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ABSTRACT:

Phononic crystals can develop defects during manufacturing that alter the desired dynamic response and bandgap
behavior. This frequency behavior change can enable successful defect inspection if the characteristic defect
response is known. In this study, the behavior of a defective square unit cell comprising a freed and shortened leg is
studied using a wave finite element method and an approximate continuous-lumped model to elucidate the defect
induced qualitative dynamical features. These metrics are a computationally inexpensive alternative to modeling a
defective unit cell within a large pristine array entirely in finite elements. The accuracy of these models is validated
by comparing the result to a full finite element model. The impact of a shortened unit cell leg on the behaviors of an
infinite array of defective cells and a finite array with a single defect are successfully predicted through dispersion
curves and frequency response functions, respectively. These methods reveal defect-induced modes that split the
local resonance bandgap of the pristine cell, as well as new anti-resonances resulting from the shortened leg. The
study uses both approaches to evaluate the effect of defects in complex phononic crystal geometries and provides a

comparative evaluation of the results of each model. © 2023 Acoustical Society of America.
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I. INTRODUCTION

Phononic crystals are structures formed by a tessellation
of unit cells that inhibit or facilitate wave propagation
(Brillouin, 1953; Kadic et al., 2019; Phani et al., 2006). The
dispersive properties of a phononic crystal lattice are highly
customizable through size, geometry, and material proper-
ties (Hussein et al., 2014; Phani, 2017; Surjadi et al., 2019).
However, their sensitive frequency response implies that
manufacturing defects have the potential to strongly influ-
ence their intended behavior (Rahman et al., 2018). Defects
can be purposefully placed to alter band gaps, often by resiz-
ing or removing portions of a unit cell (Bilal and Hussein,
2011; Colombi et al., 2014; Oudich et al., 2023; Sigalas,
1997), or induce bandgap resonances by truncating periodic
lattices at select locations (Al Ba’ba’a er al., 2017, Al
Ba’ba’a et al., 2023; Bastawrous and Hussein, 2022).
Depending on geometric complexity, this defect analysis
can be modeled simply as a connected-mass model or as
intricately as a full finite element model with multiple
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degrees of freedom to design for desired band gaps (Bilal
and Hussein, 2011; Diaz et al., 2005; Oudich et al., 2023).
Alternatively, these techniques can be used to characterize
changes in the desired pristine frequency behavior resulting
from undesirable manufacturing defects, such as irregular
unit cell geometries, missing or fractured components, non-
uniform microstructures, and material distribution (Rahman
et al., 2018; Silva and Gibson, 1997). The rise in additive
manufacturing enables the fabrication of increasingly com-
plicated phononic crystals and furthers the need for defect
characterization (Kennedy et al., 2019; Lu et al., 2022,
Montgomery et al., 2020). Selecting the appropriate level of
complexity for modeling defective cells and understanding
the trade-off in accuracy and computational costs will
improve the efficiency of defect characterization. A compar-
ative study between various methods with increasing com-
plexity for defect characterization is performed herein.

For complicated phononic crystal structures, the wave
finite element method (WFEM) is often used (Zhou et al.,
2015). This method involves modeling a unit cell within finite
element software like COMSOL or ABAQUS to construct
the transfer matrix, T, which relates applied loads and dis-
placements from one location to another (Mace et al., 2005).
The eigenvalues of the transfer matrix provide the dispersion
curves with real and imaginary wavenumbers, kK, across a
range of frequencies (often known as the driven wave
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approach), which is beneficial compared to a Floquet-Bloch
theorem approach that is limited to producing dispersion
curves with real x (Junyi and Balint, 2015; Mead, 1996)
(free wave approach). Constructing the complete dispersion
curves using WFEM for pristine and defective unit cells can
provide the overall effect of the defects on the band gaps
(Kharrat et al., 2014a,b). The transfer matrix, T, may also be
used to predict responses of arrays combining a defective
cell with a set of pristine cells through T multiplication
(Nayfeh, 1991; Wang et al., 2010). However, these techni-
ques present numerical challenges for complex finite ele-
ment models as they contain very large and very small
values. As an alternative, the finite array can be modeled in
a full finite element model (FEM). The distinction is made
between WFEM, which uses a set of prescribed loading con-
ditions and displacements on a single unit cell to construct a
transfer matrix, and FEM, which uses an array of unit cells.
For FEM, by modeling more degrees of freedom with finite
elements, all modes, including torsional, can be studied with
the penalty of additional computational expense.

