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Comparison of Soil Moisture Content Retrieval Models
Utilizing Hyperspectral Goniometer Data and Hyperspectral
Imagery From an Unmanned Aerial System

Nayma Binte Nur! (' and Charles M. Bachmann'

IChester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA

Abstract To understand surface biogeophysical processes, accurately evaluating the geographical and
temporal fluctuations of soil moisture is crucial. It is well known that the surface soil moisture content (SMC)
affects soil reflectance at all solar spectrum wavelengths. Therefore, future satellite missions, such as the NASA
Surface Biology and Geology mission, will be essential for mapping and monitoring global soil moisture
changes. Our study compares two widely used moisture retrieval models: the multilayer radiative transfer model
of soil reflectance (MARMIT) and the soil water parametric (SWAP)-Hapke model. We evaluated the SMC
retrieval accuracy of these models using unmanned aerial systems (UAS) hyperspectral imagery and goniometer
hyperspectral data. Laboratory analysis employed hyperspectral goniometer data of sediment samples from

four locations reflecting diverse environments, while field validation used hyperspectral UAS imaging and
coordinated ground truth collected in 2018 and 2019 from a barrier island beach at the Virginia Coast Reserve
Long-Term Ecological Research site. The (SWAP)-Hapke model achieves comparable accuracy to MARMIT
using laboratory hyperspectral data but is less accurate when applied to UAS hyperspectral imagery than

the MARMIT model. We proposed a modified version of the (SWAP)-Hapke model, which achieves better
results than MARMIT when applied to laboratory spectral measurements; however, MARMIT's performance

is still more accurate when applied to UAS imagery. These results are likely due to differences in the models’
descriptions of multiply-scattered light and MARMIT's more detailed description of air-water interactions.

Plain Language Summary Understanding how soil moisture content (SMC) changes is crucial
because it plays a significant role in many environmental processes. This study compares three models using
hyperspectral data and imagery from the laboratory and a barrier island field setting to find the most effective
method for mapping SMC over large areas with the larger goal of application to global scales using the future
NASA Surface Biology and Geology mission hyperspectral imagery. We considered three physics-based
models: the multilayer radiative transfer model of soil reflectance (MARMIT) model, the SWAP-Hapke model,
and a modified version of the SWAP-Hapke model. To better model retrieval of SMC in the landscape from
imagery, we used a hyperspectral imaging system, which has a higher information capacity than traditional
RGB and multispectral imagery, to collect imagery over field validation sites from an unmanned aerial

system (UAS), while the laboratory hyperspectral data was collected from samples, acquired in four different
locations, using a hyperspectral goniometer. Differences in underlying model assumptions favor the modified
(SWAP)-Hapke model for laboratory data where illumination is solely from a directional source, while the
MARMIT performs best with the field UAS imagery where both the direct solar and diffuse skylight illuminate
the soil.

1. Introduction

Soil moisture content (SMC) is a prominent geophysical variable that is a vital factor in many processes, includ-
ing carbon cycle, energy budget, erosion, evapo-transpiration, global annual photosynthesis, infiltration, and
rainfall-runoff (Berg & Sheffield, 2018; Green et al., 2019; Jaeger & Seneviratne, 2011; Kirkby, 2016; Ochsner
et al., 2013; Shepherd et al., 2002; Stocker et al., 2019), making accurate retrieval of this geophysical parameter an
essential objective in agriculture, civil engineering, hydrology, micrometeorology, military applications, and other
environmental disciplines (Gardner et al., 2000; Ochsner et al., 2013; Robinson et al., 2008; Vereecken et al., 2008;
Wang & Qu, 2009). For agriculture, hydrology, planetary research, and military applications, remote sensing has
been utilized to estimate SMC readings in the solar (350-2,500 nm), thermal infrared (3—12 pm), and microwave
(0.5-100 ¢cm) domains since the 1970s (Babaeian et al., 2019; Dong et al., 2020; Li et al., 2022; Mulder et al., 2011;
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Mohanty et al., 2017; Ochsner et al., 2013; Petropoulos et al., 2018; X. Yang et al., 2019). However, field meas-
urements are not optimal for large-scale mapping since SMC varies significantly in time and space (Gardner
et al., 2000). Due to its greater information capacity, hyperspectral imaging has a distinct advantage over typi-
cal RGB and multispectral imagery for near-surface geophysical mapping of surface conditions, including SMC.
Imaging systems on both satellites and unmanned aerial systems (UAS) enable more economical SMC mapping.
UAS have numerous uses, including in agriculture (Ezenne et al., 2019; Hunt et al., 2014; Shafian et al., 2018),
industry (Padré et al., 2019; Rakha & Gorodetsky, 2018; Shukla & Karki, 2016), environmental science (Palace
et al., 2018), and the military (Chahl, 2015), however, satellite systems provide global access, not possible with
UAS imagery, to critical variables such as SMC. The future NASA Surface Biology and Geology Mission (SBG),
because of the planned high signal-to-noise ratio (SNR) and fine-spectral resolution reflectance imagery with 30m
ground sample distance (GSD) spatial resolution, proposed in the Science and Applications Traceability Matrix
(SATM) (NASA Surface Biology and Geology Mission Science and Applications Traceability Matrix, Accessed:
09 May 2023), will provide global access to SMC and other critical geophysical variables at a much higher level of
accuracy and spatial detail than has been possible with preceding multi-spectral satellite systems.

In this work, we compare the MARMIT model (Bablet et al., 2018, 2020) and (SWAP)-Hapke model (G.-J.
Yang et al., 2011) as well as a modified version of the (SWAP)-Hapke model. In the MARMIT model (Bablet
et al., 2018, 2020), the embedded SMC is treated as a layer of equivalent water thickness with an assumed efficiency
value that models the fraction of wet surface area present at a specific location. The model divides the soil and embed-
ded water into separate but equivalent layers and employs the well-known Fresnel formalism to reflect and transmit
light at their respective boundaries. This model uses Fresnel coefficients to characterize subsequent orders of internal
reflection and transmission factors at the soil-to-water and air-to-water interfaces and the Beer-Lambert equation to
simulate absorption during each transit between borders. G.-J. Yang et al. (2011), however, utilized Hapke's radiative
transfer model solution (Hapke, 1981) to determine soil moisture content. The Hapke model solution separates the
surface soil radiance of the sensor into single and multiple scattering, with the latter assumed to be isotropic, however,
in Yang's (SWAP)-Hapke model, water content is modeled only by a Beer-Lambert extinction factor, that multiplies the
Hapke solution to the radiative transfer equation, in an equivalent water layer (G.-J. Yang et al., 2011).

