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ABSTRACT
We present an aggregation scheme that increases power in random-
ized controlled trials and quasi-experiments when the intervention
possesses a robust and well-articulated theory of change.
Intervention studies using longitudinal data often include multiple
observations on individuals, some of which may be more likely to
manifest a treatment effect than others. An intervention’s theory of
change provides guidance as to which of those observations are
best situated to exhibit that treatment effect. Our power-maximizing
weighting for repeated-measurements with delayed-effects scheme,
PWRD aggregation, converts the theory of change into a test statistic
with improved asymptotic relative efficiency, delivering tests with
greater statistical power. We illustrate this method on an IES-funded
cluster randomized trial testing the efficacy of a reading intervention
designed to assist early elementary students at risk of falling behind
their peers. The salient theory of change holds program benefits to
be delayed and non-uniform, experienced after a student’s perform-
ance stalls. In this instance, the PWRD technique’s effect on power is
found to be comparable to that of doubling the number of clusters
in the experiment.
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Introduction

Many large-scale randomized controlled trials (RCTs) and high-quality quasi-experi-
ments are conducted only after careful vetting in national funding competitions. In the
United States, a leading competition for education efficacy studies is the Institute of
Education Sciences’s (IES) Education Research Grants program, which aims to contrib-
ute to education theory by informing stakeholders of learning interventions’ costs and
benefits. “Strong applications” to the program are expected to detail and justify an inter-
vention’s “theory of change” (IES, 2020, p. 48): How and why does a desired improve-
ment in outcomes occur as a consequence of the intervention? That is, what is the logic
model of how effects accumulate and which students are expected to benefit?
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This paper introduces a scheme, PWRD aggregation of effects, for converting theories
of change into statistical power for randomized controlled trials and quasi-experiments.
Given an efficacious program, a theory of change that correctly identifies where effects
are likely to concentrate, and measurements indicating which students stand to benefit,
this power-maximizing weighting for repeated measurements with delayed effects
method increases the probability of detecting program benefits. It maintains the canon-
ical intention-to-treat (ITT) perspective on program benefits. The method is primarily
designed to assist with hypothesis testing rather than with estimation, yet it may be
implemented in tandem with standard estimation techniques. PWRD aggregation is
applicable when there are baseline or post-treatment measures of intervention delivery
or availability, in combination with primary outcomes measured on varying numbers of
occasions. It offers dramatic improvements of power over both fixed effects and hier-
archical linear models (HLMs)—at least, over conventional uses of these regression tech-
niques that do not make use of side information mapping expected accrual of program
benefits. It is easy to combine with these and other regression methods that are com-
monly used for analysis of education RCTs.

We illustrate PWRD aggregation on an IES Education Research Grant-funded efficacy
trial of an intervention for early elementary students at risk of falling behind in learning
to read. This intervention, BURST[R]: Reading (BURST), aims to detect and correct
deflections from what would otherwise be students’ upward trajectory in reading ability.
The theory of change for BURST posits this “trajectory correction” arises by providing
targeted instruction to students whose progress has deviated from the expected course
(e.g. tested below a certain benchmark). Thus, effects are delayed—students do not
immediately obtain an effect but must first receive targeted remediation—and non-
uniform, in that the only students who are affected are those whose progress in reading
has slowed. As a consequence, the treatment effect will be anything but constant; if the
intervention works in the hypothesized manner, its effects will be greatest at follow-up
times subsequent to points where student learning would otherwise have stalled.
Accordingly, beginning from estimates of the average treatment effect (ATE) calculated
separately for different cohorts of students and occasions of follow-up, as well as infor-
mation about the extent of stalled progress at each occasion, PWRD aggregation com-
bines effect estimates not only with attention to their mutual correlations, but also with
attention to their expected sizes relative to one another. These expectations are deter-
mined by a carefully structured set of alternative hypotheses, which PWRD aggregation
in turn adduces from the environing theory of the intervention.

In underlying concept if not in its goals, the method relates to instrumental variables
estimation (Angrist et al., 1996; Baiocchi et al., 2014; Bloom, 1984) and principal stratifi-
cation (Frangakis & Rubin, 2002; Page, 2012; Sales & Pane, 2019). But whereas Sales
and Pane (2021), for example, use principal stratification to estimate separate effects for
latent subgroups distinguished in terms of dosage level, we marshal related considera-
tions to inform aggregation of effects across manifest subgroups receiving or likely to
receive differing doses. For recent evaluation methodology using dosage information in
other manners (e.g. to determine fidelity of implementation or to define the causal par-
ameter of interest) see Schochet (2013) and White et al. (2019). For recent methodology
proposing different weighting schemes to aggregate average treatment effect on the
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treated (ATT) estimates into an overall effect estimate, see Callaway and Sant’Anna
(2021) and Sun and Abraham (2021).

In this paper, we first discuss the connection of longitudinal data in education set-
tings to interventions with supplemental instruction to correct stalled learning trajec-
tories. After, we use the theory of change supporting this class of interventions to
define assumptions under which PWRD aggregation will be power-maximizing. We
then explicitly present the formulation for PWRD aggregation weights. In Section
“Simulations,” we present a simulation study mirroring BURST design to show
PWRD aggregation performance in comparison with commonly used methods under
various assumptions. In Section “PWRD Analysis Findings,” we then illustrate how
PWRD aggregation compares with those same methods for BURST itself. Finally, in
Section “Discussion,” we conclude by summarizing how PWRD aggregation provides
researchers with a tool that will best help them detect an effect for interventions
with supplemental instruction.

Method

Review: Comparative Studies with Repeated Measurements of the Outcome

In educational settings assessing the efficacy of interventions, students frequently enter
and exit studies at different points. For example in BURST, we examined a reading
intervention on early elementary students across four years. Depending on their grade
at the study’s outset, the number of observations on each student varied from one to
four. Figure 1 illustrates this phenomenon for BURST’s various cohorts. In this paper,
we refer to subcohorts as “X.Y,” where X and Y denote, respectively, the year and grade
in which the cohort entered the study. For example, Cohort 1.3 is the set of students
who entered the study in the first year as third graders.

Data sources for similarly structured efficacy trials will incorporate an analogous
design as BURST, with varying numbers of observations on any given participant. The
method chosen to handle multiple observations in these longitudinal studies is of great
importance. The simplest outcome analysis might sidestep this debate entirely by solely
examining outcomes when students exit the study (e.g. 3rd grade observations in
BURST). For BURST in Figure 1, this entails using data from the bottom row and dis-
carding the remaining observations. This method, herein termed “exit observation” ana-
lysis, treats the student rather than the student-year as the unit of analysis. Exit
observation analysis typically uses models such as

Yij3 ¼ b0 þ sZij3 þ bXij3 þ eij3 ðEðeij3Þ ¼ 0; Varðeij3Þ ¼ r2Þ, (1)

where Yij3 denotes the outcome of student i in school j in the third grade, X represents
a set of demographic covariates, and Z denotes the treatment status. An example of this
method may be found in Simmons et al. (2008). In addition to its simplicity, exit obser-
vation analysis provides one notable benefit: an easily defined and identified overall

average treatment effect, i.e. E½YðZ¼1Þ
ij3 &YðZ¼0Þ

ij3 ':
However, complications emerge. According to BURST’s logic model, students are

more likely to benefit when they participate in the intervention for a longer period.
Therefore, we are less likely to observe an effect in Cohort 1.3 than in Cohort 1.K.
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Treating these two groups equally may hinder a researcher’s ability to detect an effect.
BURST Cohort 1’s experience seems to have been of this type: as seen in Table 1, mean
treatment-control differences in the exit observation year as compared to the entry year
increase steadily from Cohort 1.2, with just 2 years of BURST, to Cohort 1.K, which
enjoyed up to 4 years of BURST’s supports.

