

The following is a version of record of the journal paper: Alinejad, N., Jung, S., Kakareko, G., & Fernández-Cábán, P. L. (2023). Wind-Tunnel Reproduction of Nonuniform Terrains Using Local Roughness Zones. *Boundary-Layer Meteorology*, 1-22.

1 Wind-Tunnel Reproduction of Nonuniform Terrains Using Local 2 Roughness Zones

3 Nasrollah Alinejad¹. Sungmoon Jung¹. Grzegorz Kakareko¹. Pedro L Fernández-Cábán¹

4 Abstract

5 Wind-tunnel modeling of Atmospheric Boundary Layer (ABL) flows has primarily consisted of
6 simplified (purely uniform) upwind terrain conditions. This approach is easier to carry out but may
7 not replicate the true wind characteristics of the site. This paper proposes a method to simulate
8 nonuniform terrains in a wind-tunnel and investigates the wind characteristics produced by the
9 method. The proposed method employs the local roughness zones where the given terrain is
10 divided into sub-areas with an approximately uniform roughness length. Next, each sub-area is
11 represented in the wind-tunnel with uniform roughness elements. However, the overall upwind
12 fetch will be composed of roughness elements of various heights. To study the wind characteristics
13 produced by the method, nine different real-world sites were simulated in the Boundary Layer
14 Wind Tunnel (BLWT) at the University of Florida Natural Hazard Engineering Infrastructure
15 (NHERI) Experimental Facility (EF), using a self-configurable (automated) roughness element
16 grid. Compared with the conventional equivalent uniform representation, similarities and
17 differences in the longitudinal mean velocity, turbulence intensity, wind spectrum, and integral
18 length scale profiles are reported and discussed. In particular, a significant difference was observed
19 for the higher-order moments of the longitudinal velocity component, which indicates the need for
20 further studies in wind loads under nonuniform terrains.

21 **Keywords** Nonuniform terrain, Roughness length, Wind characteristics, Wind-tunnel

22

23 1 Introduction

✉ Sungmoon Jung
sjung@eng.famu.fsu.edu

¹ Department of Civil and Environmental Engineering, Florida A&M University – Florida State University College of Engineering, Tallahassee, FL 32310, USA

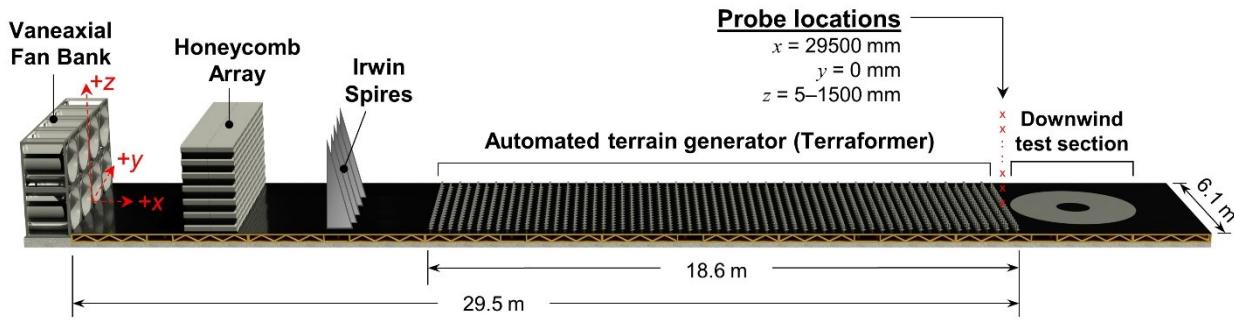
24 Wind-tunnel testing is a standard method to investigate the effect of upstream surface roughness
25 on wind loads on buildings (Fernández-Cabán and Masters, 2017; Ferreira et al., 2018). Most
26 wind-tunnel tests on low-rise buildings have been performed using uniform roughness elements
27 (Counihan, 1971; Deaves, 1981; Kopp et al., 2005; Wang and Stathopoulos, 2006; Zisis and
28 Stathopoulos, 2010; Sabareesh et al., 2013). However, in reality, many built-up sites have
29 heterogeneous terrains and exhibit various degrees of complexity. Only a limited number of tests
30 have been conducted to study the effect of the nonuniform terrain on wind loading. Most of the
31 research on heterogeneous terrain focused on simple roughness changes where the roughness
32 elements change only in the wind direction while remaining uniform laterally (Panofsky and
33 Townsend, 1963; Deaves, 1981; Wang and Stathopoulos, 2007; Lim et al., 2014). Each change in
34 the upwind roughness disrupts the Atmospheric Boundary Layer (ABL) and deviates it from
35 equilibrium (e.g., development of internal boundary layers). To describe the wind profile under
36 such conditions, Deaves (1981) used the Navier-Stokes equations for the mean flow quantities,
37 along with the concept of the internal boundary layer. Wang and Stathopoulos (2007) also
38 formulated a model to obtain wind speed profiles for simple 2D terrain changes. Their model has
39 an outer boundary layer and a set of internal boundary layers corresponding to each uniform patch.

40 To summarize, most wind-tunnel studies carried out to simulate ABL flows thus far have
41 simplified the real-world terrains as equivalent uniform terrain or laterally uniform terrain with
42 simple transitions. However, such simplifications could be problematic considering the complex
43 heterogeneity of real-world terrains (e.g., see Figure 1). First, the simplified uniform terrain is
44 influenced greatly by subjective interpretation. For example, for the terrain shown in Figure 1, if
45 equivalent uniform terrain needs to be created, what is an appropriate roughness length z_0 when
46 the site is composed of a lake, road, and trees? If simple transitions are used, how many transitions
47 should be applied? Second, a uniform representation of upwind terrain in the wind-tunnel produces
48 an equilibrium state in the boundary layer, but the equilibrium state does not hold in the real world
49 if we have a complex terrain. The difference between the two would influence the wind
50 characteristics, as shall be demonstrated in this paper.

51

52 **Figure 1** Example of sites with different land coverages, especially with a complex immediate upwind; it is not
 53 straightforward to decide about the exposure when there is a complex terrain (Exposure B(suburban areas) and
 54 Exposure C (open terrain, airport) are based on ASCE/SEI7-16 (2017))

55 The objective of this paper is 1) to propose a method to simulate nonuniform terrains in a wind-
 56 tunnel, and 2) to investigate the wind characteristics produced by this method. To accomplish the
 57 objective, we performed a series of flow measurement experiments in a large boundary layer wind-
 58 tunnel on both equivalent-uniform and nonuniform upwind terrains using a self-configurable and
 59 automated roughness element grid. The proposed method employs the local roughness zones,
 60 which is explained in Section 2 along with the test setup. Section 3 presents the roughness length.
 61 Section 4 compares similarities and differences between the proposed method and conventional
 62 uniform terrain assumption. Section 5 highlights the main differences in wind characteristics due
 63 to nonuniform simulation and their implications in wind loading. And finally, in Section 6, the
 64 conclusions are summarized.


65

66 **2 Test Setup**

67 **2.1 Wind-tunnel Specifications**

68 In this study, we used the wind-tunnel facility at the University of Florida (UF). The Boundary
 69 Layer Wind Tunnel (BLWT) at UF is equipped with an automated 62×18 roughness grid array
 70 to simulate a broad spectrum of surface roughness conditions. Each roughness element has a $5 \text{ cm} \times 10 \text{ cm}$ plan area, and the height of roughness blocks varies from 0 to 16 cm. Since each roughness
 71 block can be automatically adjusted, the upwind fetch area is nicknamed as Terraformer, covering
 72 an area of $5.4 \text{ m} \times 18.6 \text{ m}$. Point measurements of 3D (u , v , and w) velocity components of the
 73

74 flow were captured using three Cobra probe sensors, which were mounted to an instrument gantry
75 system. The Cobra probes measured three velocity components at a sampling rate of 1250 Hz.
76 Figure 2 shows the setup of the wind-tunnel for the conducted experiments. In our tests, velocity
77 profile measurements were taken along the BLWT centerline ($y = 0$ m) and at the end of the
78 Terraformer fetch ($x = 29.5$ m). Thirty six velocity probes were distributed vertically along the
79 height of the BLWT from 5–1500 mm. At each of these 36 points, the wind velocity was recorded
80 for 1 minute duration.

81
82 **Figure 2** Schematic plan of BLWT at the UF NHERI EF

83 **2.2 Limitation of Testing**

84 The scale of testing for wind simulation experiments was determined such that it matches the
85 building model scale for wind pressure testing (to be conducted in the future). The model scale
86 was determined as 1:100 following relevant studies (Ho et al., 2005; Rizzo et al., 2012; Gavanski
87 and Uematsu, 2014; Liu et al., 2016; Su et al., 2016) on the pressure measurements and wind
88 characterizations. Further investigation of model scales in wind-tunnels can be found in the study
89 by Cook (1978).

90 The boundary layer downwind of the measurement point affects the development of its wake,
91 which feeds back upwind to affect the wind speed. In this study, the probe was located at a step
92 change in roughness elements. Downwind roughness elements and surrounding buildings were not
93 considered due to the facility restrictions, which is a common limitation in many wind-tunnels.

94 **2.3 Implementation of Local Roughness Zones for Nonuniform Terrains**

95 The effective roughness length is defined such that a representative uniform terrain has the same
96 surface shear stress as the real nonuniform terrain. By employing previous studies on effective

97 roughness length and local roughness zones (Fiedler and Panofsky, 1972; André and Blondin,
98 1986; Taylor, 1987; Mason, 1988; Vihma and Savijärvi, 1991; Wieringa, 1993; Macdonald et al.,
99 1998; Millward-Hopkins et al., 2011), any nonuniform terrain can be divided into smaller zones
100 with uniform roughness length.

101 The proposed method to simulate nonuniform terrains in the wind-tunnel is as follows. First, select
102 aerial images of real-world sites. Second, identify sub-sections with similar land coverages. In
103 order to avoid subjective interpretation, the given site is mechanically divided as long as certain
104 sub-section has the same characteristics (e.g., trees, roads). Third, assign the local z_0 for each sub-
105 section. Based on the literature, most land coverages have a range of z_0 . For example, short grass
106 areas in the literature range between $z_0 = 0.001$ m and 0.03 m. Instead of subjectively interpreting
107 the land coverage, three different values are considered for the local z_0 : the minimum, average,
108 and maximum. Fourth, in the wind-tunnel, set the height of the roughness elements corresponding
109 to the roughness length for these sub-sections. Many researchers proposed equations to find the
110 height of roughness elements in wind-tunnels, in which Lettau's equation (Lettau, 1969),
111 Counihan's equation (Counihan, 1971), simplified Counihan's equation (Counihan, 1971), and
112 Macdonald's equation (Macdonald et al., 1998) are most commonly used.

