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ABSTRACT:
Phononic crystals can develop defects during manufacturing that alter the desired dynamic response and bandgap

behavior. This frequency behavior change can enable successful defect inspection if the characteristic defect

response is known. In this study, the behavior of a defective square unit cell comprising a freed and shortened leg is

studied using a wave finite element method and an approximate continuous-lumped model to elucidate the defect

induced qualitative dynamical features. These metrics are a computationally inexpensive alternative to modeling a

defective unit cell within a large pristine array entirely in finite elements. The accuracy of these models is validated

by comparing the result to a full finite element model. The impact of a shortened unit cell leg on the behaviors of an

infinite array of defective cells and a finite array with a single defect are successfully predicted through dispersion

curves and frequency response functions, respectively. These methods reveal defect-induced modes that split the

local resonance bandgap of the pristine cell, as well as new anti-resonances resulting from the shortened leg. The

study uses both approaches to evaluate the effect of defects in complex phononic crystal geometries and provides a

comparative evaluation of the results of each model.VC 2023 Acoustical Society of America.
https://doi.org/10.1121/10.0022330
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I. INTRODUCTION

Phononic crystals are structures formed by a tessellation

of unit cells that inhibit or facilitate wave propagation

(Brillouin, 1953; Kadic et al., 2019; Phani et al., 2006). The
dispersive properties of a phononic crystal lattice are highly

customizable through size, geometry, and material proper-

ties (Hussein et al., 2014; Phani, 2017; Surjadi et al., 2019).
However, their sensitive frequency response implies that

manufacturing defects have the potential to strongly influ-

ence their intended behavior (Rahman et al., 2018). Defects
can be purposefully placed to alter band gaps, often by resiz-

ing or removing portions of a unit cell (Bilal and Hussein,

2011; Colombi et al., 2014; Oudich et al., 2023; Sigalas,
1997), or induce bandgap resonances by truncating periodic

lattices at select locations (Al Ba’ba’a et al., 2017, Al

Ba’ba’a et al., 2023; Bastawrous and Hussein, 2022).

Depending on geometric complexity, this defect analysis

can be modeled simply as a connected-mass model or as

intricately as a full finite element model with multiple

degrees of freedom to design for desired band gaps (Bilal

and Hussein, 2011; Diaz et al., 2005; Oudich et al., 2023).
Alternatively, these techniques can be used to characterize

changes in the desired pristine frequency behavior resulting

from undesirable manufacturing defects, such as irregular

unit cell geometries, missing or fractured components, non-

uniform microstructures, and material distribution (Rahman

et al., 2018; Silva and Gibson, 1997). The rise in additive

manufacturing enables the fabrication of increasingly com-

plicated phononic crystals and furthers the need for defect

characterization (Kennedy et al., 2019; Lu et al., 2022;

Montgomery et al., 2020). Selecting the appropriate level of

complexity for modeling defective cells and understanding

the trade-off in accuracy and computational costs will

improve the efficiency of defect characterization. A compar-

ative study between various methods with increasing com-

plexity for defect characterization is performed herein.

For complicated phononic crystal structures, the wave

finite element method (WFEM) is often used (Zhou et al.,
2015). This method involves modeling a unit cell within finite

element software like COMSOL or ABAQUS to construct

the transfer matrix, T, which relates applied loads and dis-

placements from one location to another (Mace et al., 2005).
The eigenvalues of the transfer matrix provide the dispersion

curves with real and imaginary wavenumbers, j, across a

range of frequencies (often known as the driven wave
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approach), which is beneficial compared to a Floquet-Bloch

theorem approach that is limited to producing dispersion

curves with real j (Junyi and Balint, 2015; Mead, 1996)

(free wave approach). Constructing the complete dispersion

curves using WFEM for pristine and defective unit cells can

provide the overall effect of the defects on the band gaps

(Kharrat et al., 2014a,b). The transfer matrix, T, may also be

used to predict responses of arrays combining a defective

cell with a set of pristine cells through T multiplication

(Nayfeh, 1991; Wang et al., 2010). However, these techni-

ques present numerical challenges for complex finite ele-

ment models as they contain very large and very small

values. As an alternative, the finite array can be modeled in

a full finite element model (FEM). The distinction is made

between WFEM, which uses a set of prescribed loading con-

ditions and displacements on a single unit cell to construct a

transfer matrix, and FEM, which uses an array of unit cells.