In addition, exit observation analysis lacks appeal to researchers who prefer to use all
of the available data. Perhaps the easiest way to handle repeated measurements is to fit
a linear model predicting student-year observations from independent variables identify-
ing the time of follow-up and then estimating standard errors of these coefficients with
appropriate attention to “clustering” by student or by school; in mixed modeling and
general estimating equations literature, this is known as the linear model with “working
independence structure” (Fox, 2015; Laird, 2004). These analyses effectively attach equal

Figure 1. The path of students and cohorts throughout the four years of the BURST intervention.

Table 1. Differences in mean reading scores between treatment and control groups for the first of
four cohorts of students. The final column (d) gives the difference in these differences as calculated
for the final year of participation versus the first year of participation.

Entry Entry Exit
dGrade Year Year

Cohort 1 3 5.2 5.2 –
2 2 1.3 0.4 0.9
1 0.3 3.2 2.9
K 2 7.0 2.1 9.1
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weight to each student-year observation and thus we refer to them as “flat” weights. In
combination with least squares, flat weighting delivers minimum-variance unbiased coef-
ficient estimates under the model that

Yijk ¼ b0 þ sZijk þ bXij( þ eijk ðEðeijkÞ ¼ 0; VarðeijkÞ ¼ r2Þ, (2)

where the disturbances feijk : i, j, kg are all independent of one another. The model is
said only to have “working” independence structure because even if in actuality the dis-
turbances are not mutually independent, its least squares estimates remain unbiased
under Model 2, while clustering ensures consistency of standard errors by taking into
account heterogeneity across groups. Model 2 differs from the exit-observations-only
model, Model 1, in allowing multiple values of k for each student i; in BURST, k ranges
from one to four under flat weighting. While Model 2 is general, other flat weighting
identification strategies may differ. For example, one specification of flat weighting may
include fixed effects for years and interactions between the treatment and year. An
example of flat weighting may be found in Meece and Miller (1999).

With multiple observations per student, Model 2 may be realistic but independence
of its disturbances is not; as a result, flat weighting is inefficient. Instead of adopting
this scheme, many researchers apply mixed effects models like hierarchical linear models
(Raudenbush & Bryk, 2002) during outcome analysis. This third option implicitly choo-
ses a middle ground between flat weighting and exit observation analysis. Mixed effects
models allow for some correlation between observations but not complete correlation.
In parallel with Model 1 and Model 2, we may represent the two-level mixed effects
model appropriate to analysis of BURST within the single regression equation

Yijk ¼ b0 þ sZijk þ bXij( þ lj þ eijk ðEðeijkÞ ¼ 0; VarðeijkÞ ¼ r2Þ,

where we adopt the same structure as with flat weighting, including independence of
feijk : ði, j, kÞg, but now incorporate random effects flj : jg at the school level where
lj)Nð0, mÞ: This allows researchers to account for unobserved heterogeneity by school.
Other formulations might incorporate an additional random effect at the student-level.
For examples of studies that apply mixed effects models, see Ethington (1997), Guo
(2005), and Lee (2000).

One notable drawback arises when applying the two methods utilizing more than one
posttest per student. Exit observation analysis allowed us to articulate a well-defined
overall average treatment effect (ATE): the expected difference in outcomes among third
grade students. Using repeated measures of the outcome would seem to remove that
possibility. The overall ATE still represents an expected difference in outcomes between
treatment and control students, but students contribute to that ATE in varying quanti-
ties depending on the length of time they participated in the study (and perhaps the
intraclass correlation, or ICC).

The presence of clustered observations, either within schools or within students, has
implications beyond regression-based modeling decisions. Within-group dependence,
perhaps arising due to the presence of panel data or random assignment of blocks of
units, complicates standard error estimation as well. BURST data exhibit within-group
dependence as a consequence of both these phenomena: treatment assignment occurred
by school and we have repeated observations on multiple students. Thus, both classical
and heteroskedasticity-robust standard error calculations (Huber, 1967; White, 1980) are
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inappropriate. Nonetheless, dependent observations within BURST are grouped into
mutually exclusive and non-overlapping clusters where every observation within the
cluster possesses the same treatment assignment, allowing us to calculate standard errors
that are robust to heterogeneity by group. For this purpose, we employ the “cluster
robust” standard errors outlined in Pustejovsky and Tipton (2018), who in turn
extended the work of Bell and McCaffrey (2002).

PWRD Aggregation

The three estimation methods presented in Section “Review: Comparative Studies with
Repeated Measurements of the Outcome” all possess certain benefits. For example, exit
observation analysis allows for a well-articulated overall ATE and flat weighting allows
researchers to use all of their data. Mixed effects models are particularly applicable in
education settings with treatment assigned to clusters of units. Nonetheless, all three
methods fail to take into account which observations will best allow researchers to
detect a treatment effect according to the intervention’s theory of change. In this sec-
tion, we introduce an aggregation method that, similar to mixed effects models, is inter-
mediate to flat weighting and exit observation analysis yet in contrast to those methods,
leverages the intervention’s logic model to determine which observations are most likely
to demonstrate a treatment effect.

To simplify the presentation of PWRD aggregation, we first illustrate our method on
students who were in kindergarten during the first year of the study (i.e. the cohort
beginning in the top left box of Figure 1) for a collection of schools that implemented
the intervention with some fidelity. These students participated in BURST for the entire
study and thus, had the greatest opportunity to benefit from the intervention.
Implementation is a post-treatment variable, so we will not restrict the sample to high-
implementation schools when estimating treatment effects. Rather we use this subset as
an example that best illustrates the intuition and process behind PWRD aggregation.

As with the principal stratification method of Sales and Pane (2021), PWRD aggrega-
tion requires estimation of separate treatment effects for each subgroup of interest. In
Sales and Pane (2021), these are latent subgroups determined through dosage levels. For
our method in the context of BURST, the subgroups are directly observable and refer to
the cohort year of follow-up. Yet this too relates to dosage levels as the theory of change
suggests that different subgroups have varying levels of exposure to the treatment: those
students who participate for longer are more likely to receive a greater dose of supple-
mental instruction. Because schools may implement the intervention differently over
time, the method calls for separate estimates of the treatment effect for each combin-
ation of cohort and year of follow-up. These covariate-adjusted treatment effect esti-
mates for the subset of Cohort 1.K during each year of follow-up are presented in
Table 2. Note that since this is an ITT analysis, all student observations are used, not
merely those exposed to the treatment.

As a departure from Sales and Pane (2021) however, PWRD aggregation serves as the
tool by which we aggregate the four estimated effects in the course of hypothesis testing.
This aggregate, similar to the two-way fixed effects difference-in-differences estimator
(TWFEDD) (Goodman-Bacon, 2021), need not correspond to an independently
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meaningful average of individual effects. However, unlike TWFEDD, PWRD aggregation
does estimate its target estimand even if that estimand itself is not easily interpretable.
Therefore, this formulation simultaneously allows us to sidestep the debates reviewed in
Section “Review: Comparative Studies with Repeated Measurements of the Outcome” as
to how the treatment effect is best parameterized, while making use of the full, longitu-
dinal data in a fashion best suited to detect that effect.