113 **2.4 Selection of Terrains**

114 We chose nine representative sites to include different terrain characteristics: smooth-to-rough
115 transition, rough-to-smooth transition, and mixed-upwind terrains. These sites were chosen from
116 about 60 sites that experienced the passage of actual hurricanes (Balderrama et al., 2011;
117 Fernández-Cabán and Masters, 2017). In the site selection process, we ensured that we had
118 different immediate upwind roughness types. The geographical location and upwind roughness
119 classification for each site are summarized in Table 1, where the last column indicates the
120 clockwise angle from the (magnetic) north direction. The criterion for upwind roughness
121 classification was based on whether the final change was rough-to-smooth or smooth-to-rough,
122 because the zone of upwind influence is roughly 600 – 300 m in full-scale (Wang and
123 Stathopoulos, 2006; Zisis and Stathopoulos, 2010), which in 1:100 scale would be about 1/3 of the

124 length of the wind tunnel. Figure 3 shows the aerial images of the selected sites. The red dot at the
125 bottom of these images is the measurement point in the wind-tunnel testing.

126 **Table 1** Information on the nine sites simulated in the wind-tunnel

Site name	Immediate upwind Roughness type	Town	Latitude	Longitude	Wind Direction
Site 1	Rough-to-smooth	Punta Gorda, FL	26.9065	-82.0057	70
Site 2	Rough-to-smooth	Houma, LA	29.6487	-90.6940	350
Site 3	Rough-to-smooth	Stuart, FL	27.1889	-80.2411	320
Site 4	Smooth-to-rough	Satellite Beach, FL	28.1937	-80.6056	330
Site 5	Smooth-to-rough	Steinhatchee, FL	29.6731	-83.3798	300
Site 6	Mixed	Bonita Spring, FL	26.3304	-81.7791	50
Site 7	Mixed	Somers Point, NJ	39.3208	-74.5953	90
Site 8	Mixed	Naples, FL	26.1557	-81.7211	110
Site 9	Mixed	Charleston, SC	32.7141	-79.9664	150

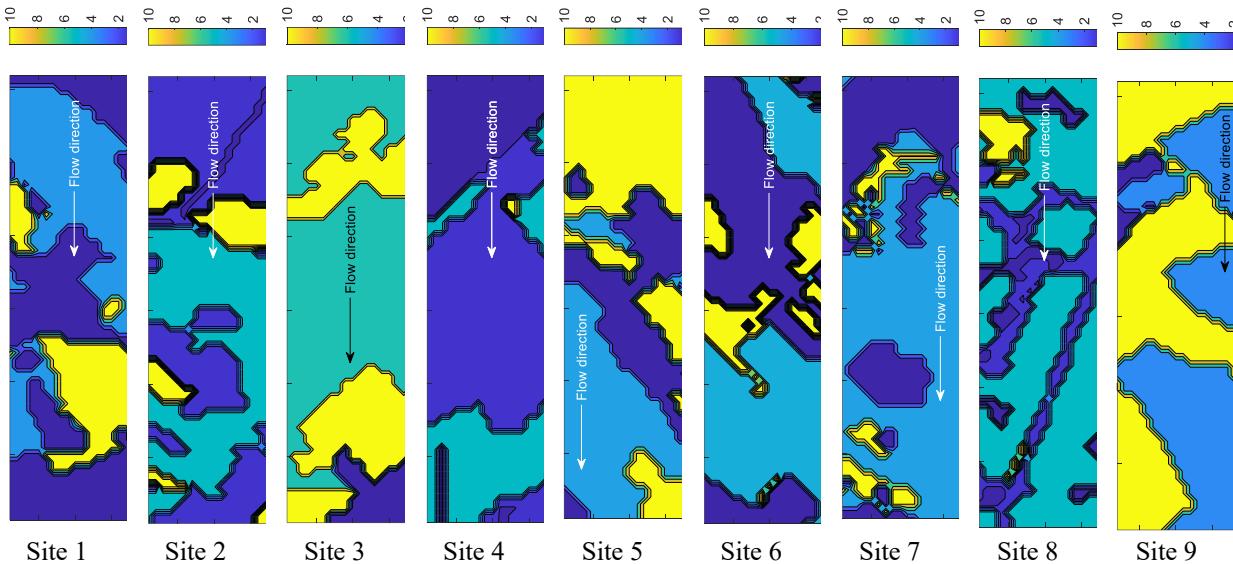
127

Site 1 Site 2 Site 3 Site 4 Site 5 Site 6 Site 7 Site 8 Site 9

128 **Figure 3** Aerial images of the selected sites, respectively from left to right: site 1 to site 9 (flow direction from top to
129 bottom)

130 For each of the nine terrains, real-world images were manually processed, sub-areas were
131 identified, and three different values were assigned for the local z_0 to each sub-area: the minimum,
132 average, and maximum, based on Table 2. These are denoted as Max, Avg, and Min, respectively,
133 which will be used later in figures and discussions of the following sections.

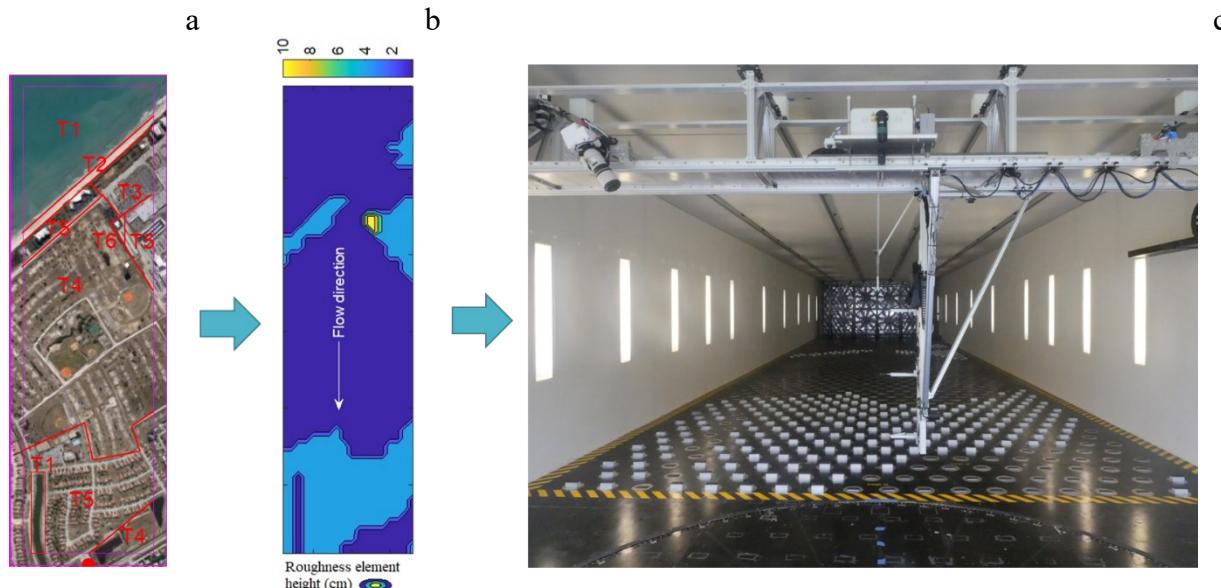
134 **Table 2** Terrain classifications and z_0 range (z_0 range is based on Davenport, 1960; Vihma and Savijärvi, 1991;
135 Wieringa, 1993; Wang and Stathopoulos, 2007; He et al., 2017)


Terrain code	Terrain description	z_0 range (m)
T1	Water (River, sea, lake, etc.)	0.0001-0.0005

T2	Featureless Land	0.001-0.005
T3	Road	0.0024-0.03
T4	Short Grass	0.001-0.03
T5	Low-rise Building	0.3-0.7
T6	Forest	1- 2.3

136 In this study, to compute the height of roughness elements, we used Macdonald's equation (Eq.1),
 137 since it was known to be more accurate for sharp-edged cubes in the intermediate area densities
 138 (Macdonald et al., 1998), the situation we had in this research.

$$139 \quad \frac{z_0}{H} = \left(1 - \frac{d}{H}\right) \exp \left[- \left\{ 0.5 \frac{C_D}{\kappa^2} \left(1 - \frac{d}{H}\right)^{-0.5} \right\} \right] \quad (1)$$


140 where H is the height of the roughness element, C_D is the drag coefficient, which is equal to 1.2
 141 based on the face of a cube over shear flow, κ is von Kármán's constant, and $\frac{d}{H} = 1 + \Phi^{-\lambda}(\lambda -$
 142 1), where λ is the total plane area of the whole array of obstacles over the total area of upwind
 143 fetch, which is equal to 0.0555 in the UF's BLWT, and Φ is a constant parameter equal to 4.43 for
 144 staggered configuration of roughness elements (Fernández-Cabán and Masters, 2017). Figure 4
 145 shows the roughness element heights under Avg configuration for nine sites.

146 **Figure 4** Roughness element heights (cm) in the wind-tunnel for sites 1 to 9, respectively from left to right, under
 147 Avg configuration

148 An example wind-tunnel representation of real-world nonuniform terrain is shown in Figure 5,

149 where the aerial image was divided into several zones with the same land coverage (Figure 5a),
150 then based on Table 2 and Eq.1, the height of roughness elements was estimated and the map of
151 roughness height was created (Figure 5b). Finally, the map was introduced to the wind tunnel to
152 simulate the upwind terrain (Figure 5c).

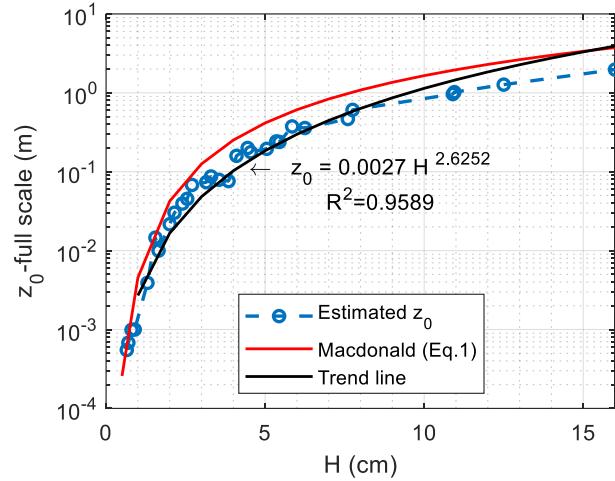
153 **Figure 5** Producing a nonuniform roughness configuration corresponding to a real terrain and its simulation in the
154 wind-tunnel; a) aerial images of site 4 with different land coverages zones, b) roughness element height map in cm
155 simulated in the wind tunnel and c) wind tunnel simulation of upwind terrain for the mentioned site

156 In order to compare the effect of nonuniform terrain with uniform terrain on wind characteristics,
157 we also tested 30 different uniform terrains in the range of $H = 0.65$ cm to 16 cm. Further details
158 of all nonuniform and uniform sites are discussed in the following section.