Simplified and approximate models of reduced order
can be desirable to retain the computational efficiency but
provide necessary stability for application of the transfer
matrix approach (Waki et al., 2009). On the simplest level,
phononic crystals can be modeled as a mass-spring network.
Mass-spring lumped element modeling provides a simplified
understanding of the underlying physics and dispersive
behavior, both at the unit cell level as well as the vibrational
modes of the finite realization, and has even been expanded
to three-dimensional systems (Lucklum and Vellekoop,
2018). Conventional mass-spring modeling does not employ
torsional springs; therefore, torsional modes are not defined
through this technique. For improved descriptions of vibra-
tions, a coupled mass-spring and continuum model can be
used. Depending on the nature of the problem, the contin-
uum portion can be described via closed-form or finite
element formulations. For example, combined beam and
mass-spring models have been used to interpret the dissipa-
tive mechanics of one-dimensional flexural metamaterials
(Liu and Hussein, 2012; Yu et al., 2006) and those with
inertant networks (Aladwani et al., 2022a). Similarly, com-
bined plate and mass-spring models have been used to eluci-
date fluid-structural coupling in periodic structures adjacent
to acoustic cavities (Aladwani et al., 2019), and most
recently to accelerate dispersion calculations for non-
classically damped, two-dimensional phononic materials
(Aladwani et al., 2022b).

This work examines WFEM and approximate mass-
spring modeling as computationally efficient alternatives to
full FEM for defect characterization. The selected unit cell,
an aluminum square unit cell comprised of four legs extend-
ing from a central point of connection, and defect, a short-
ened and freed leg, were inspired by the cross-shaped
honeycomb of Phani et al. (2006). This unit cell and corre-
sponding defect were selected because of their collective
ability to be modeled using both approximate and WFEM
approaches. Thus, this configuration is well-posed to serve
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as a model system for analyzing the advantages and limita-
tions of the utilized methods, with the modeling approaches
being generalizable to other unit cell and defect configura-
tions. The trade-off between the modeling approaches for
defect characterization is analyzed using dispersion curves
and finite model outputs.

Within this paper, the setup is first described in Sec. II,
followed by the framework for each modeling technique:
WFEM in Sec. I A, FEM used for validation in Sec. II B,
and the approximate mass-spring model in Sec. IIC. With
the modeling methods established, the results for defect
characterization through WFEM generated dispersion
curves are analyzed in Sec. IIl A. Next, using the approxi-
mate model, the finite array outputs are found by transfer
matrices and explored in Sec. III B and pole-zero analysis is
conducted for a five-cell array with a center pristine or
defective unit cell. Last, the results are compared to a full
FEM finite array with a defective unit cell used as the
ground truth for the defective behavior in Sec. III C.

Il. MODEL PARAMETERS AND SETUP

The selected lattice has a square shape, which is com-
monly found in the literature (Chen et al., 2017; Cheng
et al., 2020; Phani et al., 2006; Trainiti et al., 2016) and is
modeled herein with unit cell length, ¢ =0.5m, width of
0.05m, and thickness of 0.01 m using aluminum (Young’s
modulus £ =70 GPa, Poisson’s ratio v =0.33, and density
p =2700kg/m>), shown in Fig. 1(A). The surfaces of the
unit cell legs not connected along the axis of wave propaga-
tion, x, are fixed. As stated before, this unit cell configura-
tion was selected to demonstrate a geometry feasible for
both full FEM and the approximate beam-spring-mass
model to emphasize the compatibility of each method.
Defects for the unit cell included a freed leg at a 10% and
20% shortened length. In the following, the finite element
and approximate models used for analysis are described in
detail.