PWRD aggregation is particularly beneficial in terms of power versus extant methods
for the analysis of trajectory correction interventions. In these interventions, students
only receive the treatment once their performance stalls, resulting in effects that are
scattered and delayed rather than concentrated and instantaneous. Prior to this occur-
rence, students receive the same instruction they otherwise would have received if no
intervention took place. As a consequence, the theory of change entails the exclusion
restriction (Angrist et al., 1996) that students only obtain an effect once they receive the
supplemental instruction. The longer an individual participates in an intervention of
this nature, the greater the likelihood that they become eligible to benefit from it, but
prior to that occurrence, they are “excluded” from benefitting from the intervention.

Table 3 shows that for Cohort 1.K, student eligibility for the BURST intervention
indeed increased in step with longer participation in the study. This holds both for
those students belonging to treatment schools and for those students attending control
schools. Accordingly, the working model describing how effects accumulate posits that
the expected size of the effect in cohort g during year of follow-up t will be proportional
to the percentage of students in cohort g who were eligible for supplemental instruction
by t, i.e. proportional to p :¼ ðpgt : g, tÞ, where pgt :¼ PðAn individual in cohort g is eli-
gible to receive the supplemental instruction by year of follow-up tÞ: Thus p represents
the proportion of students who were not excluded from having been affected, in virtue
of the assumed exclusion restriction.

The expected size of the effect as estimated through p̂ is not the only consideration
of PWRD aggregation. Define Dgt as the parameter representing the ITT effect for
cohort g during year of follow-up t, i.e.,

Table 3. The proportion of students in Cohort 1 who entered the
study in grade K who have “tested in” to BURST to receive supplemen-
tal instruction by how long they have participated in the study.
Years in BURST Tested in (%)

1 66.8
2 75.4
3 76.7
4 79.3

Table 2. Estimated change in outcome in each year of follow-up for a
subset of Cohort 1 that entered the study in Grade K.
Cohort 1 Coef. S.E.

Year 1 2.3 19.6
Year 2 29.7 22.6
Year 3 8.7 8.5
Year 4 12.8 10.9
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Dgt :¼ EðYðZ¼1Þ
gt &YðZ¼0Þ

gt jG ¼ g,T ¼ tÞ,

where :¼ denotes “defined as,” Z¼ 1 denotes assignment to treatment and Z¼ 0
denotes assignment to control. Suppose corresponding ITT estimators fD̂gt : g, tg to
have been designated. (PWRD aggregation is constructed under the potential outcomes
framework of Rubin, [1974], Holland, [1986], and Splawa-Neyman et al., [1990]. Note
that our unit of observation is at the student-year level rather than at the student-level.)
Now let us define:

R :¼ CovðD̂g, t : g, tÞ,

the relative covariances among fD̂gt : g, tg: This factor, the estimated relative covariances
R̂, will contribute to our method as well, with those effect estimates that are relatively
precise and uncorrelated with the other estimates receiving greater weight. This relates
to precision weighting where, for example, estimates with smaller variances also receive
greater weight (Raudenbush & Bryk, 2002). Unlike precision weighting, however,
PWRD aggregation accounts for the correlations among cohort-year ATE estimates as
well, which are often substantial.

PWRD aggregation calculates a power-optimizing weighted combination of cohort/
year of follow-up ITT estimates—an aggregate

D̂agg :¼
X

g, t
wgtD̂gt , (3)

with specially chosen weights w (wgt * 0, all g, t;
P

g, t wgt ¼ 1). To find the specific w
that maximizes power to detect an effect, we first make multiple assumptions about the
nature of the treatment, given the theory of the intervention is correct:

Condition 2.1. Individuals who receive supplemental instruction as a result of the
intervention at time j receive an effect s * 0 at some point between j and ti, where ti denotes
the time at which individual i exits the study. Individuals who do not receive supplemental
instruction are unaffected.

Condition 2.2. Effect s received by individual i at time j is retained by individual i in full
throughout the duration of the study, i.e. from [j, ti].

The second portion of Condition 2.1 is an extension of the Stable Unit Treatment
Value Assumption (SUTVA) (Rubin, 1980). Briefly, SUTVA states that the treatment
received by one individual will not affect the potential outcomes of other individuals in
the study. With respect to BURST, we argue this implies individuals testing into the
intervention to receive targeted remediation will not affect the potential outcomes of
individuals in the treatment who remain in the classroom without any supplemental
instruction. This corresponds to a situation where there is no interference across indi-
viduals (Sobel, 2006). Effectively, Conditions 2.1 and 2.2 amount to assuming that the
effect for cohort g during year of follow-up t is proportional to the share of the cohort
non-excluded by time t.

From these conditions, we now construct PWRD aggregation (formally presented in
Proposition A.2 in Appendix A). Take the null hypothesis that there is no effect of the
intervention compared to an alternative hypothesis that there is an effect and that effect
is proportional to the dosage received:

8 T. LYCURGUS ET AL.



H0 : D ¼ 0
Ha : D ¼ gp,g>0

(4)

Now take test statistics centered around the aggregation of separate cohort-year
ATEs, i.e. D̂agg ¼

P
g, t wgtD̂gt: Given the above conditions hold, the asymptotic relative

efficiency and thus, the power of these test statistics will be maximized using weights of
the following form:

w ¼ ðR&1pÞþ=
X

j

ðR&1pÞþj
, (5)

where ðR&1pÞþ denotes the element-wise maximum of ðR&1pÞ and 0, and ð(Þþj
denotes

the jth element of ð(Þþ such that w01 ¼ 1: Note that Conditions 2.1 and 2.2 are not
required for the validity of the hypothesis test, but are necessary for finding an efficient
estimator of Dagg.

In sum, so long as the effect is proportional to the share of non-excluded observa-
tions, the “signal-to-noise” ratio of test statistics centered around D̂agg will be maximized
by weights proportional both to the expected sizes of cohort-year effects, p, and also to
the relative precisions of estimated cohort-year effects, R: w / R&1p: Any test statistic
of the form

P
g, t wgtD̂gt&

P
g, t wgtd0gt

v̂1=2
, (6)

such as the t-statistic combining estimates D̂gt with fixed weights wgt , will be covered by
Proposition A.2.

Using PWRD aggregation weights in place of some other set of weights provides test
statistics with greater asymptotic relative efficiency. Improving relative efficiency by 20%
corresponds to a 20% reduction in the sample size required to achieve the same level of
power (Van der Vaart, 2000). Thus, test statistics incorporating PWRD aggregation
weights provide researchers with a greater opportunity to detect an effect of the inter-
vention when the working model of how effects accumulate holds. For a formal descrip-
tion of asymptotic relative efficiency with respect to PWRD aggregation, see
Appendix A. While designed to assist with hypothesis testing, the method may be used
in tandem with a different approach to ITT estimation like flat weighting or exit obser-
vation analysis. Alternatively, the researcher may forgo ITT estimation entirely and
instead present an instrumental variables estimate of a local ATE that examines average
effects across non-excluded cohorts.