159

160 **3 Roughness Length Estimation**

161 Although effective z_0 alone is not a full characterization of a site, it is still a useful parameter
162 because a nonuniform terrain is difficult to describe. We will use the z_0 values to discuss and plot
163 the results in the next sections. We used the logarithmic mean velocity profile (Eq.2) to compute
164 z_0 for all upwind terrains using the wind speed measurements from the wind-tunnel.

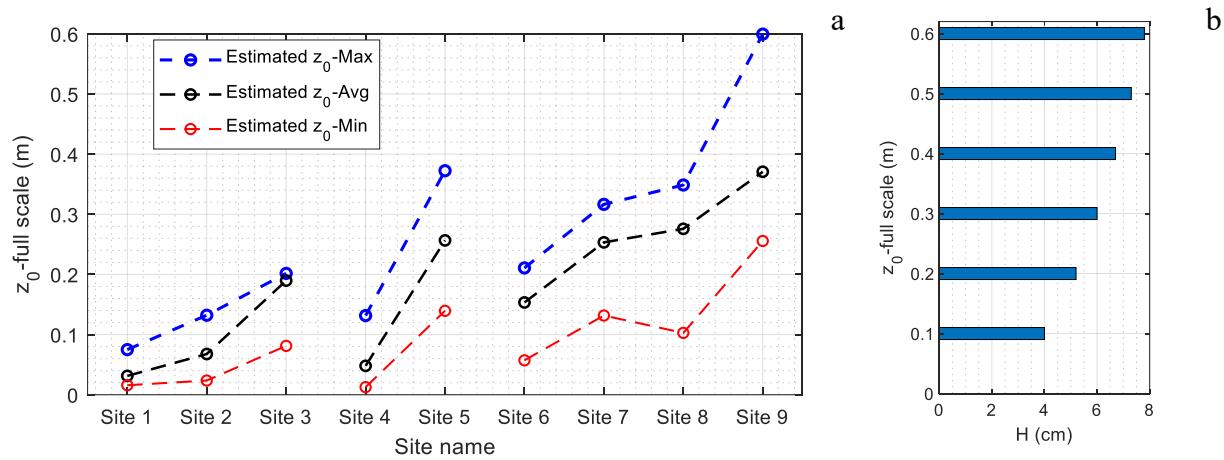

165
$$z_0 = (z - d) \exp\left(-\frac{U_z \kappa}{u_*}\right) \quad (2)$$

166 In Eq.2, u_* is friction velocity, and z is the height at which the mean wind speed, U_z , has been read
167 and d is zero-plane displacement height (Fernández-Cabán and Masters, 2017).

168 For each terrain in the BLWT, instead of direct estimation of zero-plane displacement height (d)
169 from wind speed profile, we used the logarithmic wind speed profile (Eq.2) and the wind
170 measurements at 2 different heights and solved the system of equations for two unknown variables,
171 z_0 and d . The wind speed time series collected at 5, 10, 15 and 20 m full-scale (50, 100, 150, and
172 200 mm in the wind-tunnel) were used for that matter. Three pairs of measurement heights,
173 including 5 and 10 m, 15 and 10 m, and 20 and 10 m were considered to solve Eq.2 for z_0 and d .
174 Each pair's estimated z_0 and d were then averaged to obtain the final z_0 and d . For $z_0 < 0.15$ m,
175 zero-plane displacement height was considered to be zero (Fernández-Cabán and Masters, 2017).
176 The friction velocity in Eq.2 was measured using Reynolds Shear Stress Extrapolation (RSSPE)
177 method described in Catarelli et al. (2020).

178 **3.1 Uniform upwind terrain**

179 The z_0 estimations for uniform upwind terrain with respect to the height of roughness elements are
180 plotted in Figure 6. As shown in Figure 6, Eq.1 from Macdonald et al. (1998) overestimated the
181 z_0 . Thus, we used the estimated z_0 to plot and discuss the results later for both uniform and
182 nonuniform cases. The trend line of z_0 vs. H (uniform height of roughness elements) can be used
183 to convert z_0 values to the height of roughness elements in the UF's BLWT.



184

185 **Figure 6** Estimated z_0 (full scale equivalent) for 30 uniform BLWT upwind terrain configurations

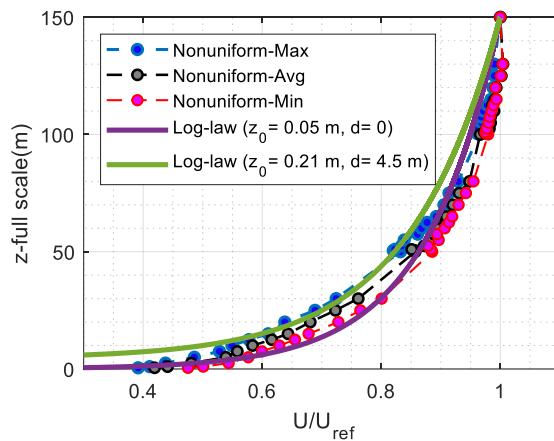
186 3.2 Nonuniform upwind terrain

187 After implementing the local roughness zones method and simulation of nonuniform upwind
 188 terrains in the BLWT, the z_0 was estimated for all nine sites. In Figure 7a, the estimated z_0 for all
 189 nonuniform cases is plotted. The sites are classified into three groups based on their immediate
 190 upwind type and ordered in an increasing z_0 fashion. Using the trend line in Figure 6, the
 191 corresponding heights of roughness elements in the uniform configurations are also plotted in
 192 Figure 7b to compare with the nonuniform configurations.

193

194 **Figure 7** a) Estimated z_0 (full scale equivalent) for nine sites with nonuniform BLWT upwind terrain configurations
 195 and b) the height of the uniform roughness element configuration (H) that produced the corresponding z_0 values

196


197

4 Wind Characteristics

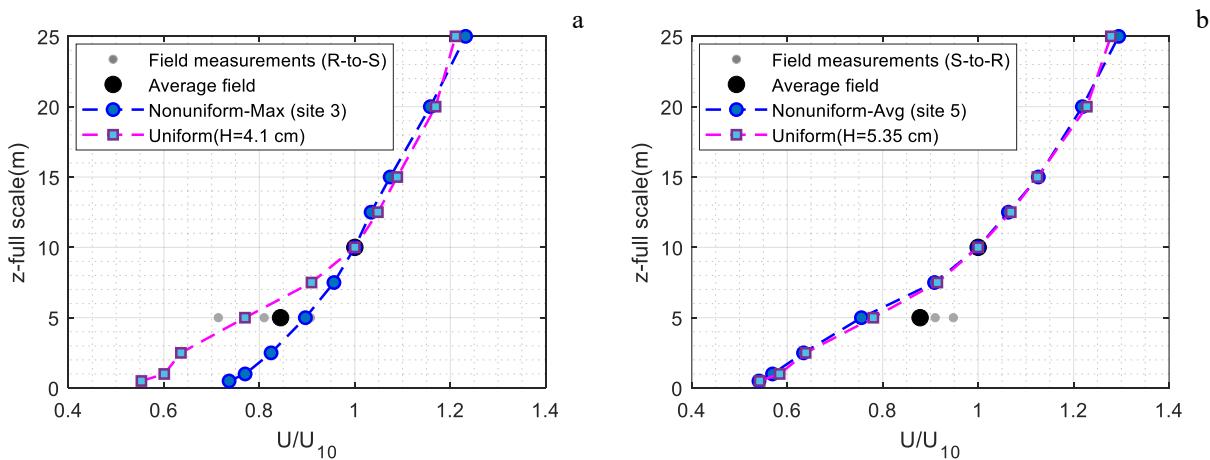
198

4.1 Wind Speed Profile

199 The mean wind speed profile has been calculated based on a 1-minute average of collected data at
 200 every measurement height in the wind-tunnel testing. Figure 8 shows a representative mean
 201 velocity profile for the nonuniform terrain configuration corresponding to site 6. Two different
 202 normalized log-law wind profiles were also added to Figure 8. For this site, the normalized mean
 203 wind speed at 100 mm height (10 m in full scale) (U_{10}/U_{ref}) for the Max configuration was about
 204 6 and 14 % smaller than the Avg and Min configurations, respectively (Figure 8). Moreover, the
 205 longitudinal wind speed profile of site 6 under Min configuration with $z_0 = 0.05$ m was close to
 206 the log-law profile with the same z_0 near the ground ($z \leq 30$ m). For example, at 10 m and 20 m
 207 heights in full scale, the normalized mean wind speed under Min configuration was only 5 % and
 208 3%, respectively, smaller than the normalized wind speed of the log-law curve with $z_0 = 0.05$ m.
 209 The same pattern was also observed for the Max configuration of site 6 with $z_0 = 0.21$ m and the
 210 corresponding log-law profile, where the difference between the normalized longitudinal wind
 211 speed at 10 and 20 m full scale heights was about 10 % and 3 %, respectively.

212

213 **Figure 8** Comparison of mean longitudinal wind speed for three different nonuniform terrain configurations (site 6).
 214 The x-axis is the mean longitudinal velocities at each measurement height normalized by the mean value at $z = 1500$
 215 mm (150 m in full scale and $U_{ref} = U(z = 150 \text{ m})$) and the y-axis is the full-scale converted measurement heights
 216 (measurement points in the wind-tunnel divided by the scale factor = 1/100).

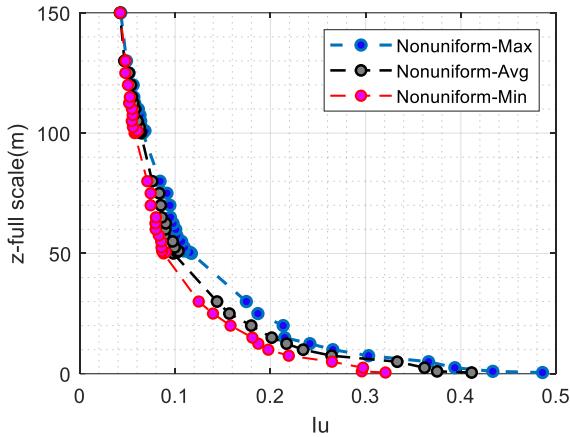

217 In order to understand how the nonuniform representation influences the wind shear compared
 218 with the uniform approximation, we obtained U/U_{10} in Figure 9 for sites with two different
 219 immediate upwind terrain types (sites 3 and 5) since the field data were available at 5 and 10 m
 220 heights. In Figure 9, the small black dotted data shows the Florida Coastal Management Program
 221 (FCMP) field measurements at 10 and 5 m full-scale heights extracted from Gurley et al. (2021)
 222 based on their corresponding immediate upwind roughness (data from rough-to-smooth sites vs.
 223 site 3; data from smooth-to-rough sites vs. site 4). The FCMP data used to compare with the wind
 224 tunnel data are summarized in Table 3. For each FCMP site, the wind speed time series were
 225 segmented into 10-minute samples. These sites were selected based on the immediate upwind
 226 roughness type and relatively close z_0 to the wind tunnel measurements. The last column of Table
 227 3 is based on the Davenport classification of effective roughness in ASCE/SEI7-16 (2017).

