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a b s t r a c t 

Quantitative susceptibility mapping (QSM) involves acquisition and reconstruction of a series of images at 

multi-echo time points to estimate tissue field, which prolongs scan time and requires specific reconstruction 

technique. In this paper, we present our new framework, called Learned Acquisition and Reconstruction Op- 

timization (LARO), which aims to accelerate the multi-echo gradient echo (mGRE) pulse sequence for QSM. 

Our approach involves optimizing a Cartesian multi-echo k-space sampling pattern with a deep reconstruc- 

tion network. Next, this optimized sampling pattern was implemented in an mGRE sequence using Cartesian 

fan-beam k-space segmenting and ordering for prospective scans. Furthermore, we propose to insert a recur- 

rent temporal feature fusion module into the reconstruction network to capture signal redundancies along echo 

time. Our ablation studies show that both the optimized sampling pattern and proposed reconstruction strategy 

help improve the quality of the multi-echo image reconstructions. Generalization experiments show that LARO 

is robust on the test data with new pathologies and different sequence parameters. Our code is available at 

https://github.com/Jinwei1209/LARO-QSM.git . 
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. Introduction 

Quantitative magnetic resonance imaging (MRI) provides biomark-

rs for clinical assessment of diverse diseases, including T1 and T2 relax-

tion time ( Deichmann, 2005 ; Deoni et al., 2005 ), fat fraction ( Yu et al.,

008 ), quantitative susceptibility mapping (QSM) ( de Rochefort et al.,

010 ), etc. For QSM, a multi-echo gradient echo (mGRE) pulse sequence

s used to acquire signals at different echo times. A tissue-induced local

agnetic field map can be obtained by fitting the acquired complex

ulti-echo signals ( Kressler et al., 2009 ; Liu et al., 2013 ). Then, a tissue

usceptibility map can be computed using an inverse problem solver,

uch as regularized dipole inversion ( Liu et al., 2012 ). 

For QSM, the range of echo times needs to be large enough to cover

oth small and large susceptibilities in tissue ( Wang and Liu, 2015 ), such

s in the application of QSM in multiple sclerosis (MS), where QSM has

een shown to be sensitive to myelin content as well as iron ( Wang and

iu, 2015 ), both of which are modified in MS. However, limited scan

ime in clinics only allows for mGRE with a compromised spatial res-
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lution, making visualization of smaller MS lesion more challenging.

vercoming this compromise is a major motivation for this work. 

The significantly increased scan time of mGRE sequence can be

artly overcome using classical acceleration techniques such as Paral-

el imaging (PI) ( Griswold et al., 2002 ; Pruessmann et al., 1999 ), com-

ressed sensing (CS) ( Lustig et al., 2007 ), or their combination (PI-CS)

 Murphy et al., 2012 ; Otazo et al., 2010 ). Recently, deep learning has

een used to optimize k-space sampling patterns from training data,

uch as in LOUPE ( Bahadir et al., 2020 ) and its extension LOUPE-ST

 Zhang et al., 2020 ), experimental design with the constrained Cramer-

ao bound (OEDIPUS) ( Haldar and Kim, 2019 ) and greedy pattern se-

ection ( Gözcü et al., 2018 ). Building on these prior works, we propose

ere to learn an optimal sampling pattern to accelerate QSM acquisition

nd improve reconstruction quality. 

Reconstruction from under-sampled measurements can be solved

sing regularization to exploit signal redundancies, such as low-rank

nd/or sparsity constraints ( Zhao et al., 2015 ; Peng et al., 2016 ;

hang et al., 2015 ). More recently, convolutional neural networks have
rk, NY 10065, USA. 
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ℎ  
een proposed for compressed sensing reconstruction. One popular neu-

al network technique involves implementing the unrolled iterations of

n optimization process, coupled with a learned regularizer, as in MoDL

 Aggarwal et al., 2018 ) and VarNet ( Aggarwal et al., 2018 ). These archi-

ectural designs have been applied to single-echo image reconstruction,

nd extended to dynamic image sequence reconstruction via cascaded

 Schlemper et al., 2017 ) and recurrent networks ( Qin et al., 2018 ). Re-

ently QSM acquisition was accelerated using 2D incoherent Cartesian

nder-sampling and deep neural network reconstruction with a variable

ensity sampling pattern manually designed and fixed across echoes

 Gao et al., 2021 ). 

We propose Learned Acquisition and Reconstruction Optimization

LARO) to further optimize the sampling pattern across echoes by in-

erring the temporal variation through adding a temporal dimension to

OUPE-ST ( Zhang et al., 2020 ) for the multi-echo case. Images are re-

onstructed accordingly using an unrolled reconstruction network based

n alternating direction method of multipliers (ADMM) ( Boyd et al.,

011 ) to capture the signal evolution and compensate the aliasing pat-

erns of mGRE images with a temporal feature fusion module. 

In this study, the learning based acquisition acceleration is not used

o increase the spatial resolution but to instead accelerate the clinical

rotocol. For LARO training and testing experiments, we used retro-

pective under-sampling on fully sampled k-space data either simulated

rom the existing clinical protocol by taking inverse Fourier transform

f the clinical mGRE images, or directly acquired from the scanner; the

ully sampled k-space data served as ground truth for LARO sampling

attern optimization and under-sampled reconstruction. The optimized

ampling pattern was then implemented in a modified mGRE sequence

uch that prospectively under-sampled data could be acquired and re-

onstructed with LARO. This work is extended from our conference pa-

er ( Zhang et al., 2021 ) where preliminary retrospective results were

hown as a proof of concept of LARO. 

. Theory 

In QSM data acquisition, multi-echo k-space sampling with multiple

eceiver coils is modeled as: 

 𝑗𝑘 = 𝑈 𝑗 𝐹 𝐸 𝑘 𝑠 𝑗 + 𝑛 𝑗𝑘 , (1)

here 𝑏 𝑗𝑘 is the measured k-space data of the k -th receiver coil at the j -th

cho time, with 𝑁 𝐶 receiver coils and 𝑁 𝑇 echo times, 𝑈 𝑗 is the k-space

nder-sampling pattern at the j -th echo time, 𝐹 is the Fourier transform,

 𝑘 is the sensitivity map of the k -th coil, 𝑠 𝑗 is the complex image of the

 -th coil to be reconstructed, and 𝑛 𝑗𝑘 is the acquisition noise, assumed

o be Gaussian. 

