

1 EXPERIMENTAL STUDY ON WIND CHARACTERISTICS AND PREDICTION OF MEAN 2 WIND PROFILE OVER COMPLEX HETEROGENEOUS TERRAIN

3 Lee-Sak An¹, Nasrollah Alinejad², Sejin Kim³, and Sungmoon Jung^{4*}

4 Abstract

5 This study investigates the impact of complex heterogeneous terrain on mean wind speed and
6 turbulence intensity, highlighting the significance of terrain configuration in the wind loading on
7 buildings and airflow over urban areas. Extensive wind tunnel tests were conducted for 60
8 different roughness configurations, obtained by processing aerial images across the United
9 States. The study makes two main contributions. First, a model was proposed to predict mean
10 wind profiles, using the morphological information of complex heterogeneous terrain. The
11 Deaves and Harris model was utilized along with a novel algorithm for the automatic
12 characterization of roughness transitions. The proposed model exhibited less than 2 % average
13 prediction error compared to the measured wind speed. Second, the study investigated the impact
14 of terrain complexity on near-surface wind characteristics. By comparing the experimental
15 results with those obtained from a homogeneous terrain with a similar roughness length, we
16 quantified the potential errors that may arise when assuming a homogeneous terrain for wind
17 speed assessment. It was observed that increasing variability in roughness length led to a

¹ Postdoctoral Scholar, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: lan@eng.famu.fsu.edu

² Ph.D. candidate, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: na19j@fsu.edu

³ Postdoctoral Scholar, Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward ST GG Brown 1267A, Ann Arbor, Michigan 48109, United States. Email: sejinki@umich.edu

⁴ Professor, Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, 2035 E Paul Dirac Dr, Tallahassee, Florida 32310, United States. Email: sjung@eng.famu.fsu.edu (corresponding author)

18 decrease in mean wind speed and an increase in turbulence intensity. The influence of terrain
19 complexity, however, was found to be secondary compared to roughness length. Consequently,
20 the relationships between terrain complexity and wind characteristics were quantified, and a
21 simplified model was proposed.

22 **Keywords**

23 Complex heterogeneous terrain, Wind tunnel testing, Wind characteristics, Deaves and Harris
24 model, Roughness change, Terraformer

25 **1. Introduction**

26 The terrain configuration plays a crucial role in influencing wind loading on buildings or air flow
27 over urban areas. The roughness of the terrain introduces uncertainties in near-surface wind
28 characteristics, leading to numerous research efforts investigating the impact of terrain
29 heterogeneity on wind patterns and wind loads.

30 Field measurements have provided invaluable ground truth data, predominantly focusing on
31 moderately homogeneous terrains [1-4]. However, these measurements cannot meet the data
32 demands in areas with sparse sites, such as complex morphologic regions. Wind tunnel testing
33 offers the advantage of controlling test parameters. Counihan [5, 6] employed a wind tunnel
34 system consisting of a barrier, vortex generators, and surface roughness to stimulate boundary
35 layer growth. Cook [7, 8] used a grid, a barrier, and surface roughness to simulate the lower
36 portion of the neutral atmospheric boundary layer (ABL), commonly known as the atmospheric
37 surface layer (ASL). Irwin [9] proposed a formula for the design of spires for use in simulating
38 the boundary layer. These pioneers addressed fundamental issues in wind tunnel testing, such as
39 model scale and wind tunnel size. Kozmar [10, 11] investigated truncated vortex generators for

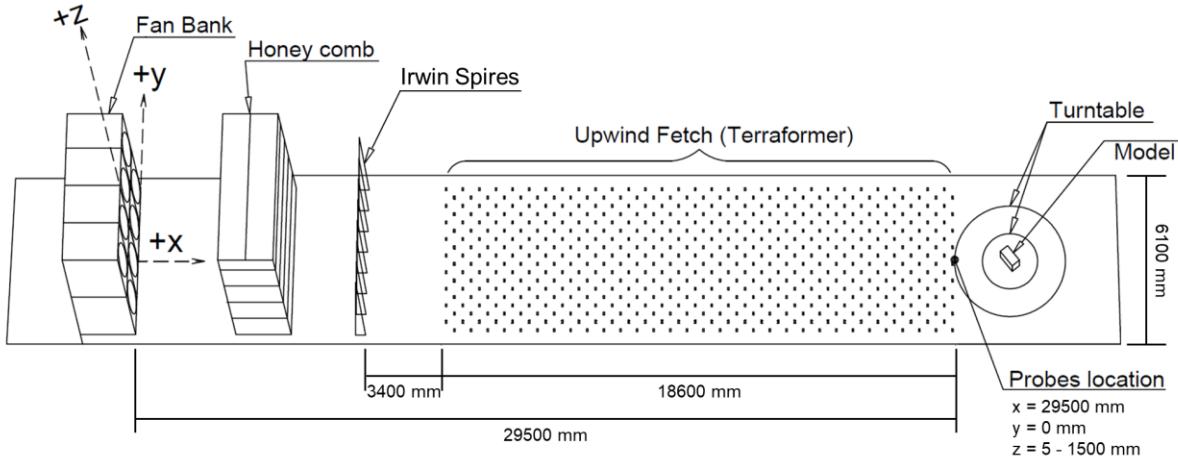
40 wind tunnel simulation of boundary layer flow. Other notable studies have examined the effects
41 of upstream urban areas [12] and suburban regions [13] on wind characteristics.

42 The roughness length is commonly used in ASL modeling to simulate the underlying surface's
43 influence on turbulent mixing. An effective roughness value for the entire area has been found to
44 be sufficient in areas with moderately homogeneous terrains and smaller-scale inhomogeneity
45 (such as vegetation patches and built structures) [14, 15]. However, terrains in the real world are
46 often complex and have abrupt changes in surface roughness, such as transitions from water
47 bodies to land or grasslands to agricultural land. Wind flow over such surface roughness
48 transitions is sensitive to surface properties. The applicability of the effective roughness length
49 for such complex heterogeneous terrains remains unknown. Prior researchers were also aware
50 that roughness changes significantly impact boundary layer estimation [16, 17]. Since the wind
51 tunnel modeling of wind pressure on buildings can be severely biased if incorrect upwind
52 roughness is used, it is necessary to quantify the impact of terrain complexity that occurs in the
53 real world. For terrain transitions, such as rough-to-smooth (R-S) or smooth-to-rough (S-R),
54 Panofsky and Townsend [18] proposed a theory assuming a linear variation of friction velocity
55 from the ground to the internal boundary layer top. This theory was later generalized by
56 Townsend [19]. Ghaisas [20] proposed a predictive model for the velocity profile behind a
57 surface roughness transition based on Townsend's model. The Deaves and Harris model [21, 22]
58 was formulated to numerically solve the equations of motion for two-dimensional mean wind
59 flows over roughness changes. The model has significantly influenced subsequent research [23-
60 25] as well as standards [26-28]. Additionally, various numerical and experimental studies have
61 conducted in-depth investigations on wind profiles over R-S transitions [29-31] and S-R
62 transitions [31-33].

63 Despite these previous studies, significant knowledge gaps remain regarding the influence of the
64 complex heterogeneous terrain on near-surface wind profiles. The major limitation is the setup of
65 realistic roughness elements. As a result, previous experimental studies have primarily
66 investigated simple terrain transitions [25, 34, 35] or a limited number of complex heterogeneous
67 terrains [12, 36, 37]. Consequently, a more comprehensive dataset from wind tunnel testing is
68 needed, encompassing a diverse range of surface morphologies to accurately evaluate the impact
69 of terrain complexity on near-surface wind profiles.

70 This study presented an experimental investigation into the influence of complex heterogeneous
71 terrain on wind characteristics, particularly focusing on the near-surface wind profile (~30 m),
72 where local terrain has a pronounced effect on wind characteristics. The roughness elements in
73 the wind tunnel were carefully configured based on National Land Cover Database and aerial
74 images obtained from 60 distinct sites across the United States. The study had two main
75 contributions. First, an approach to predict the mean wind profile over complex heterogeneous
76 terrain was developed, leveraging the morphological information of the terrain. This approach
77 combined the Deaves and Harris model with a new detection algorithm to characterize roughness
78 transitions automatically without subjective decisions. To validate the proposed approach, wind
79 speeds from wind tunnel testing were compared against the predicted mean wind profiles.
80 Second, how terrain complexity impacts wind characteristics in the atmospheric surface layer
81 was examined. The degree of wind profile change according to the level of inhomogeneity was
82 confirmed by comparing it with the experimental results on homogeneous terrain. Wind
83 characteristics, including mean wind speed and turbulence intensity, were investigated to observe
84 changes associated with variations in terrain complexity. Differences in wind characteristics that
85 could occur when complex heterogeneous terrain was simplified to equivalent homogeneous

86 terrain were quantified. Consequently, the relationship between the morphologic complexity of
87 heterogeneous terrain and wind characteristics was quantified.


88

89 **2. Test Setup**

90 **2.1. Wind Tunnel and Terraformer**

91 The experiments were conducted in the boundary layer wind tunnel (BLWT) located at the
92 University of Florida [38]. Fig. 1 presents a schematic plan of the tunnel, which is an open circuit
93 tunnel with dimensions of 6 m (width) \times 3 m (height) \times 38 m (length). The tunnel inlet contains
94 eight vane axial fans, each powered by a 56 kW electric motor. The flow generated by the fans is
95 conditioned by honeycombs situated approximately 3 m downwind from the fan bank.

96 This facility is equipped with a state-of-the-art, fully-automated terrain simulator called the
97 "Terraformer." This advanced technology enables rapid and precise terrain simulation,
98 addressing the time-consuming and labor-intensive challenges associated with wind tunnel
99 testing [39]. The Terraformer consists of an 18×62 computer-controlled array of roughness
100 blocks in a staggered configuration, covering a fetch size of 6.1 m \times 18.6 m. Each roughness
101 element is equipped with an actuator, allowing for independent height adjustments. The elements
102 have a plan dimension of 100 mm \times 50 mm and adjustable heights ranging from 0 to 160 mm.
103 The element height is controlled through LabVIEW software, and the reconfiguration of all
104 1,116 elements generally takes less than 60 seconds. As a result, the Terraformer can efficiently
105 simulate an extensive series of homogeneous and heterogeneous upwind terrains. Additionally, a
106 turntable at the end of the upwind fetch enables the simulation of wind effects on structures at
107 various flow incidence angles.

108

109 Fig. 1. Schematic diagram of the wind tunnel at the University of Florida.
 110

111 The wind speed profile was measured using three Turbulent Flow Instrumentation Cobra Probes
 112 placed at the center of the Terraformer. These probes accurately captured the three velocity
 113 components at a sample rate of 1,250 Hz. Measurements were taken at 36 heights, ranging from 5
 114 mm to 1,500 mm above the ground. Additionally, further wind profile measurements were
 115 obtained at ± 300 mm and ± 600 mm along the y-axis (crosswind direction) in specific test cases.
 116 This study utilized two distinct length scales, 1:50 and 1:100. As Stathopoulos [40] summarized,
 117 simulating only the lower region of the atmospheric surface layer with larger model scales (such
 118 as 1:50 to 1:100) is an effective approach for addressing the length scale problem encountered in
 119 wind tunnel testing. More extensive wind tunnel testing results were obtained by conducting tests
 120 at two different scales for the complex heterogeneous terrains. We focused on examining the
 121 near-surface wind profile (~ 30 m), where local terrain roughness significantly impacts wind
 122 characteristics. It is widely acknowledged that the wind profile in the higher boundary layer
 123 range is less affected by terrain roughness changes [25]. For 1:50 and 1:100 scales, Terraformer
 124 generates terrains of $305\text{ m} \times 930\text{ m}$ and $610\text{ m} \times 1,860\text{ m}$, respectively. The maximum full-scale

125 heights considered for wind profile measurements were 75m and 150m for the 1:50 and 1:100
126 scales, respectively. The test duration for each scale equated to 10 minutes of full-scale
127 measurement, with 45 seconds for both 1:50 and 1:100 scales. The wind speeds were adjusted to
128 correspond with the respective scales, resulting in speed scales of $3.75 (\frac{V_{full}}{V_{test}} = \frac{50}{600} / \frac{1}{45})$ for the
129 1:50 scale and $7.5 (\frac{V_{full}}{V_{test}} = \frac{100}{600} / \frac{1}{45})$ for the 1:100 scale.

130 Note that pressure data were collected using a 1:50 scale model representing a low-rise building
131 and a 1:100 scale model representing a mid-rise building. However, the detailed analysis and
132 discussion of wind pressure on buildings were beyond the scope of this research. Therefore, this
133 study did not include discussions on wind pressure on buildings.

134

135 **2.2. Selection of Heterogeneous Terrains**

136 Heterogeneous terrain configurations in the real world were gathered for wind tunnel testing. The
137 primary source of information for this purpose was the National Land Cover Database (NLCD)
138 [41], provided by the U.S. Geological Survey. The NLCD uses Landsat data to document various
139 land cover types throughout the U.S. A total of 529 sites in 32 U.S. states, prone to hurricanes,
140 were chosen for the study.