228 **Table 3** Information on FCMP sites (Gurley et al., 2021) used to compare with the wind tunnel measurement

Storm Name, Year, Tower Index	Immediate upwind Roughness type	GPS Coordinates	Wind Direction (°)	10-minute Samples	Visual interpretation of z_0
Lili, 2000, T0	Rough-to-smooth	30.2146, -92.0447	205	57 to 108	Exposure B, $z_0 = 0.25$ to 0.5 m
Ivan, 2004, T1	Rough-to-smooth	30.4793, -87.1869	65	1 to 75	Exposure B, $z_0 = 0.25$ to 0.5 m
Rita, 2005, T3	Rough-to-smooth	29.9548, -93.9542	5	1 to 34	Exposure B, $z_0 = 0.25$ to 0.5 m
Ike, 2008, T1	Rough-to-smooth	29.6578, -95.0727	90	98 to 111	Exposure B, $z_0 = 0.25$ to 0.5 m
Ike, 2008, T2	Rough-to-smooth	29.811969, -94.901578	120	73 to 120	Exposure B, $z_0 = 0.25$ to 0.5 m
Gustav, 2008, T1	Smooth-to-rough	29.5831, -90.7252	0	38 to 87	Exposure B, $z_0 = 0.25$ to 0.5 m
Gustav, 2008, T4	Smooth-to-rough	29.5880, -90.7377	180	1 to 75	Exposure B, $z_0 = 0.25$ to 0.5 m
Ike, 2008, T0	Smooth-to-rough	29.7200, -95.3371	110	100 to 142	Exposure B, $z_0 = 0.25$ to 0.5 m

229 When the terrain changes from rough terrain to smooth terrain, Deaves (1981) noted that the
 230 surface shear stress would undershoot its final equilibrium value due to the sudden change and the
 231 wind speed increases near the surface. Therefore, the wind speed near the surface in a rough-to-
 232 smooth transition should be greater than that of the equivalent uniform terrain. Thus, as observed
 233 in Figure 9a, although both nonuniform and uniform cases had the same z_0 , the nonuniform case
 234 had greater wind speed at 5m height than the uniform representation. The same pattern between
 235 uniform and nonuniform configurations also happened for sites 1 and 2. Moreover, the proposed

236 nonuniform representation had a much better match to the field data than the uniform
 237 representation. However, it is important to mention that for sites 1 and 2, the comparison with the
 238 field data is inconclusive since sites 1 and 2 had smaller z_0 s than the field measurements. On the
 239 other hand, when there is a smooth to rough roughness change, the shear stress increases suddenly
 240 to above its equilibrium value due to the sudden change in roughness (Deaves, 1981). This initial
 241 increase in shear will decrease the wind speed near the ground compared with the equivalent
 242 uniform. Therefore, in Figure 9b, the nonuniform case has a lower wind speed at 5 m than the
 243 uniform case with the same z_0 .


244 **Figure 9** Normalized longitudinal wind speed profile for a) site 3 for Max configuration with $z_0 = 0.2$ m, uniform case
 245 with similar z_0 and field measurements with rough to smooth change; and b) site 5 for Avg configuration with $z_0 =$
 246 0.26 m, uniform case with similar z_0 and field measurements with smooth to rough change. The large dots show the
 247 average of different field data.

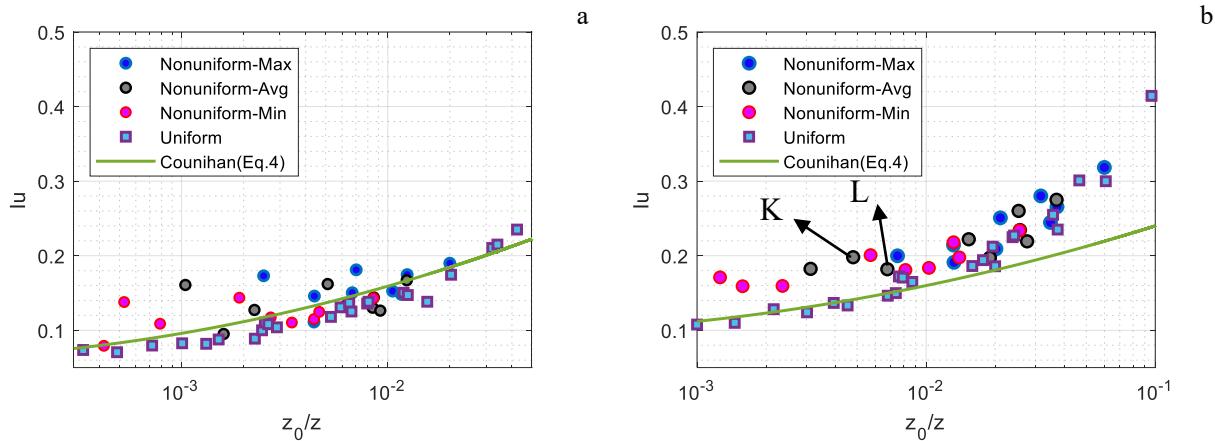
248 4.2 Turbulence Intensity

249 The vertical profile of wind turbulence intensity, $I_u(z)$, is related to the standard deviation of the
 250 fluctuating wind components, $\sigma_u(z)$, and the mean wind speed, U_z , as:

$$251 \quad I_u(z) = \frac{\sigma_u(z)}{U_z} \quad (3)$$

252 For nonuniform terrain configurations, the turbulence intensity increased as the height of
 253 roughness elements increased, as expected. For example, it is apparent from Figure 10 that the
 254 turbulence intensity at $z = 100$ mm for site 4 under the Max configuration was 13 and 34 % greater
 255 than Avg and Min configurations, respectively.

256 **Figure 10** Comparison of wind turbulence intensity for three different nonuniform terrain configurations for site 5 at
 257 different heights above the ground

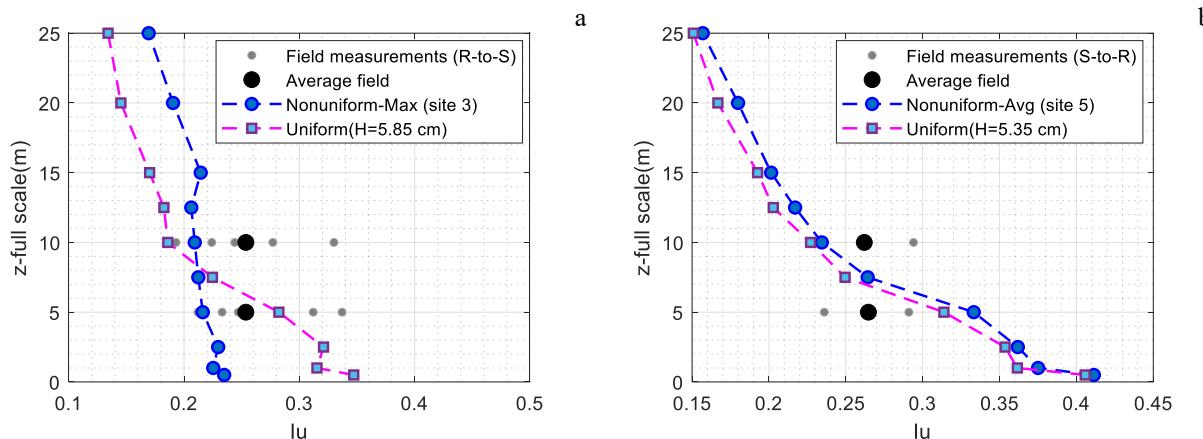

258 Counihan (1975) stated that turbulence intensity at 30 m “should be free from very local influences
 259 but still be representative of the local terrain.” Thus, he proposed Eq.4 to show the variation of
 260 turbulence intensity versus effective roughness length for the reference height of 30 m.

261
$$I_u = 0.096 \log_{10} z_0 + 0.016 (\log_{10} z_0)^2 + 0.24 \quad (4)$$

262 Along with the turbulence intensity at 30 m, we will also show the turbulence intensity at the
 263 standard height of 10 m above the ground. The turbulence intensity at 30 and 10 m full-scale
 264 heights for all test cases (nonuniform and uniform) was obtained and plotted in Figure 11. The
 265 plots are excellent confirmation of Counihan’s reasoning as well as his model’s accuracy — for
 266 nonuniform terrain cases, the Counihan model provided a good trend of the turbulence at the 30 m
 267 full-scale height. However, the error was significant for some sites, with increasing order when the
 268 roughness height changed from Min, Avg, to Max. In addition, the model underestimated the
 269 turbulence intensity for uniform sites of high z_0 . The high turbulence intensity of the uniform sites
 270 of high z_0 may be the artifact of the wind-tunnel testing, i.e., the use of rectangular roughness
 271 elements. As noted by Counihan, the turbulence intensity at the 10 m height was further influenced
 272 by the local features. The model prediction was much smaller than the measurements at 10 m
 273 height since Eq.4 was originally derived for a height of 30 m above the ground.

274 Although we observed the increasing trend of turbulence intensity by increasing the z_0 values in
 275 the uniform cases, here we discuss why the local fluctuation in the trend for nonuniform cases was
 276 observed. We have used several alphabetical labels (e.g., K, L, M, N, P, Q, R, S, X, Y) instead of

277 the site names and configurations in the following figures to facilitate the discussion of results.
 278 Each of these label will be explained in this section or section 5. In Figure 11a, considering points
 279 K which shows site 4 ($z_0 = 0.05$ m), and L which shows site 2 ($z_0 = 0.07$ m) both under Avg
 280 configuration, it is apparent that these points did not follow the trend locally since we see a
 281 decrease in the turbulence intensity by the increase in z_0 value. Here, it is necessary to investigate
 282 the immediate upwind roughness configuration for both sites to find the reason. As mentioned in
 283 the second column of Table 1, the final patch of roughness elements in site 2 (point L) was smooth,
 284 while the final patch in site 4 (point K) was rough. Since the final patch affects the turbulence
 285 intensity near the ground, it was expected to observe smaller turbulence intensity where there was
 286 a smooth final patch. As we go up in the elevation, farther roughness patches from the
 287 measurement point should be analyzed to figure out the local fluctuations in the turbulence
 288 intensity for the site with the same or close z_0 s.