Having acquired 𝑏 𝑗𝑘 with fixed 𝑈 𝑗 , we aim at reconstructing all 𝑠 𝑗 
imultaneously with a cross-echo regularization loss 𝑅 ( { 𝑠 𝑗 } ) . Based on
q. (1) , a solution { ̂𝑠 𝑗 } can be obtained by solving the following opti-
ization 

𝑠̂ 𝑗 
}
= argmin {

𝑠 𝑗 
} E 

({
𝑠 𝑗 
})

= argmin {
𝑠 𝑗 
}

𝑁 𝑇 ∑
𝑗=1 

𝑁 𝐶 ∑
𝑘 =1 

‖𝑈 𝑗 𝐹 𝐸 𝑘 𝑠 𝑗 − 𝑏 𝑗𝑘 ‖2 2 + 𝑅 

({
𝑠 𝑗 
})

(2) 

We denote the iterative reconstruction method solving Eq. (2) as

 ̂𝑠 𝑗 } = 𝐴 ( { 𝑈 𝑗 }; { 𝑏 𝑗𝑘 } ) . With this notation, the sampling pattern optimiza-
ion problem consists of finding, for a given under-sampling ratio 𝛾 and

 given set of fully sampled training data { 𝑏 𝑖 
𝑗𝑘 

, 𝑠 𝑖 
𝑗 
} 
𝑖 =1…𝑁 

, the sampling

attern { ̂𝑈 𝑗 } that solves: 

𝑈̂ 𝑗 

}
= argmin {

𝑈 𝑗 
} 𝐺 

({
𝑈 𝑗 

})
= argmin {

𝑈 𝑗 
} 1 

𝑁 

𝑁 ∑
𝑖 =1 

𝐿 

({ 

𝑠̂ 𝑖 
𝑗 

} 

, 

{ 

𝑠 𝑖 
𝑗 

} )
, 

ubject to 
{ 

𝑠̂ 𝑖 
𝑗 

} 

= 𝐴 

({
𝑈 𝑗 

}
; 
{ 

𝑈 𝑗 𝑏 
𝑖 
𝑗𝑘 

} )
𝑎𝑛𝑑 𝑈 𝑗 = 𝛾 for all 𝑖 and 𝑗 (3)

here 𝑁 is the total number of samples in the training dataset, { 𝑠 𝑖 
𝑗 
} is

he 𝑖 -th fully sampled multi-echo image, { ̂𝑠 𝑖 
𝑗 
} is the 𝑖 -th reconstructed
2 
nder-sampled multi-echo obtained using solver 𝐴 ( { 𝑈 𝑗 }; { 𝑈 𝑗 𝑏 
𝑖 
𝑗𝑘 
} ) and 𝐿

s the metric to quantify difference between { ̂𝑠 𝑖 
𝑗 
} and { 𝑠 𝑖 

𝑗 
} , such as the

 1 loss. In the following section, we will propose a unified framework

alled LARO (Learned Acquisition and Reconstruction Optimization) to

ackle both Eqs. (2) and (3) using deep learning techniques. 

.1. Sampling pattern optimization (SPO) 

For k-space sampling pattern optimization Eq. (3) , we extend the pre-

iously proposed LOUPE-ST method ( Zhang et al., 2020 ) to the multi-

cho setting. We consider 2D variable density Cartesian sampling pat-

erns in the 𝑘 𝑦 − 𝑘 𝑧 plane with a fixed under-sampling ratio as shown

n Fig. 1 b, in which learnable weights { 𝑤 𝑗 } are used to generate a
ulti-echo probabilistic pattern { 𝑃 𝑗 } through sigmoid transformation
nd sampling ratio renormalization: 

 𝑗 = Renorm 

( 

1 
1 + 𝑒 − 𝑎 ⋅ 𝑤 𝑗 

) 

(4)

here 𝑎 is the slope parameter of the sigmoid function and Renorm( ⋅)
s a linear scaling operation to make sure the mean value of probabilis-

ic pattern is equal to the desired under-sampling ratio ( Bahadir et al.,

020 ). Assuming an independent Bernoulli distribution 𝐵𝑒𝑟 ( 𝑃 ) at each
-space location, a binary under-sampling pattern 𝑈 𝑗 is generated via

tochastic sampling from 𝑃 𝑗 : 

 𝑗 = 1 𝑧<𝑃 𝑗 
(5)

here 1 𝑥 is the indicator function on the truth value of 𝑥 and 𝑧 is uni-
ormly distributed between [ 0 , 1 ] . Then { 𝑈 𝑗 } are used to retrospectively
cquire { 𝑏 𝑗𝑘 } from fully sampled multi-echo k-space data. The stochas-

ic sampling layer in Eq. (5) has zero gradient almost everywhere when

ackpropagating through this layer, which makes updating { 𝑤 𝑗 } in-
easible ( Gu et al., 2015 ). To solve this issue, LOUPE-ST implements

 straight-through estimator ( Bengio et al., 2013 ) for backpropagation

hrough the stochastic sampling layer by using the probability distribu-

ion P instead: 

𝑑1 𝑧<𝑃 𝑗 

𝑑𝑤 𝑗 

→
𝑑𝑃 𝑗 

𝑑𝑤 𝑗 

(6) 

hich solves the zero gradient issue and performs better than other

radient approximations, such as the one implemented in LOUPE

 Zhang et al., 2020 ). 

.2. Temporal feature fusion (TFF) for reconstruction 

For image reconstruction Eq. (2) , we propose an unrolled architec-

ure with a temporal feature fusion (TFF) module based on the plug-

nd-play ADMM ( Chan et al., 2016 ) strategy. In plug-and-play ADMM,

uxiliary variables 𝑣 𝑗 = 𝑠 𝑗 for each echo 𝑗 were introduced and an off-

he-shelf image denoiser { 𝑣 ( 𝑡 +1 ) 
𝑗 

} =  ( { ̃𝑣 ( 𝑡 ) 
𝑗 
} ) , where 𝑣̃ ( 𝑡 ) 

𝑗 
= 𝑠 

( 𝑡 ) 
𝑗 

+ 
1 
𝜌
𝑢 
( 𝑡 ) 
𝑗 
with

 
( 𝑡 ) 
𝑗 
the dual variable of the 𝑡 -th outer loop and ρ the penalty parame-

er in ADMM, was applied. We propose to unroll the iterative scheme

f plug-and-play ADMM as a data graph which we call “deep ADMM ”

etwork as shown in Fig. 1 a, where a CNN denoiser  ( { ̃𝑣 ( 𝑡 ) 
𝑗 
}; 𝑤 𝐷 

) with
eights 𝑤 𝐷 

is designed to replace  ( { ̃𝑣 ( 𝑡 ) 
𝑗 
} ) as: 