In general terms, we derive these weights by selecting w to maximize an approxima-
tion known as “test slope” of the expected value of D̂agg , as given in Equation 3. After
setting this term equal to zero and simplifying through a grouping of scalar quantities,
we obtain PWRD aggregation weights. We additionally add a constraint to ensure that
our aggregation weights are non-negative. For a proof, see Appendix A.

While we have presented PWRD aggregation using a one-sided test, there is nothing
to prevent researchers from applying a two-sided test. In fact, if the magnitude of the
negative effect increases with greater exposure, then PWRD aggregation with a two-
sided test would once again increase power to detect that negative effect.

JOURNAL OF RESEARCH ON EDUCATIONAL EFFECTIVENESS 9



PWRD Aggregation in the BURST Evaluation
In order to implement PWRD aggregation, researchers first require estimates of p and R to
formulate the aggregation weights ŵ: In addition to contributing to ŵ, R̂ assists in calcula-
tion of the standard error for D̂agg :

Neither p nor R is directly observed, but both can be estimated easily. We estimate
pgt through the proportion p̂gt observed among students assigned to the control. In the
BURST example, this is the probability in cohort g of ever having tested in by time t,
rather than the probability of testing in to supplemental instruction during year t: once
a student becomes eligible for the first time, each subsequent observation for that stu-
dent is deemed eligible as well. Thus, treatment received by a student in year t does not
affect their weight in year tþ 1 or afterward; assuming the exclusion restriction, p̂ is
pretreatment in the sense that treatment assignment does not affect it. That is, p is
defined in terms of potential outcomes under the control.

In theory, testing in to receive supplemental instruction from BURST solely occurred
through Dynamic Indicators of Basic Early Literacy Skills (DIBELS), a reading assessment
administered as a part of this intervention. If a student’s DIBELS score fell within a cer-
tain range, they were eligible for the intervention. In practice, teachers may have used
their own discretion when determining who received the supplemental instruction.
Nonetheless, we estimate p solely using DIBELS, as PWRD aggregation is consistent
with ITT analysis. Thus, we construct PWRD aggregation weights using the proportions
of students who should have received the intervention if it was implemented with fidel-
ity. That is, the level of non-excluded students within a given year of follow-up t is the
expected proportion of students who were eligible for supplemental instruction by t as
determined through DIBELS.

Note that if we expected that treatment eligibility and thus, exposure differed between
treatment and control groups (perhaps because treatment schools had greater incentive
to provide DIBELS), we instead could have calculated PWRD aggregation weights using
the proportion p̂1gt observed among students assigned to the treatment. Nonetheless, we
had evidence to suggest this was not the case (Rowan et al., 2019).

Often ðD̂g, t : g, tÞ are estimates from a common regression fit, in which case an
accompanying estimate of the covariance of coefficient estimates can be used to estimate
R in Equation 5. Our analysis of BURST used the Peters-Belson (Peters, 1941; Belson,
1956) method and called for a somewhat more elaborate calculation centered around
control-group residuals (Hansen & Bowers, 2009). For a more thorough explanation, see
Rowan et al. (2019).

To calculate the standard error, PWRD aggregation combines with standard techni-
ques addressing complexities of study design such as block randomization and assign-
ment to treatment conditions by cluster, such as the school or the classroom, rather
than by the individual student. Simply, we scale the “bread” component of
Huber–White sandwich estimators of the variance using a similar method as that pre-
sented by Pustejovsky and Tipton (2018). With these cluster-robust standard errors, we
are then able to conduct Wald tests to reject or accept the null hypotheses previ-
ously presented.

Covariate adjustment may be incorporated while estimating each individual Dgt either
through design-based approaches outlined in Lin (2013), Hansen and Bowers (2009),
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or Middleton and Aronow (2015), or through more conventional model-based formula-
tions. While not constructed around attributable effects (Rosenbaum, 2001), we can
extend PWRD aggregation into that setting with minor adjustments.

Considerations When the Logic Model Fails

When the theory of change correctly identifies which students will benefit from the
intervention and at what point that will occur, PWRD aggregation maximizes the
asymptotic relative efficiency of this method versus extant alternatives for the family of
hypotheses Kg : D ¼ gp: That is in BURST, if the treatment effect is proportional to the
share of non-excluded observations, PWRD aggregation maximizes power. But will
PWRD aggregation have adverse effects on outcome analysis when the theory of the
intervention does not hold and the proportionality assumption fails?

In particular:

+ When there is no effect of the intervention, will PWRD aggregation lead to
incorrect Type I errors?

+ When the effect accrues in a different fashion than hypothesized by the theory of
change, will PWRD aggregation yield less power than alternative methods?

To answer the first question, Appendix B proves from weak technical conditions that
PWRD aggregation maintains proper Type I error rates (rather than over or under-
rejecting a null hypothesis of no effect).

We address the second question both conceptually and through simulations presented
in Section “Simulations.” The constant effects assumption behind base PWRD aggrega-
tion is rather strong, yet this is merely our “working model” of the treatment effect. The
working model is informed by the intervention’s logic model. In BURST, for example, it
is posited that effects only accrue to students who receive the supplemental instruction.
The working model, however, goes beyond the logic model with the simplifying
assumption of a constant effect. So long as the working model is roughly accurate (i.e.
the effect is proportional to the exposure, an assumption of the underlying theory of the
intervention) we believe that PWRD aggregation will provide a benefit.

For example, effects may increase in magnitude with greater exposure. In this scen-
ario, PWRD aggregation will still provide a gain to power because all else equal, the
method emphasizes cohort-years with greater exposure which in turn have a greater
opportunity to benefit from the increasing effect. This occurs despite a violation of
Condition 2.1.

Instead, effects may decrease over time. Here, the working model is incorrect. Yet in
the context of BURST, PWRD aggregation may still provide a benefit if the intervention
is successfully implemented. To illustrate, take the set of students who are eligible and
benefit immediately after receiving the supplemental instruction. If that effect dimin-
ishes, then they would once again require supplemental instruction and thus, once again
receive the benefit (assuming the intervention does, in fact, work). Therefore, cohort-
years with greater cumulative exposure would likely have larger effects and PWRD
aggregation would yield more power. On the other hand, if students who initially
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receive a benefit gradually lose that boost to their reading performance and do not
benefit a second time, a scenario where PWRD aggregation may be harmful, we would
argue that the intervention does not work and we should not detect an effect. The goal
of BURST is to improve stalled reading abilities and if BURST is only a temporary pal-
liative, then it has failed at achieving its aims.

Our simulation study empirically examines the benefits and drawbacks of PWRD
aggregation by comparing the power of t-tests based on Equation 2.3’s D̂agg , with
weights w as given by Equation 5, to t-tests based on flat-weighted, exit observation
weighted or random effect-adjusted ITT estimates. Our simulation study considers treat-
ment effects of forms more and less favorable to PWRD aggregation, as well as a base
scenario in which the working model is correct and Dgt is proportional to pgt:

Our simulation study additionally provides an alternative to the above competitors
that suggests analysts simply implement PWRD aggregation together with a standard
method like flat weighting or exit observation analysis. Given the theory of the interven-
tion holds, PWRD aggregation yields substantially more power than extant alternatives;
if instead effects accumulate in a manner different than that hypothesized by the theory
of the intervention, the standard method protects against a large loss of power. The
step-down Dunnett procedure (Dunnett & Tamhane, 1991; Hothorn et al., 2008) allows
these two methods to be implemented simultaneously while maintaining valid Type I
error rates. Crucially, it avoids adding assumptions other than requiring a consistent
estimate of the statistics’ covariance. Furthermore, in the scenario that the two test sta-
tistics are highly correlated with one another, the step-down Dunnett procedure will
provide power close to the power of any one of the correlated statistics.