141 Each site image obtained from the NLCD dataset had dimensions of $3,840 \text{ m} \times 3,840 \text{ m}$. To ensure
142 comprehensive coverage, each image was divided into four smaller images facing north, south,
143 west, and east, measuring $1,860 \text{ m} \times 540 \text{ m}$ each. This division resulted in a total of 2,116 images
144 for analysis. The NLCD dataset provided land coverage details for each pixel in the image.
145 Utilizing the corresponding local roughness length (z_0^{local}) values from Table 1 for specific land
146 coverage types, each pixel in the image was assigned the relevant z_0^{local} value. In the wind tunnel,

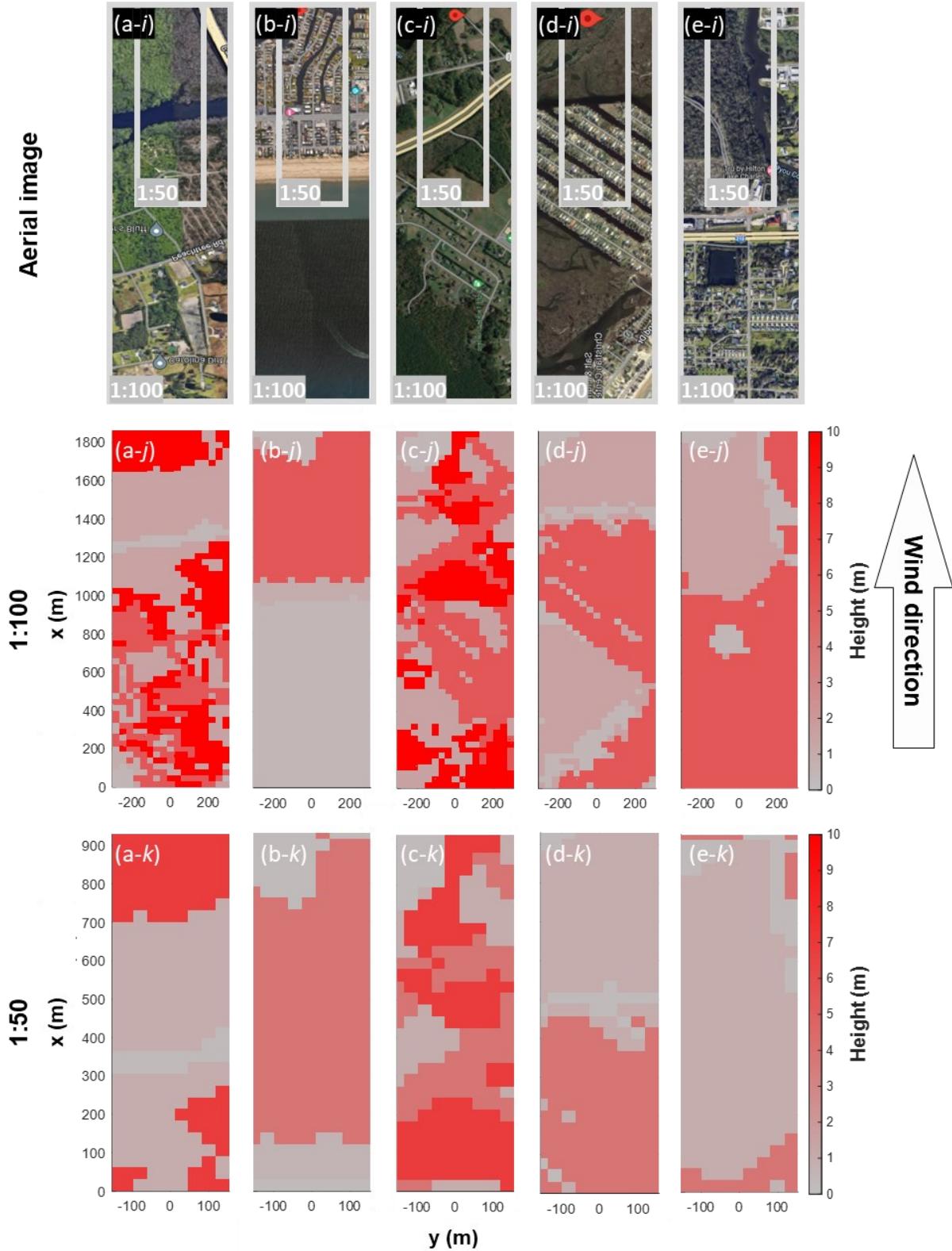
147 these z_0^{local} values were then associated with the appropriate block height using the improved
148 Lettau relationship proposed by Macdonald et al. [42], which can also be found in Table 1.

149 To choose representative terrains with unique stochastic properties of z_0^{local} without overlap, the
150 mean $\mu(z_0^{local})$ and standard deviation $\sigma(z_0^{local})$ of each image were plotted in a two-dimensional
151 (2D) space, as illustrated in Fig. 2. A 2D k-means algorithm [43], a widely used clustering method
152 that minimizes the average squared distance between points in the same cluster, was applied to the
153 2D space. The k-means algorithm identified and classified 50 distinct clusters. The representative
154 sites for each cluster, known as cluster centroids, were then selected. In Fig. 2, the 50 chosen sites
155 are represented by cross marks.

156 Table 1. Land coverage classification in NLCD images. The z_0 range is based on Wieringa [15], Wang and
157 Stathopoulos [25], Davenport [44], Vihma and Savijärvi [45], and He et al. [46].

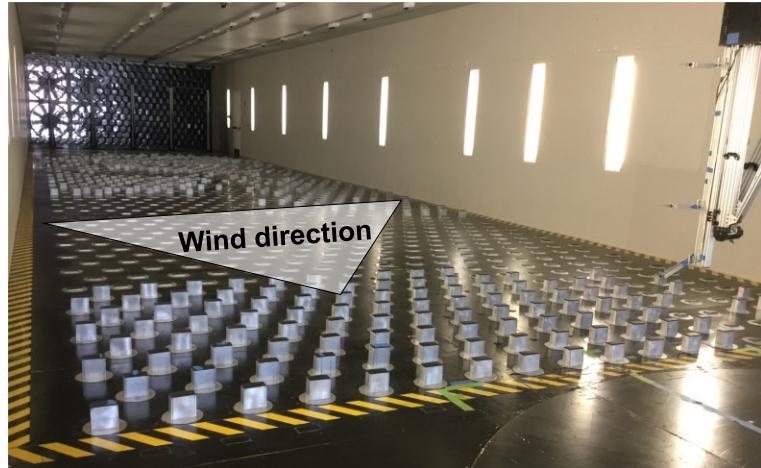
Land cover	z_0^{Local} (full-scale, m)	Block height (test-scale, m)	
		1:50	1:100
Open Water, Perennial Ice, Snow	0.0003	0.0060	0.0050
Woody Wetlands, Emergent Herbaceous Wetland	0.0025	0.0100	0.0085
Barren Land	0.0055	0.0125	0.0105
Dwarf Scrub, Shrub Scrub	0.0105	0.0160	0.0125
Pasture, Hay	0.0155	0.0180	0.0145
Grassland, Herbaceous, Cultivated Corps	0.0205	0.0200	0.0155
Low-rise building	0.5	0.0770	0.0545
Mid- to high-rise	1	0.1110	0.0770
Deciduous Forest, Evergreen Forest, Mixed Forest	1.65	0.1480	0.1000

158



159

160 Fig. 2. 2D clustering results using $\mu(z_0^{local})$ and $\sigma(z_0^{local})$ for each site. Dots represent the investigated sites, while
 161 cross marks indicate the selected sites. The clusters are color-coded, with a total of 50 colors.

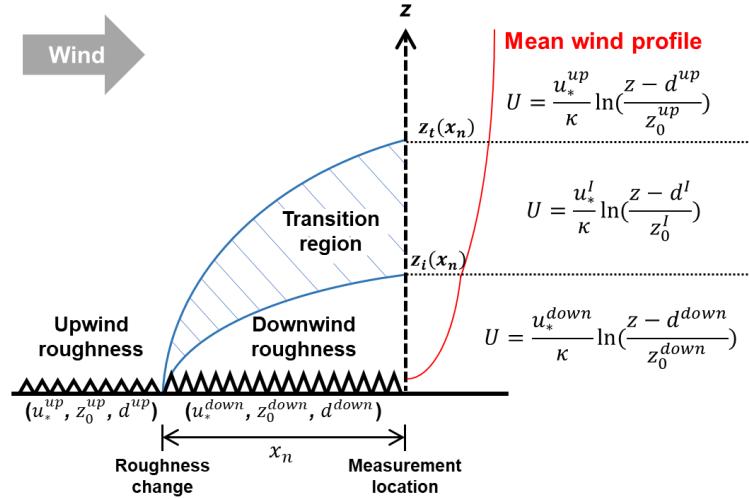

162

163 In addition, ten manual selections were made from seven cities that had experienced significant
 164 hurricane events in recent decades. These cities are Port Sulphur (LA), Frisco (NC), Satellite Beach
 165 (FL), Bonita Springs (FL), Rockport (TX), Port Lavaca (TX), and Somers Point (NJ). A total of
 166 60 sites were chosen for wind tunnel testing. Appendix A lists the coordinates for each site. Fig. 3
 167 displays examples of the selected sites and their respective block height maps. Fig. 4 illustrates the
 168 simulated terrain morphology created by the Terraformer for site 8.

169
170
171
172

Fig. 3. Examples of five complex heterogeneous sites: (a) Site 8; (b) Site 13; (c) Site 31; (d) Site 34; and (e) Site 45.
(i) Aerial image; (j) Corresponding block height maps in a 1:100 scale; and (k) 1:50 scale.

173
 174 Fig. 4. Implementation of complex heterogeneous terrain in Terraformer, specifically Site 8, in a 1:100 scale based
 175 on Fig. 3 (a-j).
 176


177 **3. Mean Wind Profile Prediction**

178 This section presents a method for predicting the mean wind speed across complex heterogeneous
 179 terrain by using terrain morphology information. It is crucial to accurately capture the influence of
 180 roughness changes when predicting wind profiles for such terrain. To tackle this issue, the Deaves
 181 and Harris (DH) model was employed, which is a widely used model for assessing wind profiles
 182 on terrains with varying roughness. In addition, a mathematical change detection algorithm was
 183 incorporated to automatically and quantitatively identify changes in roughness.

184 **3.1. Deaves and Harris model**

185 Fig. 5 illustrates the conceptualization of the mean wind profile at location x_n following a
 186 roughness change. In the DH model, a transition region lies between a new internal boundary
 187 layer and the original outer boundary layer. To adapt the DH model to the complex
 188 heterogeneous terrain involving intricate arrangements of various roughness elements, the model
 189 requires a careful assessment of roughness changes. The following sections provide a detailed

190 explanation of how the DH model was adapted to predict the mean wind speed within the context
 191 of complex heterogeneous terrain.

192

193 Fig. 5. Conceptual illustration of the mean wind profile over a roughness change.
 194

195 First, mean wind profiles in the equilibrium state were determined for the upwind and downwind
 196 regions. The surface layer, primarily influenced by surface friction [47], is the main focus of this
 197 study. Therefore, the derivation of the mean wind profile utilized the logarithmic wind law [48].
 198 The logarithmic wind law, known for its widespread acceptance and accurate representation of
 199 the theoretical mean wind speed in the lower portion of the ABL [49], is described by Eq. (1):

$$U(z) = \frac{u_*}{\kappa} \ln \left(\frac{z - d}{z_0} \right) \quad (1)$$

200 where $U(z)$ represents the mean along-wind speed at height z , κ is von Karman's constant (= 201 0.40), u_* is the friction velocity, z_0 stands for the aerodynamic roughness length, and d 202 represents the zero-plane displacement. This equation holds when the surface is aerodynamically 203 fully-rough—i.e., the surface-roughness Reynolds number $Re_* = u_* z_0 / \nu > 2.5$ [50], where ν is 204 the kinematic viscosity of air. Among all wind tunnel testing results in this study, only four

205 homogeneous cases ($H \leq 0.9$ cm) showed the Re_* values lower than 2.5. Collectively, the
 206 parameters, u_* , z_0 , and d , are referred to as aerodynamic roughness parameters (ARPs). The
 207 methodology for obtaining ARPs on complex heterogeneous terrain, specifically utilizing terrain
 208 morphology information such as block height information, will be explained in detail in Section
 209 3.2.

210 In the subsequent stage, a modified wind profile that incorporates roughness changes was
 211 developed. These changes encompassed two types of transitions: rough-to-smooth (R-S) and
 212 smooth-to-rough (S-R). In the R-S transition, the upwind terrain has a higher z_0 than the
 213 downwind terrain, while the S-R transition involves the opposite scenario. To account for the
 214 roughness change, a transition region was introduced between the new internal boundary layer
 215 and the original outer boundary layer. This transition region was defined by the inner layer depth
 216 (z_i) and the outer layer depth or transition region height (z_t). Below z_i , the flow reaches a local
 217 equilibrium with the downwind surface, while above z_t , the flow remains unaffected by the
 218 upwind roughness. The values of z_i for the R-S and S-R transitions are given by Eqs. (2) and (3)
 219 proposed by Deaves [22]:

$$z_i(x_n) = 0.07x_n \sqrt{\frac{z_0^{down}}{z_0^{up}}} \quad (2)$$

$$z_i(x_n) = 0.36x_n^{0.75} (z_0^{down})^{0.25} \quad (3)$$

220 Here, z_0^{up} and z_0^{down} represent the roughness lengths of the upwind and downwind regions,
 221 respectively, while x_n denotes the downwind fetch length. These equations capture the gradual
 222 growth of the internal boundary layer as the wind flows through the roughness change.