 
( 𝑡 +1 ) 
𝑗 

=  

(
𝑣̃ 
( 𝑡 ) 
𝑗 
; 𝑤 𝐷 

)
. (7)

To incorporate the dynamic nature of multi-echo images into

 ( { ̃𝑣 ( 𝑡 ) 
𝑗 
}; 𝑤 𝐷 

) , we propose a temporal feature fusion (TFF) module as
hown in Fig. 1 c. In TFF, a recurrent module is repeated 𝑁 𝑇 times in

hich at the 𝑗-th repetition (corresponding to the 𝑗-th echo), 𝑠 𝑗 (real

nd imaginary parts concatenated along the channel dimension) and

 𝑗−1 ’s hidden state feature ℎ 𝑗−1 are fed into the module to generate 𝑠 𝑗 ’s

idden state feature ℎ 𝑗 : 

 𝑗 = 𝑅𝑒𝐿𝑈 

(
𝑁 𝑠 

(
𝑠 𝑗 
)
+ 𝑁 ℎ 

(
ℎ 𝑗−1 

))
, (8)
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Fig. 1. Network architecture of LARO. (a): deep ADMM was used as the backbone for under-sampled k-space reconstruction. (b): a sampling pattern optimization 

(SPO) module was used to learn the optimal k-space under-sampling pattern. (c): a temporal feature fusion (TFF) module was inserted into deep ADMM to capture 

the signal evolution along echoes. 
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(  
here 𝑁 𝑠 ( ⋅) and 𝑁 ℎ ( ⋅) are convolutional layers for 𝑠 𝑗 and ℎ 𝑗−1 , and
𝑒𝐿𝑈 is the Rectified Linear Unit activation function. The learnable

eights in 𝑁 𝑠 ( ⋅) or 𝑁 ℎ ( ⋅) are shared across recurrent repetitions. At the
-th recurrent forward pass shown in Eq. (8) , feature maps ℎ 𝑗 are gen-

rated by aggregating 𝑠 𝑗 and ℎ 𝑗−1 through convolutions and nonlinear

ctivations, which implicitly capture the echo dynamics and fuses fea-

ures from the preceding echoes. After a full recurrent pass over echoes,

ll feature maps ℎ 𝑗 are concatenated along the batch dimension and

ed into a denoising network to generate { 𝑣 ( 𝑡 +1 ) 
𝑗 

} . The dynamic nature
f the signal over echo times is implicitly captured with the recurrent

orward process due to the parameter sharing mechanism which at-

empts to exploit the relationship between a given echo and all earlier

choes. 

.3. K-space under-sampling sequence design 

The learned k-space sampling patterns 𝑈 𝑗 were implemented in an

GRE pulse sequence for prospective data acquisition. Gradient pulses

long the phase and slice encoding directions were added between con-

ecutive echoes to allow for the modification of k-space sampling lo-

ations echo-by-echo during one TR. To avoid large changes in the

hase and slice encoding gradients between two echoes, the following

-space ordering strategy was deployed: for each echo 𝑗, the sampled

-space locations 𝑈 𝑗 were first divided into multiple ordered segments

f equal size based on their angle with respect to the positive 𝑘 𝑦 axis.

ithin each segment, k-space locations were ordered based on their

istance with respect to the k-space center. Using such k-space order-

ng strategy, sampled locations will follow a similar trajectory for all

choes, avoiding large changes in the phase and slice encoding gradi-

nts from echo to echo during one TR. Illustration of the proposed seg-

ented k-space ordering and pulse sequence design is shown in Fig. 2 .

n this example, number of echoes 𝑁 𝑇 = 10 , acceleration factor 𝑅 = 8 ,
 𝑦 = 206 , 𝑁 𝑧 = 80, 𝑁 𝑠 (number of segments) = 11, 𝑁 𝑖𝑛𝑑 (number of

-space location per segment) = 188 so that 𝑁 𝑠 × 𝑁 𝑖𝑛𝑑 = 𝑁 𝑦 × 𝑁 𝑧 ∕ 𝑅 .

ig. 2 a exemplified the sampled ky-kz locations (yellow dots) in cur-

ent k-space segment (yellow hollow triangles) during a certain TR. Gy

nd Gz gradients (blue solid triangles) in Fig. 2 b are added between

wo unipolar readouts in Gx to adjust next sampled location in ky-kz

lane. 
3 
. Methods 

.1. Data acquisition and preprocessing 

Data were acquired following an IRB approved protocol. All images

sed in this work were de-identified to protect the privacy of human

articipants. 

.2. Fully sampled acquired k-space data 

Cartesian fully sampled k-space data were acquired in 13 healthy

ubjects (3 females, age: 30.7 ± 7.3) using a 3D mGRE sequence on a 3T

E scanner with a 32-channel head coil. Imaging parameters included

A = 15°, FOV = 25.6 cm, TE 1 = 1.972 ms, TR = 36 ms, #TE = 10,

TE = 3.384 ms, acquisition matrix = 256 × 206 × 80 (readout × phase
ncoding × phase encoding), voxel size = 1 × 1 × 2 mm 

3 , BW = 64 kHz.

otal scan time was 9:30 mins per subject. 32-coil k-space data of

ach echo were compressed into 8 virtual coils using a geometric sin-

ular value decomposition coil compression algorithm ( Zhang et al.,

013 ). After compression, coil sensitivity maps of each echo were es-

imated with a reconstruction null space eigenvector decomposition al-

orithm ESPIRiT ( Uecker et al., 2014 ) using a centric 20 × 20 × 20

elf-calibration k-space region for each compressed coil. From the fully

ampled data, coil combined multi-echo images were computed using

he obtained coil sensitivity maps to provide the ground truth labels for

oth network training and performance comparison. Training, valida-

ion and testing has been performed on 2D coronal slices. To this end,

he 200 central coronal slices per subject were selected along the readout

irection, as these contain mostly brain anatomy to avoid a bias from

lices that do not resemble the brain. 8/1/4 subjects (1600/200/800

lices) were used as training, validation, and test datasets, respectively.