289 **Figure 11** Wind-tunnel turbulence intensity for all test cases (nonuniform and uniform) vs z_0/z from wind-tunnel
 290 measurements a) at $z = 30$ m height and b) at $z = 10$ m height and turbulence intensity from Counihan's proposed
 291 curve (Eq.4)

292 The FCMP field measurements of turbulence intensity in Gurley et al. (2021) were used to further
 293 discuss the influence of immediate upwind terrain. The analysis of results showed that for rough
 294 to smooth upwind terrain sites (sites 1 to 3) and mixed upwind terrain sites (sites 6 to 9) the
 295 nonuniform representation performed better than the uniform representation. For example, in
 296 Figure 12a, at 10 m height, the turbulence intensity of nonuniform representation was about 15 %
 297 smaller than the average field-measured turbulence intensity, while the turbulence intensity of
 298 uniform representation was about 25 % smaller than the average field-measured turbulence
 299 intensity. For sites 4 and 5 with smooth to rough immediate upwind terrain, we observed that

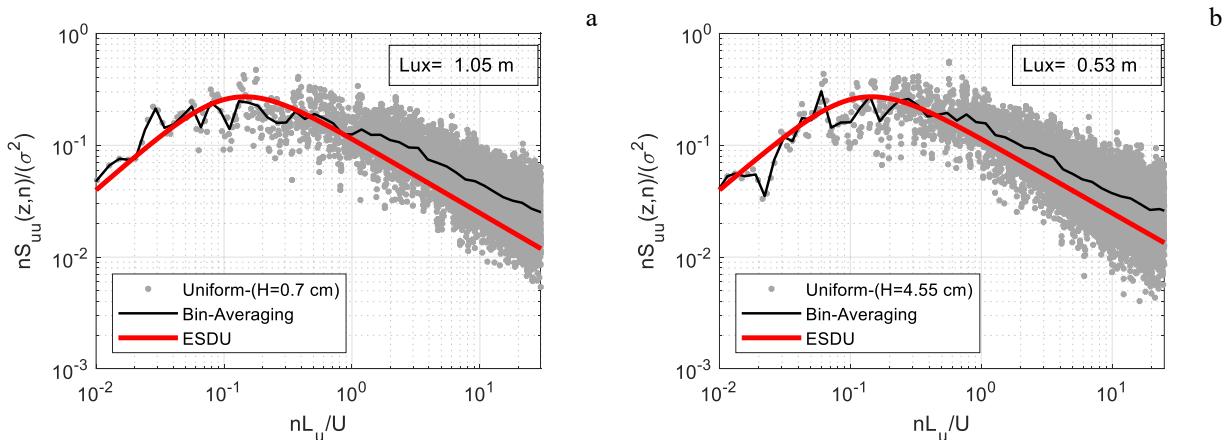
300 nonuniform representation performed slightly better than nonuniform representation at 10 m
 301 height, as shown for site 5 in Figure 12b, where the turbulence intensity of nonuniform and uniform
 302 configurations were 0.234 and 0.227, respectively, compared with the average field-measured
 303 turbulence intensity which was 0.262.

304 Another important observation from Figure 12 is that site 3 had smaller turbulence intensity than
 305 site 5 near the surface, both under Max configurations. This phenomenon happened because the
 306 turbulence intensity near the surface is highly affected by the final patch of roughness elements
 307 (the nearest zone to the measurement point). Thus, for site 3, where the final patch of roughness
 308 elements was smooth, a smaller turbulence intensity near the ground was observed than site 5,
 309 where the final patch of roughness elements was rough. For example, the turbulence intensity of
 310 site 3 under Max configuration at 5 m height above the ground was 0.22, where the z_0 is 0.2 m. On
 311 the other hand, for site 5 under Max configuration, where the z_0 is 30 % larger than site 3 under
 312 Max configuration, the turbulence intensity at 5 m height was 63 % larger.

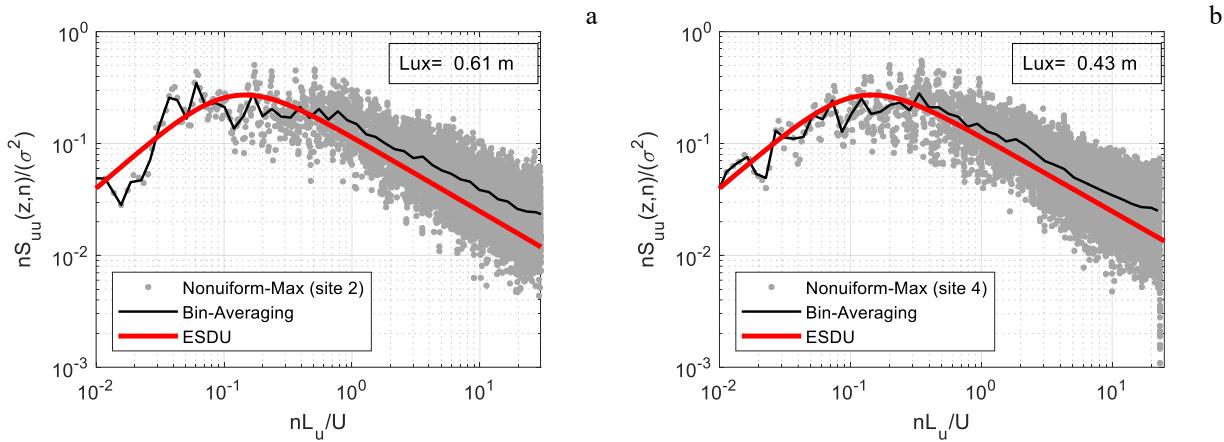
313 **Figure 12** Turbulence intensity for a) site 3 for Max configuration with $z_0 = 0.2$ m, uniform case with similar z_0 and
 314 field measurements with rough to smooth change; and b) site 5 for Avg configuration with $z_0 = 0.26$ m, uniform case
 315 with similar z_0 and field measurements with smooth to rough change. The large dots show the average of different
 316 field data.

317 4.3 Power Spectrum

318 The spectral density of turbulent kinetic energy illustrates how energy distributes across different
 319 eddy sizes (Li et al., 2012). In the low-frequency ranges (large eddies), the eddies gain energy from
 320 the mean flow and lose energy to smaller eddies. Conversely, in the high-frequency ranges (small
 321 eddies), the eddies tend to dissipate energy (Tielemans, 1995; Jung and Masters, 2013).


322 The power spectrum of measured data in BLWT was compared with the Engineering Sciences
 323 Data Unit (ESDU) empirical model described by Eq.5 (ESDU 74030, 1974).

324

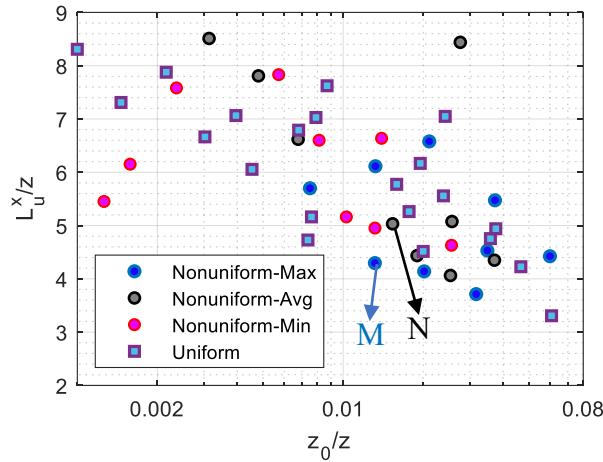

$$\frac{nS_{uu}}{\sigma_u^2} = \frac{4f}{(1 + 70.8f^2)^{5/6}} \quad (5)$$

325 where n is the frequency in Hertz, S_{uu} is the power spectrum for the longitudinal turbulence
 326 component and $f = nL_{ux}/U_z$ in which L_{ux} is the longitudinal integral length scale.

327 Figure 13 shows the wind spectrum of two uniform configurations with different z_0 s. Figure 14
 328 shows the power spectrum of two different nonuniform sites with the same z_0 . Compared with the
 329 theoretical ESDU spectrum model (Eq.5), a good agreement with the experimental results was
 330 observed in both Figure 13 and Figure 14. In Figure 13, in the high-frequency region, we observed
 331 that smoother upwind terrain had a larger normalized spectrum response. At $f = nL_{ux}/U_z = 10$ for
 332 $H = 0.7$ cm (Figure 13a) $\frac{nS_{uu}}{\sigma_u^2} = 0.045$ and for $H = 4.55$ (Figure 13b) $\frac{nS_{uu}}{\sigma_u^2} = 0.037$. In Figure 14,
 333 although both sites 2 and 4 under Max configurations had the same z_0 , we observed different
 334 response at high-frequency region. Site 2 with smooth immediate upwind terrain showed a larger
 335 spectrum response than site 4 with rough immediate upwind terrain in the high-frequency region.
 336 For example, at $f = nL_{ux}/U_z = 10$ for site 2 under max configuration (Figure 14a) $\frac{nS_{uu}}{\sigma_u^2} = 0.038$ and
 337 for site 4 under max configuration (Figure 14b) $\frac{nS_{uu}}{\sigma_u^2} = 0.034$. Thus, unlike uniform cases, for
 338 nonuniform cases, besides z_0 , the configuration of immediate upwind terrain also played a role in
 339 the spectral densities.

340 **Figure 13** Power spectrum of uniform configurations at $z = 10$ m full-scale height for a) $z_0 = 0.00007$ m full-scale,
 341 b) $z_0 = 0.2$ m full-scale. The solid black curve shows the bin-averaging of the wind-tunnel power spectrum.

342 **Figure 14** Power spectrum of nonuniform configurations at $z = 10$ m full-scale height with the same $z_0 = 0.13$ m full-
 343 scale for a) site 2 and b) site 4. The solid black curve shows the bin-averaging of the wind-tunnel power spectrum.


344 4.4 Integral Length Scale

345 The longitudinal integral length scales were calculated by obtaining the area under the
 346 autocorrelation function of the fluctuating velocity component multiplied by the mean wind speed
 347 at each height (Varshney and Poddar, 2011).

348 Many researchers (Counihan, 1975; Farell and Iyengar, 1999; Kozmar, 2010, 2011) expressed
 349 that large eddies cannot be fully developed due to limitations in the dimension of the wind-tunnel.
 350 Thus, the increase in the integral length scales with height in the full-scale experiments has not
 351 been observed in the higher elevations ($z > \sim 50$ m full scale) in the wind tunnel testing.