223 The transition region height, z_t , remains unaffected by the direction of the roughness change but
224 is influenced by z_{0+} , which corresponds to the larger of the z_0^{up} and z_0^{down} , as shown in Eq. (4)
225 [22]:

$$z_t(x_n) = 10x_n^{0.6}z_{0+}^{0.4} \quad (4)$$

226 The non-equilibrium flow within the transition region, from z_i and z_t , exhibits distinct
227 characteristics compared to the original and new boundary layers. It was postulated that a pair of
228 interpolation parameters could describe the profiles in this region (u_*^l, z_0^l) that vary
229 monotonically across the transition region. Detailed formulations for these interpolation
230 parameters can be found in Deaves [22]. It is worth noting that if there are no roughness changes
231 in the terrain, the mean wind speed profile can still be predicted using Eq. (1) alone.

232

233 **3.2. Roughness Change Detection**

234 A novel approach was proposed to detect and characterize roughness changes in complex
235 heterogeneous terrain. While identifying roughness change locations is relatively straightforward
236 in simple heterogeneous terrains, it becomes challenging in the presence of complex
237 morphology, which can impede the application of the DH model. The primary objective of the
238 proposed approach was to eliminate subjectivity and accurately determine the presence and
239 location of roughness changes, thus enabling its applicability across various terrain types.

240 First, the block height (H) maps of the terrains were transformed into corresponding roughness
241 length (z_0) maps. The relationship between H and z_0 was established beforehand through wind
242 tunnel testing conducted under uniform block height conditions. Detailed data from the
243 preliminary testing can be found in Appendix B. If the coefficient of variation of z_0 (COV_{z_0})

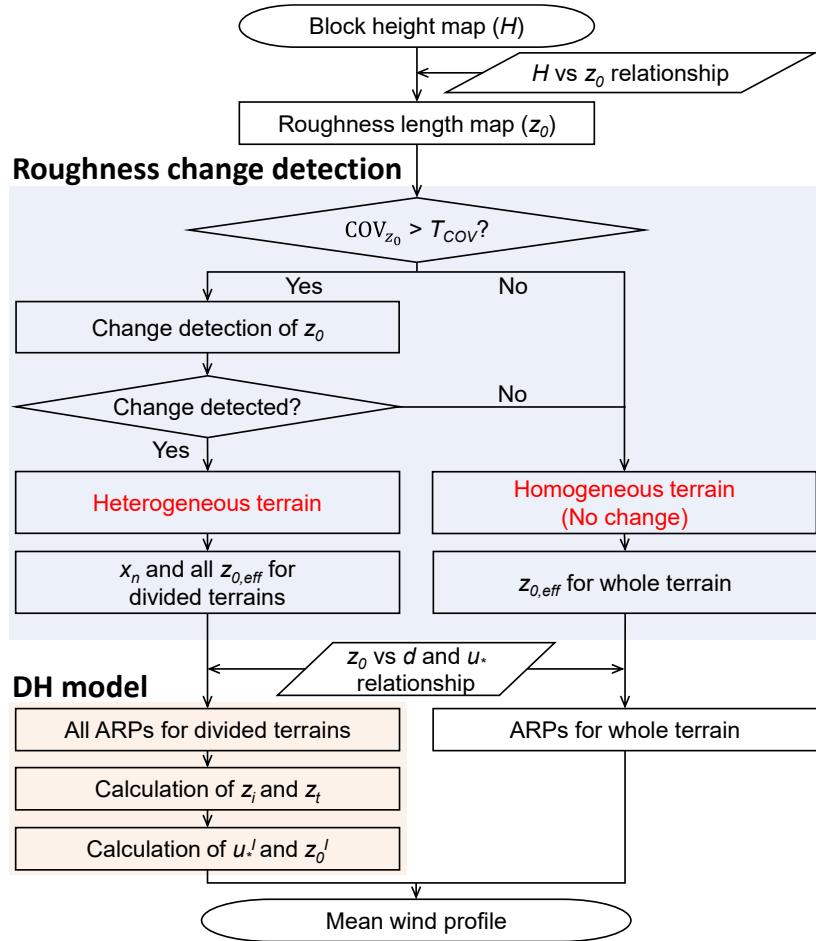
244 within the maps fell below a predefined threshold (T_{COV}), the terrain was considered
 245 homogeneous without any roughness transitions. However, if the COV_{z_0} exceeded T_{COV} , an
 246 optimal detection algorithm based on linear computational cost [51] was employed to identify
 247 abrupt changes in z_0 along the wind direction (x -axis), as described by Eq. (5).

$$\sum_i C(\mathbf{A}_i) + T_c < C(\mathbf{A}) \quad (5)$$

248 where \mathbf{A} is a vector of data containing change points that can be split into multiple segments \mathbf{A}_i ,
 249 T_c (m^2) represent a threshold for abrupt change. The cost function, C , is defined by Eq. (6):

$$C(\mathbf{X}) = N(\mathbf{X}) \times Var(\mathbf{X}) \quad (6)$$

250 Here, $N(\mathbf{X})$ and $Var(\mathbf{X})$ represent the number of elements and the variance of vector X ,
 251 respectively. If a change point was detected, the terrain was classified as an equivalent
 252 heterogeneous terrain with roughness changes. Conversely, if no change point was detected, the
 253 terrain was considered an equivalent homogeneous terrain.

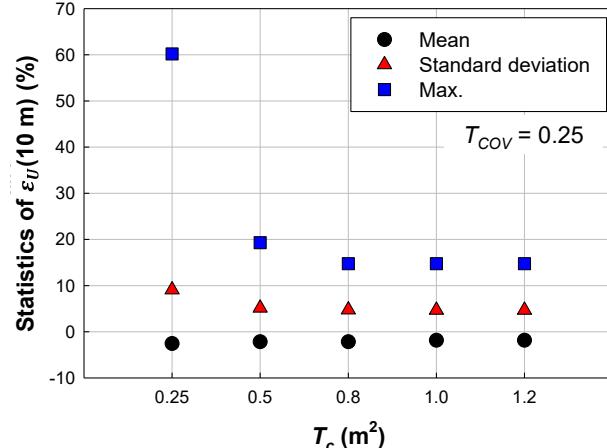

254 Following the roughness change detection, the terrain was divided into upwind and downwind
 255 fetches based on the identified change point. This division naturally determined the length of the
 256 downstream fetch (x_n in Fig. 5). Subsequently, the effective roughness length ($z_{0,eff}$) for each
 257 fetch was calculated using a grid-squared average-based approach, utilizing the z_0 maps [45, 52].
 258 The approach relied on the linear approximation of the Rossby number similarity theory and
 259 derived the following formula [45]:

$$\ln(z_{0,eff}) = \langle \ln(z_0) \rangle + a\sigma_{\ln(z_0)}^2 \quad (7)$$

260 Here, a represents the Rossby value, typically set to 0.09, and $\sigma_{\ln(z_0)}^2$ indicates the variance
 261 within the area. The $\langle \rangle$ notation represents the area-weighted logarithmic average operation. If

262 the terrain is equivalent homogeneous, a single $z_{0,eff}$ value is calculated for the entire fetch. In
 263 Eqs. (1)-(4), z_0 is replaced by $z_{0,eff}$.

264 The other aerodynamic roughness parameters (d and u^*) are also determined based on their
 265 relationships with $z_{0,eff}$ and the ARPs, as described in Fig. B. 2 of Appendix B. Additionally, the
 266 z_i , z_t , and interpolation parameters (u_*^I, z_0^I) are calculated using x_n and $z_{0,eff}$. Finally, the mean
 267 wind profiles are predicted using the DH model, taking into account the presence and location of
 268 roughness changes. The entire process, from the block height map to the prediction of mean
 269 wind profiles, is summarized in Fig. 6.


270

271 Fig. 6. Proposed process for predicting mean wind profile in complex heterogeneous terrain.
 272

273 The thresholds T_{COV} and T_c significantly impact the prediction performance of the proposed
 274 process. If T_{COV} is set too high, terrains with moderate heterogeneity may be mistakenly
 275 classified as homogeneous. Similarly, increasing T_c requires a more pronounced morphological
 276 change to be detected as a roughness change, resulting in more cases being classified as
 277 equivalent homogeneous terrain. Hence, a parametric study was conducted to optimize T_{COV} and
 278 T_c , aiming to enhance the prediction performance of the proposed process. The performance
 279 evaluation relied on the prediction error ($\varepsilon_U(z)$), which measures the disparity between the
 280 measured and predicted mean wind speeds at height z , as expressed in Eq. (8).

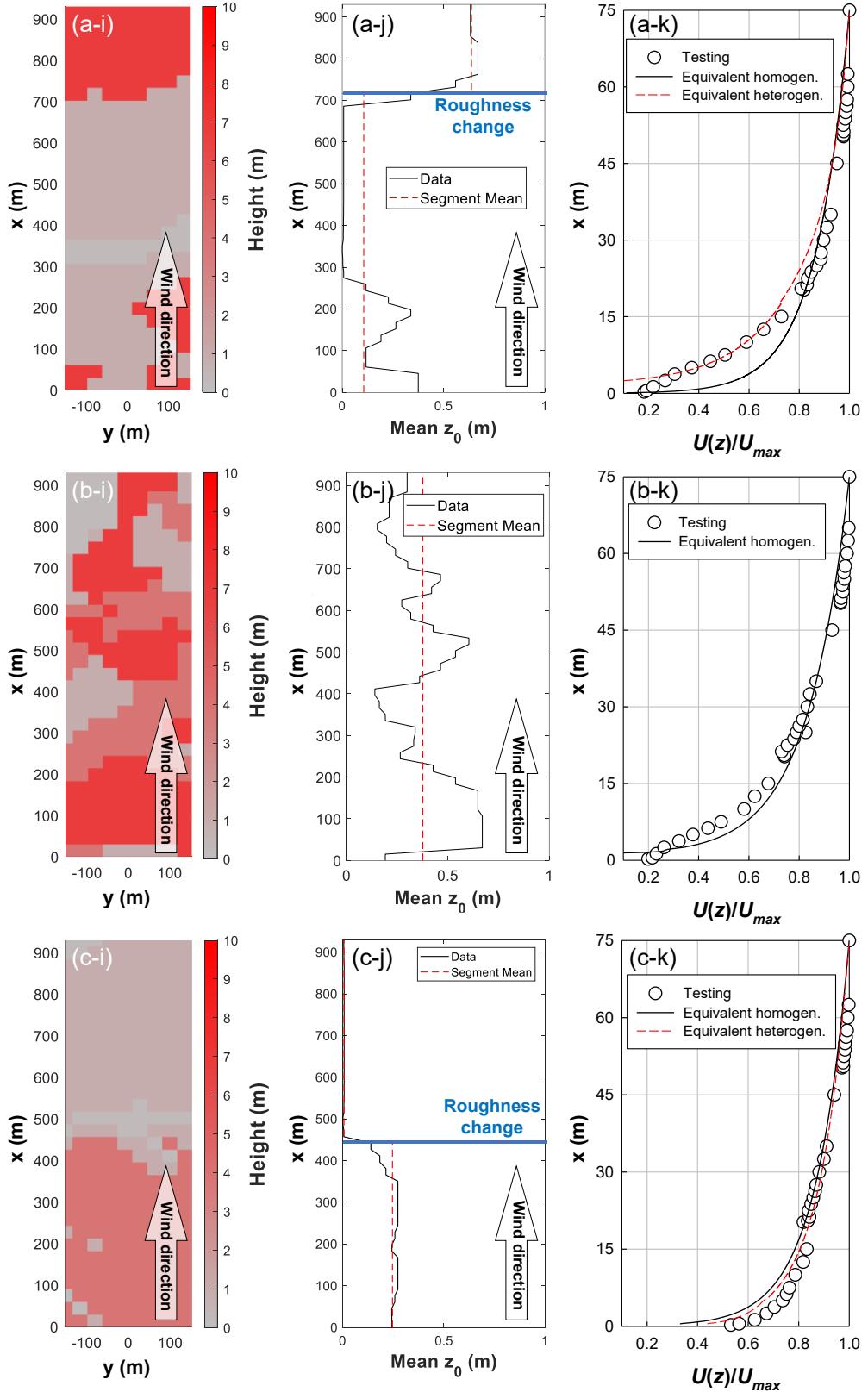
$$\varepsilon_U(z) = \frac{U_{Test}(z) - U_{Pred}(z)}{U_{Test}(z)} \times 100 \% \quad (8)$$

281 Here, U_{Test} and U_{Pred} represent the measured and predicted mean wind speeds for complex
 282 heterogeneous terrains, respectively. Fig. 7 provides an illustration of the mean, standard
 283 deviation, and maximum absolute values of $\varepsilon_U(10 \text{ m})$ as T_c varies on a 1:50 scale. The results
 284 show that the mean prediction error exhibits satisfactory accuracy across the entire range of T_c
 285 values, with magnitudes consistently below 3%. However, for T_c values exceeding 0.8 m^2 , the
 286 maximum absolute value of $\varepsilon_U(10 \text{ m})$ decreases rapidly to less than 20%. A similar study was
 287 conducted for T_{COV} , and the optimal values determined were 0.25 for T_{COV} and 0.8 m^2 for T_c .

