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A B S T R A C T

Recent theoretical work on phylogenetic birth–death models offers differing viewpoints on whether they can
be estimated using lineage-through-time data. Louca and Pennell (2020) showed that the class of models with
continuously differentiable rate functions is nonidentifiable: any such model is consistent with an infinite
collection of alternative models, which are statistically indistinguishable regardless of how much data are
collected. Legried and Terhorst (2022) qualified this grave result by showing that identifiability is restored if
only piecewise constant rate functions are considered.

Here, we contribute new theoretical results to this discussion, in both the positive and negative directions.
Our main result is to prove that models based on piecewise polynomial rate functions of any order and with any
(finite) number of pieces are statistically identifiable. In particular, this implies that spline-based models with
an arbitrary number of knots are identifiable. The proof is simple and self-contained, relying mainly on basic
algebra. We complement this positive result with a negative one, which shows that even when identifiability
holds, rate function estimation is still a difficult problem. To illustrate this, we prove some rates-of-convergence
results for hypothesis testing using birth–death models. These results are information-theoretic lower bounds
which apply to all potential estimators.

1. Introduction

The linear birth–death (BD) process (Feller, 1939; Kendall, 1948)
has been used to study population growth in a variety of settings. Re-
cently, in phylogenetics, it has also served as a model of tree formation,
by viewing the surviving lineages of a tree as members of population,
which randomly give birth to other lineages, or go extinct. Often, the
rates at which these ‘‘births’’ and ‘‘deaths’’ occur in a phylogeny touch
on important evolutionary questions. For example Nee et al. (1994),
Quental and Marshall (2010) and Morlon et al. (2011) used phyloge-
netic BD models to study extinction and speciation dynamics; Gernhard
(2008) and Heath et al. (2014) used them to calibrate divergence times;
and Stadler (2009, 2010) and Stadler et al. (2013) investigated the
dynamics of pathogens in an infection tree. Estimating the rate at which
lineages are born and die in an observed phylogeny is not trivial: in
the usual case where only extant members of the population can be
sampled, deaths are not recorded at all, and the apparent rate of births
will also be biased downwards, because some lineages went extinct
before the present, or were simply not sampled. The birth–death model
of tree formation provides a principled way to correct these biases.

Despite its widespread use, serious questions have recently been
raised about whether it is even possible to estimate this model from
phylogenetic data. Stadler (2009) showed that even when the birth and
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death rates are assumed constant over time, the birth–death model with
present-day sampling fails to be identifiable if the sampling probability
is not known in advance. That is, multiple distinct models produce
exactly the same distribution over the observable data. Other studies
have incorporated time-varying per capita birth and death rates in
attempting to be more biologically realistic (Stadler et al., 2013). How-
ever, Louca and Pennell (2020) have recently shown that birth–death
models with smoothly varying rate functions are unidentifiable from
extant timetrees, meaning that they cannot be consistently estimated
from data.

In Legried and Terhorst (2022a), this grave finding was partly qual-
ified by showing that a smaller class of candidate models, consisting
of birth and death rates which are piecewise constant, is identifiable
given a sufficiently large timetree. This sample size is small enough for
many applications, such as the phylodynamic analysis of pathogens.
A potential objection is that the class of piecewise-constant models
considered by Legried and Terhorst (2022a) might not be sufficiently
large if one believes that the birth and death rates could be continuous
or satisfy other smoothness criteria. A partial response to this issue is
given in their Theorem 5. Broadly speaking, that result states that any
unidentifiable, but reasonably smooth, model can be approximated by

https://doi.org/10.1016/j.jtbi.2023.111520
Received 21 October 2022; Received in revised form 28 March 2023; Accepted 26 April 2023

https://www.elsevier.com/locate/yjtbi
http://www.elsevier.com/locate/yjtbi
mailto:jonth@umich.edu
https://doi.org/10.1016/j.jtbi.2023.111520
https://doi.org/10.1016/j.jtbi.2023.111520
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jtbi.2023.111520&domain=pdf


Journal of Theoretical Biology 568 (2023) 111520

2

B. Legried and J. Terhorst

an identifiable one. However, there is a sampling size requirement to
have provable identifiability that diverges as the approximation error
goes to zero. In their Conjecture 6, they suggest that their results extend
to models with piecewise-polynomial (or spline) birth and death rates,
with a similar sampling requirement to the piecewise-constant case.
Resolution of this conjecture would give a sampling requirement for
polynomial birth and death rates to be identifiable, but mathematical
difficulty left the question open.