For FEM, by modeling more degrees of freedom with finite

elements, all modes, including torsional, can be studied with

the penalty of additional computational expense.

Simplified and approximate models of reduced order

can be desirable to retain the computational efficiency but

provide necessary stability for application of the transfer

matrix approach (Waki et al., 2009). On the simplest level,

phononic crystals can be modeled as a mass-spring network.

Mass-spring lumped element modeling provides a simplified

understanding of the underlying physics and dispersive

behavior, both at the unit cell level as well as the vibrational

modes of the finite realization, and has even been expanded

to three-dimensional systems (Lucklum and Vellekoop,

2018). Conventional mass-spring modeling does not employ

torsional springs; therefore, torsional modes are not defined

through this technique. For improved descriptions of vibra-

tions, a coupled mass-spring and continuum model can be

used. Depending on the nature of the problem, the contin-

uum portion can be described via closed-form or finite

element formulations. For example, combined beam and

mass-spring models have been used to interpret the dissipa-

tive mechanics of one-dimensional flexural metamaterials

(Liu and Hussein, 2012; Yu et al., 2006) and those with

inertant networks (Aladwani et al., 2022a). Similarly, com-

bined plate and mass-spring models have been used to eluci-

date fluid-structural coupling in periodic structures adjacent

to acoustic cavities (Aladwani et al., 2019), and most

recently to accelerate dispersion calculations for non-

classically damped, two-dimensional phononic materials

(Aladwani et al., 2022b).
This work examines WFEM and approximate mass-

spring modeling as computationally efficient alternatives to

full FEM for defect characterization. The selected unit cell,

an aluminum square unit cell comprised of four legs extend-

ing from a central point of connection, and defect, a short-

ened and freed leg, were inspired by the cross-shaped

honeycomb of Phani et al. (2006). This unit cell and corre-

sponding defect were selected because of their collective

ability to be modeled using both approximate and WFEM

approaches. Thus, this configuration is well-posed to serve

as a model system for analyzing the advantages and limita-

tions of the utilized methods, with the modeling approaches

being generalizable to other unit cell and defect configura-

tions. The trade-off between the modeling approaches for

defect characterization is analyzed using dispersion curves

and finite model outputs.

Within this paper, the setup is first described in Sec. II,

followed by the framework for each modeling technique:

WFEM in Sec. II A, FEM used for validation in Sec. II B,

and the approximate mass-spring model in Sec. II C. With

the modeling methods established, the results for defect

characterization through WFEM generated dispersion

curves are analyzed in Sec. III A. Next, using the approxi-

mate model, the finite array outputs are found by transfer

matrices and explored in Sec. III B and pole-zero analysis is

conducted for a five-cell array with a center pristine or

defective unit cell. Last, the results are compared to a full

FEM finite array with a defective unit cell used as the

ground truth for the defective behavior in Sec. III C.

II. MODEL PARAMETERS AND SETUP

The selected lattice has a square shape, which is com-

monly found in the literature (Chen et al., 2017; Cheng

et al., 2020; Phani et al., 2006; Trainiti et al., 2016) and is

modeled herein with unit cell length, a ¼ 0.5m, width of

0.05m, and thickness of 0.01m using aluminum (Young’s

modulus E ¼ 70GPa, Poisson’s ratio � ¼ 0.33, and density

q ¼ 2700 kg/m3), shown in Fig. 1(A). The surfaces of the

unit cell legs not connected along the axis of wave propaga-

tion, x, are fixed. As stated before, this unit cell configura-

tion was selected to demonstrate a geometry feasible for

both full FEM and the approximate beam-spring-mass

model to emphasize the compatibility of each method.