A. Wave finite element model

The unit cell was modeled using the finite element
method in COMSOL 6.0. The model used a hexagonal ele-
ment size of 0.005 m, so each leg was 100 elements long and
the thickness included two elements. Using frequency
domain analysis, the unit cell was loaded with unit magnitude
forces and moments to create a transfer matrix that could sub-
sequently be used for dispersion analysis. Four individual
loading conditions: two shear loads, V; z, and two bending
moments, M; g, where the subscripts L and R denote the left
and right ends, respectively, were employed. This combina-
tion of loads enabled the out-of-plane displacements to be
well captured, as illustrated in Fig. 1(A). Defects were mod-
eled by freeing the top leg of the unit cell and shortening it
by 10% and 20%, as shown in Fig. 1(C). By running a fre-
quency sweep from 100 to 2000Hz, the resulting out-of-
plane displacements, v, and angle, 8 = dv/dx, were found on
either end of the unit cell for the pristine and defective cases.
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FIG. 1. Details of the unit cell: (A) The unit cell is a square lattice with two fixed legs. For WFEM, four individual loading conditions on the square unit cell
are simulated. (B) The approximate model uses a series of lumped masses and springs for the vertical bars (legs) of the unit cell and a beam model for the
horizontal bar of the unit cell. (C) For WFEM, the defect is a shortened and freed leg. (D) For the approximate model, the leg defect is modeled by adjusting
the mass-spring parameters as well as the boundary condition of the shortened leg.

By defining a wunit cell vector
[vi, 0L, g, HR]T and a forcing vector F,, = [V, M, VR,MR]T,
the combinations of four loading scenarios and four displace-
ments result in a 4 x 4 matrix of inputs and outputs defined

as the receptance matrix, H,

u, = HF,. (1)

displacement u, =

The receptance matrix can be broken into its square block
submatrices,

H— |:HLL

H;r
Hy, ] , 2

Hge
and reconfigured into the transfer matrix, T, given by

HpezH
H

Hg, — HRRHZI; H;,

T= O
_HLR Hy.

3)

The transfer matrix relates the left and right sides of the unit
cell using the displacements and forces,

Yr =TY,, “4)

where Y, r = [Vig, Mg, VLR, 9L7R]T. Solving the eigen-
value problem of the transfer matrix enables calculations of
dispersion,

[T - l¢ =0, 5)

—iKa

where 1 = e is the phase associated with propagation of
the Bloch wave and ¢ = Y,. The eigenvalues, 4, of the
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transfer matrix from Eq. (5) can be used to construct the dis-
persion curves by solving for A = e ™ where a is the
length of the waveguide’s unit cell. A real-valued frequency
is used as an input to solve for the corresponding complex-
valued Bloch wavenumber, k. Section III A presents the dis-
persion curves for the pristine and defective cases obtained
from the WFEM method.

B. Finite element model: Finite array calculations

The displacements calculated from the mass-spring
model enable visualization of finite arrays with a small com-
putational load; nevertheless, the model contains simplified
displacements. Therefore, it can be advantageous to con-
struct the full, higher fidelity model in COMSOL, despite
the large computational load. The finite array of n =5 unit
cells, assuming ideal connections between unit cells, is mod-
eled in COMSOL 6.0. The center unit cell is replaced with
the 10% shorter or 20% shorter unit cells to understand the
effect of the defect on the finite array. The input leg is
excited using a unit magnitude shear force and the output
displacement, v, from the opposite leg is extracted directly
from COMSOL.

C. Approximate model

To develop a simplified model of the square unit cell
shown in Fig. 1(A), which captures the structure’s funda-
mental dynamics efficiently, a horizontal beam is modeled
using 30 one-dimensional, 2-node Euler-Bernoulli beam ele-
ments, each containing 4 degrees of freedom. The perpen-
dicular legs are approximated using a series of identical
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lumped masses m connected via identical springs of stiffness
k, as shown in Fig. 1(B). In the pristine case, the legs are
modeled using 2 masses and 3 springs on each side of the
horizontal beam and are fixed on both ends. The values of m
and k are extracted from the leg’s geometry and material
properties, such that m = pAl;/2 and k = 12EI/(I;/3)’,
where /; = 0.225m is the leg’s length for the pristine case.
The mass and stiffness components of the upper and lower
legs are coupled with the corresponding beam elements at
the junction where the legs meet the base structure at the
mid-span of the unit cell. The unit cell mass and stiffness
matrices, K, and M,,, respectively, are then assembled from
the combination of the beam and the approximated mass-
spring legs. Fixed boundary conditions are applied to the top
and bottom degrees of freedom of the upper and lower legs
to mimic the square lattice in Fig. 1(A).