In this paper, we prove the following stronger version of their
Conjecture 6: piecewise-polynomial models defined on an arbitrary
(but finite) number of pieces are identifiable from extant timetree
data. Further, the sample size requirement is removed. Our results
demonstrate that it is not the presence of jump discontinuities that leads
to identifiability. Indeed, our main result (Theorem 1) establishes the
existence of identifiable model classes containing smooth (Cÿ) birth
and death rate functions. The proof relies on the fact that polynomials,
uniquely and by definition, have finite power series. In contrast, the
proof technique of Legried and Terhorst (2022a) depends on solving
a certain differential equation satisfied by the rate functions, which is
difficult to carry out when those functions are not constant.

Even when identifiability holds, accurate estimation is often diffi-
cult. In the second section of the paper, we use ideas from a related lit-
erature on the estimation of coalescent-based models (Kim et al., 2015;
Legried and Terhorst, 2022b) to study hypothesis testing problems
for phylogenetic birth–death models. We derive information theoretic
lower bounds which extend to all potential estimators of these models.
Moreover, as these results assume perfect knowledge of the underlying
time-tree, the problem could in fact be much harder given limited or
error-prone data.

2. Background

Given N g 2 samples, an extant time tree is a phylogenetic tree
representing their ancestral relationships. The branching times are
denoted ⌧1 > 5 > ⌧N*1 > 0, where time run backwards from the
present. All N leaves are taken to be sampled at the present t = 0,
so that the tree is ultrametric. There is also a source node called the
origin, whose age is denoted by ⌧o, which is a user-specified parameter.
Extant time trees are generated according to a phylogenetic birth–
death (BD) process (Nee et al., 1994). The dynamics of this process
are governed by three parameters. The per-capita birth and death rate
functions � : Rg0 ô R>0 and � : Rg0 ô R>0 give the instantaneous
rates at which surviving lineages give birth (bifurcate) or die. The
third parameter ⇢ À (0, 1] is the sampling probability; each lineage
that survives to time t = 0 is sampled (exists in the time tree) with
probability ⇢, independently of all other surviving lineages. The triple
(�,�, ⇢) determines a phylogenetic BD process.

The birth and death rate functions are assumed to belong to a
certain function space. In this paper, we study the case where they are
given by piecewise-polynomial functions over the interval [0, ⌧o]. Let P
denote the set of all polynomials with real coefficients, i.e.

f À P ⌥ «n À Zg0, a À Rn+1 such that f (x) = a0 + a1x +5 anxn.

Definition 1. Let P (‚K)[0, ⌧o] be the collection of piecewise polynomi-
als with K internal breakpoints defined over [0, ⌧o]:

P (‚K)[0, ⌧o] =
T K…

k=1
pk(t)1[tk*1 ,tk)(t) : pk À P ,

0 = t0 < t1 < 5 < tK = ⌧o

U
.

(The breakpoints t0,… , tK may vary between members of P (‚K)[0, ⌧o].)
Let P (‚)[0, ⌧o] =

∑ÿ
K=1 P (‚K)[0, ⌧o] be the set of piecewise polynomials

with any finite number of pieces. Similarly, we define the positive
subset of these polynomials, P (‚)

+ [0, ⌧o] œ P (‚)[0, ⌧o], by

P (‚)
+ [0, ⌧o] =

<
p À P (‚)[0, ⌧o] : inf

tÀ[0,⌧o]
p(t) > 0

=
.