To demonstrate the generalization ability of LARO, Cartesian fully

ampled k-space data were also acquired in one of the healthy test sub-

ects with the following sequence parameter modifications: another flip

ngle (25°), number of echoes (7 echoes), voxel size ( 0 . 75 × 0 . 75 ×
1 . 5 𝑚𝑚 

3 ), a second MRI scanner from the same manufacturer (GE, 12-

hannel head coil) and a third MRI scanner from another manufacturer

Siemens, 64-channel head coil). Same k-space processing was applied
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Fig. 2. Illustration of (a): the proposed segmented k-space ordering strategy of ten echoes and (b): pulse sequence design. In (a), segmented centric k-space ordering 

is indexed by greyscale level. In a certain TR, sampled ky-kz locations (yellow dots) in current k-space segment (yellow hollow triangles) are exemplified. In (b), 

additional Gy and Gz gradients (blue solid triangles) are added between two unipolar readouts in Gx to adjust next sampled location in ky-kz plane. (For interpretation 

of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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o these data to get compressed 8-coil k-space, coil sensitivity maps and

round truth labels. 

.3. Fully sampled synthetic k-space data 

To demonstrate LARO’s improvement on pathologic reconstruction,

upplementary synthetic k-space datasets from healthy subjects, mul-

iple sclerosis (MS) and intracerebral hemorrhage (ICH) patients were

imulated, considering unavailability of acquired fully sampled k-space

ata from patients. Multi-echo complex images of 7 healthy subjects,

 MS patients and 1 ICH patient were acquired using a 3D mGRE se-

uence on a 3T GE scanner. Imaging parameters included FA = 15°,

OV = 25.6 cm, TE 1 = 6.69 ms, TR = 49 ms, #TE = 10, ΔTE = 4.06 ms,

cquisition matrix = 256 × 206 × 68 (readout × phase encoding × phase
ncoding), voxel size = 1 × 1 × 2 mm 

3 , BW = 64 kHz. Synthetic single-

oil k-space data was generated through Fourier transform of the com-

lex multi-echo images. Retrospective Cartesian under-sampling was

pplied on the synthetic k-space data along two phase encoding di-

ections. Training, validation and testing has been performed on 2D

oronal slices. To this end, the 200 central coronal slices per subject

ere selected along the readout direction, as these contain mostly brain

natomy to avoid a bias from slices that do not resemble the brain.

ata from 6/1 healthy subjects (1200/200 slices) was used as train-

ng/validation. Data from the MS (800 slices) and ICH (200 slices) pa-

ients was used as two test datasets. 

.4. Under-sampled k-space data in both retrospective and prospective 

tudies 

For a retrospective study, an acceleration factor 𝑅 = 8 (12.5% under-

ampling ratio) was applied on the fully sampled acquired k-space

ataset and acceleration factor 𝑅 = 4 (25% under-sampling ratio) was

pplied on the fully sampled synthetic k-space dataset. For a prospec-

ive study, Cartesian under-sampled k-space data was prospectively ac-

uired in 10 healthy test subjects (3 females, age: 28.4 ± 4.1) using a

odified 3D mGRE sequence with the same 3T GE scanner and imaging

arameters. Different sampling patterns with 𝑅 = 8 were applied during
rospective scans and compared. For the optimized k-space sampling

attern, each echo was divided into 11 segments with 188 locations in
4 
ach segment, resulting in 188 × 11 = 2068 k-space locations to sam-
le in total. Corresponding scan time was 1:20 mins. For reference, the

efault imaging protocol using the same imaging parameters except for

lliptical R = 2 uniform under-sampling reconstruction using the SENSE

mplementation ( Pruessmann et al., 1999 ) on the scanner was performed

n the same subjects. 

.5. Implementation details 

.5.1. Network architecture 

The proposed network architecture is shown in Fig. 1 . Real and imag-

nary parts of multi-echo images were concatenated along the channel

imension, yielding 20 channels to represent multi-echo complex im-

ges in the network. Under-sampled k-space data was zero-filled and

ourier-transformed to be used as input for deep ADMM ( Fig. 1 a) with

 𝐼 = 10 unrolled iterations. In deep ADMM, the denoiser  ( ⋅; 𝑤 𝐷 
) con-

isted of five convolutional layers equipped with 320 channels with in-

tance normalization ( Ulyanov et al., 2016 ) + ReLU activation after con-

olution for each hidden layer. The TFF module ( Fig. 1 c) used 64 chan-

els in both convolutional layers for 𝑠 𝑗 and ℎ 𝑗 . The hidden state fea-

ure maps ℎ 𝑗 were concatenated along the channel dimension and fed

nto  ( ⋅; 𝑤 𝐷 
) to generate denoised multi-echo images. The SPO module

 Fig. 1 b) was used to learn optimal sampling patterns, where weights

 𝑤 𝑗 } (with matrix size 206 × 68 × 10 for synthetic k-space data and

06 × 80 × 10 for the acquired k-space data) were initialized as zeros

nd slope parameter 𝑎 in sigmoid function was 0.25. After generating

inary patterns { 𝑈 𝑗 } from probabilistic patterns { 𝑃 𝑗 } , values in central
0 × 20 locations of { 𝑈 𝑗 } were set as ones for self-calibration. 

.5.2. Training strategy 

The training process consists of two phases. In phase one, weights

n the deep ADMM network and SPO module were updated simultane-

usly by maximizing a channel-wise structural similarity index measure

SSIM) ( Wang et al., 2004 ): 1 
𝑁 

𝑁 ∑
𝑖 

𝑁 𝑇 ∑
𝑗=1 

𝑆 𝑆 𝐼 𝑀 ( ̂𝑠 𝑖 
𝑗 
, 𝑠 𝑖 

𝑗 
) with the measure be-

ween two windows 𝑥 and 𝑦 of common size ( 10 × 10 ) and location in
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̂ 𝑖 
𝑗 
and 𝑠 𝑖 

𝑗 
as: 

 𝑆 𝐼 𝑀 ( 𝑥, 𝑦 ) = 

(
2 𝜇𝑥 𝜇𝑦 + 𝑐 1 

)(
2 𝜎𝑥𝑦 + 𝑐 2 

)(
𝜇2 

𝑥 
+ 𝜇2 

𝑦 
+ 𝑐 1 

)(
𝜎2 

𝑥 
+ 𝜎2 

𝑦 
+ 𝑐 2 

) , (9)

here 𝜇𝑥 , 𝜇𝑦 and 𝜎𝑥 , 𝜎𝑦 are the mean and variance of 𝑥 and 𝑦 , 𝜎𝑥𝑦 is the

ovariance between 𝑥 and 𝑦 , 𝑐 1 = 0 . 01 2 and 𝑐 2 = 0 . 03 2 . In phase two, the
re-trained deep ADMM network from phase one was fine-tuned with

xed binary sampling patterns { 𝑈 𝑗 } either manually designed using a
ulti-level sampling scheme ( Roman et al., 2014 ) or generated from

he learned probabilistic patterns { 𝑃 𝑗 } in phase one. We implemented
n PyTorch using the Adam optimizer ( Kingma and Adam, 2014 ) (batch

ize 1, number of epochs 100 and initial learning rate 10 − 3 ) on a RTX

080Ti GPU. Our code is available at https://github.com/Jinwei1209/

ARO-QSM.git . 