Defects for the unit cell included a freed leg at a 10% and

20% shortened length. In the following, the finite element

and approximate models used for analysis are described in

detail.

A. Wave finite element model

The unit cell was modeled using the finite element

method in COMSOL 6.0. The model used a hexagonal ele-

ment size of 0.005m, so each leg was 100 elements long and

the thickness included two elements. Using frequency

domain analysis, the unit cell was loaded with unit magnitude

forces and moments to create a transfer matrix that could sub-

sequently be used for dispersion analysis. Four individual

loading conditions: two shear loads, VL;R, and two bending

moments, ML;R, where the subscripts L and R denote the left

and right ends, respectively, were employed. This combina-

tion of loads enabled the out-of-plane displacements to be

well captured, as illustrated in Fig. 1(A). Defects were mod-

eled by freeing the top leg of the unit cell and shortening it

by 10% and 20%, as shown in Fig. 1(C). By running a fre-

quency sweep from 100 to 2000Hz, the resulting out-of-

plane displacements, v, and angle, h ¼ dv=dx, were found on

either end of the unit cell for the pristine and defective cases.

J. Acoust. Soc. Am. 154 (5), November 2023 Katch et al. 3053

https://doi.org/10.1121/10.0022330

https://doi.org/10.1121/10.0022330


By defining a unit cell displacement vector uu ¼
½vL; hL; vR; hR�T and a forcing vector Fu ¼ ½VL;ML;VR;MR�T ,
the combinations of four loading scenarios and four displace-

ments result in a 4� 4 matrix of inputs and outputs defined

as the receptance matrix, H,

uu ¼ HFu: (1)

The receptance matrix can be broken into its square block

submatrices,

H ¼ HLL HLR

HRL HRR

� �
; (2)

and reconfigured into the transfer matrix, T, given by

T ¼
HRRH

�1
LR HRL �HRRH

�1
LRHLL

H�1
LR �H�1

LRHLL

" #
: (3)

The transfer matrix relates the left and right sides of the unit

cell using the displacements and forces,

YR ¼ TYL; (4)

where YL;R ¼ ½VL;R;ML;R; vL;R; hL;R�T . Solving the eigen-

value problem of the transfer matrix enables calculations of

dispersion,

T� kI½ �/ ¼ 0; (5)

where k ¼ e�ija is the phase associated with propagation of

the Bloch wave and / ¼ YL. The eigenvalues, k, of the

transfer matrix from Eq. (5) can be used to construct the dis-

persion curves by solving for k ¼ e�ija, where a is the

length of the waveguide’s unit cell. A real-valued frequency

is used as an input to solve for the corresponding complex-

valued Bloch wavenumber, j. Section III A presents the dis-

persion curves for the pristine and defective cases obtained

from the WFEM method.

B. Finite element model: Finite array calculations

The displacements calculated from the mass-spring

model enable visualization of finite arrays with a small com-

putational load; nevertheless, the model contains simplified

displacements. Therefore, it can be advantageous to con-

struct the full, higher fidelity model in COMSOL, despite

the large computational load. The finite array of n ¼ 5 unit

cells, assuming ideal connections between unit cells, is mod-

eled in COMSOL 6.0. The center unit cell is replaced with

the 10% shorter or 20% shorter unit cells to understand the

effect of the defect on the finite array. The input leg is

excited using a unit magnitude shear force and the output

displacement, v, from the opposite leg is extracted directly

from COMSOL.