We now define the corresponding collection of phylogenetic BD
models consisting of piecewise-polynomial birth and death rates. In
the results that follow, we assume that ⇢ is known; if ⇢ is left to be
estimated, then the resulting model space is unidentifiable even when
� and � are constrained to be constant (Stadler, 2009; Stadler and
Steel, 2019). Thus, the model class of interest supposes the sampling
probability ⇢ is known in advance.

There are several equivalent ways to define the phylogenetic BD
model. In this paper, we find it convenient to work in the following
parameterization.

Definition 2. Let

I⇢ =
$
(�, r, ⇢) : � À P (‚)

+ [0, ⌧o], r À P (‚)[0, ⌧o], � * r g 0
%

be the space of all piecewise-polynomial BD parameterizations with
birth rates � À P (‚)

+ [0, ⌧o], net diversification rates r À P (‚)[0, ⌧o], and
fixed sampling fraction ⇢ À (0, 1].

Note that elements of the model class I⇢ are in 1–1 correspondence
with models defined by the more common birth/death rate parameter-
ization, via the identity r = �* �. The function r is commonly referred
to as the net diversification rate (Rabosky, 2010).

Louca and Pennell (2020) consider a new quantity called the pulled
speciation rate �p, defined as

�p(t) = �(t) [1 * E(t)] , (1)

where E is the probability that a lineage that exists at time t is not
sampled at the present. Thus, extinction ‘‘pulls’’ the observable birth
rate downwards compared to the true one. E satisfies the differential
equation
dE
dt

= � * (� + �)E + �E2,

with initial condition E(0) = 1*⇢ (Morlon et al., 2011). This Bernoulli-
type equation has the solution

E(t) = 1 * eR(t)

⇢*1 + î t
u=0 �(u)eR(u) du

, (2)

where

R(t) =  
t

u=0
r(u) du (3)

is the cumulative net speciation rate. Thus,

�p(t) =
�(t)eR(t)

⇢*1 + î t
u=0 �(u)eR(u) du

. (4)

The cumulative integral ⇤p is given by

⇤p(t) =  
t

u=0
�p(u) du.

Finally, we write the likelihood of a timetree. For the phylogenetic
BD process, the likelihood depends only on the number and timing of
branching events, and is independent of the tree topology (Nee et al.,
1994; Morlon et al., 2011). Given that the number of tips is N and the
process survives to the present over a period of length ⌧o, Louca and
Pennell (2020, supp. eqn. 34) show that the likelihood of a tree with
bifurcation times ⌧1,… , ⌧N*1 is

L(�p)(⌧1,… , ⌧N*1⌧o) ◊
N*1«
i=1

�p(⌧i)e*⇤p(⌧i), ⌧o > ⌧1 > 5 > ⌧N*1. (5)

From the preceding display, it is clear that a sample of merger times
(⌧1,… , ⌧N*1) from an extant timetree can be equivalently viewed as the
order statistics of N * 1 i.i.d. draws from a distribution with density

f (x) ◊ �p(x)e*⇤p(x) (6)

supported on [0, ⌧o], and that �p is the hazard rate function of this
distribution. (See Section 5.2.1 for additional discussion.) Thus, �p
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Fig. 1. Identifiable versus unidentifiable models. The top row contains four unidentifiable models shown in Figure 1 of Louca and Pennell (2020). Each color-coded (�,�) pair in
the top maps to the same pulled rate function; hence they are indistinguishable. In the bottom row, we approximated these functions using interpolating cubic splines, with knots
at t = 15, 14,… , 0. According to Theorem 1, these models have different pulled rate functions, and may be distinguished in the infinite-data limit.

completely characterizes the distribution of merger times in a timetree,
and different BD models have different likelihoods if and only if their
respective pulled rate functions are not equal almost everywhere on
[0, ⌧o]. Moreover, subject to standard regularity conditions on haz-
ard rate functions, �p (at least) can be consistently estimated from a
timetree as the number of leaves N tends to infinity.