.5.3. Ablation study 

An ablation study regarding the effectiveness of TFF and SFO mod-

les were investigated by removing one or more of these modules

nd quantifying the corresponding loss in performance. First, a man-

ally designed variable density sampling pattern was generated based

n a multi-level sampling scheme ( Roman et al., 2014 ) and used to

rain a baseline deep ADMM network without TFF or SPO (denoted by

FF = 0/SPO = 0). Then TFF (denoted as TFF = 1), single-echo SPO (op-

imized sampling pattern was fixed across echoes, denoted as SPO = 1)

nd multi-echo SPO (denoted as SPO = 2) were progressively added

o the baseline deep ADMM network to check the effectiveness of each

odule, with LARO representing TFF with multi-echo SPO (i.e., TFF = 1,

PO = 2). For baseline deep ADMM without TFF, Eq. (8) was replaced

ith ℎ 𝑗 = 𝑅𝑒𝐿𝑈 ( 𝑁 𝑠 ( 𝑠 𝑗 ) ) by removing 𝑁 ℎ ( ℎ 𝑗−1 ) to show the effectiveness

f recurrent forward pass of hidden state features { ℎ 𝑗 } in TFF, where
wo 64-channel convolutional layers in 𝑁 𝑠 ( ⋅) were used to match the
emory usage of TFF during ablation study. 

.5.4. Performance comparison 

Iterative method locally low rank (LLR) ( Zhang et al., 2015 ) and

 deep learning method MoDL ( Aggarwal et al., 2018 ) were used as

wo benchmark reconstruction methods, where MoDL was modified to

econstruct multi-echo images simultaneously with concatenated real

nd imaginary parts of multi-echoes along channel dimension. Manu-

lly designed and optimized sampling patterns were applied to all re-

onstruction methods and compared. From the resulting gradient echo

mages, R2 ∗ was estimated using ARLO ( Pei et al., 2015 ) and QSM using

orphology enabled dipole inversion with CSF-0 reference ( Liu et al.,

018 ) from relative difference local field (RDF), which was estimated

sing nonlinear field estimation ( Liu et al., 2013 ), phase unwrapping

nd background field removal ( Liu et al., 2011 ). 

For all retrospectively under-sampled datasets, quantitative compar-

sons were presented with fully sampled data as reference, where PSNR

Peak Signal-to-Noise Ratio) and SSIM (Structural Similarity Index)

 Wang et al., 2004 ) metrics per reconstructed coronal slice were used to

easure the reconstruction accuracy of the echo-combined magnitude

mage 

√ 

𝑁 𝑇 ∑
𝑗=1 

|𝑠 𝑗 |2 , R2 ∗ and RDF maps. RMSE (Root-Mean-Square Error),
FEN (High-Frequency Error Norm) ( Ravishankar and Bresler, 2010 )

nd SSIM ( Wang et al., 2004 ) per 3D volume were used to measure the

econstruction quality of QSM. 

For the MS patient dataset, lesions were manually segmented by an

xperienced neuroradiologist based on the corresponding T2-weighted

LAIR images which were spatially registered to the magnitude of mGRE

ata. A linear regression was performed of the mean susceptibility of all

esions between fully sampled and under-sampled test data. 

For the prospectively under-sampled dataset, reconstructions were

erformed by LLR, MoDL and TFF reconstructions with different sam-

ling patterns. The SENSE reconstruction from the scanner with acceler-

tion factor 2 was used as a reference for comparison. Detailed structures
5 
n QSM and R2 ∗ such as white matter tracts were qualitatively com-

ared. The perivascular spaces were segmented manually into a single

egion of interest ROIp. From this ROIp, a border ROIb was computed

y dilating ROIp by 1 pixel and removing the original ROIp. The sharp-

ess was defined as the difference of average susceptibility of ROIp and

OIb. Mean QSM and R2 ∗ values and standard deviations in manually

rawn ROIs including Globus pallidus (GP), Substantia Nigra (SN), Red

ucleus (RN), Caudate Nucleus (CN), Putamen (PU), thalamus (TH), op-

ic radiation (OR) and cerebral cortex (CC, starting from the top of the

rain, drawn on the tenth slice of QSMs covering some part of frontal

nd parietal lobes) were computed and compared. 

.5.5. Generalization experiments 

When acquiring the fully sampled test data with sequence parame-

er modifications, only one parameter was modified in each scan, ex-

ept for a different voxel size, where increased spatial resolution also

ncreased echo spacing ΔTE to 4.728 ms and acquisition matrix to
20 × 258 × 112 (readout × phase encoding × phase encoding). Sam-

ling patterns of this voxel size were obtained by bicubic interpolation

f the pre-trained probabilistic sampling distribution 𝑃 𝑗 with matrix size

06 × 80 in Eq. (4) to 𝑃 𝑗 ′ with matrix size 258 × 112 for the new voxel

ize. Then the new binary sampling patterns 𝑈 

′
𝑗 
were generated using

q. (5) : 𝑈 𝑗 
′ = 1 𝑧<𝑃 𝑗 

′ , where 1 𝑥 is the indicator function on the truth value
f 𝑥 and 𝑧 is uniformly distributed between [ 0 , 1 ] . For the test data with
 echoes, the first 7 sampling patterns were used when applying LARO

ith SPO = 2. Fully sampled data were used as the reference for quan-

itative comparison in R2 ∗ , RDF and QSM, except in magnitude due to

ignal intensity variations of different scans. 

. Results 

For abbreviations, “TFF = 0 ” or “1 ” denotes “with ” or “without ” tem-

oral feature fusion module; “SPO = 0 ”, “1 ” or “2 ” denotes “without ”,

with single-echo ”, or “with multi-echo ” sampling pattern optimization.

n terms of reconstruction methods, “TFF ” denotes the proposed recon-

truction with “TFF = 1 ” under different sampling patterns; “LARO ” de-

otes “TFF ” reconstruction specifically under “SPO = 2 ” sampling pat-

ern, i.e., the proposed learned acquisition and reconstruction optimiza-

ion framework. 