C. Approximate model

To develop a simplified model of the square unit cell

shown in Fig. 1(A), which captures the structure’s funda-

mental dynamics efficiently, a horizontal beam is modeled

using 30 one-dimensional, 2-node Euler-Bernoulli beam ele-

ments, each containing 4 degrees of freedom. The perpen-

dicular legs are approximated using a series of identical

FIG. 1. Details of the unit cell: (A) The unit cell is a square lattice with two fixed legs. For WFEM, four individual loading conditions on the square unit cell

are simulated. (B) The approximate model uses a series of lumped masses and springs for the vertical bars (legs) of the unit cell and a beam model for the

horizontal bar of the unit cell. (C) For WFEM, the defect is a shortened and freed leg. (D) For the approximate model, the leg defect is modeled by adjusting

the mass-spring parameters as well as the boundary condition of the shortened leg.
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lumped masses m connected via identical springs of stiffness

k, as shown in Fig. 1(B). In the pristine case, the legs are

modeled using 2 masses and 3 springs on each side of the

horizontal beam and are fixed on both ends. The values of m
and k are extracted from the leg’s geometry and material

properties, such that m ¼ qAl‘=2 and k ¼ 12EI=ðl‘=3Þ3,
where l‘ ¼ 0:225m is the leg’s length for the pristine case.

The mass and stiffness components of the upper and lower

legs are coupled with the corresponding beam elements at

the junction where the legs meet the base structure at the

mid-span of the unit cell. The unit cell mass and stiffness

matrices, Ku and Mu, respectively, are then assembled from

the combination of the beam and the approximated mass-

spring legs. Fixed boundary conditions are applied to the top

and bottom degrees of freedom of the upper and lower legs

to mimic the square lattice in Fig. 1(A).

To capture the effect of the defect, the pristine model tran-

sitions to the defective one by setting the upper leg free and

updating the values of m and k to m0 and k0 to account for leg

shortening, as illustrated in Fig. 1(D). For example, for a defec-

tive unit cell with a 10% shorter leg, the values

l0‘ ¼ 0:9l‘ ¼ 0:203m and m0 ¼ qAl0‘=2 can be calculated

accordingly. We note that the combination of m0 and k0 is

unique for a given defect geometry; e.g., we are not able to find

a scenario in which a narrower defective leg results in the same

combination of m0 and k0 corresponds to a shorter defective leg.

1. Dispersion calculations

The periodic boundary conditions and dispersion analy-

sis are based on the formulation developed in the literature

(Aladwani and Nouh, 2020; Phani et al., 2006), summarized

here. We consider a Bloch-wave solution of the form

uuðx; tÞ ¼ ~uuðxÞeiðxtþjxÞ; (6)

where uuðx; tÞ is the unit cell displacement vector as a func-

tion of location and time, x is the angular frequency, j is the

wavenumber, and ~uuðxÞ is a periodic amplitude. Two discre-

tized displacement vectors are then introduced as follows:

UT ¼ UT
L UT

I UT
R

� �
; (7a)

~U
T ¼ UT

L UT
I

� �
; (7b)

where UL; UI, and UR denote the displacements of left,

internal, and right degrees of freedom, respectively, as indi-

cated in Fig. 1(D). While U contains the nodal displace-

ments of all degrees of freedom in the unit cell

discretization, ~U only contains the displacements of the min-

imal set of degrees of freedom sufficient for Bloch boundary

conditions. We can then relate these two using the Bloch

periodicity matrix PðjÞ such that U ¼ PðjÞ~U, where

PðjÞ ¼
I 0

0 I

Ieija 0

2
664

3
775: (8)

Here, a is unit cell length, and I and 0 denote identity and

zero matrices, respectively. The reduced mass ~Mu and stiff-

ness ~Ku matrices are then

~Mu ¼ P0MuP; (9a)

~Ku ¼ P0KuP; (9b)

where P0 is the complex conjugate transpose of P.

Consequently, the equations of motion can be cast in the

form of an eigenvalue problem as follows:

½ ~KuðjÞ � x2 ~MuðjÞ�~U ¼ 0: (10)

The unit cell dispersion curves can be computed by solving

this eigenvalue problem for a range of j values spanning the

irreducible Brillouin zone.

2. Finite array calculations

To perform frequency response analysis of a finite array

comprised of a one-dimensional series of the approximate

beam-spring-mass cells, global mass and stiffness matrices

are obtained by assembling Mu and Ku for n ¼ 5 unit cells.