3. Results

We first show that piecewise polynomial phylogenetic birth–death
models are identifiable from time-tree data, meaning that that different
models in I⇢ have different likelihood functions. As noted in the
preceding section, it suffices to prove that different models possess
different pulled rate functions.

Theorem 1 (Identifiability Of Piecewise Polynomial BD Models). LetM1 =
(�(1), r(1), ⇢) and M2 = (�(2), r(2), ⇢) be two models in I⇢. Then �(1)p = �(2)p if
and only if M1 = M2.1

Theorem 1 is the main result of this paper, and should be con-
trasted with that of Louca and Pennell (2020). There, it is shown that,
within the model class consisting of continuously differentiable birth
and death rate functions, there are infinitely (in fact, uncountably)
many pairs of such functions which all map to the same pulled rate
function. Hence, statistical estimates of �p, even if they were somehow
uncontaminated by error, do not automatically translate into accurate
estimates of the underlying rate functions. The best one can hope for
is to estimate an equivalence or ‘‘congruence’’ class of rate functions,
whose members can be qualitatively quite different, as Louca and Pen-
nell (2020) exhibit. Theorem 1 asserts that this unfortunate situation
cannot occur if one places additional and somewhat mild assumptions
on the model class: different models in I⇢ have different pulled rate
functions, and conversely. In fact, the theorem shows that every unique
piecewise-polynomial rate parameterization corresponds to a different
pulled rate function. Hence, the number and placement of break points,
as well as the underlying rates themselves, can, at least in principle, all
be estimated given a sufficiently large time tree.

1 Throughout the paper, we take f = g to mean that the rate functions f
and g are equal almost everywhere with respect to Lebesgue measure.

However, this seemingly positive outlook does not paint the full
picture. In Section 4, we demonstrate that phylogenetic BD models
can fail to be ‘‘practically’’ identifiable, in the sense that it may be
impossible to ascertain the correct model given a realistic amount of
data. To formalize this, we consider a testing problem where the task
is to choose between two competing models which are hypothesized
to have generated the data. One hypothesis is H1 : (�, r, ⇢), where
now the rate functions � and r can be arbitrary, and are not restricted
in form as in Theorem 1. The second hypothesis differs from the
first by only a multiplicative perturbation of the birth-rate function,
H2 : ((1 + ⌘)�, r, ⇢), where ⌘ > 0 is a constant. Intuitively, if ⌘ is too
small relative to the amount of data that has been collected, then it is
difficult to distinguish between H1 and H2. Our next result quantifies
this intuition.

Theorem 2. Consider the hypothesis testing problem where H1 states
that the birth–death model over [0,ÿ) is (�, r, ⇢) while H2 states that the
birth–death model is ((1 + ⌘)�, r, ⇢), where ⌘ > 0 is a constant. If an extant
timetree on N leaves is observed, then for sufficiently small ⌘, the Bayes
error rate for distinguishing between H1 and H2 is at least (1*⌥ )_2, where

⌥ f
˘
N⌘
2 . (7)

We prove a complementary result for when the net diversification
rate r is scaled. However, for technical reasons, we are forced to make
the strong assumption that � and r are constant when proving this
theorem.

Theorem 3. Consider the hypothesis testing problem where H1 states that
the birth–death model over [0,ÿ) is (�, r, ⇢) while H2 states that the birth–
death model is (�, (1 + ⌘)r, ⇢), where both � and r are constant over time,
and ⌘ > 0 is a constant. If an extant time tree on N leaves is observed,
the for sufficiently small ⌘, the Bayes error rate for any classifier is at least
(1 * ⌥ )_2, where

⌥ f
˘
N⌘
2 .

Since the Bayes error rate lower bounds classification accuracy, the
theorems imply that the probability of correctly determining whether
the timetree was generated by H1 or H2 is at most (1 +⌥ )_2 using any
method. The key feature of the bounds is that they degrade in only the
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Fig. 2. The pulled rates of speciation and net diversification for each of the spline models shown in the bottom row of Fig. 1. The sampling fraction was ⇢ = 0.5 in each model.

square root of the size of the time-tree N . Hence, unless N ∏ 1_⌘2, no
procedure can distinguish between H1 and H2 with high probability.