288

289 Fig. 7. Statistical characteristics of $\varepsilon_U(10 m)$ as T_c changes at a 1:50 scale.
290

291 **3.3. Example Predictions Using the Proposed Model**


292 Fig. 8 showcases the mean wind speed prediction results for three representative sites: 8, 31, and
293 34. The figures include the block height maps (i), the outcomes of roughness change detection
294 (j), and a comparison between the predicted and measured wind profiles (k).

295 Site 8 (Fig. 8 (a)) shows a noticeable change in block height around 700 m along the x -axis. The
296 roughness change detection algorithm accurately identified this location, classifying the site as
297 an equivalent heterogeneous terrain with an S-R change, as shown in Fig. 8 (a-j). $z_{0,eff}$ for the
298 upwind and downwind terrains were determined to be 0.02 m and 0.59 m, respectively. In such a
299 change of roughness length from smooth to rough, the surface drag increases, and consequently,
300 the near-wall flow decelerates. With the consideration of the roughness change, the predicted
301 mean wind profiles showed good agreement with the measured wind profiles, as depicted in Fig.
302 8 (a-k). The $\varepsilon_U(10 m)$ was 0.3% under the assumption of equivalent heterogeneity. In
303 comparison, when the roughness change was not considered (equivalent homogeneous
304 assumption), the $\varepsilon_U(10 m)$ increased significantly to 23.7%.

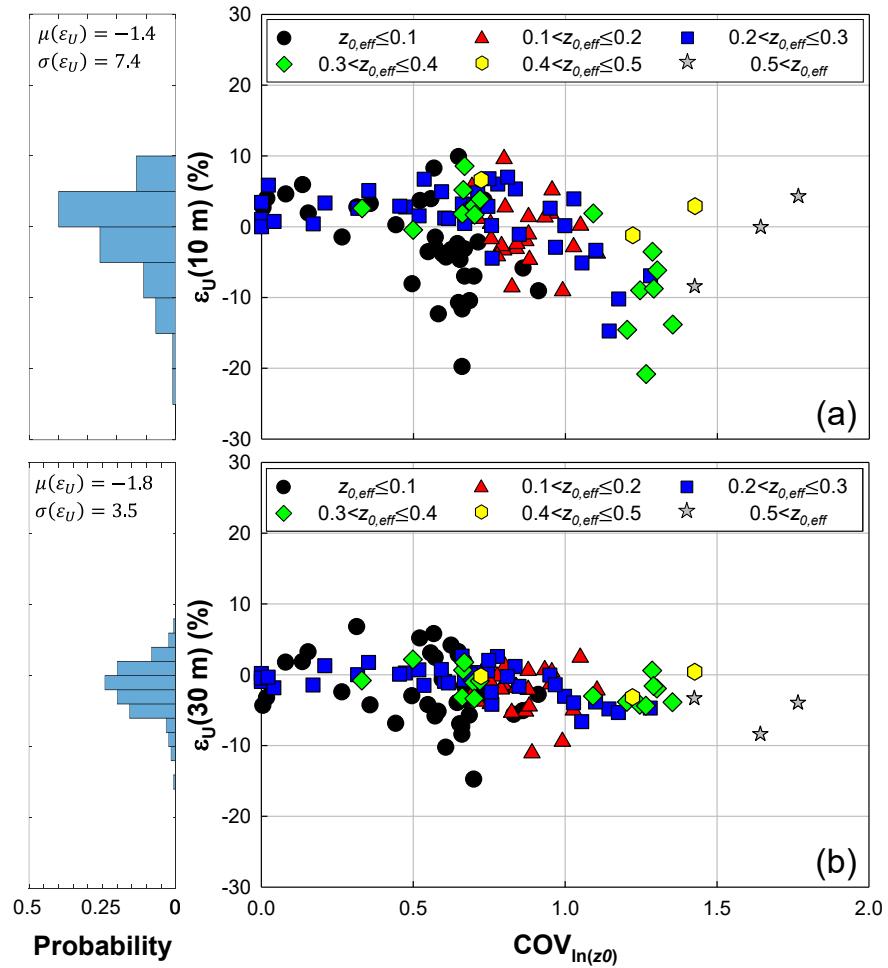
305 For site 31 (Fig. 8 (b)), both the wind and crosswind directions exhibited high complexity,
306 making it visually challenging to identify a roughness change location. The roughness change
307 detection algorithm classified this terrain as an equivalent homogeneous terrain with $z_{0,eff}$ of 0.21
308 m. The $\varepsilon_U(10\text{ m})$ was determined to be 10.5%.

309 For site 34 (Fig. 8 (c)), an R-S change was identified at approximately 450 m. The upwind and
310 downwind terrains had $z_{0,eff}$ of 0.21 m and 0.01 m, respectively. In such a roughness change from
311 rough to smooth, the surface drag decreases, and the near-wall flow accelerates. Considering the
312 roughness change, enhanced prediction performance was observed. The $\varepsilon_U(10\text{ m})$ was 4.4%
313 with the consideration of the roughness change and 7.1% without it.

314 The proposed model accurately predicted mean wind speed profiles, thanks to the implemented
315 roughness change detection algorithm. Not accounting for roughness changes when estimating
316 the near-surface mean wind profile for complex heterogeneous terrains can lead to significant
317 errors. However, as shown in Fig. 8 (b), the complexity of terrain morphology can impact the
318 prediction performance, highlighting the need to further explore the variations in performance
319 based on the degree of terrain complexity. The current approach utilizing ARPs does not fully
320 capture terrain irregularities, necessitating additional investigation into this aspect.

321
 322 Fig. 8. Mean wind profile prediction for (a) site 8, (b) 31, and (b) 34 at a 1:50 scale: (i) Block height map; (j) Result
 323 of roughness change detection; and (k) Comparison of measured and predicted mean wind speed.
 324

325 **3.4. Prediction Performance**

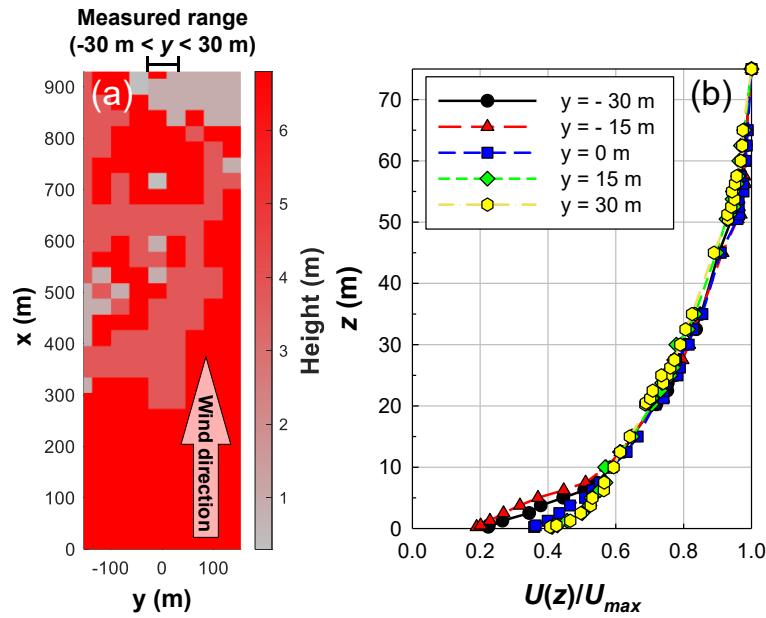

326 Fig. 9 depicts the scatter of $\varepsilon_U(10\text{ m})$ and $\varepsilon_U(30\text{ m})$ at 120 sites in relation to $\text{COV}_{\ln(z_0)}$. $\ln(z_0)$
327 was chosen to represent exposure roughness due to the wide distribution of z_0 values spanning
328 multiple orders of magnitude and the substantial impact of $\ln(z_0)$ on wind speed according to the
329 logarithmic wind law. The results demonstrate a high prediction performance with mean values
330 of -1.4 and -1.8, respectively. While the mean values of ε_U did not exhibit significant differences
331 between the two heights, the standard deviation of $\varepsilon_U(30\text{ m})$ (3.5) showed a reduction of over
332 50% compared to that of $\varepsilon_U(10\text{ m})$ (7.4). This indicates that the influence of terrain complexity
333 and wind speed variability relative to the theoretical mean wind speed is greater at lower heights
334 within the surface layer.

335 The investigation further revealed that an increase in $\text{COV}_{\ln(z_0)}$ had an adverse effect on the
336 prediction performance, even when $z_{0,\text{eff}}$ values were similar. The negative sign of $\varepsilon_U(z)$
337 indicated that the measured wind speed was lower than the predicted value, suggesting that
338 increased terrain complexity resulted in greater disruption of the wind flow, leading to a lower
339 wind speed than the theoretical mean wind speed. This relative reduction in measured wind
340 speed compared to the theoretical value was more prominent at lower $z_{0,\text{eff}}$ values. For instance,
341 when $z_{0,\text{eff}}$ was below 0.1, an $\varepsilon_U(10\text{ m})$ of up to -20% was observed when the $\text{COV}_{\ln(z_0)}$ reached
342 approximately 0.7. Conversely, within the range of $0.3 < z_{0,\text{eff}} \leq 0.4$, $\varepsilon_U(10\text{ m})$ reached around -
343 20% when the $\text{COV}_{\ln(z_0)}$ exceeded 1.2.

344 The decrease in prediction performance can be attributed to the inherent limitations of existing
345 wind speed profile models. These models rely on a limited number of parameters, primarily z_0 , to
346 account for the influence of terrain characteristics on the wind speed profile, which proves
347 insufficient in adequately capturing the complexity of terrain morphology. Further studies can

348 explore the introduction of new parameters related to terrain complexity, enabling the
 349 development of a model that maintains high accuracy across a wider range of $\text{COV}_{\ln(z_0)}$ values.

350


351

352 Fig. 9. Impact of $\text{COV}_{\ln(z_0)}$ on the prediction error of mean wind speed between measured and predicted results ($z_{0,eff}$
 353 unit: m): (a) 10 m height; and (b) 30 m height.

354

355 The prediction performance was also assessed for different positions along the y -axis,
 356 perpendicular to the prevailing flow. At sites 36 to 45, wind profiles were measured not only at
 357 the original measurement location ($y=0$ mm) but also at positions ± 300 mm and ± 600 mm along
 358 the y -axis. Among these sites, site 40 exhibited the most pronounced changes in near-surface wind

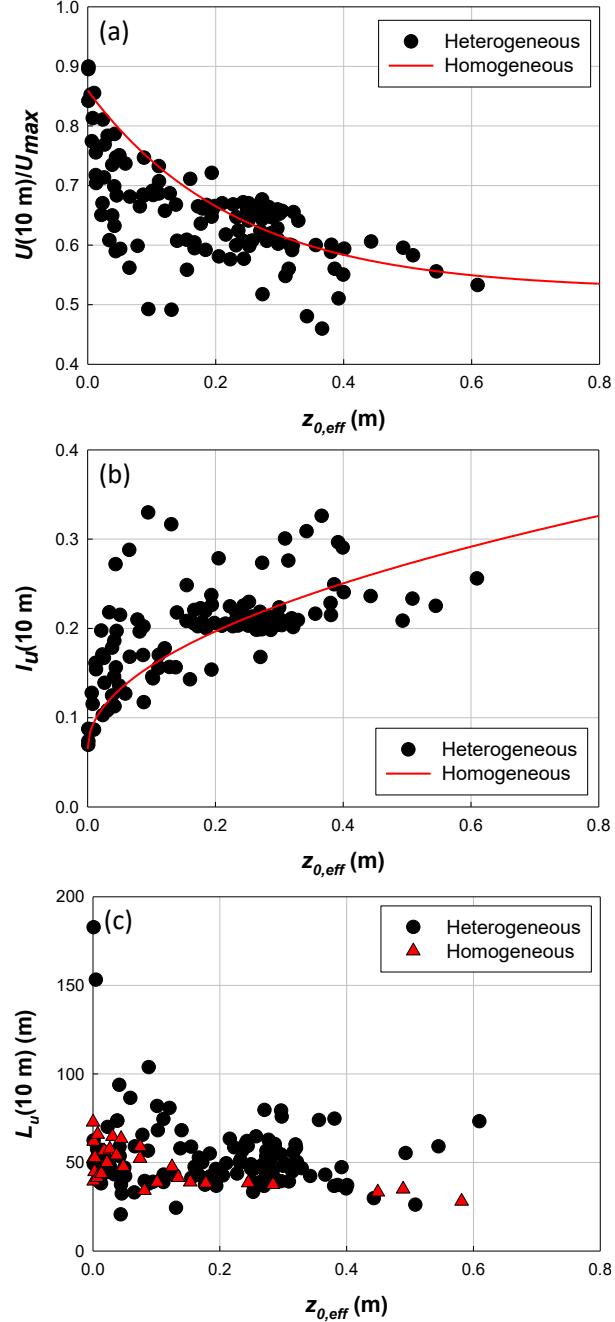
359 flows, as depicted in Fig. 10. Evaluating the prediction performance revealed that the mean and
 360 standard deviation of $\varepsilon_U(10 m)$ for the ten sites (comprising a total of 20 cases for both 1:50 and
 361 1:100 scales) were below 5%. The maximum absolute value of $\varepsilon_U(10 m)$ was approximately 13%.
 362 These findings demonstrate that the proposed process consistently delivered reasonable prediction
 363 performance across various locations within ± 600 mm from the center of the y -axis in the testing
 364 scale.