This study compares MARMIT, the (SWAP)-Hapke model, and a modified version of the (SWAP)-Hapke model
using both laboratory hyperspectral goniometer data and field hyperspectral imagery. We utilized four distinct
types of samples from four locations in the laboratory study, which employed hyperspectral goniometer data.
For the field analysis, we used hyperspectral unmanned aerial system (UAS) imagery from various geometries
and times of day to validate the models described and accompanying ground truth data collected as part of large
field campaigns at the Virginia Coast Reserve Long-Term Ecological Research (VCR-LTER) (Virginia Coast
Reserve Long Term Ecological Research site, Accessed: 09 May 2023) site in July 2018 and July 2019.

2. Materials and Methods
2.1. Theory
2.1.1. MARMIT Model

MARMIT depicts wet soil as dry soil coated with a separate layer of water (Bablet et al., 2018). This layer is an
equivalent water layer, representing the effect of water embedded within the soil. MARMIT is a member of a
class of radiative transfer models known as equivalent slab models (Hapke, 2012) and builds on earlier models
developed by ,Emgstriﬁm (1925), Lekner and Dorf (1988), Bach and Mauser (1994), and others.

In the MARMIT model, the reflectance of wet soil is modeled as a weighted sum of dry and wet soil reflectance:
Rmarmir = €Rus + (1 — )Ry (1)

Here, £ varies between 0 and 1, R ,is the reflectance of fully dry soil, and R, is the reflectance of completely wet
soil. The weighted sum allows the description of a range of conditions, from fully dry soil to partially or fully
wet soil. To simplify the equations, the wavelength dependence of the reflectances is not shown in Equation 1.

MARMIT assumes that R, can be measured, and R, can be calculated using the following expression, which
results from the addition of an infinite series of orders of multiple-scattered light interacting with each boundary
(air-water and water-soil):
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Rw: = -~ . o
ri + P 2)

Here, the reflectance and transmission of light arriving at the equivalent water layer from the air, |, and #,,, are
related according to:

ro=1—1tp 3)

where both r;, and 1, are calculated from the Fresnel equations for unpolarized collimated light. Thus, r\, and 1,,
depend only on the indices of refraction of air and water and the angle of incidence of the light.

However, internal reflection and transmission at the air-water interface, r,, and #,, are treated differently.
MARMIT assumes a diffuse form obtained by averaging the Fresnel equation over the hemisphere, using results
of the earlier work of Lekner and Dorf (1988) and Stern (1961). As a result, r,, depends only on the refractive
indices of the media (water and air).

|
=1 (1-7) @
where,
2 2 (n® + 2n — 1 n(n® + 1
o Wl ( 2 ) . (. 2)mgﬂ
3n+ 1) m2 + 1) (2 = 1) n =1
2(,2 2 5)
on (" - ]) o nn + 1)
(2 + 1) n—1

and assuming that the index of refraction of air n, = 1, this reduces to dependence solely on the index of refraction
of water. Furthermore, #,, also only depends on the relative refractive index of water since:

ta=1—ry (6)
Finally, T, is the transmittance of the water layer, which in MARMIT uses the Beer-Lambert-Bouguer law:

Ty=e st Q)
where a,, is the water absorption coefficient (Palmer & Williams, 1974).

After optimization of L and ¢ in the first stage of the MARMIT model, in the second stage, the optimized L and
€ values are fit through an assumed logistic calibration function to the measured SMC:

A
SMC= ———
1 + Be¥® ®
where A is the logistic function's highest (asymptotic) value, y is the curve's steepness, and @ denotes the mean
equivalent water thickness, expressed by:

O=Lxe 9)
2.1.2. (SWAP)-Hapke Model

In the (SWAP)-Hapke model, to retrieve the moisture content of the soil, G.-J. Yang et al. (2011) used the SOILSPECT
(Jacquemoud et al., 1992) model, an improved version of the Hapke model (Hapke, 1981), including, in addition,
an equivalent water layer to model embedded soil moisture. The approximate solution to the radiative transfer equa-
tion proposed by Hapke is a frequently used bi-directional reflectance model for soils (Shepard & Helfenstein, 2011;
Domingue & Hapke, 1989; Domingue & Verbiscer, 1997; Hartman & Domingue, 1998; Verhoef & Bach, 2007; Shepard
& Helfenstein, 2007; Wu et al., 2009; G.-J. Yang et al., 2011; Ciarniello et al., 2011; Helfenstein & Shepard, 2011;
Shepard & Helfenstein, 2011; Schmidt & Fernando, 20135) that treats single scattering exactly but approximates multiple
scattering as isotropic. This isotropic multiple scattering approximation (IMSA) model is based on the Chandrasekhar—
Ambartsumian Method of Invariance (Ambartsumian, 1944; Chandrasekhar, 1960; Hapke, 1981, 2012). The sum of
exact single scattering, r_, and approximate multiple scattering, r,,, yields an approximate solution to the radiative
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transfer equation. The exact single scatiering contribution incorporates the single scattering phase function; however,
the phase function for multiple scattering contributions is considered to be iSOrOPIC (2, ipte scattering = 1)-

Yang's bidirectional reflectance model of soil uses the form of the reflectance in Hapke's IMSA model, but omits the
porosity function that Hapke included in later versions of his model (Hapke, 2012). Here we show the form appro-
priate to the bidirectional reflectance factor (BRF), rather than bidirectional reflectance (Hapke's original form) or
bi-directional reflectance distribution factor (BRDF), since BRF is appropriate to the data measured in our laboratory
and field settings which were in reference to a reflectance standard material or set of materials. In some analyses, BRF
is referred to as a theoretical construct while data collected in the laboratory setting is described as bi-conical reflec-
tance factor (BCRF) (Nicodemus et al., 1977) in reference to the small but finite nature of the apertures of source and
sensor in this context. In the UAS-based hyperspectral imagery described later, the terminology sometimes used is
hemispherical conical reflectance factor (HCRF) (Schaepman-Strub et al., 2006), to indicate that light originates from
anywhere in the hemisphere (in this study, the directional solar illumination and diffuse skylight), while the sensor
aperture remains small and finite. For a directional source, Hapke's solution (BRF description) to the radiative transfer
equation with exact single scattering and isotropic multiple scattering has the form (Hapke, 2012):

)"(8;‘, Gd!g) = rs(ehgdsg) + )"M(G,', ae»g)

DD L ((pls. ', D1 + Blg, A1) +{Hio oW HIw] -1 10
.ui+;“e

where, y; and pu_ are the direction cosines for the incident zenith angle, 8, and the scattered zenith angle, 8,
respectively; w(d) is the single scattering albedo; H|u;, w(A)| and H|u., w(4)| are respectively incident and
view-angle Chandrasekhar—Ambartsumian H functions, and p(g, g’, 1) is the single particle scattering phase
function. G.-J. Yang et al. (2011) used an approximate form of the H-function, originally used by Hapke, that is
accurate to within 4% (Hapke, 1981):