4. Discussion

In this paper, we have derived new theoretical results concerning
estimation of phylogenetic birth–death models using time-tree data.
Our main result, Theorem 1, establishes identifiability of phylogenetic
BD models parameterized by piecewise polynomial rate functions. One
implication that may be surprising is that there exist identifiable classes
of birth–death models with smoothly varying birth and death rates that
are not purely constant. In particular, spline rate functions are identi-
fiable. Splines are piecewise polynomials with additional smoothness
constraints, and are widely used to model natural systems.

Theorem 1 improves on an earlier result of Legried and Terhorst
(2022a), who established identifiability of piecewise constant BD mod-
els; we obtain their result as a special case. However, the sampling
models underlying the two results are slightly different. Legried and
Terhorst (2022a) assume access to a finite collection of moments of
merger times (⌧1,… , ⌧N ), the number of which increases with the
number of pieces K of the rate functions. Conceivably, these could
be estimated using a large collection of independent time trees all
of size N . Here, we assume access to the complete distribution of
(⌧1,… , ⌧N ), which, as noted above, is given essentially by the density
f (x) in Eq. (6). This scheme is more in keeping with the model studied
by Louca and Pennell (2020), where there is a single time-tree tending
in size to infinity.

To better understand the relationship between Theorem 1 and the
non-identifiability result of Louca and Pennell (2020), consider Fig. 1.
The top row is adapted from Fig. 1 of their paper, and depicts four
pairs of (�,�) rate functions which all have the pulled sampling rate
�p. In the bottom row, we approximated each of these functions using
a cubic spline, with sixteen knots placed at t = 15,… , 0. The models
shown in the bottom row are identifiable; the ones in the top are
not. Note that there are some visual differences between the two
panels; for example the speciation rates of the red and green models
intersect in the top row, whereas the spline smoothness constraints
prevent them from doing so in the bottom. (For illustrative purposes,
we used a very simple interpolating spline with equispaced knots; a
closer approximation could be obtained using a more complex fitting
procedure.) Practitioners must decide if the spline model class (or a
related class of identifiable models) can faithfully model population
dynamics in their application.

The results we present here restore to some extent the mathematical
footing beneath the many published studies that have utilized the linear
birth–death process to describe evolution. However, identifiability is a
minimal regularity condition one can impose on a statistical model, and
estimation remains challenging. To see this, consider now Fig. 2, which
plots the pulled speciation and net diversification rates for each of the

spline-based models from Fig. 1. By Theorem 1, these functions are nec-
essarily different—but in terms of estimation, the important question
is how different they are. It is evident from Fig. 2 that distinguishing
the green model from the other three is probably feasible. In contrast,
the red and orange models appear almost identical in terms of �p, and
identifying which of them generated a particular data set is likely to be
difficult.

This leads to our second set of results, Theorems 2 and 3, which
study the hardness of distinguishing between competing BD hypothesis
using only a finite amount of data. We prove that even answering
the relatively simple question of whether the data are generated by
a particular model, or one in which its rate function(s) are a scalar
multiple of it, scales poorly in the time-tree size N . (This theoretical
limitation is also found in coalescent models, see Kim et al. (2015).)
As Fig. 2 already suggests, the question of when practical estimation is
possible is likely to be quite subtle even in identifiable model classes.
Much more deserves to be said, and this is an important area for future
research.

Finally, an obvious caveat to the results we have presented is that
it may not be possible to estimate �p in the first place. As noted in Sec-
tion 1, inferring �p is tantamount to estimating the hazard rate function
of the distribution shown in (5). If it were possible to directly sample
from this distribution, estimation of �p would be routine, however this
is not possible in practice. Rather, one must first estimate the time-tree
itself, and then treat the estimated merger times as though they were
samples from (5). Tree inference is itself a difficult problem, and often
these estimates contain considerable error, so it is not obvious that such
a procedure leads to accurate downstream estimates of the underlying
BD model, even in the infinite-data limit.