365
 366 Fig. 10. Measured crosswind mean wind profiles at site 40 in a 1:50 scale: (a) Block height map; and (b) Measured
 367 mean wind profiles at different y locations.
 368

369 4. Terrain Complexity and Wind Characteristics

370 4.1. Variations in Wind Characteristics Due to Complex Heterogeneous Terrain

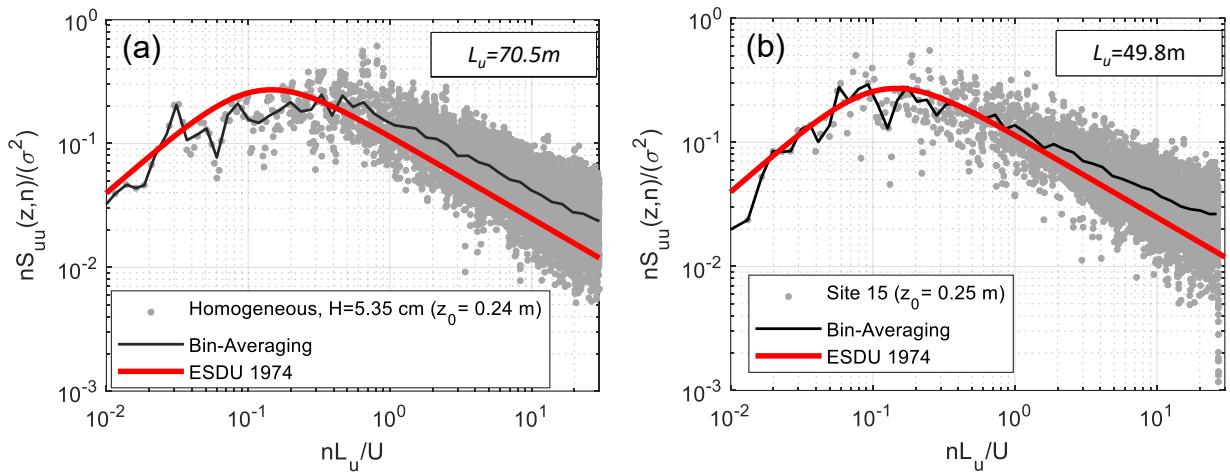
371 Fig. 11 showcases semi-logarithmic profiles obtained from three wind tunnel testing results: one
 372 homogeneous terrain and two complex heterogeneous terrains. The logarithmic wind law model
 373 (Eq. (1)) is also included for reference. The $z_{0,eff}$ values for these terrains are all similar at full-
 374 scale, about 0.3 m. The $z_{0,eff}$ was determined through the calibration process outlined in Appendix
 375 B for the homogeneous terrain. For the heterogeneous terrains, the $z_{0,eff}$ was calculated using a


376 grid-squared average-based approach, as discussed in Section 3.2. Given the established
377 relationships between z_0 and other aerodynamic roughness parameters (d and u^*) outlined in
378 Appendix B, it was assumed that all terrains had similar d and u^* values.

379 In Fig. 11, H and δ represent the block height and the gradient height of the homogeneous terrain,
380 respectively. The gradient height was estimated using the method proposed by Caterelli et al. [53]
381 based on the measured wind profile over the homogeneous terrain. The inertial sublayer (ISL) is
382 typically observed between $H < z < 0.25\delta$, and the mean wind profile in this layer can be
383 accurately described by Eq. (1) [15, 53]. Site 29 exhibits a consistent result with the theoretical
384 solution and the homogeneous terrain within the ISL. However, site 33 deviates from the
385 theoretical solution. Fig. 11 (b) demonstrates that site 33 features more pronounced terrain
386 heterogeneity than site 29, indicating that even when $z_{0,eff}$ values are similar, the variations in wind
387 profile can occur due to terrain heterogeneity. This discrepancy ultimately leads to errors when
388 engineers estimate wind characteristics and loads. Therefore, it is crucial to quantify the
389 differences between complex heterogeneous terrain and homogeneous terrain based on the degree
390 of morphological complexity.

391 Fig. 11. Comparison of wind profiles over three different terrains with similar roughness length of 0.3 m in full-scale
 392 along with a theoretical model: (a) Semi-logarithmic wind profile; and (b) Block height maps for sites 29 and 33.
 393

394 Fig. 12 provides a comparison of the normalized mean wind speed ($U(10 \text{ m})/U_{max}$), turbulence
 395 intensity ($I_u(10 \text{ m})$), and integral length scale ($L_u(10 \text{ m})$) between complex heterogeneous terrain
 396 and homogeneous terrain. The preliminary test regression analysis results for mean wind speed
 397 and turbulence intensity over homogeneous terrains are presented together (see Fig. B. 3 of
 398 Appendix B). Considerable dispersion were observed in the integral length scale, even on
 399 homogeneous terrain, represented by the scatter in the data. Over the heterogeneous terrain, both
 400 the mean wind speed and turbulence intensity exhibited similar trends but with greater variability.
 401 Moreover, relatively lower mean wind speeds and higher turbulence intensities were observed
 402 compared to the homogeneous terrains. The integral length scale in heterogeneous terrains showed
 403 larger magnitudes and greater variability. Notably, in areas where $z_{0,eff}$ was less than 0.1 m, the
 404 integral length scale reached up to 75 m on homogeneous terrain, while it exceeded 150 m on
 405 heterogeneous terrain. These findings demonstrate that the morphological complexity of the terrain
 406 introduces additional disturbances, resulting in lower mean wind speeds and higher turbulence
 407 intensities compared to homogeneous terrain.



408 Fig. 12. Measured wind characteristics for heterogeneous and homogeneous terrains at a 10 m height: (a)
409 Normalized mean wind speed; (b) Turbulence intensity; and (c) Integral length scale.
410

411 Fig. 13 shows the power spectrum of (a) homogeneous and (b) complex heterogeneous terrains at
412 10 m height, with similar $z_{0,eff}$ values. The Engineering Sciences Data Unit (ESDU) empirical
413 model, described by Eq.(9) [54], is included in the plots for comparison.

$$\frac{nS_{uu}}{\sigma_u^2} = \frac{4f}{(1 + 70.8f^2)^{5/6}} \quad (9)$$

414 where n is the frequency in Hertz, S_{uu} is the power spectrum for the longitudinal turbulence
 415 component, σ_u is the standard deviation of the fluctuating wind components and $f = nL_u/U$ in which
 416 L_u is the longitudinal integral length scale and U is the longitudinal mean velocity. In high
 417 frequency, the power density of homogeneous terrain is larger than heterogeneous terrain. At
 418 $nL_u/U = 10$, the values of power density nS_{uu}/σ^2 are 0.042 and 0.038 for the homogeneous and
 419 heterogeneous terrains, respectively. It was confirmed that the heterogeneous terrain exhibits a
 420 rougher immediate upwind terrain compared to the homogeneous terrain, leading to enhanced
 421 energy dissipation and a smaller spectrum response.

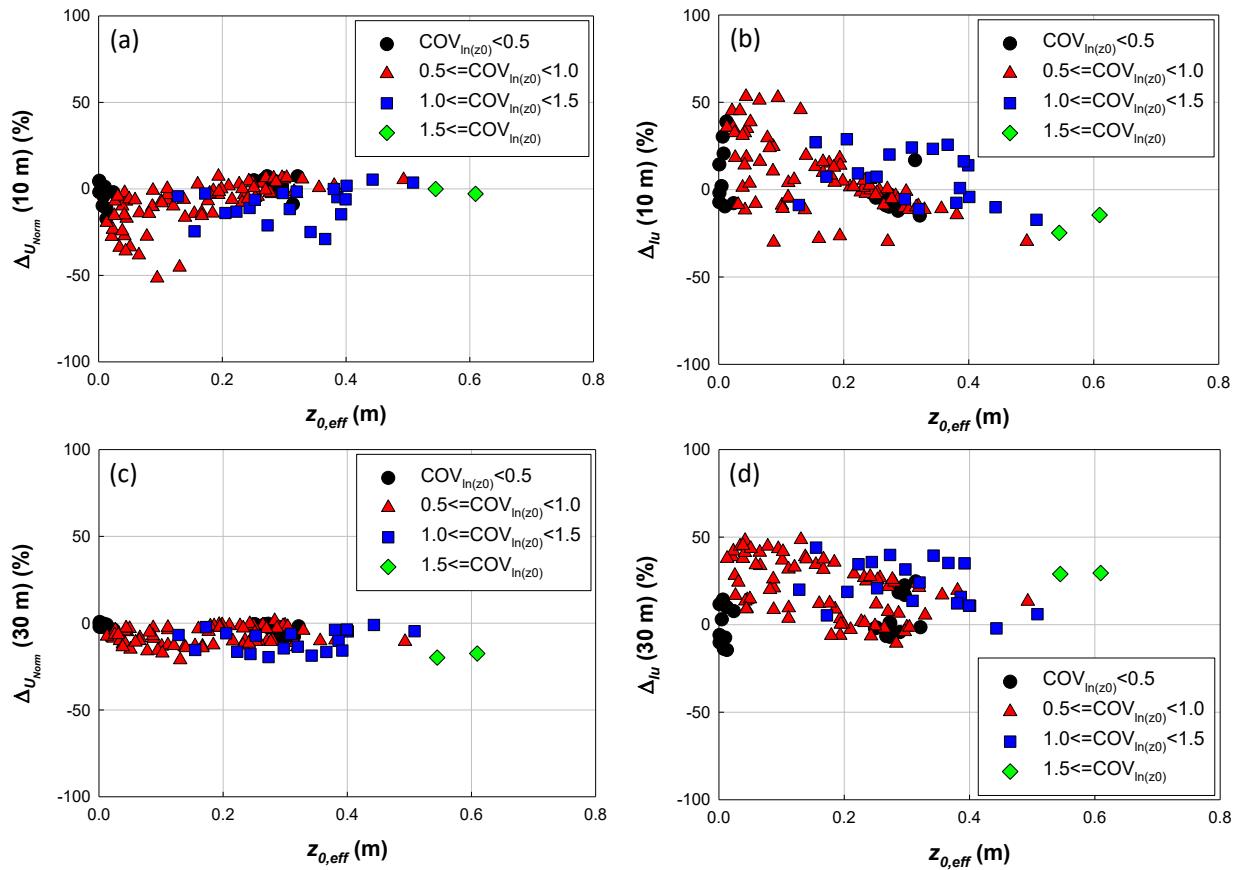
422 Fig. 13. Wind power spectrum at a 10 m height: (a) homogeneous terrain with $H = 5.35$ cm; and (b) heterogeneous
 423 terrain (site 15). Black curves represent the bin averages of the wind tunnel power spectrum.
 424

425 4.2. Importance of Considering the Terrain Heterogeneity

426 To assess the impact of terrain complexity and understand the inaccuracies that arise when
 427 assuming a complex heterogeneous terrain as a homogeneous terrain, the difference in
 428 normalized mean wind speed ($\Delta_{U_{norm}}$) and turbulence intensity (Δ_{I_u}) between complex
 429 heterogeneous and homogeneous terrains was quantified using Eqs. (9) and (10):

$$\Delta_{U_{norm}}(z) = \frac{[U(z)/U_{max}]^{het.} - [U(z)/U_{max}]^{hom.}}{[U(z)/U_{max}]^{heterogen.}} \quad (10)$$

$$\Delta_{I_u}(z) = \frac{I_u^{het.}(z) - I_u^{hom.}(z)}{I_u^{het.}(z)} \quad (11)$$

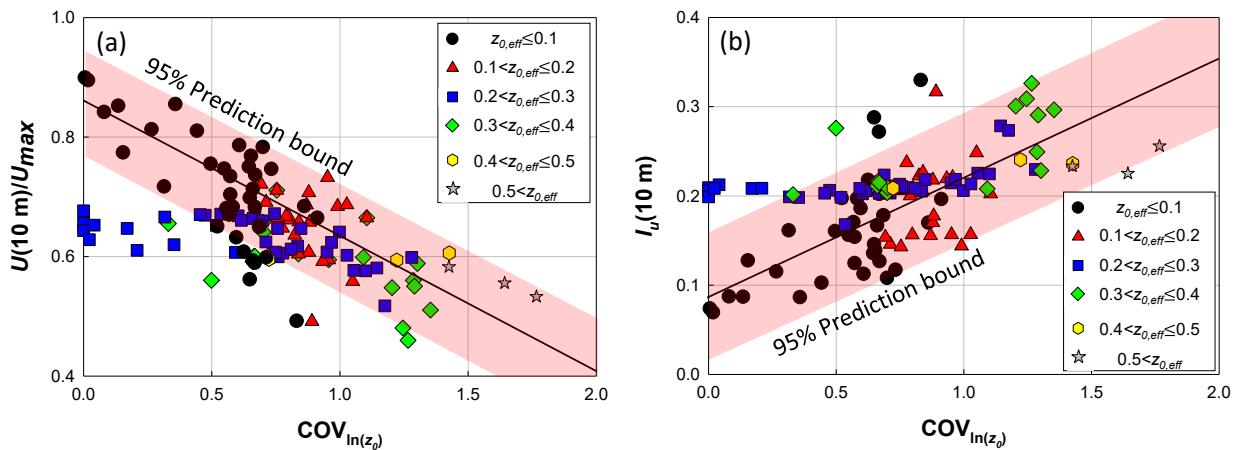

430 Here, the superscripts *het.* and *hom.* represent values measured under heterogeneous and
 431 homogeneous conditions, respectively. The $[U(z)/U_{max}]^{hom.}$ and $I_u^{hom.}(z)$ denote the
 432 corresponding values obtained from the red line in Fig. 12, using the $z_{0,eff}$ value of the target
 433 heterogeneous site.