1+ 2u

1+2uV1 - w an

In (SWAP)-Hapke, G.-J. Yang et al. (2011) uses the modified phase function described in SOILSPECT
(Jacquemoud et al., 1992), which depends on both the phase angle g as well as g’, the angle between the specular
reflection direction and the incident light direction:

H(u) =

c¢(3cos(g) - 1) ¢'(3cos?(g") - 1)

P(g.g'.4) =1+ beos(g) + 3 + b'cos(g’) + 3 (12)

where, b, ¢, b" and ¢’ are coefficients of the scattering phase function, and the angles g and g’ satisfy:
cos(g) = cos(#;)cos(8.) + sin(d;)sin(f.)cos(¢h) (13)
cos(g’) = cos(;)cos(f.) — sin(6:)sin(f.)cos(¢h) (14)

where ¢ is the relative azimuth between the sun and the observation direction. In Equation 10, B(g) describes the
shadow-hiding opposition effect (SHOE) (Hapke, 1986, 2012):

B
B =— " (15)
1 + P tan ( 5 )

Here, h represents the half-width parameter of the opposition effect (also known as the hot spot), which depends
on properties of the medium including fill factor and grain size distribution (Hapke, 2012), whereas By, defines
its scale.

In (SWAP)-Hapke, G.-]. Yang et al. (2011) used the SOILSPECT model first to estimate the reflectance of the
dry soil and, later, introduced an equivalent water thickness, L, to estimate the reflectance of wet soil using the
Beer-Lambert law:

Ruys = Rd.te_“L (16)
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where, @ represents the extinction coefficient of water (cm™"), L is the equivalent water thickness of soil moisture
(cm), R, is the estimated dry soil reflectance from the SOILSPECT model, and R, is the double-hemisphere
reflectance of wet soil.

2.1.3. Modified (SWAP)-Hapke Model

In our modified version of (SWAP)-Hapke model, we added the porosity factor, K(¢), originally defined
by Hapke to describe the dependence of extinction on the filling factor ¢ of the medium. K(¢) has the form
(Hapke, 2008, 2012):

In(1 - 1.2004%)

1.200¢2/3 an

K(¢) =~ -
The original (SWAP)-Hapke model ignored the effect of the filling factor described in the porosity factor. Like-
wise, we also replaced the 4%-error H function with the improved 1%-error H-function developed by Hapke in
later versions of his Isotropic Multiple Scattering Approximation (IMSA) model (Hapke, 2002, 2012). Thus, we
used the reflectance defined in the more modern version of IMSA by:

w(d) 1

r(0;,6..8) = K(¢)T L (p(g, A1 + Bs(g, K(¢), 1)) (18)
Hi He
H|—— wA)|H|——,w(i)| -1
(s | ] 1) ) ®
with the H-function given by:
1

HIL,w(A)] =

K(®) , gty [ Ve (20)
1 - w().)m ro + Tmlﬂ(?}:})l

Here, r, is the diffusive reflectance derived by Hapke using a two-stream radiative transfer model (Hapke, 2012):

-y 1—1T-w(d)
L+ 1+/1T-wd)

and y =1—+/1 —w(A) is the albedo factor. As before, Byg, K(¢), A) describes the correction to the
single-scattering component representing the shadow hiding opposition effect (SHOE), a brightening noticed
at smaller phase angles, usually lower than 20°. We again used Hapke's approximate form for the SHOE, which
has the form found in Equation 15. In that equation, B, is a free constant that is optimized during the inversion
process. However, the width of the SHOE peak, h, implemented by us here uses a form defined in (Bachmann,
Eon, Ambeau, et al., 2018):

o

@21

h=pK($)¢ (22)

where, as before, ¢ is the filling factor of the sediment, and § is a free parameter to be optimized during the inver-
sion process. The free parameter § here was originally suggested as a pre-factor to reflect the fact that the overall
constant multiplying K(¢)¢ typically depends on the grain size distribution(Hapke, 2012), which is expected to
vary in the landscape (Bachmann, Eon, Ambeau, et al., 2018).

Instead of the SOILSPECT phase function, in our modified (SWAP)-Hapke model, we choose a Legendre poly-
nomial series phase function:

N
pe) = Y aiPicos(s) 23)
=0

In the models described here, we chose N = 4:

plg) = ay + a;cos(g) + ay [% (3cos’(g)) — ]] + a3 [%(SCos-‘(g)) - 3ms(g)]

1 4)
+ a5 (35c0s*(p)) — 30c08(g) + 3]
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Here, ay = 1 and the free parameters a;, ..., a4 are all optimized during the inversion process. Lastly, we included
an efficiency parameter similar to the MARMIT model (Bablet et al., 2018) (Equation 1) to reflect the proportion
of wet soil present in the soil matrix.

2.2. Comparison Strategy

In order to compare the models, the SMC was calculated identically for each model. We used the MARMIT
model's assumed logistic function (Bablet et al., 2018) to describe the relationship between SMC and mean
equivalent water layer thickness in each case.

In order to assess each model's performance, we determined the normalized root mean square error (NRMSE).
The NRMSE, also referred to as the “Scatter Index™ (Bonakdar et al., 2016; Kisi et al., 2013), is the ratio of the
mean squared error to the mean measured value (Bonakdar et al., 2016; Zhao et al., 2020):

“# E_:v:| (SMCJ,prcd - SMCj_mra:)z

S M Cmdd 5

NRMSE = (25)

Here, SMC,,,,, and SMC, . denote the predicted SMC value and the measured SMC value, respectively, for the

Jjth sample in the specified bootstrap test, whereas S M C.., represents the average measured SMC value across
the same set of bootstrap samples.

2.3. Inversion Process

The inversion procedure in the MARMIT model consists of two steps. The first step optimizes the thickness of
the water level (L) and the fraction of the surface covered by water (¢) by minimizing the difference between the
predicted and measured reflectance of wet soil derived from hyperspectral imagery at different moisture levels.
We used the Nelder—Mead simplex method in this instance, followed by the calibration step in which the opti-
mized L and ¢ are fit through the logistic functional form in Equation 8 to the SMC.