Following this, a transfer function relating the out-of-plane

displacement of the right end of the array to its counterpart

on the left is computed over the frequency range of interest.

III. RESULTS

Using the WFEM model, the dispersion curves are evalu-

ated for the defective cases. Next, the approximate model is

used to construct the output for a finite array containing defec-

tive and pristine cells. This approach is also used to conduct

pole-zero analysis and parametrically vary the shortened leg

length. Last, these results are compared to the FEM model of

the finite array. Consistency is established between the meth-

ods, WFEM, FEM, and approximate model in the Appendix.

A. Defect evaluation via dispersion curves

The dispersion curves are created using WFEM, which

includes more degrees of freedom than the approximate mass-

spring model as detailed in the Appendix, and will, therefore,

better capture defective behavior. The simple matrix operation

of finding the dispersion curves by taking the eigensolutions of

the transfer matrix using Eq. (3) lends itself to handling the

numerical complexity of the WFEM output.

Dispersion curves were first constructed for the pristine

unit cell and are illustrated in Fig. 2(A). Several band gaps are

present ranging from 131–171Hz, 346–413Hz, 693–868Hz,

984–1130, and 1464–1492Hz. The imaginary wavenumber

component displayed on the left side of Fig. 2(A) shows four

of the aforementioned five band gaps to be of the Bragg

type, as famously characterized by an attenuation constant of

finite attenuation and a parabolic profile (Al Ba’ba’a et al.,
2023). However, the bandgap spanning the 984–1130Hz

range is revealed to be a local resonance bandgap as con-

firmed by (1) the 0 to p wavenumber shift in the bounding
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dispersion branches on the real wavenumber side and (2) the

sharp attenuation peaks sandwiched between the evanescent

branches on the imaginary wavenumber side, consistent with

previous literature on flexural locally resonant beams (Liu

and Hussein, 2012; Yu et al., 2006).
Band gaps have been shown to change in the presence

of defects (Colombi et al., 2014). This result can prove

advantageous if purposefully placing defects for applica-

tions like energy harvesting; however, manufacturing

defects are unlikely to occur exactly in each repeated unit

cell; therefore, dispersion curve analysis is limited for appli-

cations with combinations of different unit cells. Figures

2(B) and 2(C) examine the dispersion diagrams of the two

defective unit cells, a 10% and a 20% shorter, freed top leg,

as shown in the schematic inset in each diagram. Several

changes are brought about due to leg shortening, some of

which may be used as indicative measures of the defect type

and extent (i.e., shortening percentage). For example, an

additional dispersion branch can be seen above the third dis-

persion branch in both cases. Other changes include the

onset of a zero-frequency bandgap reminiscent of phononic

crystals with elastic foundations (Al Ba’ba’a et al., 2017)
and the transition of one of the low-frequency Bragg band

gaps to a resonant one. In the presence of complexities such

as mixed-type band gaps, which show concurrent Bragg and

resonance imaginary branches, it becomes challenging to

pinpoint one bandgap and track its corresponding counter-

part in the defective case. Instead, consider the range of fre-

quencies covered by the two dispersion branches that bound

the local resonance in the pristine unit cell in Fig. 2(A).

These two branches are plotted via dashed lines for easy

tracking and appear to maintain their shape throughout all

three cases. Both Figs. 2(B) and 2(C) show the emergence

of three narrow pass bands within this frequency range,

which effectively breakup the original local resonance

bandgap to a few smaller ones. This is intuitive since the

unit cell’s side branch legs play the resonators’ role and are

responsible for forming the clean local resonance bandgap

in the pristine case. As such, it stands to reason that altering

one of the two legs (in this case, freeing and shortening it)

would instigate some new propagating modes, ones that

likely correspond to resonant frequencies of the shortened

legs which are close but move further apart as the defect

increases, as shown by the increasing distance between these

pass bands in the 20% case [Fig. 2(C)].