434 Fig. 14 presents $\Delta_{U_{norm}}$ and Δ_{I_u} at heights of 10 m and 30 m. The variations of $\Delta_{U_{norm}}$ and Δ_{I_u}
 435 are depicted based on changes in $z_{0,eff}$, categorized into ranges of $COV_{ln(z_0)}$. The figure highlights
 436 the importance of considering heterogeneity even when a homogeneous assumption may appear
 437 acceptable. First, it was observed that the difference between heterogeneous and homogeneous
 438 terrains is significant for lower $z_{0,eff}$ values, indicating relatively smooth terrains. In these cases,
 439 the influence of terrain complexity on wind characteristics becomes more prominent. As $z_{0,eff}$
 440 increases, a general trend of decreasing difference can be observed. Although the difference
 441 becomes smaller when $z_{0,eff}$ exceeds 0.4 m, further research is needed to investigate this range
 442 since the current study focused on $z_{0,eff}$ values below 0.4 m. Second, when $z_{0,eff}$ levels are similar,
 443 larger differences compared to the homogeneous terrain are observed for higher $COV_{ln(z_0)}$
 444 ranges. For instance, in the $z_{0,eff}$ range of 0.2 to 0.4, the normalized mean wind speed decreases
 445 by up to 10% in the $COV_{ln(z_0)}$ range of 0.5 to 1.0, while it decreases by as much as 30% in the
 446 $COV_{ln(z_0)}$ range of 1.0 to 1.5.

447 Fig. 14 (c) and (d) demonstrate that at a height of 30 m, the difference between homogeneous
 448 and heterogeneous terrains decreases compared to 10 m. Notably, $\Delta_{U_{norm}}$ shows a more

449 substantial decrease compared to ΔI_u . Although the magnitude of the mean wind speed
 450 difference decreased significantly to about -20% at 30 m, the turbulence intensity still exhibited
 451 variations of up to 50% compared to homogeneous terrains. It suggested that the flow
 452 disturbance caused by terrain complexity continues to affect the turbulent flow component at 30
 453 m height. Since turbulence intensity directly influences flow separation and reattachment
 454 phenomena on the surface of structures, it is important to note the sustained higher difference in
 455 turbulence intensity when estimating wind loads.

456


457 Fig. 14. Relationship between $z_{0,eff}$ and difference in wind characteristics between homogeneous and complex
 458 heterogeneous terrain.: (a) ΔU_{norm} for 10 m height; (b) ΔI_u .for 10 m height; (c) ΔU_{norm} for 30 m height; and (d)
 459 ΔI_u .for 30 m height.

460

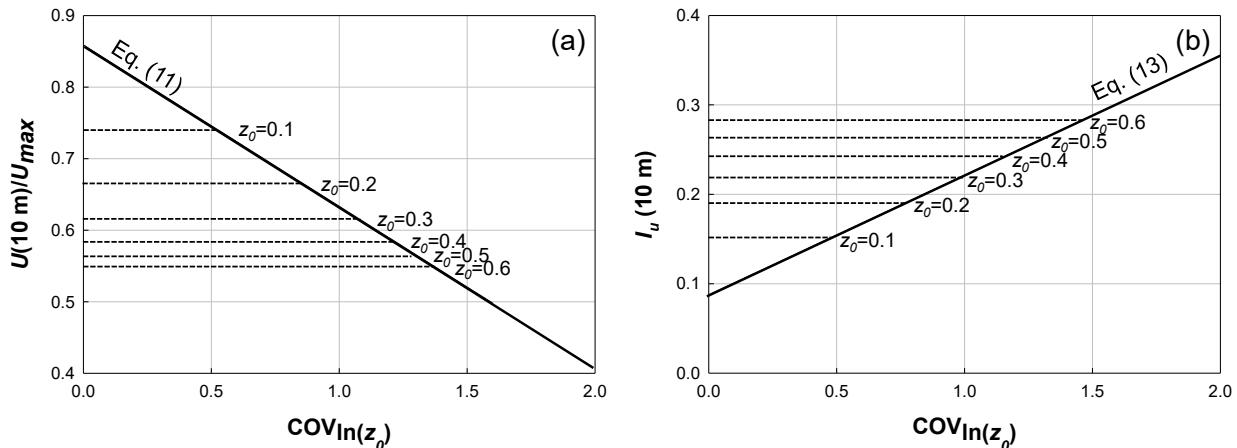
461 **4.3. Simplified Model to Estimate the Effect of Heterogeneous Terrain**

462 In cases where the T_{COV} exceeds 0.25 and wind tunnel testing is not feasible, it may be valuable
 463 for engineers and researchers to approximate the impact of heterogeneous terrain. Next, we
 464 aimed to approximate the wind speed and turbulence intensity at 10 m and 30 m heights based on
 465 the morphological information of the terrain. To achieve this, we analyzed the trends observed in
 466 the $z_{0,eff}$ - $COV_{ln(z_0)}$ -wind characteristics relationship, as shown in Fig. 15.

467 First, we observed that as $COV_{ln(z_0)}$ increased, the mean wind speed decreased while the
 468 turbulence intensity increased. This relationship was found to be negatively linear for mean wind
 469 speed and positively linear for turbulence intensity, as indicated by the red area in the plot. These
 470 correlations held across a wide range of $z_{0,eff}$ values. Second, it was identified that the influence
 471 of $z_{0,eff}$ was the primary factor, with $COV_{ln(z_0)}$ making a secondary contribution. For instance, in
 472 a homogeneous terrain with a $z_{0,eff}$ value of 0.2 m, the normalized mean wind speed was
 473 approximately 0.7 and the turbulence intensity was around 0.2, as shown in Fig. 12. In Fig. 15,
 474 even when the $COV_{ln(z_0)}$ decreased, the normalized mean wind speed for the range of $z_{0,eff}$ 0.2-
 475 0.3 (represented by blue squares) did not exceed 0.7, and the turbulence intensity did not
 476 decrease below 0.2.

477 Fig. 15. Relationship between $COV_{ln(z_0)}$ and wind characteristics: (a) Normalized mean wind speed at a 10 m height;
 478 and (b) Turbulence intensity at 10 m height.
 479

480 The linear relationship corresponding to the first trend mentioned above was quantified through
 481 regression analysis, resulting in the derivation of Eqs. (12) to (15), which represent the
 482 relationships between $\text{COV}_{ln(z_0)}$ and wind characteristics at 10 m and 30 m heights:


$$\frac{U(10 \text{ m})}{U_{max}} = 0.86 - 0.23\text{COV}_{ln(z_0)} \quad (12)$$

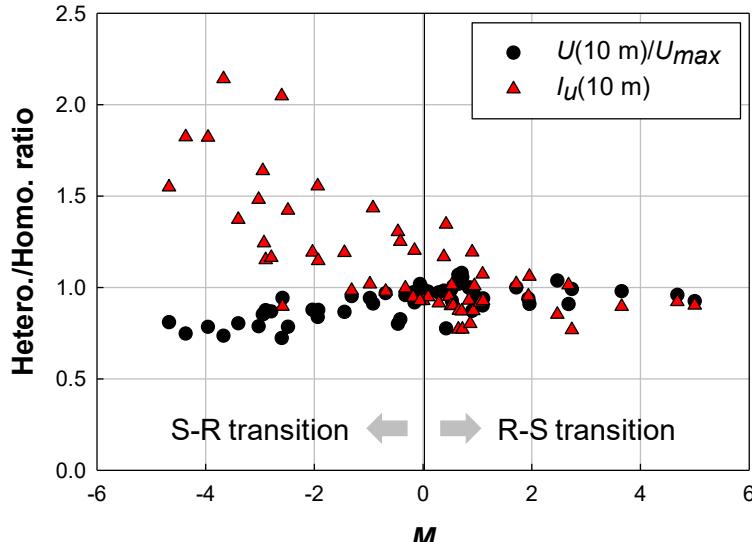
$$\frac{U(30 \text{ m})}{U_{max}} = 0.92 - 0.12\text{COV}_{ln(z_0)} \quad (13)$$

$$I_u(10 \text{ m}) = 0.09 + 0.13\text{COV}_{ln(z_0)} \quad (14)$$

$$I_u(30 \text{ m}) = 0.06 + 0.07\text{COV}_{ln(z_0)} \quad (15)$$

483 The simplified relationship between $z_{0,eff}$, $\text{COV}_{ln(z_0)}$, and wind characteristics at 10 m height was
 484 depicted in Fig. 16 by combining the regression results for the first trend and the second trend.

485 Fig. 16. Simplified model between $z_{0,eff}$ - $\text{COV}_{ln(z_0)}$ -wind characteristics at a 10 m height: (a) Normalized mean wind
 486 speed; and (b) Turbulence intensity.
 487


488 4.4. Effect of Terrain Transition Type

489 Thus far, we have analyzed the heterogeneous effect by considering the effective roughness length
 490 and morphological variation of the terrain. An additional important parameter to consider is the

491 terrain transition type, which can be classified as rough-to-smooth (R-S) or smooth-to-rough (S-
492 R).

493 Out of the 120 cases analyzed, the roughness change detection algorithm identified 54 cases where
494 a roughness change was detected. Fig. 17 shows the relationship between the roughness change
495 parameter $M = \ln(z_{0,eff}^{up}/z_{0,eff}^{down})$, and the ratio of measured wind characteristics for complex
496 heterogeneous and homogeneous terrains. The $z_{0,eff}$ value of the complex heterogeneous terrain
497 was employed to select the corresponding homogeneous terrain results.

498 The S-R transition showed greater variability compared to the R-S transition when compared to
499 the homogeneous terrain. This difference can be attributed to the time or distance required for the
500 wind flow to reach equilibrium with the downstream terrain after the transition. According to
501 Deaves [22], rough-to-smooth changes usually have a larger horizontal extent for the transition
502 region compared to smooth-to-rough changes. Consequently, it takes a significant amount of time
503 for the wind flow in the internal boundary layer to adjust to the downwind terrain in the case of an
504 R-S change. On the other hand, the mean wind profile adapts more quickly during an S-R change
505 [55-57]. The R-S transition requires a fetch length that is more than twice as long as the S-R
506 transition to reach equilibrium [33]. As a result, the wind flow in the S-R change undergoes rapid
507 modifications to achieve equilibrium with the downwind terrain, leading to a greater difference
508 compared to a homogeneous terrain with a similar $z_{0,eff}$.

509

510 Fig. 17. Relationship between M and wind characteristics for cases where roughness changes occurred.
 511

512 5. Conclusions

513 This study conducted extensive BLWT testing on complex heterogeneous terrain sites to
 514 investigate the impact of terrain complexity on near-surface wind profiles. The findings shed
 515 light on the importance of accurately characterizing terrain heterogeneity and considering
 516 roughness changes in wind profile and load assessments. The main findings are as follows:

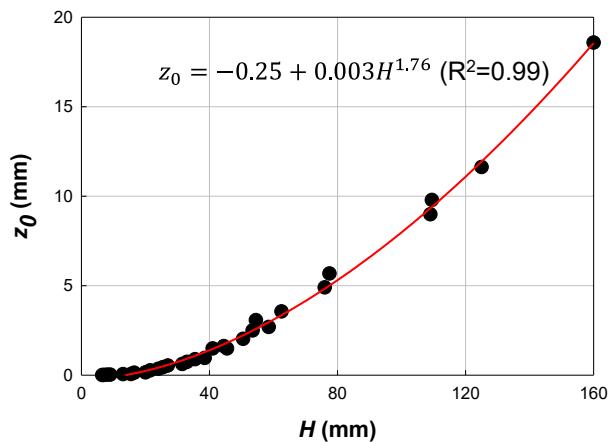
- 517 • The developed prediction process showed promising performance in predicting mean
 518 wind speeds by considering the morphological information of complex heterogeneous
 519 terrain. The prediction error exhibited high accuracy, with an average of less than 2%.
 520 The process improved prediction performance by incorporating a mathematical change
 521 detection algorithm to quantitatively and automatically identify roughness changes
 522 compared to the equivalent homogeneous assumption. Further investigation revealed that
 523 an increase in $\text{COV}_{ln(z_0)}$ had a detrimental impact on the prediction performance, even
 524 when $z_{0,eff}$ values were similar. However, the negative effect of $\text{COV}_{ln(z_0)}$ on prediction
 525 performance diminished as $z_{0,eff}$ values increased.

526 • It was observed that assuming complex heterogeneous terrain as homogeneous terrain
527 can result in significant differences of up to 50% in assessing wind characteristics. These
528 differences were particularly pronounced for terrains with lower $z_{0,eff}$ values, indicating
529 relatively smoother surfaces. This observation underscored the potential for significant
530 reductions in mean wind speeds by considering terrain complexity, particularly for terrain
531 classes classified as lower than the very rough category ($z_0 = 0.5$ m according to
532 Davenport's roughness classification). Notably, the influence of terrain complexity on
533 wind characteristics became negligible when $z_{0,eff}$ exceeds 0.5 m.