The (SWAP)-Hapke model incorporates a different three-step inversion procedure. In the first step, single scattering
albedo (w), scale of the SHOE (By,), the width of SHOE (), and the coefficients of the SOILSPECT phase function
(b, b', ¢, ¢") are optimized by minimizing the difference between the predicted reflectance of the SOILSPECT model
and the measured reflectance of dry soil. The second step optimizes parameter L using the measured wet soil reflec-
tance and the third step is the same calibration step in the MARMIT model. In the original (SWAP)-Hapke model
described by G.-J. Yang et al. (2011), parameter optimization used the Powell-Ant Colony Algorithm. However, we
employed the differential evolution algorithm (Storn & Price, 1997) in the first optimization process and in the second,
the Nelder-Mead (Nelder & Mead, 1965), because of their better performance. To be consistent, we followed the
same steps for our modified version of the (SWAP)-Hapke model. As implemented here, the only distinction in the
optimization step between the (SWAP)-Hapke model and our modified (SWAP)-Hapke model (described above) is the
number of free parameters. In our modified (SWAP)-Hapke model, we used the first algorithm (Differential Evolution
Algorithm) to optimize eight parameters and the second (Nelder-Mead Algorithm) to optimize the remaining two (L
and €). Table 1 displays the parameters of each model and their respective range of possible values.

3. Experimental Design and Results
3.1. SMC Retrieval Using Laboratory Data

In the laboratory, we used four soil samples and associated BCRF measurements that were part of an earlier study
(Eon & Bachmann, 2021b) that included sediment samples with varying physical features from four distinct
locations. That earlier study focused solely on retrieval using the MARMIT model for these laboratory data
and a more limited set of hyperspectral imagery collected over Hog Island from UAS systems (Eon & Bach-
mann, 2021b). One sample is from Algodones Dunes, California (ALG) that was part of another study (Bach-
mann, Eon, Ambeau, et al., 2018; McCorkel et al., 2017) there involving the NASA Goddard Light Detection And
Ranging, Hyperspectral, and Thermal (G-LiHT) system (Cook et al., 2013). This sample is mainly composed of
quartz and heavy minerals (Smith et al., 1984). Two samples are from Hog Island, Virginia (Bachmann, Eon,
Lapszynski, et al., 2018; Eon et al., 2020). One of them is from the beach side with sandy sediment (HOGB), and
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Table 1
Model Input Parameters With Their Value Range

Parameters Value range MARMIT Original (SWAP)-Hapke Modified (SWAP)-Hapke
Thickness of water layer (L) 0-2 Free Free Free
Surface coverage fraction of water (&) 0-1 Free Fixed Free
Single scattering albedo (w) 0-1 - Free Free
Scale of the SHOE (Bg,) 0-1 - Free Free
Width of the SHOE (k) 0-1.5 . Free .
Fill factor() 0-0.752 . . Free
Coefficient of the SHOE width (/%) 0-1 - - Free
Coefficient of the SOILSPECT phase function (&) -2-2 - Free -
Coefficient of the SOILSPECT phase function (b") -2-2 - Free -
Coefficient of the SOILSPECT phase function (c) —1-1 - Free -
Coefficient of the SOILSPECT phase function (¢") —1-1 = Free =
Coefficient of the single scattering phase function (a;) —2-2 - - Free
Coefficient of the single scattering phase function (az) —2-2 - - Free
Coefficient of the single scattering phase function (a3) —2-2 - - Free
Coefficient of the single scattering phase function (a4) —2-2 - - Free

the other one from a salt-panne (HOGP) environment (Eon et al., 2020), which consists primarily of clay, silt, and
sand. The final sample that we analyzed in the laboratory was collected from a lakebed location in northwestern
Nevada (G. Badura et al., 2019). This sample (NEV) is mainly composed of clay.

The BRF data used in this segment of our analysis was measured in our laboratory using a hyperspectral goniome-
ter, the Goniometer of the Rochester Institute of Technology-Two (GRIT-T) (Harms et al., 2017) covering a range
of moisture content from dry to fully saturated (Eon & Bachmann, 2021a, 2021b). The GRIT-T is a sophisticated
goniometric system designed for use in field and laboratory settings and has seen widespread application in
previous research (Bachmann, Eon, Ambeau, et al., 2018; G. Badura et al., 2019; G. Badura & Bachmann, 2019;
G. P. Badura et al., 2019; Eon et al., 2018, 2020; Eon & Bachmann, 2021b; Roth et al., 2020, 2021; Shiltz &
Bachmann, 2023). Users can create custom scan patterns to manage the system's arm, head, and carriage. A laser
distance from the nadir is measured at the beginning of each scan to avoid parallax errors and ensure consist-
ent measurements across various surface configurations. Equipped with a pair of Analytical Spectral Device
FieldSpec Full-Range 4 (ASD FR4) spectroradiometers, the system records 2,151 spectral channels within the
350-2,500 nm range at 1 nm intervals, featuring a 3 nm spectral resolution in the visible and near-infrared
(VNIR) region and an 8 nm resolution in the shortwave infrared (SWIR) region. In the field, one spectrometer
can measure downwelling radiance while the other measures surface scattered radiance. Because of the absence
of diffuse light in the laboratory environment, only the downward-looking spectrometer was used in the meas-
urements described in this work. The raw data were initially converted to calibrated radiance, a process profi-
ciently executed using the ASD ViewSpec Pro software (ViewSpec Pro Software, Accessed: 09 May 2023). The
conversion from radiance to reflectance involves using a Spectralon™ panel's radiance measurement. In this
study, our analysis was based on the bi-directional reflectance factor (BRF), which compares light scattering
from a sample's surface at specific incident illumination and observation geometries with light scattering from a
perfectly diffuse (Lambertian) surface. Because Spectralon™ white reference panels do not display ideal Lamber-
tian reflectance characteristics, our Bi-directional Reflectance Factor (BRF) calculations incorporated the panel
calibration coefficient. This strategy was designed to suitably account for the non-ideal Lambertian reflectance
behavior presented by the Spectralon™ panel. The BRF calculation was carried out using the following formula:

Lsampte(8i, @i, 0, ) .

Lsp(0:, i, 0, by)
where Ly, oo Lsp Csp 8, b, 8, and ¢, correspond to the sample radiance, Spectralon™ panel radiance, Spec-
tralon™ panel calibration coefficient, incident zenith angle, incident azimuth angle, observation zenith angle, and
observation azimuth angle respectively.