While these features are of interest since they provide a

first impression of the effect of the defect on the underlying

unit cell dispersion behavior, it should be emphasized that

this dispersion diagram assumes an infinitely long array in

which the same defect exists in each and every unit cell

(i.e., a fully propagating defect). However, in practical

applications, the defect is typically limited to a single unit

cell within an otherwise non-defective array. The following

sections illustrate how these defect-induced modes manifest

themselves in the behavior of a finite array with a single

defect through transfer function analysis.

B. Defect evaluation via transfer function of finite
array

While numerical instabilities can inhibit transfer matrix

modeling of finite arrays through WFEM, the approximate

model provides the stability required to predict the displace-

ments from finite arrays. Figure 3 summarizes the finite

response for the defective case in which the middle upper

leg is shortened by 10%, as obtained by the approximate

model, detailed in Sec. II C. As can be seen in Fig. 3(A) the

bandgap becomes narrower compared to the pristine case

(which is highlighted in blue for comparison). More interest-

ingly, an additional collocated resonance and anti-resonance

pair emerges at 186Hz, and another emerges at 1263Hz, at

the locations marked “1” and “2,” respectively, in Fig. 3(A).

To confirm and track the emerging changes around and

beyond the bandgap region of the defective system, a pole-

zero map is constructed from the input-output transfer func-

tion of the underlying linear dynamical system and is shown

in Fig. 3(B). The locations of poles (gray crosses) and zeros

(red circles) in the vicinity of the bandgap region, displayed

in Fig. 3(A), are mapped back to the frequency response

curve and shown in the background using dashed gray and

FIG. 2. (Color online) Dispersion curves with the primary bandgap of interest shaded for (A) a pristine aluminum square unit cell, (B) defective unit cell

with a 10% shorter top leg, and (C) defective unit cell with a 20% shorter top leg.
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red lines for poles and zeros, respectively. The frequency

response and pole-zero maps shown in Figs. 3(A) and 3(B)

provide two key observations about the influence of the

shortened leg on the state of the system: the first is the spill-

ing of two resonances inside the pristine bandgap range as

evident by the two poles captured at approximately 1038

and 1130Hz. Since a pole-zero cancellation takes place at

1038Hz, as depicted in Fig. 3(B), only one of these two res-

onances appears as a distinct peak in the frequency response

of Fig. 3(A) at 1130Hz inside the shaded range. The second

observation pertains to the multiplicity of zeros around the

major bandgap anti-resonance as captured by the multiple

red circles which appear at very closely spaced frequencies

in the close-up subplot of Fig. 3(B), and culminate in the

heavily attenuated output displacement inside the bandgap.

This is a hallmark feature of resonance-based band gaps, as

previously demonstrated in the literature (Al Ba’ba’a et al.,
2017). These zeros perfectly coincide in pure lumped

parameter systems for which closed-form expressions for

transfer function zeros can be obtained (Stein et al., 2022),
but are expected to show negligibly small deviations in any

approximate numerical modeling approach, such as that

used here.

The associated mode shapes are shown in Fig. 3(C) to

further study these additional resonances and anti-resonances.

Looking closely at the displacement pattern of the short

defective leg (middle upper leg), it can be seen that the addi-

tional resonance and anti-resonance pairs are associated with

the first [Fig 3(C), left] and second [Fig 3(C), right] mode

shapes of the cantilever leg at 186 and 1263Hz, respectively.