The assumption that the time tree is known colors our results as
follows. First, it implies that the lower bounds derived in Theorems 2
and 3 are likely not sharp, even for identifiable model classes, and that
inferring phylogenetic BD models can be even harder than is indicated
by theorems. Conversely, it qualifies Theorem 1 somewhat, since the
theorem does not resolve the question of whether phylogenetic BD
models are identifiable on the basis of the observed data. In this sense,
unidentifiability results like those derived in Stadler (2009) and Louca
and Pennell (2020) are stronger, since they imply that the model cannot
be estimated even if we somehow had direct access to the underlying
time-tree. We note in closing that there is a growing literature on
phylogenetic identifiability (e.g., Rhodes and Sullivant, 2012; Mossel
and Roch, 2013), which derives conditions under which it is possible
to consistently estimate an underlying phylogeny given character data
evolving along its branches. If it can be shown that an asymptotically
expanding time tree of the variety considered here is estimable, it
would, together with our results, imply identifiability of polynomial
rate functions from character data.
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5. Proofs

This section contains the proofs of Theorems 1–3.

5.1. Polynomial identifiability

In this subsection, we prove Theorem 1. We begin with the case of
polynomial models.

Lemma 1. Consider two models (�(1), r(1), ⇢) and (�(2), r(2), ⇢) where
�(i), r(i) À P are polynomials with inf tÀ[0,⌧o] �

(i)(t) > 0, and define

p = �(2)
⌅
�(1)

⇧® * �(1)
⌅
�(2)

⇧® + �(1)�(2)(r(1) * r(2)) À P . (8)

If u is a limit point of the set {t : �(1)p (t) = �(2)p (t)}, then p(u) = 0. In
particular, if there are infinitely many such points, then p í 0.

Proof. For any such u, we have by continuity

0 = �(1)p (u) * �(2)p (u) = d
dt

⌧
log �(1)p (t) * log �(2)p (t)

�ÛÛÛÛt=u
.

By (4),

d
dt

log �p(t) =
�®(t)
�(t) + r(t) * d

dt
log

0
⇢*1 +  

t

u=0
�(u)eR(u) du

1

= �®(t)
�(t) + r(t) * �p(t).

Thus
⌅
�(1)

⇧® (u)
�(1)(u)

+ r(1)(u) *
⌅
�(2)

⇧® (u)
�(2)(u)

* r(2)(u) = 0.

Clearing denominators gives p(u) = 0. If there are infinitely many
limit points, then p has infinitely many zeros and hence is identically
zero. ∏

Our main new technical result is the following sufficient condition
for equality of two polynomial models, which works by an algebraic
argument.

Lemma 2. Let (�(1), r(1), ⇢), (�(2), r(2), ⇢), and p be as defined in Lemma 1.
If �(1)p (0) = �(2)p (0) and p í 0, then (�(1), r(1)) = (�(2), r(2)).

Proof. By assumption, for i À {1, 2} there exist mi = deg �(i) and
ni = deg r(i) and real coefficients �(i)j and r(i)j , with �(i)mi

ë 0 such that

�(i)(t) =
mi…
j=0

�(i)j tj

r(i)(t) =
ni…
j=0

r(i)j tj .

We first establish r(1) = r(2). Define n = max(n1, n2). If n = *ÿ then
r(1) = r(2) í 0 and there is nothing to show. Otherwise, let

q(t) = r(1) * r(2) =
n…

j=0

⇠
r(1)j * r(2)j

⇡
tj =:

n…
j=0

qj tj , (9)

where we set r(i)j = 0 for all j > ni. In order to prove r(1) = r(2), it suffices
to show qj = 0 for all j À {0,… , n}.