.1. Sampling patterns 

Fig. 3 shows SPO = 2 sampling pattern of the first echo (Echo1) and

ifference maps between two adjacent echoes ( ΔEcho# ) in (a): acquired
-space data (acceleration factor 𝑅 = 8 ) and (b): synthetic k-space data
acceleration factor 𝑅 = 4 ). Different k-space sampling patterns were
enerated from the learned probabilistic patterns per echo, introducing

dditional incoherency along the temporal dimension. 

Acquired k-space data 

.1.1. Ablation study 

Reconstructed magnitude, R2 ∗ , RDF and QSM in one representative

lice are shown in Fig. 4 . As TFF and SPO modules were gradually added

o the baseline deep ADMM architecture, reconstruction errors (2nd,

th, 6th and 8th rows) were progressively reduced in magnitude, R2 ∗ ,

DF and QSM maps, where LARO (TFF = 1, SPO = 2) performed the

est. Depictions of white matter tracts (insets) in R2 ∗ and QSM maps

ere improved as more modules were added. Quantitative metrics of

he ablation study is shown in Table S1. Reconstruction accuracies of

agnitude, R2 ∗ , RDF and QSM maps were progressively improved as

ore modules were introduced, where LARO (TFF = 1, SPO = 2) per-

ormed the best. 

.2. Performance comparison 

Reconstructed magnitude, R2 ∗ , RDF and QSM with SPO = 2 sampling

attern ( Fig. 3 a) in one representative slice are shown in Fig. 5 . LLR had

https://github.com/Jinwei1209/LARO-QSM.git
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Fig. 3. SPO = 2 sampling pattern of the first echo (Echo1) and difference maps between two adjacent echoes ( ΔEcho# ) in (a): acquired k-space data (acceleration 
factor 𝑅 = 8 ) and (b): synthetic k-space data (acceleration factor 𝑅 = 4 ). Different k-space sampling pattern was generated from the learned probabilistic pattern per 

echo, introducing additional incoherency along temporal dimension. 
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arger reconstruction errors with heavy block-like artifacts in RDFs and

SMs compared to MoDL and LARO. Pronounced noise in QSMs and

2 ∗ (insets) were showed in MoDL, which were not seen in LARO. Re-

onstructions with SPO = 0 and 1 sampling patterns are shown in Fig-

re S1. Quantitative metrics are shown in Table S2. For each method,

econstruction accuracies of magnitude, R2 ∗ and QSM maps were pro-

ressively improved from sampling pattern SPO = 0, 1 to 2. For each

ampling pattern, TFF reconstruction consistently outperformed MoDL

nd LLR. 

.3. Synthetic k-space data 

.3.1. Ablation study 

Reconstructed magnitude, R2 ∗ , RDF and QSM at one representative

lice of MS test dataset are shown in Figure S2 with quantitative metrics

f ablation study in Table S3. Similar to the acquired k-space data, re-

onstruction accuracies were progressively improved as more modules

ere added. In Figure S2, putamen in QSMs (insets in QSMs) were better

epicted as more modules were added. 

.3.2. Performance comparison on MS dataset 

Reconstructed magnitude, R2 ∗ , RDF and QSM with SPO = 2 sam-

ling pattern ( Fig. 3 b) in one representative slice are shown in Fig. 6 .

LR had much larger errors compared to MoDL and TFF. TFF slightly

utperformed MoDL. Reconstructions with SPO = 0 and 1 sampling pat-

erns are shown in Figure S3. Quantitative metrics are shown in Table

4. Both TFF and SPO = 2 outperformed other baseline reconstruction

ethods and sampling patterns. 

Linear regressions of lesion-wise mean susceptibility values between

ully sampled and reconstructed QSMs are shown in Figure S4. For

PO = 0, 1 and 2, linear coefficients for TFF were 1.08, 0.96, and 0.97

ith the highest 𝑅 
2 : 0.95, 0.98 and 0.99 compared to LLR and MoDL un-

er each sampling pattern. LLR had linear coefficients 1.13, 0.98, 0.95

ith the lowest 𝑅 
2 : 0.84, 0.81 and 0.92. MoDL had linear coefficients

.20, 1.07 and 1.10 with 𝑅 
2 in between: 0.89, 0.94 and 0.95. Both TFF

nd SPO = 2 outperformed other baselines. 
6 
.3.3. Performance comparison on ICH dataset 

The pre-trained models were tested on the ICH patient data with ac-

eleration factor 𝑅 = 4 and compared. Reconstructed magnitude, R2 ∗ ,
DF and QSM in one representative slice containing hemorrhage are

hown in Figure S5. LLR had the highest errors among the three meth-

ds. MoDL showed some errors (red solid arrows) in QSMs which were

ot seen in TFF. Quantitative metrics show that both TFF and SPO = 2

utperformed their baselines. 

.4. Prospective study 

Prospectively under-sampled scans with acceleration factor 𝑅 = 8
ere acquired using the modified sequence ( Fig. 2 ) with sampling pat-

erns SPO = 0, 1 and 2. TFF reconstructions with different sampling

atterns are shown in Fig. 7 , where SENSE reconstructions with 𝑅 = 2
ere used as reference. Depictions of white matter tracts in R2 ∗ maps

insets in R2 ∗ maps) were progressively improved from SPO = 0, 1 to 2.

harpness scores of perivascular spaces inside putamen (insets in QSMs)

ere 0.0270, 0.0111, 0.0247 and 0.0411 for SENSE, SPO = 0, 1 and 2.

ARO achieved comparable image quality with R = 2 SENSE reference.

LR, MoDL and LARO reconstructions with SPO = 2 sampling pattern

 Fig. 3 a) are shown in Fig. 8 . LLR had the largest errors with heavy

lock-like artifacts. LARO outperformed MoDL in the depiction of white

atter tracts in R2 ∗ maps (insets) and vein structures in QSMs (insets).

OI analyses are shown in Tables S5 and S6. In Table S5, with R = 2

ENSE as reference, QSM under-estimations in SN, RN, CN and CC re-

onstructed by MoDL and TFF were observed when SPO = 0 and 1 but

ere reduced or recovered when SPO = 2. LLR had more deviations

han MoDL and TFF. In Table S6, R2 ∗ over-estimations in GP, PU and

C were seen when SPO = 0 and 1 but were recovered when SPO = 2

or LLR, MoDL and TFF. 