In fact, this step-down procedure need not solely use test statistics from standard
PWRD aggregation and an analysis method typical to these settings. Researchers could
instead include a third test statistic using a variant of PWRD aggregation that takes into
account a different working model of the treatment effect, e.g. a working model that
posits effects diminish or increase over time.

Separately, failures of the D / p model stemming from within-cluster interference
can be studied analytically, without need for simulations.

Addressing within-Cluster Interference
We have interpreted the BURST theory of change to hold that a student’s outcomes
may depend on her own treatment assignment but not that of any other student—that
is, that the experiment was free of interference (Cox, 1958; Sobel, 2006). As applied to
students within a school, this may be simplistic. A school possesses finite resources, so
its adopting a supplemental instruction regime may transfer resources away from stu-
dents not receiving the supplement. In this scenario, Condition 2.1 no longer holds: stu-
dents not targeted for a BURST supplement may suffer an instructional detriment, with
adverse effects on their learning.

Addressing such spillover effects within a classroom or school is an area of active
methodological research (Fletcher, 2010; Gottfried, 2013; Vanderweele et al., 2013), often
calling for specialized methods or other accommodations (Bowers et al., 2018;
Rosenbaum, 2007; Sobel, 2006; Vanderweele et al., 2013). To address the common scen-
ario of spillover within but not across clusters, where clusters denote experimental units
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as assigned to treatment conditions, the PWRD aggregation method applies without
change. Specifically, we may relax Condition 2.1 in favor of the following:

Condition 2.3. Individual i receiving supplemental instruction due to the intervention at
time j gains non-negative effect s at some point between j and ti. Individuals who do not
receive the supplemental instruction may experience an effect, positive or negative, so long as
the overall effect of all students is positive in aggregate.

This allows for a corollary to standard PWRD aggregation (i.e. Proposition A.2). The
formal presentation of the corollary may be found in Appendix A.3. Simply, the corol-
lary argues that PWRD aggregation maintains its advantage in the presence of spillover
within clusters, so long as the interference is compatible with a suitable adjustment of
the theory of the intervention. This is the situation arising in BURST: a greater propor-
tion of a school’s students directly receiving the intervention corresponds with a lower
proportion of those students being at risk of corresponding adverse spillover; its theory
of change must hold that benefits accruing to the first group exceed any detriment
toward the latter in aggregate.

The derivation of Proposition A.3 follows the same structure as the derivation of
Proposition A.2 found in Appendix A.

Simulations

In order to demonstrate how PWRD aggregation performs in comparison to exit obser-
vation analysis, flat weighting, mixed effects models, and a PWRD aggregation/flat
weighting combination using the step-down Dunnett procedure, we construct a simula-
tion study mirroring the design of BURST. We generate student outcomes to compare
statistical power across different scenarios using the following two-level model:

Yijk ¼ b0 þ b1Gradeijk þ lk þ eijk
lk ¼ c0 þ mk

, (7)

with mk)Nð0, nÞ: The outcome of student i in year of follow-up j at school k is a func-
tion of the grade of the student and the random intercept of the school at which the
student is enrolled, lk. Note that fixed effects like race, gender, socio-economic status,
and others could be added to this process, but were excluded as we have presented
PWRD aggregation without covariate adjustment. Once we generate these outcomes, we
perform the following two steps. First, we flag outcomes that fall below a given thresh-
old as eligible for supplemental instruction. Once a student tests in to receive the treat-
ment, all of their subsequent observations are flagged as well. The threshold changes by
grade to adjust for natural improvement with age. Second, we impose artificial treat-
ment effects on students within treatment-schools and find the corresponding power
across iterations of this data generation.

We compare the methods under three different treatment effects. Under the first, all
treatment observations flagged as eligible for supplemental instruction receive some con-
stant, positive effect s. Under the second, flagged treatment observations receive a con-
stant, positive effect s and unflagged treatment observations, i.e. individuals in the
treatment who do not test into the intervention, receive a constant negative effect &ps
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where p 2 ð0, 1': The third version of treatment effect imposes s)Nðl, 2:5 , lÞ for some l
to all treatment observations.

To mirror BURST, we generate 32,000 student-year observations across 26 pairs of
schools with students divided roughly evenly across kindergarten through third grade.
We assess the power provided by each of the models across 1000 iterations of this simu-
lation study for each artificially imposed effect size. Power for a given effect size is
determined by calculating how often a model rejects a null hypothesis of no effect at
the 5% level out of the 1000 iterations. We use cluster-robust standard errors with clus-
ters at the school level from the clubSandwich package in R (Pustejovsky &
Tipton, 2018).

Simulation Results

We present results from these simulations across the three variations of imposed treat-
ment effect described previously. For reference, the standard deviation of the outcome
variable is 23.5 points. Following guidance from Kraft (2020), we will refer to effect sizes
less than 0:05r (1.2 points in our simulation study) as small, those between 0:05r and
0:2r (4.7 points) as moderate, and those greater than 0:2r as large. Across 1,260 effect
sizes on reading outcomes from 495 RCTs, the mean effect size was 0:17r (4 points)
and the 90th percentile was 0:5r (11.8 points) (Kraft, 2020). Thus, our simulation study
examines these methods on effect sizes that frequently appear in reading interventions.

Effect 1
Figure 2 shows the power from 1000 replications of the synthetic experiment for each
effect size across the analytical schemes mentioned above. The mixed effects model is
specified according to Equation 3.1, but with an independent variable representing the
treatment. It is immediately apparent that PWRD aggregation outperforms the standard
methods, especially for medium effect sizes under which we observe a 35-50% increase
in power. This is unsurprising as PWRD aggregation attaches greater importance to stu-
dent-year observations most likely to have received an effect from the intervention and
down-weights the remaining observations. Power as observed when the effect is 0 is
simply the empirical size of the test; thus the left side of the plot indicates that use of
the PWRD method did not negatively affect Type I error rates. In addition, note that
while the step-down Dunnett combination of PWRD aggregation and flat weighting
offers less power than PWRD aggregation, it still yields far greater power than the
standard methods yield. Thus, this method should prove attractive both when the ana-
lyst wishes to be protected against a loss of power if the theory of change is incorrect or
when the analyst wishes to both test the null hypothesis and estimate the treatment
effect using a standard approach.

It is natural to ask whether the gains in power present in Figure 2 hold across differ-
ent levels of correlation of observations within a school. To examine this we conducted
additional simulations holding the imposed effect constant, but varying the intraclass
correlation (ICC). We present these results in Figure 3.

In Figure 3, PWRD aggregation consistently outperforms the standard methods across
ICCs that typically arise in educational settings (Hedges et al., 2007). For intraclass
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Figure 2. Power for the four methods under Effect 1 across increasing effect sizes when the theory of
change holds. PWRD/Flat denotes the combination of the methods through the step-down
Dunnett procedure.