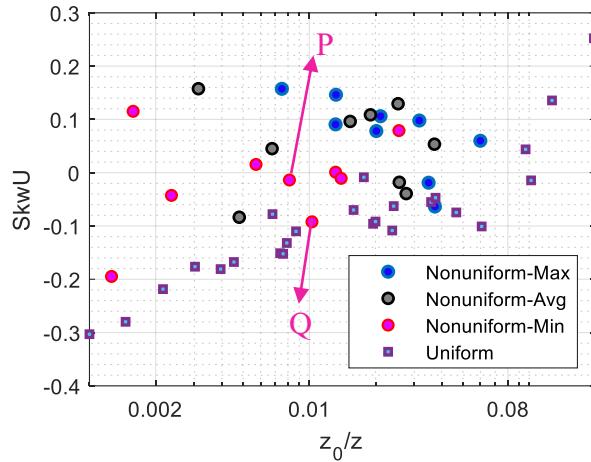
352 The length scale showed the behavior expected from the turbulence intensity plots shown earlier.
 353 In high z_0 , the turbulence intensity of the uniform cases was greater than the nonuniform cases
 354 (Figure 11). As it is apparent in Figure 15, where we plotted the integral length scale at 10 m full
 355 scale height for all nonuniform and uniform cases, at the high z_0 range, the autocorrelation function
 356 peak was not as wide, so it decreased toward zero more rapidly and led to a smaller turbulence
 357 length scale for the uniform case. On the other hand, at low-to-mid z_0 , length scales for some
 358 uniform cases were greater than the nonuniform, whereas for other cases were less. The general
 359 trend is that the integral length decreased by increasing z_0 . Although, the fluctuation in the results
 360 at 10 m height is significant. For some cases, such as site 4 under Max configuration with $z_0 = 0.13$
 361 m (Point M in Figure 15) and site 6 under Avg configuration with $z_0 = 0.15$ m (Point N in Figure
 362 15), the fluctuation in the results could be the effect of immediate upwind terrain. For site 4 under

363 Max and site 6 under Avg configurations, the height of roughness elements in the final patch was
 364 6.4 and 1.45 cm and the normalized integral length scale (L_{ux} / z) was 4.3 and 5, respectively.
 365 Although both sites had close z_0 , the smoother final patch for site 6 made the autocorrelation
 366 function peak wider, resulting in a larger integral length scale.

367 **Figure 15** Wind-tunnel integral length scale for all test cases (nonuniform and uniform) vs. z_0/z from wind-tunnel
 368 measurements at $z = 10$ m full-scale height

369 After estimating the integral length scale, mentioning the integral time scale (eddy turn-over time)
 370 is important. The integral time scale (L_{ux} / U) at 1500 mm above the ground in the wind tunnel was
 371 about 0.02 sec for all cases (the maximum and minimum of integral time scale at 150 m height in
 372 full scale were 0.026 and 0.017, respectively). Since the testing duration was 60 seconds, the
 373 number of cycles in our testing would be $60 / 0.02 = 3000$ cycles on average. The integral time
 374 scale at 1500 mm in the wind tunnel (150 m in full scale) did not show a considerable fluctuation
 375 in different cases because the effect of upwind terrain was negligible at this height. However, the
 376 integral time scale near the ground was highly affected by the upwind terrain. For instance, at 10
 377 m in full scale height, the integral time scale for site 6 under Max configuration was 0.06 sec, while
 378 for site 3 under Max configuration was 0.035 sec, although both sites had similar z_0 .

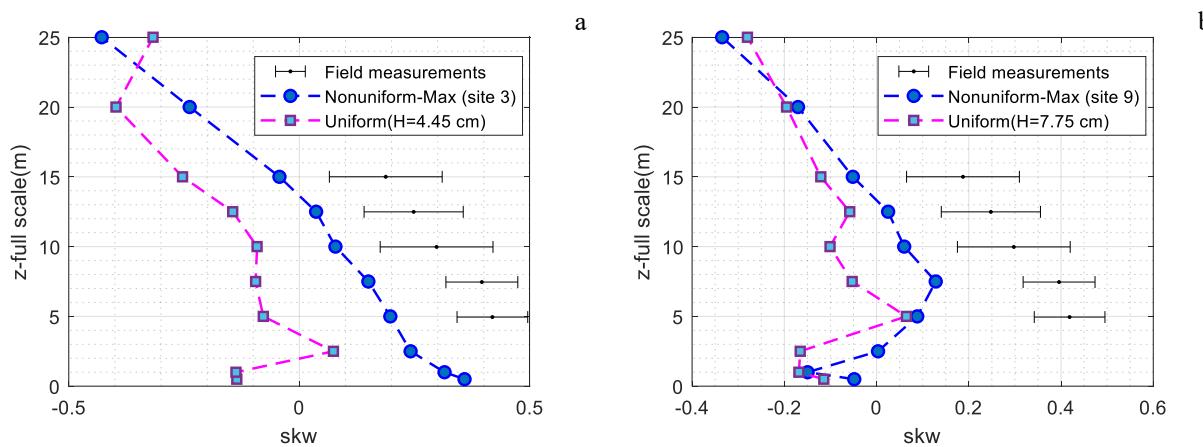
379


380 **5 Wind Characteristics Due to Nonuniform Simulation of Roughness**

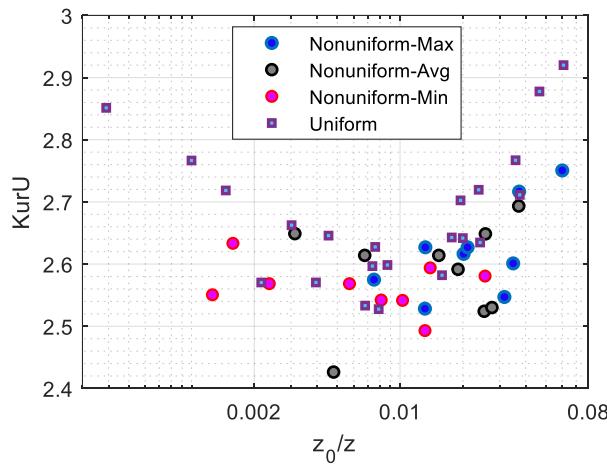
381 **5.1 Higher Order Central Moments**

382 The distribution of near-surface winds in atmospheric boundary layer flows is commonly assumed
383 as the Gaussian, regardless of surface roughness characteristics. However, relatively rougher
384 terrain such as plant canopies and suburban areas has shown to exhibit non-zero skewness in the
385 wind velocities (Shaw and Seginer, 1987; Oikawa and Meng, 1995). The non-Gaussian trend in
386 the wind over suburban terrain has also been quantified for the hurricane wind records collected
387 between 1999 and 2016 (Balderrama et al., 2012; Fernández-Cabán and Masters, 2017). In both
388 analyses, a positive non-Gaussian wind speed distribution in the skewness of the longitudinal
389 velocity component was evident. Similarly, the positive skewness of tropical cyclone winds has
390 been observed by other researchers in the past decade (see the list by Xiao and Hong (2022)).

391 Positive skewness indicates the likelihood of a greater gust compared with the Gaussian
392 assumption (Balderrama et al., 2012). Therefore, it will be important to reproduce the positive
393 skewness in the wind-tunnel to obtain the peak wind loads.


394 The skewness and kurtosis at 10 m height were computed for all test cases (nonuniform and
395 uniform) and plotted in Figure 16 and Figure 18. First, the uniform roughness elements were not
396 able to reproduce the positive skewness observed in the field, except for very high z_0 . This
397 observation is consistent with a previous study (Fernández-Cabán and Masters 2017, Figure 11).
398 Compared with the previous study, this research showed a slight negative bias of the skewness.
399 Second, for the most part, the proposed method of nonuniform terrain simulation was able to
400 produce positive skewness in suburban terrain ($z_0 > 0.15$ m). As the terrain became smoother ($z_0 \approx$
401 0.1 m), the skewness decreased and the wind record became closer to Gaussian. For very low z_0 ,
402 negative skewness was observed for most configurations. In general, the skewness decreased as
403 the z_0 decreased, however, there were some fluctuations depending on the configuration of
404 immediate upwind roughness elements. For instance, considering Points P and Q which show sites
405 9 and 3 under Min configurations, respectively, it is apparent that the skewness decreased as z_0
406 increased for these two sites. The reason for this reverse behavior is that site 3 (point Q) had a
407 smooth final patch leading to a smaller skewness compared with site 9 (point P), with a rougher
408 final patch. Third, the skewness produced in the wind-tunnel with the proposed method was
409 between about -0.2 to 0.16 at the 10 m full-scale height. This skewness is less than what was
410 observed in the records of Atlantic hurricane winds (about 0.17 to 0.42).

411


412 **Figure 16** Wind-tunnel skewness for all test cases (nonuniform and uniform) vs z_0/z from wind-tunnel
413 measurements at $z = 10$ m full-scale height

414 Fernández-Cabán and Masters (2017) provided skewness profiles for field measurements based
415 on the FCMP dataset in the suburban areas where z_0 changes between 0.15 and 0.7 m. In Figure
416 17, the skewness from field measurement was compared to the wind-tunnel measurement from
417 this study. The skewness profile of nonuniform cases in the low z_0 range (Figure 17a) and high z_0
418 range (Figure 17b) were closer to the field data than the uniform representation in the wind-tunnel.
419 For example, at 10 m height, for $z_0 = 0.2$, the skewness of the nonuniform and uniform cases were
420 0.08 and -0.09, while the lower and upper bounds of field measurement were 0.17 and 0.42,
421 respectively.

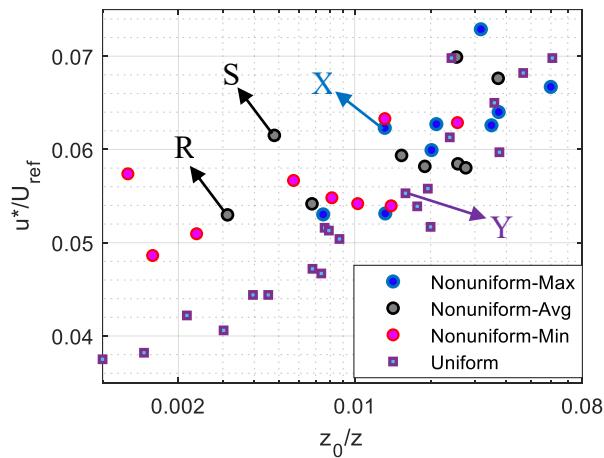
422 **Figure 17** Skewness profile in the field vs. wind-tunnel measurements for a) $z_0 = 0.2$ m and b) $z_0 = 0.6$ m in full
423 scale

424 The previous studies of hurricane winds showed that the kurtosis was approximately Gaussian for
 425 the suburban terrain whereas slightly platykurtic (< 3) for the open terrain (Balderrama et al., 2012;
 426 Fernández-Cabán and Masters, 2017). The kurtosis observed in this study was further platykurtic
 427 than the analysis of field data (Figure 18). The kurtosis for high and low z_0 ranges was closer to
 428 Gaussian distribution, while for mid z_0 ranges (z_0 between 0.05 and 0.5 m) was around 2.6 (< 3) for
 429 both uniform and nonuniform cases. Therefore, the likelihood of greater gust will be less due to
 430 this platykurtic trend which can offset the effect of positive skewness on the extreme values
 431 partially.