Next, define the polynomials

p1 = �(2)
⌅
�(1)

⇧®

p2 = *�(1)
⌅
�(2)

⇧®

p3 = q�(1)�(2), (10)

so that

p1 + p2 + p3 = p í 0. (11)

We observe that deg(p1 + p2) f m1 +m2 * 1, and that p3 is a polynomial
of degree at most m1 + m2 + n:

p3(t) =
m1+m2+n…

j=0
�j tj ,

for some �0,… , �m1+m2+n À R. Hence, by (11),

�m1+m2+n = �m1+m2+n*1 = 5 = �m1+m2 = 0. (12)

We proceed to establish that qn*j = 0 for 0 f j f n by induction on
j. For the base case j = 0, we have by (10) that the leading coefficient
of p3 equals the product of the leading coefficients of �(1), �(2), and q:

�m1+m2+n = qn�(1)m1
�(2)m2

. (13)

Since �(i)mi
ë 0, it must be that qn = 0.

Now suppose the claim is true for all 0 f j < k. By polynomial
convolution, we have

�m1+m2+n*k =
…

(u,v,w)ÀS
qu�(1)v �(2)w ,

where the summation is over the index set

S =
�
(u, v,w) À Z3 : u + v +w = m1 + m2 + n * k, u À [0, n],

v À [0,m1],w À [0,m2]
�
.

We partition S into disjoint subsets

S ® = {(u, v,w) À S : u > n * k}
S ®® = {(u, v,w) À S : u = n * k} = {(n * k,m1,m2)}.

By the inductive hypothesis,
…

(u,v,w)ÀS®
qu�(1)v �(2)w = 0,

so that

�m1+m2+n*k =
…

(u,v,w)ÀS®®
qu�(1)v �(2)w = qn*k�(1)m1

�(2)m2
.

This together with (12) implies that qn*k = 0. Hence q = 0, so r(1) = r(2).
We conclude by showing that �(1) = �(2). Since q = 0, we have

p1 = *p2 by (11). Therefore,

d
dt

log �(1) =
⌅
�(1)

⇧®

�(1)
=

⌅
�(2)

⇧®

�(2)
= d

dt
log �(2) ⌃ �(1) = C�(2)

for some constant C > 0. Hence,

C⇢�(2)(0) = �(1)p (0) = �(2)p (0) = ⇢�(2)(0)

implies C = 1. ∏

The lemma furnishes the following corollary on identifiability for
polynomial models.

Proposition 1. Let (�(1), r(1), ⇢) and (�(2), r(2), ⇢) be as defined in Lemma 1.
If (�(1), r(1)) ë (�(2), r(2)), then �(1)p (t) ë �(2)p (t) on a subset of positive measure
in [0, ⌧o].

Proof. By Lemma 2, either p ë 0 or �(1)p (0) ë �(2)p (0). In the former case,
Lemma 1 shows that set {t : �(1)p (t) = �(2)p (t)} contains at most a finite
number of limit points, so it is null. In the latter case, by continuity,
there exists u > 0 such that �(1)p (t) ë �(2)p (t) for all t À [0, u). ∏

We use Proposition 1 to prove Theorem 1 for piecewise-polynomial
birth and death rates on an arbitrary number of pieces. The proof is an
extension of Proposition A.5 in Legried and Terhorst (2022a).

Proof of Theorem 1. The ‘‘if’’ direction is immediate. To establish the
‘‘only if’’ direction, we show its contrapositive:

�
�(1), r(1)

� ë �
�(2), r(2)

�

implies �(1)p ë �(2)p on a set of positive measure. We may assume that
the two models are defined on the same set of breakpoints, 0 = t0 <
5 < tK = ⌧o, since this can always be achieved by increasing K. Then
there exists a non-empty interval [u, v) œ [0, ⌧o] such that
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1.
�
�(1)(s), r(1)(s)

�
=
�
�(2)(s), r(2)(s)

�
for all 0 < s < u;

2.
�
�(1)(s), r(1)(s)

� ë �
�(2)(s), r(2)(s)

�
for all s À [u, v); and

3. [u, v) œ [tk, tk+1) for some k.