To capture the effect of the defect, the pristine model tran-
sitions to the defective one by setting the upper leg free and
updating the values of m and k to m’ and k' to account for leg
shortening, as illustrated in Fig. 1(D). For example, for a defec-
tive unit cell with a 10% shorter leg, the values
I, =09l,=0203m and m' = pAl;/2 can be calculated
accordingly. We note that the combination of m’ and k' is
unique for a given defect geometry; e.g., we are not able to find
a scenario in which a narrower defective leg results in the same
combination of 7’ and k’ corresponds to a shorter defective leg.

1. Dispersion calculations

The periodic boundary conditions and dispersion analy-
sis are based on the formulation developed in the literature
(Aladwani and Nouh, 2020; Phani et al., 2006), summarized
here. We consider a Bloch-wave solution of the form

uu(x, l‘) _ ﬁu(x)ei(mtﬂcx)’ (6)

where u,(x, ) is the unit cell displacement vector as a func-
tion of location and time, w is the angular frequency, « is the
wavenumber, and U, (x) is a periodic amplitude. Two discre-
tized displacement vectors are then introduced as follows:

U’ = [u]

Ul UL, (72)

U =[ul U7, (7b)
where Uz, U;, and Ui denote the displacements of left,
internal, and right degrees of freedom, respectively, as indi-
cated in Fig. 1(D). While U contains the nodal displace-
ments of all degrees of freedom in the unit cell
discretization, U only contains the displacements of the min-
imal set of degrees of freedom sufficient for Bloch boundary
conditions. We can then relate these two using the Bloch
periodicity matrix P(r) such that U = P(x)U, where

I 0
Pk)=| 0 1 (8)
Ieilca 0
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Here, a is unit cell length, and I and 0 denote identity and
zero matrices, respectively. The reduced mass M, and stiff-
ness K, matrices are then

M, = PM,P, (9a)

K, =PK,P, (9b)
where P’ is the complex conjugate transpose of P.
Consequently, the equations of motion can be cast in the
form of an eigenvalue problem as follows:

(K, (k) — &*M,(x)]U = 0. (10)
The unit cell dispersion curves can be computed by solving
this eigenvalue problem for a range of x values spanning the
irreducible Brillouin zone.

2. Finite array calculations

To perform frequency response analysis of a finite array
comprised of a one-dimensional series of the approximate
beam-spring-mass cells, global mass and stiffness matrices
are obtained by assembling M,, and K,, for » =5 unit cells.
Following this, a transfer function relating the out-of-plane
displacement of the right end of the array to its counterpart
on the left is computed over the frequency range of interest.

lll. RESULTS

Using the WFEM model, the dispersion curves are evalu-
ated for the defective cases. Next, the approximate model is
used to construct the output for a finite array containing defec-
tive and pristine cells. This approach is also used to conduct
pole-zero analysis and parametrically vary the shortened leg
length. Last, these results are compared to the FEM model of
the finite array. Consistency is established between the meth-
ods, WFEM, FEM, and approximate model in the Appendix.

A. Defect evaluation via dispersion curves

The dispersion curves are created using WFEM, which
includes more degrees of freedom than the approximate mass-
spring model as detailed in the Appendix, and will, therefore,
better capture defective behavior. The simple matrix operation
of finding the dispersion curves by taking the eigensolutions of
the transfer matrix using Eq. (3) lends itself to handling the
numerical complexity of the WFEM output.

Dispersion curves were first constructed for the pristine
unit cell and are illustrated in Fig. 2(A). Several band gaps are
present ranging from 131-171 Hz, 346413 Hz, 693-868 Hz,
984-1130, and 1464—1492 Hz. The imaginary wavenumber
component displayed on the left side of Fig. 2(A) shows four
of the aforementioned five band gaps to be of the Bragg
type, as famously characterized by an attenuation constant of
finite attenuation and a parabolic profile (Al Ba’ba’a et al.,
2023). However, the bandgap spanning the 984—1130 Hz
range is revealed to be a local resonance bandgap as con-
firmed by (1) the 0 to © wavenumber shift in the bounding
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FIG. 2. (Color online) Dispersion curves with the primary bandgap of interest shaded for (A) a pristine aluminum square unit cell, (B) defective unit cell
with a 10% shorter top leg, and (C) defective unit cell with a 20% shorter top leg.

dispersion branches on the real wavenumber side and (2) the
sharp attenuation peaks sandwiched between the evanescent
branches on the imaginary wavenumber side, consistent with
previous literature on flexural locally resonant beams (Liu
and Hussein, 2012; Yu et al., 2006).