Figure 3. Power for the four methods under Effect 1 with increasing intraclass correlations. PWRD/
Flat denotes the combination of the methods through the step-down Dunnett procedure.
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correlations between 0.1 and 0.2, PWRD aggregation provides 35–45% more power than
the competitors. That gap decreases for larger ICCs, although this is at the upper range
of reasonable ICC values. Furthermore, we still obtain a 35% improvement in power.
Lastly, the step-down Dunnett combination of PWRD aggregation and flat weighting
offers substantially greater power than the standard methods do on their own.

Effect 2
We now relax the assumption that students who do not receive targeted remediation
through the intervention are unaffected. Instead, we impose a negative effect that is in
magnitude 40% of the positive effect imposed on students who receive the supplemental
instruction. This is a scenario where there is interference within a school, which corre-
sponds to replacing Condition 2.1 with Condition 2.3 and thus Proposition A.2 with
Proposition A.3. We chose 40% to ensure the overall effect is positive in aggregate.

In Figure 4, we observe that under the relaxed assumption, PWRD aggregation per-
forms even better in comparison to the traditional methods than it did under the stand-
ard assumptions. This relative gain in power is expected. We weight down effect
estimates that are more likely to incorporate students with negative effects, attaching
greater importance to those more likely to have received a positive effect. None of the
other models perform a similar function and their power to detect an effect is substan-
tially reduced as a consequence. For small effect sizes, PWRD aggregation increases
power by roughly 30% and this gap widens as the effect size increases. For example, our

Figure 4. Power for the four methods under Effect 2 across increasing effect sizes when Condition 2.1
does not hold and is replaced with Condition 2.3. PWRD/Flat denotes the combination of the methods
through the step-down Dunnett procedure.
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method more than doubles the power of mixed effects models and flat weighting for
large effect sizes. Once again, the step-down Dunnett combination of PWRD aggrega-
tion and flat weighting greatly outperforms the traditional alternatives although not to
the extent of standard PWRD aggregation.

The phenomenon present in Figure 4 holds when the magnitude of the negative
effect varies as well. We observe this in Figure 5. Under this scenario, the size of the
benefit remains constant. Instead, the adverse effect for those treatment students
who do not test into the intervention varies from 0% of the benefit to 100% of the
benefit. PWRD aggregation provides a persistent 15-20 percentage point advantage
in power for negative effects up to 60% of the positive effect before narrowing out.
This corresponds to at least a 40% improvement in power for all magnitudes of the
negative effect; under certain circumstances, the method provides double the power.
When the negative effect is equal in magnitude to the positive effect, PWRD aggre-
gation no longer provides a benefit.

Effect 3
We now examine what occurs in cases where the theory behind interventions of this sort
entirely fails. This does not necessarily mean the intervention does not provide a benefit

Figure 5. Power for the four methods under Effect 2 with increasingly negative effects. Here we add
a positive effect of size 8 to students in the intervention and a negative effect that increases from 0%
to 100% of the positive effect. PWRD/Flat denotes the combination of the methods through the step-
down Dunnett procedure.
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just that it does not work as hypothesized by the theory of the intervention. Instead,
effects may accumulate in a different fashion. Here, we impose an artificial treatment
effect on all treatment observations such that sijk)Nðl, 2:5 , lÞ for l ¼ 1, . . . , 10: Note that
while the aggregate effect is still positive, any given student may be negatively affected.
Furthermore, effects are neither stacked nor persistent across time. We present these
results in Figure 6.

We observe that while the standard methods outperform PWRD aggregation, this
improvement is minimal and never exceeds 3%. For example, with an imposed effect
of size 5 (on the border between a moderate and large effect), the standard methods
accurately reject a null hypothesis of no effect 59.6% of the time. PWRD aggregation,
on the other hand, rejects the null hypothesis 58.9% of the time. For effect sizes
greater than 6 (roughly 0:25rÞ, we are able to reject frequently under any of the
schemes. From these simulations, it is clear that PWRD aggregation provides substan-
tial gains in power in situations when the theory of the intervention holds. While an
effect accumulating in a manner similar to Effect 3 may be more common than
either Effect 1 or Effect 2, our simulations show only marginal decreases in its ability
to reject the null hypothesis when the assumptions fail. In this scenario, we did not
require the additional protection against a failure in the intervention’s theory offered
by simultaneously implementing PWRD aggregation and flat weighting through the
step-down Dunnett procedure.

Figure 6. Power for the four methods under Effect 3, i.e. across increasing effect sizes when none of
Conditions 2.1, 2.2, or 2.3 hold. PWRD/Flat denotes the combination of the methods through the
step-down Dunnett procedure.
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PWRD Analysis Findings

This section presents results for BURST, both on Cohort 1.K and on the overall
randomized trial, using PWRD aggregation and commonly applied alternative meth-
ods. The theory behind BURST was presented in Section “Method.” Nonetheless, its
data structure merits additional discussion to clarify analysis in this section. We uti-
lized a large-scale cluster randomized trial to test the efficacy of BURST, a reading
intervention designed to assist early-elementary students at risk of falling below
grade-level proficiency. The experiment was block-randomized at the school level
with 26 total blocks, 24 of which were pairs of schools. The remaining two blocks
were a triplet of schools, in which two schools were assigned to treatment, and a
singleton. The singleton originally belonged to a pair until the school assigned to the
control attrited. Nearly every school was matched within its school district. Across
these 52 schools, we observed 27000 unique students on 1–4 occasions each, for a
total of 52,000 student-year observations. The length of time for which each student
participated in the RCT depended on the grade and year at which they entered the
study. While we encountered some missing data, we had demographic information
(race, gender, age, free lunch status, etc.) for the vast majority of students. In add-
ition, we had DIBELS scores and end-of-year assessment scores for each student.
DIBELS served as the diagnostic by which students were designated to receive tar-
geted instruction and additionally functioned as a pretest. The end-of-year assess-
ments were our primary outcome of interest. The BURST reading intervention study
was conducted under a University of Michigan IRB exemption.

Burst Cohort 1.K

In this section, we first show how the aggregation weights ŵ were generated before we
present the results themselves. In order to calculate ŵ, we estimate p and R. We know
from Section “PWRD Aggregation in the BURST Evaluation” that we estimate p using
the proportion of control students who tested in to receive supplemental instruction for
each year of follow-up. These values are presented in Table 3. We then calculate R
through a grouping of control-group residuals described in greater detail in Rowan
et al. (2019). We then formulate:

ŵ ¼ ðR&1pÞþ=
X

j

ðR&1pÞþj
¼ ð0:25, 0, 0:32, 0:43Þ,

where the weights correspond to the first through fourth years of follow-up respectively.
Note that while more students were eligible for supplemental instruction by the second
year than by the first, the relative precision of the estimate in the second year of follow-
up and its mutual correlations with the other estimates were prohibitively large. Thus,
PWRD aggregation suggests that outcome analysis would be best served by attaching no
weight to those observations.

We then employ a Peters–Belson (Belson, 1956; Peters, 1941) approach to estimat-
ing the average treatment effect both under standard analyses like flat weighting and
mixed effects models with a random effect at the school level, and also under PWRD
aggregation incorporating ŵ described above. Briefly, Peters-Belson methods apply
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covariate adjustment to the control group rather than to the treatment and control
simultaneously. That control-adjusted model is used to predict treatment outcomes.
The differences between the fitted and observed values serve to estimate the average
treatment effect. Results appear in Table 4.