432

433 **Figure 18** Wind-tunnel kurtosis for all test cases (nonuniform and uniform) vs. z_0/z from wind-tunnel measurements
 434 at $z = 10$ m full-scale height

435 5.2 Friction Velocity


436 The friction velocity was computed using Eq.6 and the three velocity components measured in the
 437 wind-tunnel.

438

$$u_* = \left(\overline{u'w'}^2 + \overline{v'w'}^2 \right)^{1/4} \quad (6)$$

439 In Eq.6, as defined earlier, $u' = u - \bar{U}$ where u is the longitudinal wind speed component.
 440 Similarly, $w' = w - \bar{W}$ and $v' = v - \bar{V}$ are the vertical and transverse fluctuating (mean-
 441 removed) components of wind velocity. Also, $\overline{u'w'}$ and $\overline{v'w'}$ are the temporal average between
 442 the two fluctuating components (Weber, 1999).

443 Figure 19 shows the obtained friction velocities for all test cases (nonuniform and uniform) at 10
 444 m full scale height. Overall, a linearly increasing trend was observed as expected, with some
 445 fluctuations in the uniform roughness cases due to the uncertainties in the testing. The main source
 446 of these uncertainties for uniform cases came from the freestream longitudinal wind velocity (U at
 447 1500 mm in the wind tunnel) produced in the wind tunnel, which on average, was 19.6 m/s but
 448 with a $\pm 5\%$ fluctuation. The nonuniform cases overall also showed a linearly increasing trend, but
 449 some points showed significantly greater or lower friction velocity than the uniform cases. Upon
 450 analysis of the sites, all these cases could be explained by a sudden change in the immediate
 451 upwind terrain. Four representative cases, points R, S, X and Y, are further explained below.

452

453 **Figure 19** Wind-tunnel friction velocity normalized by U_{ref} for all test cases (nonuniform and uniform) vs. z_0/z from
 454 wind-tunnel measurements at $z = 10$ m full-scale height

455 Point S shows site 4, Avg case. As shown in Figure 4, for site 4, the height of the roughness element
 456 changed from 1.45 cm to 5.45 cm in the immediate upwind of the probe, which led to a sudden
 457 increase in the shear stress. Conversely, point R illustrates a sudden decrease (site 1, Avg case).
 458 For site 1, in the first subpanel of Figure 4, the height of the roughness element changed from 10
 459 cm to 1.45 cm in the immediate upwind, producing lower friction velocity than the equivalent
 460 uniform case. The same concept from the study by Deaves (1981) can be used to explain the
 461 difference in the friction velocity of uniform vs. nonuniform cases. Point X represents the
 462 normalized friction velocity of site 4 under Max configuration and point Y represents the
 463 normalized friction velocity of uniform configuration with $H = 4.1$ cm. Although the nonuniform
 464 case had a slightly smaller z_0 ($z_0 = 0.13$ m for nonuniform case vs. $z_0 = 0.16$ m for uniform case),

465 a sudden increase in the friction velocity was observed since we had a smooth to rough change in
466 the immediate upwind terrain in site 4.

467

468 **6 Conclusion**

469 When wind-tunnel testing is conducted for the simulation of natural wind flows near the earth's
470 surface, studies to date have simplified a real-world heterogeneous terrain to an upwind fetch of
471 uniform roughness elements. This approach is easier to carry out but may not replicate the true
472 wind characteristics of the site. For example, recent analysis of hurricane wind records over
473 suburban terrains have shown that the field data had a positive non-Gaussian wind speed
474 distribution in the skewness (Balderrama et al., 2012; Fernández-Cabán and Masters, 2017), which
475 would lead to greater gust compared with the Gaussian wind speed distribution from the uniform
476 terrain.

477 This paper proposes a new method to simulate nonuniform terrains in a wind-tunnel and
478 investigates the wind characteristics produced by the method. To remove the subjectivity, this
479 method first mechanically divides the site into sub-sections with the same characteristics (ex: trees,
480 roads). Next, for each sub-section, the height of the roughness elements is determined using the
481 roughness length of each sub-section. The proposed method is similar to the concept of local
482 roughness zones (Fiedler and Panofsky, 1972; André and Blondin, 1986; Taylor, 1987; Mason,
483 1988; Vihma and Savijärvi, 1991; Wieringa, 1993; Millward-Hopkins et al., 2011), but also
484 includes a selection of roughness element height within each zone (Macdonald et al., 1998).

485 The most significant finding was that, unlike conventional uniform configurations, the proposed
486 method produced a non-Gaussian wind speed distribution in the wind-tunnel with positive
487 skewness. However, the skewness was still less than what was observed in the hurricane winds in
488 the field. We also concluded that the skewness profile in the nonuniform representation matched
489 better with the FCMP field measurements.

490 The other important finding was that — unlike the uniform approximation, the wind characteristics
491 in nonuniform terrain could not be explained by only z_0 values. The other important parameter
492 affecting wind characteristics over nonuniform terrain was the configuration of immediate upwind

493 terrain. Further analysis of sites showed that wind characteristics such as turbulence intensity,
494 power spectrum, and integral length scale were influenced by the immediate upwind features that
495 did not happen in uniform approximations. When two nonuniform sites had almost the same z_0
496 estimation, the final patch of upwind terrain near the measurement point was a deciding factor in
497 explaining the differences between the wind characteristics. We also found that nonuniform
498 representation in the sites with rough to smooth immediate upwind change performed better than
499 uniform representation for both mean wind speed and turbulence intensity. The results showed that
500 a rough to smooth change led to an increase in the wind speed and a decrease in turbulence intensity
501 near the ground, and vice versa for a rough to smooth change, when we compare these sites with
502 equivalent uniform cases.

503 The proposed method and research could help explain the discrepancy between the wind-tunnel
504 results and field observations, but further study is needed to identify the influence of immediate
505 upwind features — unlike the uniform approximation, the proposed nonuniform representation is
506 influenced by the change of roughness in the immediate upwind. In addition, further study is
507 required to show how the nonuniform representation changes the wind loads and pressure
508 distribution on buildings.

509 **Acknowledgment**

510 This material is based upon work supported by the National Science Foundation under Grant No.
511 CMMI-1856205. Any opinions, findings, and conclusions or recommendations expressed in this
512 material are those of the authors and do not necessarily reflect the views of the National Science
513 Foundation. The NSF NHERI Experimental Facility that contributed to the research results
514 reported within this paper was supported under Grant No. CMMI-1520843.

515 **Declarations**

516 **Ethical Approval**

517 Not applicable.

518 **Competing interests**

519 The authors declare that they have no known competing financial interests or personal
520 relationships that could have appeared to influence the work reported in this paper.

521 **Authors' contributions**

522 The first, second and third authors prepared the testing matrix. The experimental testing carried
523 out by the first and second authors. The first author contributed to the analysis of the results and
524 to the writing of the manuscripts. The second and fourth authors helped with interpreting the
525 results. All the authors commented on the manuscripts.

526 **Data Availability Statement**

527 The datasets generated (wind tunnel tests dataset) during and used (field measurements dataset)
528 during this study are available from the corresponding author on reasonable requests.

529 **Funding**

530 This material is based upon work supported by the National Science Foundation under Grant No.
531 CMMI-1856205. The NSF NHERI Experimental Facility that contributed to the research results
532 reported within this paper was supported under Grant No. CMMI-1520843.

533 **References**

534 André, J.-C., Blondin, C., 1986. On the effective roughness length for use in numerical three-dimensional models.
535 Boundary-Layer Meteorol. 35, 231–245. <https://doi.org/10.1007/BF00123642>

536 ASCE/SEI7-16, 2017. Minimum Design Loads and Associated Criteria for Buildings and Other Structures. American
537 Society of Civil Engineers, Reston, VA. <https://doi.org/10.1061/9780784414248>

538 Balderrama, J.A., Masters, F.J., Gurley, K.R., 2012. Peak factor estimation in hurricane surface winds. J. Wind Eng.
539 Ind. Aerodyn. 102, 1–13. <https://doi.org/10.1016/j.jweia.2011.12.003>

540 Balderrama, J.A., Masters, F.J., Gurley, K.R., Prevatt, D.O., Aponte-Bermúdez, L.D., Reinhold, T.A., Pinelli, J.-P.,
541 Subramanian, C.S., Schiff, S.D., Chowdhury, A.G., 2011. The Florida Coastal Monitoring Program (FCMP): A
542 review. J. Wind Eng. Ind. Aerodyn. 99, 979–995. <https://doi.org/10.1016/j.jweia.2011.07.002>

543 Catarelli, R.A., Fernández-Cabán, P.L., Masters, F.J., Bridge, J.A., Gurley, K.R., Matyas, C.J., 2020. Automated
544 terrain generation for precise atmospheric boundary layer simulation in the wind tunnel. J. Wind Eng. Ind.
545 Aerodyn. 207, 104276. <https://doi.org/10.1016/j.jweia.2020.104276>

546 Cook, N.J., 1978. Determination of the model scale factor in wind-tunnel simulations of the adiabatic atmospheric
547 boundary layer. J. Wind Eng. Ind. Aerodyn. 2, 311–321. [https://doi.org/10.1016/0167-6105\(78\)90016-8](https://doi.org/10.1016/0167-6105(78)90016-8)

548 Counihan, J., 1975. Adiabatic atmospheric boundary layers: A review and analysis of data from the period 1880–
549 1972. *Atmos. Environ.* 9, 871–905. [https://doi.org/10.1016/0004-6981\(75\)90088-8](https://doi.org/10.1016/0004-6981(75)90088-8)

550 Counihan, J., 1971. Wind tunnel determination of the roughness length as a function of the fetch and the roughness
551 density of three-dimensional roughness elements. *Atmos. Environ. Pergamon Press* 5, 637–642.
552 [https://doi.org/10.1016/0004-6981\(71\)90120-X](https://doi.org/10.1016/0004-6981(71)90120-X)

553 Davenport, A.G., 1960. Wind loads on structures, National research council, canads, division of building research.

554 Deaves, D.M., 1981. Computations of wind flow over changes in surface roughness. *J. Wind Eng. Ind. Aerodyn.* 7,
555 65–94. [https://doi.org/10.1016/0167-6105\(81\)90068-4](https://doi.org/10.1016/0167-6105(81)90068-4)

556 ESDU, 1974. Characteristics of atmospheric turbulence near the ground. Part I: definitions and general information.
557 Eng. Sci. Data Unit, Itm. No. 7.