BRF(8:. ¢:,0,,,) =

Csp (26)

NUR AND BACHMANN

Tof21

9 'ETOT 19686912

J:sding wrog papeoy

T

0T/6T01 0T/A0pwod aqian Lrequamy

T

SR SONIpRO ) PAIE SRR, 3 395 [£700/ 11+ wo AmiqrT swuo Asfy ‘VINIDHEIA 40 ALISEEAINN Aa [5£L00DIE

RELEE) T

AsWANT smounney) sanear) ajqeardde sm Aq panrased ame T YO 0 J0 ST 0] ATeIqrT SO ASqy o



Y od |
AGU

ADVANCING EARTH

Journal of Geophysical Research: Biogeosciences

10.1029/20231G007381

AND SPACE SCIENCE
10
54 o 1o
@ o z
o 16 £ £
&£ = 082 i oEZ
A =L ] T =11 5
= 7] @ ]
E = E 4 &
2 = e v ~u i
= £ 06 £ 06 3
S = S 144 g = 3
(8] E & = &
w = £ < H
z N 180 H N Z
2 < DAE i 04 =
tn 104 e a 40 =
n & 218 g bl ]
[=] E =4 :
= T 22 i & H
S 5 wn 02 e oz é
] 288 E £
5 80 5
e 324 = =
T . il e o0
0.25 0.50 0,75 Loo 125 150 175 2.00 350 as0 1350 1850 350 850 1350 1850
Mean Water Thickness (cm) Wavelength (nm) Wavelength (nm)
(a) (b) (e)
259 Lo 10
0 e
L ] ) ) u
— kL Z =
£y = los2 = 05g
= o = T
e g E g 5
S = 0 =) o
> A @ ~ 20 8
S 15 B 085 & 06 5
J 5 & = n
@ £ . T &
2 SR i ™ 3
2 0a= “ 04F
w10 o T o 40 ' 3
_ O 216 il
2 2 = 5 3
o T 252 T @
& s v o2 023
1 288
a0
i 3
324
oo 0.0
0.01 .02 0.03 0.04 0.05 0.06 350 B850 1350 1B50 2350 350 B850 1350 1850
Mean Water Thickness (cm) Wavelength (nm) Wavelength {nm)
(d) (f)
10
25 - 10
o o &
= 6 z
& b - 0E é = 2:5-3
— 20 o oga T el |
= ] 5 @ g
[ o E - &
2z = 8 7 E=ia i
5 E= o6 & 5 06§
- 2 =
S E 144 4 z = g
g 5 PN i
180
2 g 0sd 5 an o2 §
5o 5
g g EE :
= - k-3
z (] o 22 & & 2
= v 02 02%
w5 288 E = E
E 2
324
- - - oo an
0.0 0z 04 0.6 o8 10 1z 14 16 350 gsn 1350 1B50 2350 50 a50 1350 Lasn
Mean Water Thickness {cm) Wavelength (nm) Wavelength (nm)
() (h) (i)
a5 054
—_— — a5 —
wf Ei 0 f
0.4 JEI 04 JE W J|-:-l
g 3 o &
u 15 g b 5 g 8 15 xc:,
E 03 ] 5 037 o ,Ej. 03 2
s E t @ = E
@ @ = U
= w3 = w3 = 103
T o2 n 2 o2q 7} & 02 2
© =] 5]
= J/ = =
/ 0= / 5 = 5 =
01 = 01 ] = 01 =]
) f 0 n
s w

S00 750 1004 1250 1500 1750 2000 2250
Wavelength

0)]

SO0 750 1000 1250 1500 1750 2000 2250
Wavelength

(k)

300 750 1000 1250 1500 1750 2000 2250
Wavelength

(1)

Figure 1. Model outputs: (row 1) MARMIT, (row 2) (SWAP)-Hapke, (row 3) modified (SWAP)-Hapke models using laboratory BRF of the Algodones Dunes (ALG)
sample with various moisture levels: (a, d, g) plots show the relationship between soil moisture content (SMC) and mean water thickness (L) for the optimal model fit
across all available combinations of wavelength and sensor zenith/azimuth orientations, (b, e, h) the normalized root mean squared error (NRMSE) as a function of
sensor relative azimuth (averaged over all sensor zenith at that particular sensor azimuth) and wavelength, and (c, f, i) NRMSE as a function of sensor zenith (averaged
over all sensor azimuth at that particular sensor zenith) and wavelength. (Last row: j, k. and 1) spectra at the best-fit sensor geometry for the MARMIT, (SWAP)-Hapke,
and modified (SWAP)-Hapke models, respectively, with varying moisture content levels.
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Figure 2. Model outputs: (row 1) MARMIT, (row 2) (SWAP)-Hapke, (row 3) modified (SWAP)-Hapke models using laboratory BRF of the Hog Island Beach
(HOGRB) sample with various moisture levels: (a, d, g) plots show the relationship between soil moisture content (SMC) and mean water thickness (L) for the optimal
model fit across all available combinations of wavelength and sensor zenith/azimuth orientations, (b, e, h) the normalized root mean squared error (NRMSE) as a
function of sensor relative azimuth (averaged over all sensor zenith at that particular sensor azimuth) and wavelength, and (c, f, i) NRMSE as a function of sensor
zenith (averaged over all sensor azimuth at that particular sensor zenith) and wavelength. (Last row: j, k, and 1) spectra at the best-fit sensor geometry for the MARMIT,
(SWAP)-Hapke, and modified (SWAP)-Hapke models, respectively, with varying moisture content levels.
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Figure 3. Model outputs: (row 1) MARMIT, (row 2) (SWAP)-Hapke, (row 3) modified (SWAP)-Hapke models using laboratory BRF of the Hog Island Panne (HOGP)
sample with various moisture levels: (a, d, g) plots show the relationship between soil moisture content (SMC) and mean water thickness (L) for the optimal model fit
across all available combinations of wavelength and sensor zenith/azimuth orientations, (b, e, h) the normalized root mean squared error (NRMSE) as a function of
sensor relative azimuth (averaged over all sensor zenith at that particular sensor azimuth) and wavelength, and (c, f, i) NRMSE as a function of sensor zenith (averaged
over all sensor azimuth at that particular sensor zenith) and wavelength. (Last row: j, k. and 1) spectra at the best-fit sensor geometry for the MARMIT, (SWAP)-Hapke,
and modified (SWAP)-Hapke models, respectively, with varying moisture content levels.
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Figure 4. Model outputs: (row 1) MARMIT, (row 2) (SWAP)-Hapke, (row 3) modified (SWAP)-Hapke models using laboratory BRF of the Nevada (NEV) sample
with various moisture levels: (a, d, g) plots show the relationship between soil moisture content (SMC) and mean water thickness (L) for the optimal model fit across all

available combinations of wavelength and sensor zenith/azimuth orientations, (b, e, h) the normalized root mean squared error (NRMSE) as a function of sensor relative

azimuth (averaged over all sensor zenith at that particular sensor azimuth) and wavelength, and (c, f, i) NRMSE as a function of sensor zenith (averaged over all sensor
azimuth at that particular sensor zenith) and wavelength. (Last row: j, k, and 1) spectra at the best-fit sensor geometry for the MARMIT, (SWAP)-Hapke, and modified
(SWAP)-Hapke models, respectively, with varying moisture content levels.
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Figure 5. Retrieved SMC Estimalte (%) versus measured SMC (%) for
four types of laboratory samples (ALG, HOGB, HOGP, and NEV) using
(a) MARMIT model, (b) (SWAP)-Hapke model, and (c) the modified
(SWAP)-Hapke model.