.5. Generalization study 

Reconstructions of different test datasets retrospectively under-

ampled by SPO = 2 were shown in Fig. 9 . Error maps and quantitative

etrics were computed in R2 ∗ , RDF and QSM according to their fully
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Fig. 4. Ablation study on acquired k-space dataset with acceleration factor 𝑅 = 8 . Reconstruction errors were progressively reduced in magnitude, R2 ∗ and QSM as 

more modules were added. White matter tracts (insets) were blurry in all reconstructed R2 ∗ and QSMs except LARO (TFF = 1, SPO = 2). Abbreviation: TFF = 0 or 
1, with or without temporal feature fusion module; SPO = 0, 1 or 2, “without ”, “with single-echo ”, or “with multi-echo ” sampling pattern optimization. 

7 
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Fig. 5. Performance comparison of acquired k-space test dataset under-sampled 

by the optimized sampling pattern with acceleration factor 𝑅 = 8 ( Fig. 3 a). LLR 
had heavy block-like artifacts in RDFs and QSMs with larger errors compared to 

MoDL and LARO. Insets in QSMs and R2 ∗ showed pronounced noise in MoDL, 

which were not seen in LARO. 

Fig. 6. Performance comparison of MS lesion dataset under-sampled by the op- 

timized sampling pattern with acceleration factor 𝑅 = 4 ( Fig. 3 b). MoDL and 
LARO dramatically outperformed LLR in terms of reconstruction accuracy, while 

LARO was slightly better than MoDL. 
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8 
ampled references except in magnitude due to signal intensity varia-

ions of different datasets. No visible artifacts were seen when apply-

ng the pre-trained reconstruction network to the datasets with another

ip angle (25°, 2nd column), number of echoes (7 echoes, 1st column)

nd a second MRI scanner from the same manufacturer (GE, 3rd col-

mn). Moderate noise appeared (red arrows in the last column) when

ested with another voxel size ( 0 . 75 × 0 . 75 × 1 . 5 𝑚𝑚 
3 , last column),

hile moderate residual aliasing artifacts existed when tested with a

hird MRI scanner from another manufacturer (Siemens, 4th column).
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Fig. 7. TFF reconstructions on prospectively under-sampled raw k-space data of one healthy subject with acceleration factor 𝑅 = 8 . Compared to SENSE reconstruction 
with 𝑅 = 2 as reference, depictions of white matter tracts in R2 ∗ maps (insets in R2 ∗ maps) were progressively improved from SPO = 0, 1 to LARO (SPO = 2). Sharpness 
scores of perivascular spaces inside putamen (insets in QSMs) were 0.0270, 0.0111, 0.0247 and 0.0411 for SENSE, SPO = 0, 1 and 2. Abbreviation: TFF = 1, with 
temporal feature fusion module; SPO = 0, 1 or 2, without, with single-echo or with multi-echo sampling pattern optimization. 
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econstructions retrospectively under-sampled by SPO = 0 and 1 were

hown in Figures S6 and S7. For each test dataset, reconstruction per-

ormance was consistently improved from sampling pattern SPO = 0, 1

o 2. 

. Discussion 

In this work, we demonstrated the feasibility of learning a sampling

attern and reconstruction process specifically designed to accelerate

he acquisition of multi-echo gradient echo data for the purpose of com-

uting a susceptibility map (QSM). R = 8 acceleration was achieved

hile maintaining QSM quality in both healthy subjects as well as in an

S patient. Both retrospective and prospective acceleration was demon-

trated. Finally, reconstruction performance was observed to be superior

hen compared to previously proposed acceleration techniques. 

The original LOUPE ( Bahadir et al., 2020 )/LOUPE-ST ( Zhang et al.,

020 ) learned an optimized variable density sampling pattern from

ully sampled single-echo k-space data. In the SPO = 1 method in this

ork, LOUPE-ST was performed to learn a single optimized sampling

attern from fully sampled multi-echo k-space data and the obtained
9 
ampling pattern and reconstruction was applied to all echoes. The

PO = 2 method differs from SPO = 1 by learning a sampling pattern for

ach echo, allowing the introduction of additional sampling incoherency

long echoes. LOUPE/LOUPE-ST (SPO = 1) outperformed manually de-

igned variable density patterns (SPO = 0) in that LOUPE/LOUPE-ST

ptimized the sampling pattern variable density by learning a proba-

ilistic density distribution in Eq. (4) that was updated during training

o improve the reconstruction performance. 

In this work, multi-echo sampling pattern optimization SPO = 2

 Eq. (3) ) was learned, achieving both optimized k-space variable den-

ity as in SPO = 1 and additional incoherency along echoes, which may

esult in better aliasing patterns for gradient echo images of different

choes that can be combined and compensated during reconstruction.

PO = 2 sampling pattern distinguishes the proposed framework from

nother deep learning based mGRE acceleration method ( Gao et al.,

021 ), where manually designed 2D variable density sampling pattern

SPO = 0) was applied, which may not be optimal for mGRE acquisition.

e extend our conference paper ( Zhang et al., 2021 ) by implement-

ng SPO = 2 sampling pattern into the existing mGRE sequence. The

roposed multi-echo adaptive fan-beam ordered strategy ( Fig. 2 a) pre-
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Fig. 8. Performance comparison on the prospectively under-sampled raw k-space data of one healthy subject with SPO = 2 and acceleration factor 𝑅 = 8 ( Fig. 3 a). 
SENSE reconstructions with 𝑅 = 2 were used as references. LLR had heavy block-like artifacts in RDFs and QSMs. White matter tracts in R2 ∗ maps (insets in R2 ∗ 
maps) and vein structures in QSMs (insets in QSMs) were blurrier in MoDL than LARO. 
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ented large changes in the phase and slice encodings between echoes

ithin one TR, improving image quality ( Spincemaille et al., 2004 ;

pincemaille et al., 2006 ). The prospective results in Figs. 6 and 7 show

he feasibility of achieving R = 8 factor acceleration using the modified

GRE sequence with QSM image quality comparable to R = 2 SENSE. 

Our reconstruction architecture ( Fig. 1 ) was based on unrolling a

lug-and-play ADMM iterative scheme ( Chan et al., 2016 ) and replac-

ng the regularization step with a deep neural network denoiser. This

dea is inspired by MoDL ( Aggarwal et al., 2018 ) where quasi-Newton

terative scheme was unrolled as a network architecture and a five-

onvolution-layer neural network denoiser was applied. In ( Gao et al.,

021 ), a MoDL-like architecture ( Fig. 1 in ( Gao et al., 2021 )) was pro-

osed but only one repetition of unrolling was applied. As reported

n MoDL ( Aggarwal et al., 2018 ), more iterations/repetitions of the

nrolled architecture helped improve reconstruction performance. We

sed 𝑁 𝐼 = 10 unrolled iterations same as MoDL to ensure good perfor-
ance. 