558 Farrell, C., Iyengar, A.K.S., 1999. Experiments on the wind tunnel simulation of atmospheric boundary layers. *J. Wind*
559 *Eng. Ind. Aerodyn.* 79, 11–35. [https://doi.org/10.1016/S0167-6105\(98\)00117-2](https://doi.org/10.1016/S0167-6105(98)00117-2)

560 Fernández-Cabán, P.L., Masters, F.J., 2017. Near surface wind longitudinal velocity positively skews with increasing
561 aerodynamic roughness length. *J. Wind Eng. Ind. Aerodyn.* 169, 94–105.
562 <https://doi.org/10.1016/j.jweia.2017.06.007>

563 Ferreira, L.M., Amirinia, G., Jung, S., 2018. Surface pressure distribution on patterned cylinders under simulated
564 atmospheric boundary layer winds. *Struct. Des. Tall Spec. Build.* 27, e1404. <https://doi.org/10.1002/tal.1404>

565 Fiedler, F., Panofsky, H.A., 1972. The geostrophic drag coefficient and the ‘effective’ roughness length. *Q. J. R.*
566 *Meteorol. Soc.* 98, 213–220. <https://doi.org/10.1002/qj.49709841519>

567 Gavanski, E., Uematsu, Y., 2014. Local wind pressures acting on walls of low-rise buildings and comparisons to the
568 Japanese and US wind loading provisions. *J. Wind Eng. Ind. Aerodyn.* 132, 77–91.
569 <https://doi.org/10.1016/j.jweia.2014.06.020>

570 Sabareesh, G.A., Matsui, M., Tamura, Y., 2013. Characteristics of internal pressures and net local roof wind forces
571 on a building exposed to a tornado-like vortex. *J. Wind Eng. Ind. Aerodyn.* 112, 52–57.
572 <https://doi.org/10.1016/j.jweia.2012.11.005>

573 Gurley, K., F. Masters, T. Reinhold, M. Ojeda, (2021) "Florida Coastal Monitoring Program Hurricanes Report (1999
574 - 2008)", in FCMP Ground Level Hurricane Wind Data (1999 - 2008). DesignSafe-CI.
575 <https://doi.org/10.17603/ds2-j82e-nc21 v1>

576 He, Y.C., Chan, P.W., Li, Q.S., 2017. Estimation of roughness length at Hong Kong International Airport via different
577 micrometeorological methods. *J. Wind Eng. Ind. Aerodyn.* 171, 121–136.
578 <https://doi.org/10.1016/j.jweia.2017.09.019>

579 Ho, T.C.E., Surry, D., Morrish, D., Kopp, G.A., 2005. The UWO contribution to the NIST aerodynamic database for
580 wind loads on low buildings: Part 1. Archiving format and basic aerodynamic data. *J. Wind Eng. Ind. Aerodyn.*
581 93, 1–30. <https://doi.org/10.1016/j.jweia.2004.07.006>

582 Jung, S., Masters, F.J., 2013. Characterization of open and suburban boundary layer wind turbulence in 2008
583 Hurricane Ike. *Wind Struct.* 17, 135–162. <https://doi.org/10.12989/was.2013.17.2.135>

584 Kopp, G.A., Surry, D., Mans, C., 2005. Wind effects of parapets on low buildings: Part 1. Basic aerodynamics and

585 local loads. *J. Wind Eng. Ind. Aerodyn.* 93, 817–841. <https://doi.org/10.1016/j.jweia.2005.08.006>

586 Kozmar, H., 2011. Characteristics of natural wind simulations in the TUM boundary layer wind tunnel. *Theor. Appl.*
587 *Climatol.* 106, 95–104. <https://doi.org/10.1007/s00704-011-0417-9>

588 Kozmar, H., 2010. Scale effects in wind tunnel modeling of an urban atmospheric boundary layer. *Theor. Appl.*
589 *Climatol.* 100, 153–162. <https://doi.org/10.1007/s00704-009-0156-3>

590 Lettau, H., 1969. Note on Aerodynamic Roughness-Parameter Estimation on the Basis of Roughness-Element
591 Description. *J. Appl. Meteorol.* 8, 828–832. [https://doi.org/10.1175/1520-0450\(1969\)008<0828:NOARPE>2.0.CO;2](https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2)

593 Li, L., Xiao, Y., Kareem, A., Song, L., Qin, P., 2012. Modeling typhoon wind power spectra near sea surface based
594 on measurements in the South China sea. *J. Wind Eng. Ind. Aerodyn.* 104–106, 565–576.
595 <https://doi.org/10.1016/j.jweia.2012.04.005>

596 Lim, H.C., Tsukamoto, K., Ohba, M., Mizutani, K., 2014. Study on the surface pressure distribution of cubes in cross-
597 wind arrays. *J. Wind Eng. Ind. Aerodyn.* 133, 18–26. <https://doi.org/10.1016/j.jweia.2014.07.009>

598 Liu, M., Chen, X., Yang, Q., 2016. Characteristics of dynamic pressures on a saddle type roof in various boundary
599 layer flows. *J. Wind Eng. Ind. Aerodyn.* 150, 1–14. <https://doi.org/10.1016/j.jweia.2015.11.012>

600 Macdonald, R., Griffiths, R., Hall, D., 1998. An improved method for the estimation of surface roughness of obstacle
601 arrays. *Atmos. Environ.* 32, 1857–1864. [https://doi.org/10.1016/S1352-2310\(97\)00403-2](https://doi.org/10.1016/S1352-2310(97)00403-2)

602 Mason, P.J., 1988. The formation of areally-averaged roughness lengths. *Q. J. R. Meteorol. Soc.* 114, 399–420.
603 <https://doi.org/10.1002/qj.49711448007>

604 Millward-Hopkins, J.T., Tomlin, A.S., Ma, L., Ingham, D., Pourkashanian, M., 2011. Estimating Aerodynamic
605 Parameters of Urban-Like Surfaces with Heterogeneous Building Heights. *Boundary-Layer Meteorol.* 141, 443–
606 465. <https://doi.org/10.1007/s10546-011-9640-2>

607 Oikawa, S., Meng, Y., 1995. Turbulence characteristics and organized motion in a suburban roughness sublayer.
608 *Boundary-Layer Meteorol.* 74, 289–312. <https://doi.org/10.1007/BF00712122>

609 Panofsky, H.A., Townsend, A.A., 1963. Change of Terrain Roughness and Wind Profile. *Q. J. R. Meteorol. Soc.* 147–
610 155.

611 Rizzo, F., D'Asdia, P., Ricciardelli, F., Bartoli, G., 2012. Characterisation of pressure coefficients on hyperbolic
612 paraboloid roofs. *J. Wind Eng. Ind. Aerodyn.* 102, 61–71. <https://doi.org/10.1016/j.jweia.2012.01.003>

613 Sabareesh, G.A., Matsui, M., Tamura, Y., 2013. Characteristics of internal pressures and net local roof wind forces
614 on a building exposed to a tornado-like vortex. *J. Wind Eng. Ind. Aerodyn.* 112, 52–57.
615 <https://doi.org/10.1016/j.jweia.2012.11.005>

616 Shaw, R.H., Seginer, I., 1987. Calculation of velocity skewness in real and artificial plant canopies. *Boundary-Layer
617 Meteorol.* 39, 315–332. <https://doi.org/10.1007/BF00125141>

618 Su, N., Sun, Y., Wu, Y., Shen, S., 2016. three-parameter auto-spectral model of wind pressure for wind-induced
619 response analysis on large-span roofs. *J. Wind Eng. Ind. Aerodyn.* 158, 139–153.
620 <https://doi.org/10.1016/j.jweia.2016.09.013>

621 Taylor, P.A., 1987. Comments and further analysis on effective roughness lengths for use in numerical three-

622 dimensional models. *Boundary-Layer Meteorol.* 39, 403–418. <https://doi.org/10.1007/BF00125144>

623 Tieleman, H.W., 1995. Universality of velocity spectra. *J. Wind Eng. Ind. Aerodyn.* 56, 55–69.
624 [https://doi.org/10.1016/0167-6105\(94\)00011-2](https://doi.org/10.1016/0167-6105(94)00011-2)

625 Varshney, K., Poddar, K., 2011. Experiments on integral length scale control in atmospheric boundary layer wind
626 tunnel. *Theor. Appl. Climatol.* 106, 127–137. <https://doi.org/10.1007/s00704-011-0415-y>

627 Vihma, T., Savijärvi, H., 1991. On the effective roughness length for heterogeneous terrain. *Q. J. R. Meteorol. Soc.*
628 117, 399–407. <https://doi.org/10.1002/qj.49711749808>

629 Wang, K., Stathopoulos, T., 2007. Exposure model for wind loading of buildings. *J. Wind Eng. Ind. Aerodyn.* 95,
630 1511–1525. <https://doi.org/10.1016/j.jweia.2007.02.016>

631 Wang, K., Stathopoulos, T., 2006. The impact of exposure on wind loading of low buildings. *Proc. Struct. Congr.*
632 *Expo. 2006*, 9. [https://doi.org/10.1061/40889\(2011\)9](https://doi.org/10.1061/40889(2011)9)

633 Weber, R.O., 1999. Remarks on the Definition and Estimation of Friction Velocity. *Boundary-Layer Meteorol.* 93,
634 197–209. <https://doi.org/10.1023/A:1002043826623>

635 Wiernga, J., 1993. Representative roughness parameters for homogeneous terrain. *Boundary-Layer Meteorol.* 63,
636 323–363. <https://doi.org/10.1007/BF00705357>

637 Xiao, M.Y., Hong, H.P., 2022. Modeling Nonstationary Non-Gaussian Hurricane Wind Velocity and Gust Factor. *J.*
638 *Struct. Eng.* 148. [https://doi.org/10.1061/\(ASCE\)ST.1943-541X.0003243](https://doi.org/10.1061/(ASCE)ST.1943-541X.0003243)

639 Zisis, I., Stathopoulos, T., 2010. Wind loads on low-rise buildings: Upstream exposure effect. *7th Asia-Pacific Conf.*
640 *Wind Eng.*

641

642