None of the methods are able to detect an effect of the intervention, although
PWRD aggregation provides the greatest test statistic. In this scenario, exit observa-
tion analysis also gives a relatively large t statistic, conceivably because students in
their fourth year of follow-up, i.e. in third grade, were best situated to benefit
from BURST.

Burst[R]: Reading

We now conduct the same analysis described previously, yet using the complete
data from BURST. For PWRD aggregation, we calculate separate effect estimates
and aggregation weights for each cohort-year. As with analysis on Cohort 1.K, we
employ a Peters-Belson approach to covariate adjustment. Results are presented in
Table 5.

None of these methods detect an effect of BURST on student achievement: unfortu-
nately, this program would appear not to have provided a benefit. A possible explan-
ation for the apparent lack of an effect is that schools possessed limited resources; more
students required supplemental instruction than schools had the ability to serve at levels
recommended by the theory of the intervention (Rowan et al., 2019). Despite the theory
of change not appearing to have held, PWRD aggregation still provides valid standard
errors and a valid hypothesis test. This continues to hold if the intervention’s effect
is negative.

Nonetheless, if the theory of change were correct, the asymptotic relative efficiency of
PWRD aggregation versus exit observation analysis, flat weighting, and mixed effects
modeling was 1.30, 2.02, and 1.78 respectively. This suggests that we would have
required over 15, 52, and 40 additional schools in BURST in order to achieve the same
power we possessed under PWRD aggregation using these alternatives.

Table 4. BURST results on a subset of Cohort 1 students who entered the study in grade K for vari-
ous methods, including PWRD aggregation.
Method Est. S.E. t Value Sig. Test slope

Exit 9.88 9.72 1.02 – 0.082
Flat 2.50 10.61 0.24 – 0.070
Sch. RE 2 1.10 10.47 2 0.11 – 0.071
PWRD 8.87 6.89 1.28 – 0.109

Table 5. BURST results for various methods, including PWRD aggregation.
Method Est. S.E. t Value Sig. Test slope

Exit 2 1.10 3.25 2 0.34 – 0.189
Flat 2 0.09 4.17 2 0.02 – 0.152
Sch. RE 2 3.70 3.91 2 0.95 – 0.162
PWRD 2 0.34 3.03 2 0.11 – 0.216
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Discussion

The strategy of using a regression coefficient to conduct a hypothesis test is stand-
ard in settings across the social sciences. This approach assists in implementation of
commonly used methods like exit observation analysis, flat weighting, and mixed effects
models. Nonetheless, these conventional regressions may prove to be suboptimal in any
given scenario because they fail to account for which observations are most likely to
benefit from the treatment. In this paper, we have presented a novel method of aggrega-
tion that takes advantage of that structure by identifying relevant logic models and con-
verting them into statistical power. In the motivating example, an intervention
providing supplemental reading instruction, the salient logic model entailed that benefits
would accrue only after the student’s learning trajectory had stalled. We have shown
both mathematically and through a simulation study that when the working model of
how effects accumulate is accurate, PWRD aggregation provides far greater power than
extant alternatives.

This method is applicable in education settings, where suitable theories of
change are expected in research funding competitions. We demonstrated how to
extract the weights needed for PWRD aggregation from a theory of change that is
likely to be typical of interventions providing supplemental instruction. In it and
similar circumstances, the method requires measurements of intervention delivery
or exposure by cohort year. PWRD aggregation is constructed around theories of
an intervention that should be determined a priori, so the method is consistent
with pre-registration of analysis plans for increased transparency in out-
come analysis.

While PWRD aggregation is optimal when its supporting theory of change holds,
no benefit is gained when that theory is incorrect. Nonetheless, the scheme does not
greatly hamper one’s ability to detect an effect in this situation. To further protect
against any potential loss of power in settings when the working model fails, PWRD
aggregation may be used in tandem with standard estimation techniques like exit
observation analysis or flat weighting through a step-down Dunnett procedure, as
described in Section “Considerations When the Logic Model Fails.” In this variation
of the method, flat weighting or exit observation analysis contributes a standard ITT
estimate of the treatment effect for increased interpretability, PWRD aggregation
contributes a more efficient estimator that yields greater power than the traditional
method when effects accumulate in the hypothesized manner, and the Dunnett pro-
cedure preserves type 1 error rates despite multiple testing of a single null hypoth-
esis. PWRD aggregation can be adapted to other scenarios, both experimental and
quasi-experimental, with longitudinal data and a suitably theorized treatment that
accrues heterogeneously across observations.
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Appendices

A. Presentation of Proposition A.2 and Its Proof

First take the following technical condition that simplifies the development by excluding
pathological cases.

Condition A.1. CovðD̂Þ ¼ n&1R, with R a positive-definite symmetric matrix.

Proposition A.2. Consider test statistics of the forms:
P

g, t wgtD̂gt , with g and t ranging over
cohorts and times of follow-up respectively;

P
g, t wgtD̂gt&

P
g, t wgtd0gt , where d0 is a vector of

hypothesized values of D, D :¼ ðDgt : g, tÞ; and v̂&1=2ð
P

g, t wgtD̂gt&
P

g, t wgtd0gtÞ, where v̂ , perhaps
an estimate of Varð

P
g, t wgtD̂gtÞ, satisfies nv̂!pc>0. Consider the family of statistical hypotheses

fKg : D ¼ gp, g * 0g. Under Conditions 2.1, 2.2, and A.1, and for tests of H0 ¼ K0 against alter-
natives Kg, g>0, asymptotic relative efficiency is maximized by

w ¼ ðR&1pÞþ=
X

j

ðR&1pÞþj
:

(In this display, ðR&1pÞþ denotes the element-wise maximum of ðR&1pÞ and 0, and ð(Þþj
denotes

the jth element of ð(Þþ such that w01 ¼ 1.)
Consider the parameter Dagg ¼ Eð

P
g, t wgtD̂gtÞ ¼ w0D where Dgt, and thus Dagg, follow a pro-

portionality assumption, i.e. Dgt / gpgt: The variance of w0D satisfies Varð
P

g, t wgtD̂gtÞ ¼
w0RDw, where RD denotes the covariance of effects across cohort-years fg, tg, and is assumed
fixed at a common value across hypotheses Kg,&1<g<1:

Now examine the test statistic
P

g, t wgtD̂gt , the argument for the other forms being similar.
Our problem is to select w ¼ ðw1, 1, . . . ,wG, TÞ * 0 that maximizes the test slope of