Band gaps have been shown to change in the presence
of defects (Colombi et al., 2014). This result can prove
advantageous if purposefully placing defects for applica-
tions like energy harvesting; however, manufacturing
defects are unlikely to occur exactly in each repeated unit
cell; therefore, dispersion curve analysis is limited for appli-
cations with combinations of different unit cells. Figures
2(B) and 2(C) examine the dispersion diagrams of the two
defective unit cells, a 10% and a 20% shorter, freed top leg,
as shown in the schematic inset in each diagram. Several
changes are brought about due to leg shortening, some of
which may be used as indicative measures of the defect type
and extent (i.e., shortening percentage). For example, an
additional dispersion branch can be seen above the third dis-
persion branch in both cases. Other changes include the
onset of a zero-frequency bandgap reminiscent of phononic
crystals with elastic foundations (Al Ba’ba’a et al., 2017)
and the transition of one of the low-frequency Bragg band
gaps to a resonant one. In the presence of complexities such
as mixed-type band gaps, which show concurrent Bragg and
resonance imaginary branches, it becomes challenging to
pinpoint one bandgap and track its corresponding counter-
part in the defective case. Instead, consider the range of fre-
quencies covered by the two dispersion branches that bound
the local resonance in the pristine unit cell in Fig. 2(A).
These two branches are plotted via dashed lines for easy
tracking and appear to maintain their shape throughout all
three cases. Both Figs. 2(B) and 2(C) show the emergence
of three narrow pass bands within this frequency range,
which effectively breakup the original local resonance
bandgap to a few smaller ones. This is intuitive since the
unit cell’s side branch legs play the resonators’ role and are
responsible for forming the clean local resonance bandgap
in the pristine case. As such, it stands to reason that altering
one of the two legs (in this case, freeing and shortening it)
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would instigate some new propagating modes, ones that
likely correspond to resonant frequencies of the shortened
legs which are close but move further apart as the defect
increases, as shown by the increasing distance between these
pass bands in the 20% case [Fig. 2(C)].

While these features are of interest since they provide a
first impression of the effect of the defect on the underlying
unit cell dispersion behavior, it should be emphasized that
this dispersion diagram assumes an infinitely long array in
which the same defect exists in each and every unit cell
(i.e., a fully propagating defect). However, in practical
applications, the defect is typically limited to a single unit
cell within an otherwise non-defective array. The following
sections illustrate how these defect-induced modes manifest
themselves in the behavior of a finite array with a single
defect through transfer function analysis.

B. Defect evaluation via transfer function of finite
array

While numerical instabilities can inhibit transfer matrix
modeling of finite arrays through WFEM, the approximate
model provides the stability required to predict the displace-
ments from finite arrays. Figure 3 summarizes the finite
response for the defective case in which the middle upper
leg is shortened by 10%, as obtained by the approximate
model, detailed in Sec. I C. As can be seen in Fig. 3(A) the
bandgap becomes narrower compared to the pristine case
(which is highlighted in blue for comparison). More interest-
ingly, an additional collocated resonance and anti-resonance
pair emerges at 186 Hz, and another emerges at 1263 Hz, at
the locations marked “1”” and “2,” respectively, in Fig. 3(A).

To confirm and track the emerging changes around and
beyond the bandgap region of the defective system, a pole-
zero map is constructed from the input-output transfer func-
tion of the underlying linear dynamical system and is shown
in Fig. 3(B). The locations of poles (gray crosses) and zeros
(red circles) in the vicinity of the bandgap region, displayed
in Fig. 3(A), are mapped back to the frequency response
curve and shown in the background using dashed gray and
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FIG. 3. (Color online) Evaluation of defect using finite array transfer func-
tion. (A) Transfer function for the defective case with five cells in which
the middle upper leg is shortened by 10%. Poles and zeros are depicted
with dashed gray and red lines. Band gap for the pristine case is shown with
blue on the background. Additional pairs of resonance and anti-resonances
are labeled with “1” and “2.” (B) Poles and zeros in the vicinity of bandgap.
(C) Out of plane displacement field for the array corresponding to frequen-
cies associated with labels “1” and “2” in (A).