This method can be utilized to conduct a parametric

study on leg length, as shown in Fig. 4. The decreasing size

of the defective leg increases the frequency of its resonan-

ces, as seen in Fig. 4(A). Further, the frequency of the sec-

ond defective resonance and anti-resonance pair (labeled

with 2) increases faster than that of the first one (labeled

with 1) as the leg length decreases. From a defect sizing per-

spective, this result means that higher mode shapes are more

sensitive to defect size, acknowledging that experimental

damping may cause slight attenuation of the resonant and

anti-resonant peaks. In other words, these higher modes

have larger jumps in frequency for a 5% increment change

compared to the lower frequency anti-resonance. Figure

4(B) depicts the frequency response for leg shortness values

highlighted with dashed lines in Fig. 4(A). It can be seen

that the first resonance and anti-resonance pair of interest

shifts to 167, 186, 210, 237, and 269Hz for the leg lengths

FIG. 3. (Color online) Evaluation of defect using finite array transfer func-

tion. (A) Transfer function for the defective case with five cells in which

the middle upper leg is shortened by 10%. Poles and zeros are depicted

with dashed gray and red lines. Band gap for the pristine case is shown with

blue on the background. Additional pairs of resonance and anti-resonances

are labeled with “1” and “2.” (B) Poles and zeros in the vicinity of bandgap.

(C) Out of plane displacement field for the array corresponding to frequen-

cies associated with labels “1” and “2” in (A). FIG. 4. (Color online) Parametric study by approximate model on the effect

of gradually decreasing the shortened leg size in defective cases. (A)

Comparison between the frequency of first (labeled with 1) and second

(labeled with 2) resonance and anti-resonance pairs. (B) Frequency

response of the cases highlighted with dashed line in (A).
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corresponding to a shortening of 5%, 10%, 15%, 20%, and

25%, respectively. Similarly, the second defective resonance

and anti-resonance pair shifts to 1134, 1263, 1416, 1599,

and 1819Hz, respectively.

C. Defect evaluation via FEM finite array

The output displacements from the finite arrays of 5

unit cells with a varying center cell are shown in Fig. 5. As

a whole, the approximate model captures the finite behavior

well and predicts the resulting anti-resonances 1 and 2 for

the 10% short case within 30Hz and anti-resonance 1 for

the 20% short case within 50Hz. For the defective finite

array case, the higher frequency COMSOL anti-resonance is

affected by torsional modes, so it is slightly higher in fre-

quency. This torsional behavior becomes increasingly sig-

nificant as the leg decreases in size, causing greater

discrepancies for the 20% shorter defective case, where the

anti-resonance, labeled 2, around 1600Hz moves outside of

the 2000Hz range plotted herein. Thus, for the currently

freed shortened leg, the torsional behavior becomes a domi-

nant component of the defective mode shapes and causes

higher frequency discrepancies in the anti-resonances.

The predictive nature of the dispersion curves can be

compared to the finite array. To start, the primary Bragg

bandgap centered around 1000Hz, was shown to shift

higher in frequency for the defective cases. This behavior

was representative of the finite structure having the bandgap

widen for the defective cases. Additionally, the two key

anti-resonances within the finite structure, labeled 1 and 2,

can be mapped back to the differing pristine and defect

imaginary dispersion curves. These anti-resonances are

located at points where the mixed-mode crossing imaginary

dispersion curves combine with the Bragg curves, resulting

in a strong anti-resonant behavior. Again, anti-resonance 2

of the 20% short case is also not well defined by the disper-

sion curves, as they were also constructed without torsional

behavior. Therefore, significant torsional behavior is outside

the scope of the WFEM model generated dispersion curves.

The significant effect of torsional behavior within larger

defect sizes is an important consideration for other configura-

tions; i.e., if the effect of the defect on mode shape stays

within the displacements well defined by the approximate

model, then the approximate model serves as a strong alterna-

tive. If the defect drives mode shapes not included within the

approximate model, then the estimated response is limited in

accuracy. This diverging anti-resonance behavior between the

FEM and approximate may not be as strong for other defects

that maintain out-of-plane displacement mode shapes. These

defective mode shapes and the degree of torsional or axial

behavior will inform the differences between the two models

when applied to cases outside those explored herein.