Using a Cornell Sprinkle Infiltrometer (Van Es & Schindelbeck, 2003), the
soil moisture content of the samples was varied to examine the influence
on the observed BRF. The last row of Figures 1-4 depicts the variation
in soil spectra as a function of the soil moisture content. When the soil
is entirely dry, its reflectance is at its peak. As the amount of moisture
increases, reflectance decreases. The two major water absorption bands
centered at 1,440 nm and 1,930 nm exhibit the greatest variation in mois-
ture content.

As all of our models estimate the mean equivalent water thickness, in order
to retrieve SMC, it is essential to establish a link between mean equiv-
alent water thickness and SMC. Therefore, we used Equation 8 (Bablet
et al., 2018) for all models to determine coefficients of the logistic func-
tion. However, according to Bablet et al. (2018), it is not feasible to iden-
tify a general relationship between equivalent water thickness and SMC
that applies to all sediment types. So, for each model, we obtained a unique
logistic function for a unique sample type. The logistic function linking the
SMC to the equivalent water thickness for each sediment type is shown in
the first column of Figures 14, with the MARMIT, (SWAP)-Hapke, and
modified (SWAP)-Hapke in the first, second, and third rows respectively.
Table 2 displays the wavelength and sensor geometry at which the best
model fit was discovered. The illumination zenith angle for all laboratory
BRF spectral data collection was 40°.

The second and third columns of the first three rows of Figures 1-4 depict
the NRMSE for each sediment sample as a function of sensor azimuth
(averaged over all sensor zenith) and zenith (averaged over all sensor
azimuth) for the entire wavelength range (350-2,500 nm), again with the
MARMIT, (SWAP)-Hapke, and modified (SWAP)-Hapke in the first,
second, and third rows respectively. Although we chose the sensor geome-
try and the band that produced the lowest NRMSE (Table 2), Figures 14
show that wavelengths corresponding to water absorption bands offer reli-
able results across a wide range of geometries. The spectra at the best-
fit sensor geometry for the MARMIT, (SWAP)-Hapke, and modified
(SWAP)-Hapke models, with varied moisture content levels, are shown in
the last row of Figures 1-4.

Figure 5 depicts a scatter plot of the measured SMC versus the predicted
SMC for all sediment samples from the laboratory-measured BRF data. The
circles represent the best-matched moisture obtained across all sensor zenith
and azimuth measurements and wavelength combinations. The error bar indi-
cates the variance between the true SMC and model-estimated SMC across
all sensor zenith and azimuth directions at the best-fitted wavelength. When
comparing the performance of modified and original (SWAP)-Hapke models,
we found that the relative performance of these models varied when applied
to different samples. However, when combined, as in Figure 5, the modified
(SWAP)-Hapke model exhibits slightly better performance. The regression
coefficient of determination, R2 (Olofsson & Andersson, 2012), and normal-
ized mean square error, NRMSE, for all samples are, respectively, (0.979,
0.981, 0.987) and (0.078, 0.074, 0.061) for MARMIT, (SWAP)-Hapke, and
the modified (SWAP)-Hapke models. Thus, the lowest NRMSE and best
R? goodness of fit were obtained with the modified (SWAP)-Hapke model.
For the MARMIT and original (SWAP)-Hapke models, the R? and NRMSE
values are comparable, both with lower R? and higher NRMSE than the
modified (SWAP)-Hapke model.
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Table 2

Model Outputs Using Laboratory Hyperspectral Imagery

Model

Sample

Best fit observed Logistic function parameters for the best fit

Wavelength (nm)  Sensor zenith (deg)  Sensor azimuth (deg) = A B W

MARMIT

(SWAP)-Hapke

Modified
(SWAP)-Hapke

ALG
HOGB
HOGP
NEV
ALG
HOGB
HOGP
NEV
ALG
HOGB
HOGP
NEV

2,082.0 60.0 36.0 0.995 24.07 4.49 23.045
1,572.0 0.0 72.0 0918 29.250 8.039 3.742
1,550.0 20.0 108.0 0.985 31.919 6.126 2.289
1,320.0 40.0 324.0 0.925 16.827 8.735 20.334
2,422.0 60.0 36.0 0.995 23905 213.506 83.873
2,053.0 0.0 0.0 0.985 29297  297.578 2,996.03
2,473.0 0.0 36.0 0.924 32.081  138.545 7.549
1,540.0 40.0 0.0 0.866 16.546  291.299 37.486
950.0 40.0 0.0 0.996 125,976,250.49 1.35 79,538,181.83
1,667.0 60.0 288.0 0.974 29.233 7.658 6.277
2,422.0 60.0 252.0 0.972 39.384 2.079 12.229
2,417.0 40.0 0.0 0.923 16.598 11.429 13.345

While this result suggests the possibility of improved performance for the (SWAP)-Hapke model, a more realistic
test using UAS hyperspectral imagery constituted the next phase of our analysis, and some critical differences
exist between the laboratory setting, which only employs a directional source, compared to the field setting,
where both direct solar illumination and diffuse skylight illumination are present. In the next section, we describe
a bootstrap statistical analysis of results obtained from these three models for UAS-based hyperspectral imagery.

3.2. SMC Retrieval Using UAS Data

The hyperspectral imagery and coincident field ground truth data were collected on Hog Island, a barrier island
located at 37° 25" 591" N, 75° 41’ 36.71" W. The island is part of the Virginia Coast Reserve Long Term
Ecological Research (VCR-LTER) site (Virginia Coast Reserve Long Term Ecological Research site, Accessed:
09 May 2023). It is roughly 10 km long and 2.5 km wide and is located 14 km off the coast of the mainland.
This island has been the subject of intensive ecological and geological studies (Bachmann et al., 2002, 2003;
McLoughlin et al., 2015; Osgood & Zieman, 1993; Tyler et al., 2003; Tyler & Zieman, 1999; Young et al., 2007).
During field campaigns in 2018 and 2019, we acquired both ground truth (SMC and other geophysical data)
and contemporaneous hyperspectral imagery along the shoreline of the southern point of Hog Island, Virginia,
utilizing UAS-based hyperspectral imaging systems. The multi-sensor UAS payloads (Kaputa et al., 2019) incor-
porated two HSI systems: a Headwall Nano-Hyperspec with 270 visible and near-infrared (400-1,000 nm) spec-
tral bands and a Headwall Micro-Hyperspec High Efficiency (Micro-HE) with 267 short-wave infrared (SWIR)
spectral bands (900-2,500 nm). Based on our laboratory studies, for all the models that we previously discussed,
numerous wavelengths with moderately low NRMSE appropriate for recovering SMC with high precision appear
in the SWIR spectral range. Therefore, we opted to employ just SWIR hyperspectral imaging to execute the inver-
sion of the three radiative transfer models for SMC.