534 • A simplified model was developed to estimate the impact of heterogeneous terrain on
535 wind characteristics. This model quantifies the relationship between $z_{0,eff}$ - $\text{COV}_{ln(z_0)}$ -wind
536 characteristics. Two important trends were observed in this relationship. First, as
537 $\text{COV}_{ln(z_0)}$ increased, the mean wind speed decreased while turbulence intensity increased.
538 Second, the dominant factor influencing wind characteristics was $z_{0,eff}$, with a secondary
539 contribution from $\text{COV}_{ln(z_0)}$. Building upon these trends, a simplified relationship was
540 proposed between $z_{0,eff}$, $\text{COV}_{ln(z_0)}$, and wind characteristics, accompanied by
541 corresponding equations. This model provided a tool for estimating wind characteristics
542 roughly in complex heterogeneous terrains.

543 • In future studies, the impact of wind characteristics variation induced by complex
544 heterogeneous terrains on building structures will be investigated through wind tunnel
545 testing. The research aims to quantify the variability of the pressure coefficient that can
546 arise in terrains with similar z_0 values. By conducting these experiments, a better
547 understanding of the effects of terrain complexity on building performance can be gained.

548 **Appendix A. Selected Sites**


549 The coordinates of the selected 60 sites are presented in Table A. 1.

550 Table A. 1. Coordinates of selected sites and the wind direction.

Site ID	Latitude	Longitude	Direction from magnetic north	Site ID	Latitude	Longitude	Direction from magnetic north
1	30.68526	-88.0254	0	31	38.06936	-75.5499	90
2	27.6763	-97.2861	270	32	41.20402	-73.0934	90
3	43.18735	-77.6305	90	33	36.0522	-86.8092	270
4	30.41956	-84.318	0	34	34.44947	-77.5262	90
5	44.24718	-72.5886	90	35	41.38552	-71.494	180
6	41.7158	-73.9159	180	36	37.67902	-75.6308	90
7	38.06936	-75.5499	180	37	38.72918	-90.4551	90
8	33.67731	-79.0314	0	38	25.41191	-80.4964	270
9	30.22528	-92.0613	90	39	31.59068	-83.2424	0
10	41.02429	-73.6259	90	40	43.62806	-72.5149	270
11	31.06005	-81.4208	0	41	34.93197	-81.0286	270
12	33.89831	-78.4307	270	42	40.76147	-73.4698	0
13	38.45491	-75.058	90	43	37.79596	-80.2998	180
14	42.87553	-71.9509	270	44	40.6656	-73.9868	90
15	36.76553	-76.3582	90	45	30.2068	-93.2414	180
16	30.4202	-81.5567	90	46	37.6916	-75.7141	0
17	38.20711	-75.6946	0	47	39.05953	-84.6102	90
18	35.67342	-105.911	90	48	38.72754	-75.2634	0
19	39.90773	-75.1917	0	49	30.28072	-87.5809	270
20	31.20489	-85.4051	180	50	44.32527	-69.7537	0
21	30.50375	-89.6601	270	51	39.3208	-74.5953	60
22	39.8525	-88.906	0	52	28.1937	80.6056	200
23	30.26644	-89.415	0	53	26.3304	81.7791	250
24	34.81752	-82.4157	180	54	29.5385	89.7751	170
25	36.75083	-96.0075	270	55	29.5385	-89.7751	25
26	41.33751	-71.7566	180	56	35.2322	-75.6215	35
27	37.73784	-88.946	90	57	35.2322	-75.6215	80
28	37.96214	-91.7524	0	58	35.2322	-75.6215	155
29	31.07034	-81.4076	180	59	35.2322	-75.6215	80
30	32.9042	-79.9706	0	60	28.6119	-96.6252	80

551 **Appendix B. Preliminary Wind Tunnel Tests on Homogeneous Terrains**

552 Preliminary wind tunnel tests were performed on homogeneous terrains. The block height was
553 varied from 6.5 mm to 160 mm, and mean wind profiles were measured to extract Aerodynamic
554 Roughness Parameters (ARPs) corresponding to different block heights (H). The calibration
555 procedure for ARPs is detailed in Catarelli et al. [53]. Fig. B. 1 illustrates the relationship
556 between H and z_0 in the test scale, where z_0 increases with increasing H . By multiplying the
557 length scales, the z_0 values can be transformed to full-scale z_0 . Additionally, Fig. B. 2 depicts the
558 relationships between z_0 and other ARPs (u^* and d), which were utilized to determine the ARPs
559 for the D.H. model.

560

561 Fig. B. 1. Relationship between H and z_0 in test scale for homogeneous terrain.
562

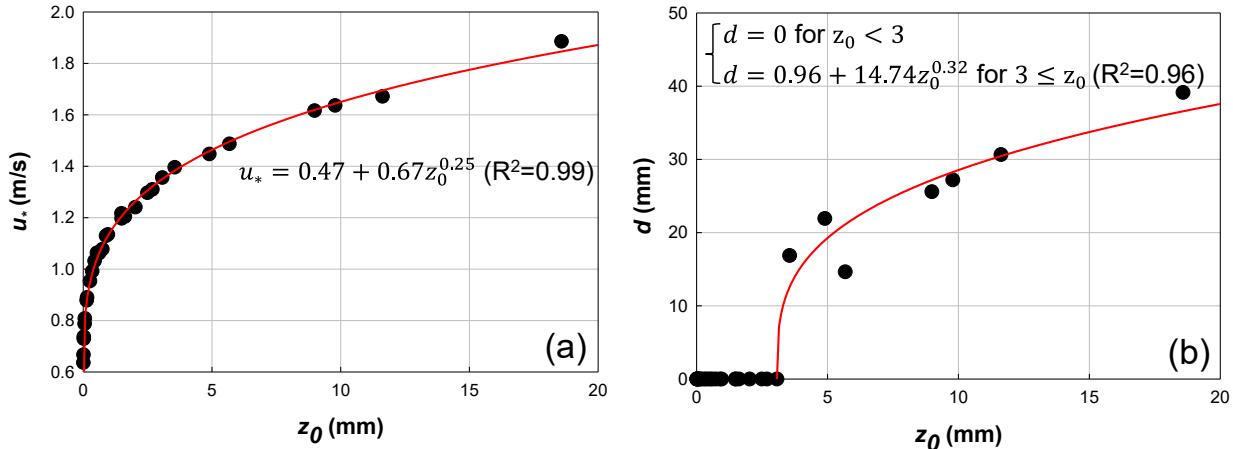
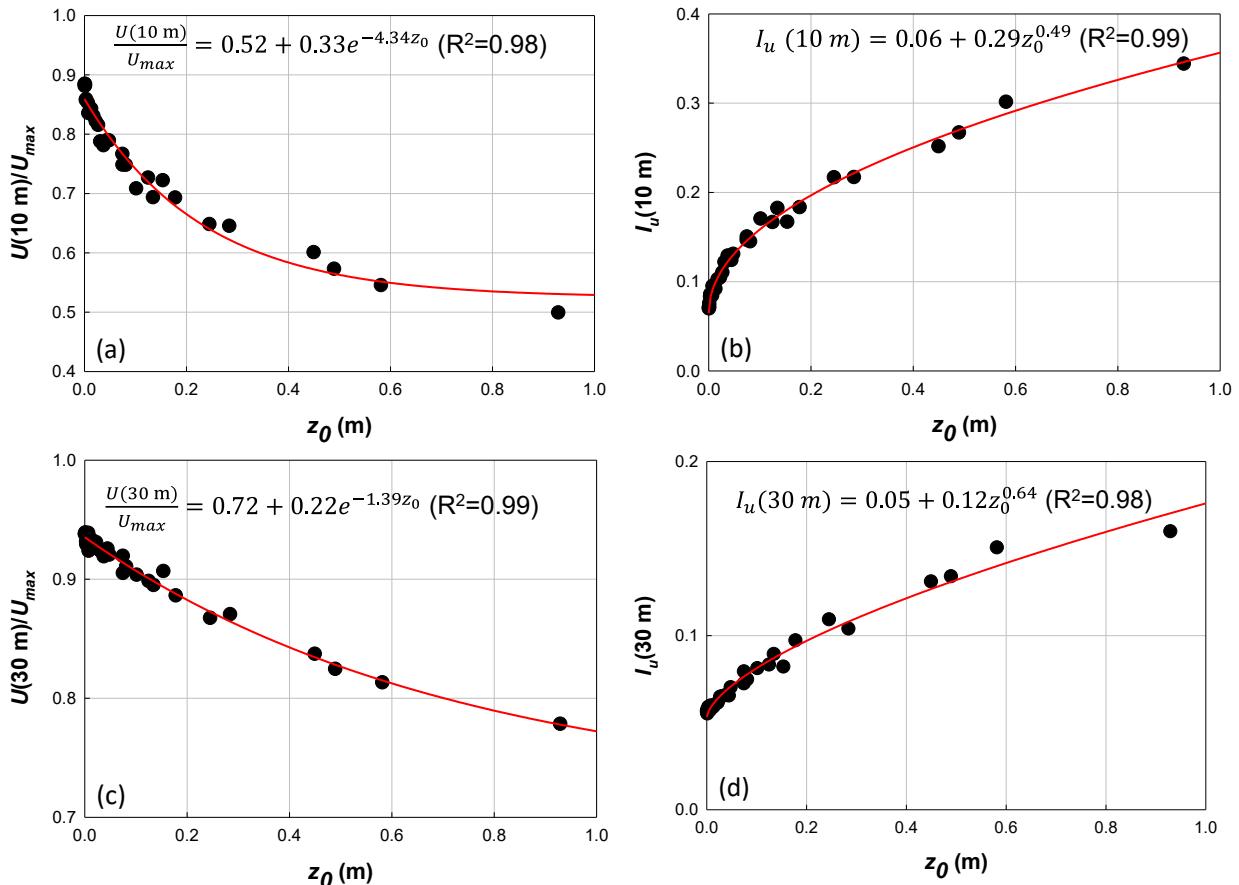



Fig. B. 2. Relationship between z_0 and other ARPs in test scale for homogeneous terrain: (a) u_* ; and (b) d .

563
564

565 Fig. B. 3 presents the normalized mean wind speed and turbulence intensity as a function of z_0 . It
566 showed a general trend where the mean wind speed decreases and the turbulence intensity
567 increases with increasing z_0 . Regression analysis was conducted to establish relationships
568 between z_0 and wind characteristics in a homogeneous terrain.

569 Fig. B. 3. Relationship between z_0 and wind characteristics at 10 m-height in full scale for homogeneous terrains: (a)
570 normalized mean wind speed at 10 m height; (b) turbulence intensity at 10 m height;
571 (c) normalized mean wind speed at 30 m height; and (d) turbulence intensity at 30 m height.
572

573 **Acknowledgments**

574 This material is based upon work supported by the National Science Foundation under Grant No.
575 CMMI-1856205. Any opinions, findings, and conclusions or recommendations expressed in this
576 material are those of the authors and do not necessarily reflect the views of the National Science
577 Foundation.

578

579 **References**

580 [1] E.F. Bradley, A micrometeorological study of velocity profiles and surface drag in the region
581 modified by a change in surface roughness, *Q. J. R. Meteorol.* 94(401) (1968) 361-379.
582 <https://doi.org/10.1002/qj.49709440111>.

583 [2] E.C. Choi, Field measurement and experimental study of wind speed profile during
584 thunderstorms, *J. Wind. Eng. Ind. Aerod.* 92(3-4) (2004) 275-290.
585 <https://doi.org/10.1016/j.jweia.2003.12.001>.

586 [3] N. Antoniou, H. Montazeri, M. Neophytou, B. Blocken, CFD simulation of urban
587 microclimate: Validation using high-resolution field measurements, *Sci. Total Environ.* 695
588 (2019) 133743. <https://doi.org/10.1016/j.scitotenv.2019.133743>.

589 [4] Y. Tamura, K. Suda, A. Sasaki, K. Miyashita, Y. Iwatani, T. Maruyama, K. Hibi, R. Ishibashi,
590 Simultaneous wind measurements over two sites using Doppler sodars, *J. Wind. Eng. Ind. Aerod.*
591 89(14-15) (2001) 1647-1656. [https://doi.org/10.1016/S0167-6105\(01\)00149-0](https://doi.org/10.1016/S0167-6105(01)00149-0).

592 [5] J. Counihan, An improved method of simulating an atmospheric boundary layer in a wind
593 tunnel, *Atmospheric Environment* (1967) 3(2) (1969) 197-214. [https://doi.org/10.1016/0004-6981\(69\)90008-0](https://doi.org/10.1016/0004-6981(69)90008-0).

595 [6] J. Counihan, Simulation of an adiabatic urban boundary layer in a wind tunnel, *Atmospheric
596 Environment* (1967) 7(7) (1973) 673-689. [https://doi.org/10.1016/0004-6981\(73\)90150-9](https://doi.org/10.1016/0004-6981(73)90150-9).

597 [7] N. Cook, On simulating the lower third of the urban adiabatic boundary layer in a wind tunnel,
598 *Atmospheric Environment* (1967) 7(7) (1973) 691-705. [https://doi.org/10.1016/0004-6981\(73\)90151-0](https://doi.org/10.1016/0004-6981(73)90151-0).