red lines for poles and zeros, respectively. The frequency
response and pole-zero maps shown in Figs. 3(A) and 3(B)
provide two key observations about the influence of the
shortened leg on the state of the system: the first is the spill-
ing of two resonances inside the pristine bandgap range as
evident by the two poles captured at approximately 1038
and 1130Hz. Since a pole-zero cancellation takes place at
1038 Hz, as depicted in Fig. 3(B), only one of these two res-
onances appears as a distinct peak in the frequency response
of Fig. 3(A) at 1130 Hz inside the shaded range. The second
observation pertains to the multiplicity of zeros around the
major bandgap anti-resonance as captured by the multiple
red circles which appear at very closely spaced frequencies
in the close-up subplot of Fig. 3(B), and culminate in the
heavily attenuated output displacement inside the bandgap.
This is a hallmark feature of resonance-based band gaps, as
previously demonstrated in the literature (Al Ba’ba’a et al.,
2017). These zeros perfectly coincide in pure lumped
parameter systems for which closed-form expressions for
transfer function zeros can be obtained (Stein et al., 2022),
but are expected to show negligibly small deviations in any
approximate numerical modeling approach, such as that
used here.

The associated mode shapes are shown in Fig. 3(C) to
further study these additional resonances and anti-resonances.
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FIG. 4. (Color online) Parametric study by approximate model on the effect
of gradually decreasing the shortened leg size in defective cases. (A)
Comparison between the frequency of first (labeled with 1) and second
(labeled with 2) resonance and anti-resonance pairs. (B) Frequency
response of the cases highlighted with dashed line in (A).

Looking closely at the displacement pattern of the short
defective leg (middle upper leg), it can be seen that the addi-
tional resonance and anti-resonance pairs are associated with
the first [Fig 3(C), left] and second [Fig 3(C), right] mode
shapes of the cantilever leg at 186 and 1263 Hz, respectively.

This method can be utilized to conduct a parametric
study on leg length, as shown in Fig. 4. The decreasing size
of the defective leg increases the frequency of its resonan-
ces, as seen in Fig. 4(A). Further, the frequency of the sec-
ond defective resonance and anti-resonance pair (labeled
with 2) increases faster than that of the first one (labeled
with 1) as the leg length decreases. From a defect sizing per-
spective, this result means that higher mode shapes are more
sensitive to defect size, acknowledging that experimental
damping may cause slight attenuation of the resonant and
anti-resonant peaks. In other words, these higher modes
have larger jumps in frequency for a 5% increment change
compared to the lower frequency anti-resonance. Figure
4(B) depicts the frequency response for leg shortness values
highlighted with dashed lines in Fig. 4(A). It can be seen
that the first resonance and anti-resonance pair of interest
shifts to 167, 186, 210, 237, and 269 Hz for the leg lengths
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corresponding to a shortening of 5%, 10%, 15%, 20%, and
25%, respectively. Similarly, the second defective resonance
and anti-resonance pair shifts to 1134, 1263, 1416, 1599,
and 1819 Hz, respectively.

C. Defect evaluation via FEM finite array

The output displacements from the finite arrays of 5
unit cells with a varying center cell are shown in Fig. 5. As
a whole, the approximate model captures the finite behavior
well and predicts the resulting anti-resonances 1 and 2 for
the 10% short case within 30 Hz and anti-resonance 1 for
the 20% short case within 50 Hz. For the defective finite
array case, the higher frequency COMSOL anti-resonance is
affected by torsional modes, so it is slightly higher in fre-
quency. This torsional behavior becomes increasingly sig-
nificant as the leg decreases in size, causing greater
discrepancies for the 20% shorter defective case, where the
anti-resonance, labeled 2, around 1600 Hz moves outside of
the 2000 Hz range plotted herein. Thus, for the currently
freed shortened leg, the torsional behavior becomes a domi-
nant component of the defective mode shapes and causes
higher frequency discrepancies in the anti-resonances.

The predictive nature of the dispersion curves can be
compared to the finite array. To start, the primary Bragg
bandgap centered around 1000Hz, was shown to shift
higher in frequency for the defective cases. This behavior
was representative of the finite structure having the bandgap
widen for the defective cases. Additionally, the two key
anti-resonances within the finite structure, labeled 1 and 2,
can be mapped back to the differing pristine and defect
imaginary dispersion curves. These anti-resonances are
located at points where the mixed-mode crossing imaginary
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dispersion curves combine with the Bragg curves, resulting
in a strong anti-resonant behavior. Again, anti-resonance 2
of the 20% short case is also not well defined by the disper-
sion curves, as they were also constructed without torsional
behavior. Therefore, significant torsional behavior is outside
the scope of the WFEM model generated dispersion curves.