The SWIR Micro-HE hyperspectral imaging system specifications include 267 spectral bands within the range
of 900-2,500 nm, 384 spatial bands, a 24 um pixel pitch, and a 16-bit analog-to-digital conversion. The system
exhibils a peak signal-to-noise ratio (SNR) of 350:1 at around 1,250 nm wavelength. This SNR value was
computed with calibration data gathered via a 0.5-m LabSphere Helios 20 integrating sphere and a 3000K quartz
tungsten halogen light source in strict compliance with EMVA Standard 1288, a benchmark for characterizing
image sensors and cameras (EMVA Standard 1,288, Accessed: 09 May 2023). In the context of field calibration,
we strategically deployed three calibration panels: light gray, dark gray, and black. Each panel's well-documented
ground truth radiance was acquired, facilitating its role in the calibration process. Concurrently, we measured the
radiance of a Spectralon™ plaque under identical illumination conditions just before flight. Leveraging Equa-
tion 26, we calculated the ground truth reflectance of these three calibration panels. The hyperspectral imagery,
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July 14, 2018 July 28, 2019

Figure 6. (a) Hog Island beach study area from Google Earth indicating ground truth locations for UAS hyperspectral
imagery collected on 14 July 2018 (red circles), and 28 July 2019 (blue circles). (b) UAS hyperspectral imaging system
capturing imagery of beach regions with different SMC levels on 28 July 2019. The stakes are the locations of some of the
ground truth positions.

captured in the field using the UAS-mounted SWIR hyperspectral imaging system, was initially orthorectified
and converted to radiance using Headwall's Hyperspec Il SpectralView software (Hyperspectral and Opera-
tional Software, Accessed: 09 May 2023). The spectra of the calibration panels were then extracted using the
ENVI software (Version 5.6.2) (L3Harris ENVI, Accessed: 09 May 2023). Subsequently, we determined the
relationship between the calibration panels' ground truth reflectance and their UAS-acquired radiance spectra

NUR AND BACHMANN

14 of 21

i '9 'ETOT ‘19636912

sty wrog papeoy

ST SOnTpRe ) T swtel, #m 395 [E00T/T /4] U0 ARG smImO ARy YINIDEIA 40 ALISEEAIND 40 [SELO0DIETOT/GT01 0T10P Mo Laqm i

Aspaci

astas] suownnosy aead) ajqeardde sy A pantancd are wETI0E WO AN J0 ST L] ATRIqE SO AS[1 A O



Arug

M\I Journal of Geophysical Research: Biogeosciences 10.1029/20231G007381
AND SPACE SCIENCE
Table 3
UAS Flights and Corresponding Ground Truths
Number of visible SMC
Date Flight name Average solar zenith(deg) Average solar azimuth(deg)  ground truth positions
14 July 2018 Mission-1216 18.49 145.41 19
Mission-1347 18.27 213.32 10
Mission-1541 38.68 257.69 19
28 July 2019 Mission-0950 46.22 99.51 10
Mission-1019 40.73 105.09 10
Total = 68

using the empirical line method within the ENVI software (ENVI: Atmospheric Correction via Empirical Line
Method, Accessed: 09 May 2023). This established relationship, an empirical line method fit, was then applied
to convert radiance to reflectance for each wavelength. This rigorous calibration process ensures the uniformity
and comparability of reflectance data derived from radiance measurements, regardless of the date, sensor, or
environmental condition.

In this analysis, we have utilized SMC ground truth data sets collected on two different days: one set is from
14 July 2018, and the other is from 28 July 2019 (see Figure 6). Each of these days had multiple drone flights
throughout the day (see Table 3 for details). We aimed to gather data from as many flights as possible to include
arelatively wide range of sensor and solar geometries. By incorporating hyperspectral imagery with an extensive
range of sensor and solar geometries, our statistical bootstrap tests provide a more thorough understanding of
model performance. In our analysis, we utilized a subset of five drone flights in total, which allowed us to observe
a single sample from different angles. As these scans were conducted throughout the day, the variation in solar
angle also allowed us to evaluate the performance of each model with varying solar elevation.

‘We conducted a bootstrap analysis consisting of 1,000 iterations to evaluate the performance of each soil moisture
content (SMC) retrieval model described in Section 2. For each iteration, we chose at random a subset of the
available field measurements of soil moisture content (SMC) and reflectance data for training (80% of the data)
and testing (20% of the data). For each iteration, first, we recorded the wavelength and model parameters that
resulted in the highest agreement between the predicted and ground truth SMC when using training data. Then,
we used that trained model to predict SMC for the test data set. Finally, after all those 1,000 iterations, we chose
the wavelength that consistently gave the best results for the training data and used the logistic parameters for
that wavelength to map the SMC, as shown in Figure 8 and to evaluate the specific sample positions set aside
for testing in the bootstrap iteration.

Figure 7 and Table 4 illustrate the bootstrap results for each model when using the UAS hyperspectral imagery.
The histograms in the first row are the NRMSE of 1,000 bootstrap tests. The logistic function plot of each model
at the wavelength where the best fit was observed the maximum number of times is shown in the second row of
Figure 7. The results of just one bootstrap test near the histogram mean are displayed in the third and fourth rows.
It is apparent from the first-row histogram plots that MARMIT performs betier than the other models when using
the UAS data. Both the mean and median NRMSE are smaller than those of the competing models. This may
occur for various reasons, which are discussed in Section 4.

4. Discussion

From the results for the single best model over all wavelengths and view geometries reported in Table 2, we saw
that MARMIT and the original (SWAP)-Hapke model obtained similar performance for laboratory BRF data.
Our proposed modified version of the (SWAP)-Hapke model performed marginally better than the other two
models for these data. However, when utilizing UAS hyperspectral imagery, our model continues to perform
better than the original (SWAP-Hapke) model but does not surpass MARMIT. Differences in the underlying
assumptions of these models likely play a role in these outcomes. Both the original (SWAP)-Hapke model (G.-J.
Yang et al., 2011) and our modified version use Hapke's radiative transfer model (Hapke, 1981, 2012) to predict
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Figure 7. Columns 1-3: bootstrap test results for MARMIT, (SWAP)-Hapke, and modified (SWAP)-Hapke models using SWIR hyperspectral UAS imagery. (Row 1)
histogram of each model's NRMSE value over 1,000 bootstrap tests. Each bootstrap test randomly selected 80% of the data for calibration and 20% for testing. (Row
2) optimized logistic function plots for each model at the wavelength where the best fit was observed the maximum number of times. (Row 3) model estimated SMC
versus measured SMC for one of the bootstrap tests near histogram mean. (Row 4) NRMSE as a function of wavelength for that particular bootstrap test.