600 [8] N. Cook, Determination of the model scale factor in wind-tunnel simulations of the adiabatic
601 atmospheric boundary layer, *J. Wind. Eng. Ind. Aerod.* 2(4) (1978) 311-321.
602 [https://doi.org/10.1016/0167-6105\(78\)90016-8](https://doi.org/10.1016/0167-6105(78)90016-8).

603 [9] H. Irwin, The design of spires for wind simulation, *J. Wind. Eng. Ind. Aerod.* 7(3) (1981) 361-
604 366. [https://doi.org/10.1016/0167-6105\(81\)90058-1](https://doi.org/10.1016/0167-6105(81)90058-1).

605 [10] H. Kozmar, Scale effects in wind tunnel modeling of an urban atmospheric boundary layer,
606 *Theor. Appl. Climatol.* 100 (2010) 153-162. <https://doi.org/10.1007/s00704-009-0156-3>.

607 [11] H. Kozmar, Truncated vortex generators for part-depth wind-tunnel simulations of the
608 atmospheric boundary layer flow, *J. Wind. Eng. Ind. Aerod.* 99(2-3) (2011) 130-136.
609 <https://doi.org/10.1016/j.jweia.2010.11.001>.

610 [12] J. Yu, M. Li, T. Stathopoulos, Q. Zhou, X. Yu, Urban exposure upstream fetch and its
611 influence on the formulation of wind load provisions, *Build. Environ.* 203 (2021) 108072.
612 <https://doi.org/10.1016/j.buildenv.2021.108072>.

613 [13] S. Jung, F. Masters, Characterization of open and suburban boundary layer wind turbulence
614 in 2008 Hurricane Ike, *Wind and structures* 17(2) (2013) 135-162.
615 <http://dx.doi.org/10.12989/was.2013.17.2.135>

616 [14] C. Grimmond, T.R. Oke, Aerodynamic properties of urban areas derived from analysis of
617 surface form, *J. Appl. Meteorol. Climatol.* 38(9) (1999) 1262-1292. [https://doi.org/10.1175/1520-0450\(1999\)038%3C1262:APOUAD%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(1999)038%3C1262:APOUAD%3E2.0.CO;2).

619 [15] J. Wiernga, Representative roughness parameters for homogeneous terrain, *Bound. Layer
620 Meteorol.* 63(4) (1993) 323-363. <https://doi.org/10.1007/BF00705357>.

621 [16] A.K. Blackadar, The vertical distribution of wind and turbulent exchange in a neutral
622 atmosphere, *J. Geophys. Res.* 67(8) (1962) 3095-3102. <https://doi.org/10.1029/JZ067i008p03095>.

623 [17] H. Schmid, B. Bünzli, The influence of surface texture on the effective roughness length, *Q.
624 J. R. Meteorol.* 121(521) (1995) 1-21. <https://doi.org/10.1002/qj.49712152102>.

625 [18] H.A. Panofsky, A. Townsend, Change of terrain roughness and the wind profile, *Q. J. R.*
626 *Meteorol.* 90(384) (1964) 147-155. <https://doi.org/10.1002/qj.49709038404>.

627 [19] A. Townsend, The response of a turbulent boundary layer to abrupt changes in surface
628 conditions, *J. Fluid Mech.* 22(4) (1965) 799-822. <https://doi.org/10.1017/S0022112065001155>.

629 [20] N.S. Ghaisas, A predictive analytical model for surface shear stresses and velocity profiles
630 behind a surface roughness jump, *Bound. Layer Meteorol.* 176(3) (2020) 349-368.
631 <https://doi.org/10.1007/s10546-020-00535-8>.

632 [21] D.M. Deaves, R.I. Harris, A mathematical model of the structure of strong winds, *CIRIA*
633 Report 76, Const Ind. Research and Inf. Assoc. (1978).

634 [22] D. Deaves, Computations of wind flow over changes in surface roughness, *J. Wind. Eng. Ind.*
635 *Aerod.* 7(1) (1981) 65-94. [https://doi.org/10.1016/0167-6105\(81\)90068-4](https://doi.org/10.1016/0167-6105(81)90068-4).

636 [23] N.J. Cook, The Deaves and Harris ABL model applied to heterogeneous terrain, *J. Wind. Eng.*
637 *Ind. Aerod.* 66(3) (1997) 197-214. [https://doi.org/10.1016/S0167-6105\(97\)00034-2](https://doi.org/10.1016/S0167-6105(97)00034-2).

638 [24] C.W. Kent, C.S.B. Grimmond, D. Gatey, J.F. Barlow, Assessing methods to extrapolate the
639 vertical wind-speed profile from surface observations in a city centre during strong winds, *J. Wind.*
640 *Eng. Ind. Aerod.* 173 (2018) 100-111. <https://doi.org/10.1016/j.jweia.2017.09.007>.

641 [25] K. Wang, T. Stathopoulos, Exposure model for wind loading of buildings, *J. Wind. Eng. Ind.*
642 *Aerod.* 95(9-11) (2007) 1511-1525. <https://doi.org/10.1016/j.jweia.2007.02.016>.

643 [26] ASCE, Minimum design loads and associated criteria for buildings and other structures,
644 American Society of Civil Engineers, 2017. <https://doi.org/10.1061/9780784414248>.

645 [27] BS, BS6399 Loading for Buildings. Part 2. Code of Practice for Wind Loads, British
646 Standards Institution, London, 1995.

647 [28] ESDU, Data Item 82026. Strong winds in the atmospheric boundary layer. Part 1: hourly-
648 mean wind speeds., Engineering Sciences Data Unit, 1993.

649 [29] R. Hanson, B. Ganapathisubramani, Development of turbulent boundary layers past a step
650 change in wall roughness, *J. Fluid Mech.* 795 (2016) 494-523.
651 <https://doi.org/10.1017/jfm.2016.213>.

652 [30] U. Ismail, T.A. Zaki, P.A. Durbin, Simulations of rib-roughened rough-to-smooth turbulent
653 channel flows, *J. Fluid Mech.* 843 (2018) 419-449. <https://doi.org/10.1017/jfm.2018.119>.

654 [31] W. Li, C.-H. Liu, On the flow response to an abrupt change in surface roughness, *Flow Turbul.*
655 *Combust..* (2022) 1-23. <https://doi.org/10.1007/s10494-021-00281-y>.

656 [32] J.H. Lee, Turbulent boundary layer flow with a step change from smooth to rough surface,
657 *Int. J. Heat Fluid Flow* 54 (2015) 39-54. <https://doi.org/10.1016/j.ijheatfluidflow.2015.05.001>.

658 [33] A. Rouhi, D. Chung, N. Hutchins, Direct numerical simulation of open-channel flow over
659 smooth-to-rough and rough-to-smooth step changes, *J. Fluid Mech.* 866 (2019) 450-486.
660 <https://doi.org/10.1017/jfm.2019.84>.

661 [34] B.L. Sill, C. Fang, Effect of upstream roughness element distribution on wind loads on low
662 rise structures, *J. Wind. Eng. Ind. Aerod.* 36 (1990) 1289-1297. [https://doi.org/10.1016/0167-6105\(90\)90125-V](https://doi.org/10.1016/0167-6105(90)90125-V).

664 [35] H.-C. Lim, K. Tsukamoto, M. Ohba, K. Mizutani, Study on the surface pressure distribution
665 of cubes in cross-wind arrays, *J. Wind. Eng. Ind. Aerod.* 133 (2014) 18-26.
666 <https://doi.org/10.1016/j.jweia.2014.07.009>.

667 [36] J. Yu, Contribution to the Exposure Assessment for the Evaluation of Wind Effects on
668 Buildings, Concordia University, 2022.

669 [37] N. Antoniou, H. Montazeri, H. Wigo, M.K.-A. Neophytou, B. Blocken, M. Sandberg, CFD
670 and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area:

671 Evaluation using “air delay”, Build. Environ. 126 (2017) 355-372.
672 <https://doi.org/10.1016/j.buildenv.2017.10.013>.

673 [38] F.J. Masters, Boundary Layer Wind Tunnel, Basic Operations Manual, University of Florida,
674 Gainesville, FL, 2017.

675 [39] J. Liao, A.J. Hewitt, P. Wang, X. Luo, Y. Zang, Z. Zhou, Y. Lan, C. O’Donnell, Development
676 of droplet characteristics prediction models for air induction nozzles based on wind tunnel tests,
677 Int. J. Agric. Biol. Eng. 12(6) (2019) 1-6. 10.25165/j.ijabe.20191206.5014.

678 [40] T. Stathopoulos, Wind loads on low-rise buildings: a review of the state of the art, Eng. Struct.
679 6(2) (1984) 119-135. [https://doi.org/10.1016/0141-0296\(84\)90005-1](https://doi.org/10.1016/0141-0296(84)90005-1).

680 [41] C. Homer, J. Dewitz, L. Yang, S. Jin, P. Danielson, G. Xian, J. Coulston, N. Herold, J.
681 Wickham, K. Megown, Completion of the 2011 National Land Cover Database for the
682 conterminous United States—representing a decade of land cover change information,
683 Photogramm. Eng. Remote Sens. 81(5) (2015) 345-354. <https://doi.org/10.14358/PERS.81.5.345>.

684 [42] R. Macdonald, R. Griffiths, D. Hall, An improved method for the estimation of surface
685 roughness of obstacle arrays, Atmos. Environ. 32(11) (1998) 1857-1864.
686 [https://doi.org/10.1016/S1352-2310\(97\)00403-2](https://doi.org/10.1016/S1352-2310(97)00403-2).

687 [43] D. Arthur, S. Vassilvitskii, K-means++ the advantages of careful seeding, Proceedings of the
688 eighteenth annual ACM-SIAM symposium on Discrete algorithms, 2007, pp. 1027-1035.

689 [44] A.G. Davenport, Rationale for determining design wind velocities, J. Struct. Div. 86(5) (1960)
690 39-68. <https://doi.org/10.1061/JSDEAG.0000521>.

691 [45] T. Vihma, H. Savijärvi, On the effective roughness length for heterogeneous terrain, Q. J. R.
692 Meteorol. 117(498) (1991) 399-407. <https://doi.org/10.1002/qj.49711749808>.

693 [46] Y. He, P. Chan, Q. Li, Estimation of roughness length at Hong Kong International Airport via
694 different micrometeorological methods, J. Wind. Eng. Ind. Aerod. 171 (2017) 121-136.
695 <https://doi.org/10.1016/j.jweia.2017.09.019>.

696 [47] J.C. Kaimal, J.J. Finnigan, Atmospheric boundary layer flows: their structure and
697 measurement, Oxford university press1994.

698 [48] A.K. Blackadar, H. Tennekes, Asymptotic similarity in neutral barotropic planetary boundary
699 layers, J. Atmos. Sci. 25(6) (1968) 1015-1020. [https://doi.org/10.1175/1520-0469\(1968\)025%3C1015:ASINBP%3E2.0.CO;2](https://doi.org/10.1175/1520-0469(1968)025%3C1015:ASINBP%3E2.0.CO;2).

700 [49] N.J. Cook, Designers guide to wind loading of building structures. Part 1, (1986).

701 [50] H. Schlichting, K. Gersten, Boundary-layer theory, springer2016.

702 [51] R. Killick, P. Fearnhead, I.A. Eckley, Optimal detection of changepoints with a linear
703 computational cost, J. Am. Stat. Assoc. 107(500) (2012) 1590-1598.
704 <https://doi.org/10.1080/01621459.2012.737745>.

705 [52] P.A. Taylor, Comments and further analysis on effective roughness lengths for use in
706 numerical three-dimensional models, Bound. Layer Meteorol. 39(4) (1987) 403-418.
707 <https://doi.org/10.1007/BF00125144>.

708 [53] R. Catarelli, P. Fernández-Cabán, F. Masters, J. Bridge, K. Gurley, C. Matyas, Automated
709 terrain generation for precise atmospheric boundary layer simulation in the wind tunnel, J. Wind.
710 Eng. Ind. Aerod. 207 (2020) 104276. <https://doi.org/10.1016/j.jweia.2020.104276>.

711 [54] ESDU, Characteristics of atmospheric turbulence near the ground, Part I: Definitions and
712 general information, Engineering Sciences Data Unit 74030 (1974).

713 [55] H. Panofsky, D. Larko, R. Lipschut, G. Stone, E. Bradley, A.J. Bowen, J. Højstrup, Spectra
714 of velocity components over complex terrain, Q. J. R. Meteorol. 108(455) (1982) 215-230.
715 <https://doi.org/10.1002/qj.49710845513>.

717 [56] A. Beljaars, P. Schotanus, F. Nieuwstadt, Surface layer similarity under nonuniform fetch
718 conditions, *J. Appl. Meteorol. Climatol.* (1983) 1800-1810. [https://doi.org/10.1175/1520-0450\(1983\)022%3C1800:SLSUNF%3E2.0.CO;2](https://doi.org/10.1175/1520-0450(1983)022%3C1800:SLSUNF%3E2.0.CO;2).

720 [57] H.W. Tielemans, Wind tunnel simulation of wind loading on low-rise structures: a review, *J.*
721 *Wind. Eng. Ind. Aerod.* 91(12-15) (2003) 1627-1649. <https://doi.org/10.1016/j.jweia.2003.09.021>.

722