IV. CONCLUSIONS

Within the presented work, the effect of a shortened

and freed leg on square unit cell behavior was examined

through WFEM and approximate modeling approaches and

compared to an FEM result. Through dispersion curve anal-

ysis using the WFEM model, the bandgap behavior was

shown to change due to the decreasing leg size. The band

gaps shift in frequency and are split by additional branches

that arise and present regions of combined anti-resonant

behavior. This analysis provided frequency ranges of inter-

est but solely described the infinite behavior of a single unit

cell type. Next, the resulting displacement from a finite

FIG. 5. (Color online) The out-of-plane displacements for a finite unit array with (A) 4 pristine unit cells and a 10% shorter leg center cell and (B) 4 pristine

unit cells and a 20% shorter leg center cell. The anti-resonances corresponding to the approximate model are marked.
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array was predicted using the approximate beam-mass-

spring model. The low computational expense enabled a

parametric study on defective leg length that showed anti-

resonances shifting higher in frequency with decreasing leg

size. The higher frequency anti-resonance shifted more as

defect size changed, indicating that higher frequency inspec-

tion could prove useful in defect sizing. Last, this displace-

ment result was compared to the computationally expensive

COMSOL finite array model, which revealed some addi-

tional defective behavior as a result of torsional displace-

ments that were only supported by the higher fidelity FEM

model. The torsional displacements became increasingly

significant as the defective leg decreased in size, causing

discrepancies from the approximate model.
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APPENDIX: MODELVALIDATION VIA ANALYSIS
OF PRISTINE UNIT CELLS

In order to establish a comparison baseline between the

WFEM and the approximate beam-mass-spring model, the

dispersion curves are created using both approaches, as shown

FIG. 6. (A) (Color online) The disper-

sion curves calculated for the pristine

square unit cell shown in Fig. 1(A)

using the FEM (Floquet-Bloch)

method (gray), the WFEM eigenvalues

method (red), and the approximate

model shown in Fig. 1(B) (blue). The

eigenmodes for branches 1–6 are

shown on the right. The out-of-plane

displacement amplitude caused by a

shear loading on (B) a pristine square

unit cell and (C) a finite array of 5 pris-

tine square unit cells calculated using

the direct FEM output and approxi-

mate modeling approaches.
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in the left panel of Fig. 6(A). These dispersion curves are

compared against a FEM Floquet-Bloch method. The approx-

imate and WFEM models exclusively lend themselves to

model bending modes, which represents a large portion of the

dispersive behavior, while the Floquet-Bloch method shows

modes of all motions. Both WFEM and approximate models

capture the bending modes well when compared against the

FEM Floquet-Bloch model. Nevertheless, the bottom-most

band in the WFEM curves is not present within the other

plots; a result of this method using a real-valued frequency as

the input to solve for complex-valued wavenumber, which

produces dispersion curves with j values including imaginary

components, indicative of decaying or evanescent waves.

Some slight shifts within the band gaps of the WFEM and

approximate curves are also present, as the WFEM model has

more degrees of freedom (i.e., greater fidelity) than the latter,

which closely captures bending modes (dispersion curves 1,

2, and 5) while not accounting for torsional (dispersion curves

3 and 6), axial (dispersion curve 4), and torsional coupled

modes as shown in the right panel of Fig. 6(A).

Next, Fig. 6(B) shows the output displacement from an

applied unit magnitude shear load for the FEM and approxi-

mate cases. The displacements provided by each method

result in reasonably close relative displacement plots. At

around 1800Hz, an additional resonance arises from a tor-

sional mode within the fixed leg, which is not represented in

the beam-mass-spring model.

Last, Fig. 6(C) shows the output displacement for the

FEM and approximate model of a finite one-dimensional

pristine array made up of five cells connected in series in

response to an input shear load VL applied at the opposite

end. While the two sets of curves generally agree, especially

in terms of the major bandgap location and shared resonan-

ces, the FEM frequency response contains more resonant

peaks, as one might expect, due to the ability of this model

to capture more finite vibrational modes given the presence

of additional degrees of freedom. It is worth noting that the

shaded region in the figure represents the resonant bandgap

range of the pristine structure as predicted by the unit cell

dispersion analysis of the approximate model.
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