The significant effect of torsional behavior within larger
defect sizes is an important consideration for other configura-
tions; i.e., if the effect of the defect on mode shape stays
within the displacements well defined by the approximate
model, then the approximate model serves as a strong alterna-
tive. If the defect drives mode shapes not included within the
approximate model, then the estimated response is limited in
accuracy. This diverging anti-resonance behavior between the
FEM and approximate may not be as strong for other defects
that maintain out-of-plane displacement mode shapes. These
defective mode shapes and the degree of torsional or axial
behavior will inform the differences between the two models
when applied to cases outside those explored herein.

IV. CONCLUSIONS

Within the presented work, the effect of a shortened
and freed leg on square unit cell behavior was examined
through WFEM and approximate modeling approaches and
compared to an FEM result. Through dispersion curve anal-
ysis using the WFEM model, the bandgap behavior was
shown to change due to the decreasing leg size. The band
gaps shift in frequency and are split by additional branches
that arise and present regions of combined anti-resonant
behavior. This analysis provided frequency ranges of inter-
est but solely described the infinite behavior of a single unit
cell type. Next, the resulting displacement from a finite
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array was predicted using the approximate beam-mass-
spring model. The low computational expense enabled a
parametric study on defective leg length that showed anti-
resonances shifting higher in frequency with decreasing leg
size. The higher frequency anti-resonance shifted more as
defect size changed, indicating that higher frequency inspec-
tion could prove useful in defect sizing. Last, this displace-
ment result was compared to the computationally expensive
COMSOL finite array model, which revealed some addi-
tional defective behavior as a result of torsional displace-
ments that were only supported by the higher fidelity FEM
model. The torsional displacements became increasingly
significant as the defective leg decreased in size, causing
discrepancies from the approximate model.
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APPENDIX: MODEL VALIDATION VIA ANALYSIS
OF PRISTINE UNIT CELLS

In order to establish a comparison baseline between the
WEFEM and the approximate beam-mass-spring model, the
dispersion curves are created using both approaches, as shown

FEM
(Full Motion)

@ \\‘ /
LS
Axial/

Torsional
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in the left panel of Fig. 6(A). These dispersion curves are
compared against a FEM Floquet-Bloch method. The approx-
imate and WFEM models exclusively lend themselves to
model bending modes, which represents a large portion of the
dispersive behavior, while the Floquet-Bloch method shows
modes of all motions. Both WFEM and approximate models
capture the bending modes well when compared against the
FEM Floquet-Bloch model. Nevertheless, the bottom-most
band in the WFEM curves is not present within the other
plots; a result of this method using a real-valued frequency as
the input to solve for complex-valued wavenumber, which
produces dispersion curves with x values including imaginary
components, indicative of decaying or evanescent waves.
Some slight shifts within the band gaps of the WFEM and
approximate curves are also present, as the WFEM model has
more degrees of freedom (i.e., greater fidelity) than the latter,
which closely captures bending modes (dispersion curves 1,
2, and 5) while not accounting for torsional (dispersion curves
3 and 6), axial (dispersion curve 4), and torsional coupled
modes as shown in the right panel of Fig. 6(A).

Next, Fig. 6(B) shows the output displacement from an
applied unit magnitude shear load for the FEM and approxi-
mate cases. The displacements provided by each method
result in reasonably close relative displacement plots. At
around 1800 Hz, an additional resonance arises from a tor-
sional mode within the fixed leg, which is not represented in
the beam-mass-spring model.

Last, Fig. 6(C) shows the output displacement for the
FEM and approximate model of a finite one-dimensional
pristine array made up of five cells connected in series in
response to an input shear load V; applied at the opposite
end. While the two sets of curves generally agree, especially
in terms of the major bandgap location and shared resonan-
ces, the FEM frequency response contains more resonant
peaks, as one might expect, due to the ability of this model
to capture more finite vibrational modes given the presence
of additional degrees of freedom. It is worth noting that the
shaded region in the figure represents the resonant bandgap
range of the pristine structure as predicted by the unit cell
dispersion analysis of the approximate model.
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