the SMC, and the underlying Hapke IMSA model is based on the assumption of a directional source and includes
a more comprehensive treatment of multiple scattering interactions, although in an isotropic manner, at least
within the assumed separate soil layer. MARMIT has a more limited treatment of multiple scattering, but does
provide for interactions between the equivalent water layer, the soil layer, and the air, and, in particular treats the
internal reflection and transmission at the air-water boundary using a diffuse illumination model. In the labora-
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Figure 8. (a) Single band (2,192.35 nm) reflectance, the best-fit wavelength in Table 4, and (b) retrieved SMC percentage using the MARMIT model over the entire
2018 beach study region on the southern end of Hog Island on 14 July 2018. (¢) Single band (2,192.35 nm) reflectance and (d) retrieved SMC percentage using the
MARMIT model over the entire 2019 beach study region on the southern end of Hog Island on 28 July 2019.

NUR AND BACHMANN

17 of 21

I '9 'ETOT ‘19696912

1) el wrog papeoy

JSTOT DT op e depmed

Tt

~sdn) sonipao ) paE sEUR 9 a5 [EL0 T 1] Ue Armigi T suuO Aay YINIDEIA 40 ALISHEAING 49 [5EL00DIE

M0 ASIAL A

ANLANT FHOWNN0) Aaynel) ajqeardde a1 g patianod are S[I0UE WO SN F0 SS[IL L0] ATeIqE SUHG) A1y No



A0 ]

NI Journal of Geophysical Research: Biogeosciences 10.1029/20231G007381

ADVANCING EARTH
AND SPACE SCIENCE

} <
5"1- 3| 38
2 5 i
E o
gE

(=]
o = el
=% u| @] 4
L3 = Ll
§S%
Si
2 oz
=
e
23 =
B = < | o
0‘5 (2]
f [

St dev 2 St dev
value NRMSE
0.029 0.036

Minimum
NEMSE
0.138

Maximum 72
value
0.953

21
0.267

Median
NEMSE
0

Median »?
value
0.903
0.847
0.88

Mean 72 ean
value NRMSE
0.899 0214

Best fit
observed at
wavelength

(nm)
2,192.35

Model Outputs for 1,000 Bootstrap Tests Using UAS Hyperspectral Imagery

Model
MARMIT

Table 4

0.075 0.058 20.022 9.291 9.638
20.6

0.16

0.952

0.829 0.275

0.87

1,292.54
2,211.5

(SWAP)-Hapke

5.136

4742

0.049 0.044

0.149

0.962

0.236

0.242

Modified (SWAP)-Hapke

tory data with a directional source, the relative advantages and disadvantages of the MARMIT and the original
(SWAP)-Hapke appear to lead to comparable performance. However, the modified (SWAP)-Hapke model used a
more accurate version of the H-functions that describes multiple scattering in the underlying IMSA model as well
as the porosity function included in later versions of IMSA, and for the directional illumination in the laboratory
setling, obtained the best fit, likely as a result of these particular model improvements.

However, in the analysis of the UAS-hyperspectral imagery, the diffuse and directional nature of the illumi-
nation found in the field setting altered the advantage in favor of the MARMIT model. This is likely due to
the previously mentioned component of MARMIT that includes internal reflection and transmission at the
air-water boundary for multiply-scattered light coming from the equivalent water layer treated in a diffuse
manner within MARMIT. Specifically, as noted earlier, this component of the model assumes a hemispheri-
cally averaged transmission and reflection at this boundary as originally described by Lekner and Dorf (1988)
and Stern (1961). There is no such interaction term present in (SWAP)-Hapke or the modified version that
we have proposed in this work. Instead, the water component of these models is a simple Beer-Lambert
absorption model. It is likely that these differences lead to the better average performance of MARMIT in
the case of combined directional and diffuse illumination associated with the UAS hyperspectral bootstrap
tests. It is worth noting that, while data was collected from a range of sensor geometries in the laboratory
setting, the data obtained from unmanned aerial systems (UAS) exhibit a more constrained sensor geometry.
Additionally. the solar and sensor geometry of NASA SBG satellite imagery may be similarly restricted.
These limitations in geometry can inevitably impact the quality of the best fit. However, it appears that the
effect of the absence of diffuse illumination in the original and modified (SWAP)-Hapke model is the more
significant factor in relative model performance. While these intercomparisons are for the best model found
over wavelength and viewing geometry, as noted earlier, the plots showing NRMSE averaged over zenith
angle and NRMSE average over azimuth angle in Figures 1-4 suggest that there is a range of wavelengths
where typical NRMSE is low in one or more of the model types for each laboratory sample considered. This
is of practical importance for application to satellite imagery in future development of global SMC retrieval
models using hyperspectral imagery from future missions such as SBG.

5. Conclusions

We have described and intercompared three approaches o retrieving soil moisture content from hyperspec-
tral imagery. All three models achieved good accuracy, with the best performance obtlained with a direc-
tional laboratory source using our proposed modified version of the (SWAP)-Hapke model, while for UAS
hyperspectral imagery, the MARMIT model achieved the best average performance. Specific differences
in underlying modeling assumptions related to the treatment of multiple scattering either in the equiva-
lent water layer or in the soil itself likely lead to these observed differences in performance between the
directional-source illumination of the laboratory versus the combined directional solar and diffuse skylight
illumination for the UAS hyperspectral imagery. The results of both the field and laboratory hyperspectral
tests, that highlight these differences, suggest the possibility of exploring a new model which uses advan-
tages derived from each approach. Since all models performed well in their present form, particularly in a
realistic field test using data obtained from a UAS across more than one field campaign, this suggests that
models of the types described here, or an improved model derived from the best features of each, could be
used successfully with hyperspectral imagery from the future NASA SBG satellite mission. A successful
SMC retrieval model based on the results described here could be used to develop a high-quality global SMC
product using SBG hyperspectral imagery.
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Data Availability Statement
The relevant laboratory and Unmanned Aerial System (UAS) datasets, in conjunction with the Python code for
soil moisture retrieval models, are publicly available at Zenodo via DOI: https:/doi.org/10.5281/zenodo.8021935
(Nur & Bachmann, 2023). To access the most recent updates, please visit our GitHub repository at: https:/github.
com/grit-lab/grit-lab-public-soil-moisture-retrieval-repo.
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Erratum

In the originally published article, the brackets encompassing lambda were missing in equation 21 and the subse-
quent line of text. The brackets have now been added correcting the model's mathematical meaning and structure.
This may be considered the authoritative version of record.
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