aliasing
artifacts on a third MRI scanner from another
manufacturer (Siemens, 4th column). Recon-
structions on these datasets retrospectively
under-sampled by SPO = 1 and 0 were shown
in Figures S6 and S7. For each test dataset,
reconstruction performance was consistently
improved from sampling pattern SPO =0, 1 to
2. (For interpretation of the references to color
in this figure legend, the reader is referred to
the web version of this article.)

datasets, which implies that for brain mGRE acquisition, the optimized
k-space variable density distribution (Eq. (4)) may be independent of
the scanning parameters/manufacturers and can be generalized effec-
tively. LARO is also independent of the number of receiver coil chan-
nels used for scan, as both TFF and denoiser networks are applied to the
coil-combined image, which also improves the generalization ability of
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For raw k-space data, fully sampled training dataset was only avail-
able on healthy volunteers because of long scan time (9:30 mins),
which was not feasible on patients. To incorporate patients’ dataset for
training, an unrolled reconstruction network may be trained without
fully sampled k-space data using self-supervised learning (Yaman et al.,
2020), where during training, one portion of the under-sampled k-space
data is included in the data consistency module and the remaining k-
space data is used in a forward model loss, which promises to achieve
test results comparable to supervised training on fully sampled data.
The reconstruction network of LARO may be enhanced by incorporating
under-sampled patient data with such self-supervised learning strategy.

LARO is applied here to mGRE for accelerating QSM that is useful for
studying tissue magnetism (Wang and Liu, 2015), particularly paramag-
netic iron (Liu et al., 2010), and is promising for assessing various dis-
eases (Wang et al., 2017), such as multiple sclerosis (Zhang et al., 2016).
The proposed combination of sampling and reconstruction optimization
can be extended to other mGRE tasks with different organs, such as liver
and cardiac QSM (Jafari et al., 2019; Wen et al., 2018; Wen et al., 2019),
or other quantitative imaging tasks, such as T1 (Deichmann, 2005) and
T2 (Deoni et al., 2005) mapping, where signal models based on Bloch
equations are used to describe signal intensity changes over time. The
proposed sampling strategy and temporal feature fusion may be use-
ful to obtain better multi-contrast images. Furthermore, with the emer-
gence of quantitative multi-parametric MRI (Christodoulou et al., 2018),
sampling and reconstructing multi-contrast images together in one se-
quence can be an effective strategy, since multi-contrast images that are
intrinsically registered in one scan have redundancy in both spatial and
temporal dimensions, which can be utilized to regularize the image se-
ries during reconstruction. Our future work will extend LARO to other
mGRE and multi-contrast MRI tasks.

6. Conclusion

We propose LARO, a unified method to optimize the mGRE signal
acquisition and image reconstruction to accelerate QSM. The proposed
reconstruction network inserts a recurrent network module into a deep
ADMM network to capture the signal evolution and compensate the
aliasing artifacts along echo time. The proposed sampling pattern op-
timization module allows acquiring k-space data along echoes with an
optimized multi-echo sampling pattern. Experimental results showed su-
perior performance LARO with good generalization ability. Prospective
scan using the optimized multi-echo sampling pattern shows the feasi-
bility of LARO.
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