P
g, t wgtD̂gt

which in turn will maximize the asymptotic relative efficiency for PWRD aggregation versus alter-
native methods of aggregation given the theory of change is true. Following the definition of test
slope provided in (Van der Vaart, 2000, p. 201):

hðwÞ ¼
D0
aggð0Þ

Cov1=20 ðw0D̂Þ
¼

D0
aggð0Þ

w0RDw½ '1=2
, (A.1)

where D0
aggð0Þ denotes the derivative at zero of a function of the form d 7!DðdÞ: The correspond-

ing asymptotic relative efficiency for different w may be represented by ðhðw1Þ=hðw2ÞÞ2: The
form of the two test statistics is identical; they merely incorporate different aggregation weights
w: Thus, it follows that finding wopt , where wopt maximizes the test slope, will also maximize the
asymptotic relative efficiency ðhðwoptÞ=hðwaltÞÞ2: Under flat weighting, waltgt :¼ ngt=N, where ngt
denotes the number of observations in cohort g during year of follow-up t and N denotes the
total number of observations.
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A.1. Determining the Optimum Wopt
We would like to determine which w maximizes the test slope in (A.1). Under the assumption
that Dg, t / gpgt , then D0

gtð0Þ / pgt as well. Thus, to determine which w maximizes the test slope
in (A.1), we maximize the following:

max
w

w0p

Var1=2ðw0D̂Þ
: (A.2)

We first transform A.2 logarithmically which is equivalent to maximiz-
ing fðwÞ ¼ log ðw0pÞ& 1

2 log ðVarðw
0D̂ÞÞ:

To maximize, we take the gradient of fðwÞ and set the gradient equal to the zero-vector, 0, i.e.
rfðwÞ : p0

w0p&
w0RD
w0RDw

¼ 0: Note that both w0p and w0RDw are scalars, so we can rewrite this as
ðw0pÞ&1p0&ðw0RDwÞ&1w0RD ¼ 0: We now rearrange the terms to solve for wopt :

wopt ¼
w0RDw
w0p

! "
p0R&1

D :

For the proof with the non-negativity constraint, see the online Supplemental Appendix A.

A.2. Estimation of Wopt
From Slutsky’s Theorem, we can then estimate wopt as follows:

ŵopt ¼
w0RDw
w0p̂

! "
p̂0R&1

D : (A.3)

If we allow a ¼ w0RDw
w0p̂

# $
, we can then rewrite this as ŵopt ¼ a ( p̂0R&1

D : To check this simplifies,
plug a ( p̂0R&1

D back into w in A.3. We have thus uniquely specified ŵopt: Furthermore, in prin-
ciple we can define ŵopt only up to a constant of proportionality such that ŵopt ¼ p̂0R&1

D : Since
R&1
D is symmetric, we can rewrite this as ŵopt ¼ R&1

D p̂:

A.3. PWRD Aggregation with Interference

Proposition A.3. Under Conditions 2.2, 2.3, and A.1, the following aggregation weights w will
maximize the slope of test statistics discussed in Proposition A.2 for the family of hypothesis tests
and alternative hypotheses also elaborated in Proposition A.2:

w ¼ ðR&1pÞþ=
X

j

ðR&1pÞþj
:

B. PWRD Aggregation and Type I Errors

In Section “PWRD Aggregation,” we demonstrated how PWRD aggregation maximizes the test slope
and thus, the corresponding power for the family of hypotheses Kg : D ¼ gp: That is, when the treat-
ment effect is proportional to the share of non-excluded observations, PWRD aggregation maximizes
power. Here, we remove that assumption and all assumptions about the form of the treatment effect.
We do require joint limiting Normality of D̂ and a consistent estimator of its covariance.

Condition B.1. The estimator dCovðD̂Þ is consistent for CovðD̂Þ, in the sense that
|ndCovðD̂Þ & R|2!P0, where R is as in Condition A.1.

Condition B.2.
ffiffiffi
n

p
ðD̂&DÞ!dNð0,CovðDÞÞ:

With Conditions A.1, B.1 and B.2, we formulate a simple proposition about the distribution of
the test statistic specified in Equation 2.5.
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Proposition B.3. Take fixed aggregation weights x. Under the null hypothesis H0 and when
Conditions A.1, B.1, and B.2 hold,

P
g, t xgtD̂gt&

P
g, t xgtd0gt

ðx0CovðD̂ÞxÞ1=2
!dNð0, 1Þ:

Proposition B.3 states that with a consistent estimator of the covariance and an estimator that is
asymptotically multivariate normal, the test statistic specified in Equation 2.5 with fixed aggregation
weights x will converge to a standard multivariate normal distribution. For finite sample sizes n, this
test statistic should approximately follow a t-distribution with n – k degrees of freedom, where k repre-
sents the number of estimated parameters. Note that the denominator, v̂1=2, present in Equation 2.5
and Section 2.2 at large denotes the quadratic form of estimated covariances of D̂: PWRD aggregation
requires statisticians provide a covariance estimator with consistency guarantees, i.e. Condition B.1.

While Proposition B.3 allows us to determine the asymptotic distribution of test statistics with
the form in Equation 2.5 for fixed aggregation weights x, PWRD aggregation does not incorpor-
ate fixed weights. Rather, two components of PWRD aggregation, p̂ and R̂, are random variables.
Consequently, the aggregated statistic

P
g, t ŵgtD̂gt includes an auxiliary statistic: ŵgt: Addressing

additional variation of this type generally requires analysis through stacked estimating equations,
a technique not readily compatible with the best-in-class clustered standard error estimation of
Pustejovsky and Tipton (2018). Thus, our standard error scales the covariance between each D̂gt
by aggregation weights ŵ , yet does not incorporate the covariance between each ŵgt: To address
this issue, we first present a mild condition on p̂:

Condition B.4. p̂ is root-n consistent, i.e. |p̂ & p|2 ¼ OPðn&1=2Þ:

As applied to the BURST study, Condition B.4 is immediate from the Weak Law of Large
Numbers. Conditions A.1, B.1, and B.4 allow us to circumvent our standard error not incorporat-
ing additional variation from ŵ through Proposition B.5.

Proposition B.5. Consider t-statistics of the form

ð
P

g, t ŵgtD̂gt&
P

g, t ŵgtd0gtÞ

ðŵ 0dCovðD̂ÞŵÞ1=2
, (B.1)

where ŵ ¼ ðdCov½D̂'&1p̂Þþ=
P

j ðdCov½D̂'
&1p̂Þþj

2 ½0, 1' represents weights for PWRD aggregation.
Under Conditions A.1, B.1, and B.4, the difference between (B.1) and

ð
P

g, t wgtD̂gt&
P

g, t wgtd0gtÞ

ðw0CovðD̂ÞwÞ1=2
,

where w ¼ ðR&1pÞþ=
P

j ðR
&1pÞþj

, is asymptotically negligible:
P

g, t ŵgtD̂gt&
P

g, t ŵgtd0gt

ðŵ 0dCovðD̂ÞŵÞ1=2
&
P

g, t wgtD̂gt&
P

g, t wgtd0gt

ðw0CovðD̂ÞwÞ1=2

" #

!P0: (B.2)

Simply, Proposition B.5 states that the t-statistic centered around
P

g, t ŵgtd0gt , where ŵ ¼
ðR̂&1

p̂Þþ=
P

j ðR̂
&1
p̂Þþj

, and scaled by a consistently estimated standard error will converge in
probability to the “proto” t-statistic appearing in Prop. B.3 and covered by Prop. A.2, which is
centered around the parameter

P
g, t wgtd0gt and scaled by the sampling s.d. of

P
g, t wgtD̂gt: As a

consequence, hypothesis tests incorporating PWRD aggregation will maintain proper Type I error
rates. Therefore, PWRD aggregation provides valid hypothesis tests even when the theory of
change does not hold. The proof of Proposition B.5 can be found in the online Supplementary
Appendix B.
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