Recently, using convolutional neural networks to solve inverse prob-

ems related to multi-echo MRI signals has been explored in ( Kim et al.,

022 ; Cho et al., 2022 ; Zhang et al., 2021 ; Zhang et al., 2021 ;

afari et al., 2021 ; Zhang et al., 2020 ; Zhang et al., 2020 ; Zhang et al.,

020 ), where the established U-Net architecture ( Ronneberger et al.,
10 
015 ) was always applied. LARO is novel here because it introduces a

FF module ( Fig. 1 c) to implicitly capture the multi-echo correlation

nd effectively compensate temporally incoherent aliasing patterns of

he GRE echo signals when SPO = 2. The benefit of the TFF module was

pparent in our ablation study ( Fig. 4 and Fig. S2, Tables S1 and S3) and

omparison to MoDL ( Fig. 7 , Figs. S1, S3 and S5). This distinguishes the

roposed framework from ( Gao et al., 2021 ) as well, since in ( Gao et al.,

021 ) multi-echo images were only concatenated into channel dimen-

ion for convolution. 

Pathologies such as hemorrhagic lesions which were not seen in the

ealthy training data were still effectively reconstructed by LARO and

oDL with low reconstruction error (2nd row in Figure S5). We specu-

ate that the use of the data consistency module in the proposed method

llows for accurate image reconstruction of pathologies not seen during

raining. Generalization experiments of LARO ( Fig. 9 , Figs. S6 and S7)

emonstrate that changing the flip angle, number of echoes or using a

ifferent scanner from the same manufacturer led to small image recon-

truction errors. At the same time, using a smaller voxel size or a scanner

rom a different manufacturer led to a moderate increase in image noise

red arrows in the last column of Fig. 9 ) or residual aliasing (4th col-

mn in Fig. 9 ). One potential cause for the decreased performance when

hanging the voxel size is that it currently requires interpolating the op-
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Fig. 9. Generalization experiments of LARO 

with different imaging parameters retrospec- 

tively under-sampled by SPO = 2 sampling 
pattern. Fully sampled reference of each test 

dataset was used to compute error maps and 

quantitative metrics. Magnitude images were 

not considered for quantitative comparison 

due to signal intensity variations among scans. 

LARO performed well without visible artifacts 

on test datasets with another flip angle (25°, 

2nd column), number of echoes (7 echoes, 1st 

column) and a second MRI scanner from the 

same manufacturer (GE, 3rd column), but had 

moderate noise (red arrows in the last column) 

on another voxel size ( 0 . 75 × 0 . 75 × 1 . 5 𝑚𝑚 
3 , 

last column) and moderate residual aliasing 

artifacts on a third MRI scanner from another 

manufacturer (Siemens, 4th column). Recon- 

structions on these datasets retrospectively 

under-sampled by SPO = 1 and 0 were shown 
in Figures S6 and S7. For each test dataset, 

reconstruction performance was consistently 

improved from sampling pattern SPO = 0, 1 to 
2. (For interpretation of the references to color 

in this figure legend, the reader is referred to 

the web version of this article.) 
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L

imal sampling pattern. For optimal performance, LARO may need to

e retrained. It is however possible that fine-tuning the existing weights

sing a small set of fully sampled data acquired with the new resolution

ay be sufficient, the details of which should be the subject of future

esearch. 

Despite the limitations, pre-trained sampling patterns from SPO = 0,

 to 2 consistently improved the reconstruction performance on all test
11 
atasets, which implies that for brain mGRE acquisition, the optimized

-space variable density distribution ( Eq. (4) ) may be independent of

he scanning parameters/manufacturers and can be generalized effec-

ively. LARO is also independent of the number of receiver coil chan-

els used for scan, as both TFF and denoiser networks are applied to the

oil-combined image, which also improves the generalization ability of

ARO. 
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For raw k-space data, fully sampled training dataset was only avail-

ble on healthy volunteers because of long scan time (9:30 mins),

hich was not feasible on patients. To incorporate patients’ dataset for

raining, an unrolled reconstruction network may be trained without

ully sampled k-space data using self-supervised learning ( Yaman et al.,

020 ), where during training, one portion of the under-sampled k-space

ata is included in the data consistency module and the remaining k-

pace data is used in a forward model loss, which promises to achieve

est results comparable to supervised training on fully sampled data.

he reconstruction network of LARO may be enhanced by incorporating

nder-sampled patient data with such self-supervised learning strategy.

LARO is applied here to mGRE for accelerating QSM that is useful for

tudying tissue magnetism ( Wang and Liu, 2015 ), particularly paramag-

etic iron ( Liu et al., 2010 ), and is promising for assessing various dis-

ases ( Wang et al., 2017 ), such as multiple sclerosis ( Zhang et al., 2016 ).

he proposed combination of sampling and reconstruction optimization

an be extended to other mGRE tasks with different organs, such as liver

nd cardiac QSM ( Jafari et al., 2019 ; Wen et al., 2018 ; Wen et al., 2019 ),

r other quantitative imaging tasks, such as T1 ( Deichmann, 2005 ) and

2 ( Deoni et al., 2005 ) mapping, where signal models based on Bloch

quations are used to describe signal intensity changes over time. The

roposed sampling strategy and temporal feature fusion may be use-

ul to obtain better multi-contrast images. Furthermore, with the emer-

ence of quantitative multi-parametric MRI ( Christodoulou et al., 2018 ),

ampling and reconstructing multi-contrast images together in one se-

uence can be an effective strategy, since multi-contrast images that are

ntrinsically registered in one scan have redundancy in both spatial and

emporal dimensions, which can be utilized to regularize the image se-

ies during reconstruction. Our future work will extend LARO to other

GRE and multi-contrast MRI tasks. 

. Conclusion 

We propose LARO, a unified method to optimize the mGRE signal

cquisition and image reconstruction to accelerate QSM. The proposed

econstruction network inserts a recurrent network module into a deep

DMM network to capture the signal evolution and compensate the

liasing artifacts along echo time. The proposed sampling pattern op-

imization module allows acquiring k-space data along echoes with an

ptimized multi-echo sampling pattern. Experimental results showed su-

erior performance LARO with good generalization ability. Prospective

can using the optimized multi-echo sampling pattern shows the feasi-

ility of LARO. 
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