(We could have u = 0, rendering the first condition vacuous.) Let the
birth and net diversification rates for the two models over [u, v) be
denoted �(i)k and r(i)k , respectively.

Recall the function E(t) defined in Eq. (2). Because E is continuous
and E(1)(0) = E(2)(0) = 1 * ⇢, condition (1) above implies that E(1)(u) =
E(2)(u) = 1 * ✏ À (0, 1) for some ✏. Define the shifted models (⇡(i), q(i), ✏)
for i À {1, 2}, where

⇡(i)(t) = �(i)k (t + u)

q(i)(t) = r(i)k (t + u).

Denote the corresponding pulled rate functions ⇡(i)
p , so that ⇡

(i)
p (t) =

�(i)p (t + u) for t À [0, v * u). By Proposition 1, ⇡(1)
p ë ⇡(2)

p on a non-
null subset of [0, v * u). The same is therefore true of �(1)p and �(2)p over
[u, v). ∏

5.2. Lower bounds

In this section, we prove Theorems 2 and 3. Sections 5.2.1 and 5.2.2
contain some necessary background and definitions, and can be omitted
if the reader is already familiar with them. The results of this section
use techniques developed in Kim et al. (2015) and Legried and Terhorst
(2022b).

5.2.1. The pulled speciation rate as a hazard rate
Let the origin time ⌧o have an (improper) uniform prior distribution

on (0,ÿ). Then the likelihood of ⌧o > ⌧1 > 5 > ⌧N*1 is given by

L(�p)(⌧o, ⌧1,… , ⌧N*1) = L(�p)(⌧1,… , ⌧N*1⌧o).
The likelihood formula holds, in particular, when we take ⌧o ô ÿ. Then
for any sequence ⌧1 > ⌧2 > 5 > ⌧N*1 > ⌧N = 0, the likelihood is

L(�p)(⌧1,… , ⌧N*1) = (N * 1)!
N*1«
i=1

�p(⌧i)e*⇤p(⌧i)

= (N * 1)!
N*1«
i=1

�p(⌧i)e*i
⌅
⇤p(⌧i)*⇤p(⌧i+1)

⇧
.

This shows that �p is a hazard rate function. To ensure that the
integral of the likelihood function converges, we assume that

lim
tôÿ

⇤p(t) =  
ÿ

u=0
�p(u) du = ÿ,

so this requirement is satisfied. Since �p is a hazard rate, it corresponds
to a probability density function fp(t) = �p(t)e*⇤p(t).

5.2.2. Bounding the Hellinger distance
Here, we recall the total variation distance and Hellinger distance

between measures, borrowing from the explanation in Legried and
Terhorst (2022b). Consider a measurable space (⌦,F ) with two pos-
sible probability measures P and Q on it. The two probability spaces
(⌦,F ,P ) and (⌦,F ,Q) then have corresponding probability density
functions fP and fQ. The total variation distance between P and Q is
defined as

dTV (P ,Q) := sup
AÀF P (A) *Q(A),

which equals 1
2 î fP * fQ. As this integral is itself a metric, one might

abuse notation and write dTV (fP , fQ) to mean the same thing.
Suppose a datum D has been generated under P or Q and we want

to decide which measure was used, assuming both choices are equally
likely. The total variation distance between P and Q bounds the ability
of any classifier to decide correctly. Let � À {P ,Q} be the true data

generating distribution, and let Ç�(D) À {P ,Q} be a classifier. The
probability that Ç� correctly classifies D, i.e. Ç� = � , is

P( Ç� = �) = 1 + ⌥
2 ,

where ⌥ > 0 because the error of any binary classifier can be made less
than 1_2. Another way to write ⌥ is

⌥ = P( Ç� = �) * P( Ç� ë �).

It can be shown that the best possible classification rule is the likelihood
ratio: Ç� = P if and only if P (D) > Q(D). In that case, we have

⌥ = 1
2

L

 fP >fQ fP +  fQ>fP
fQ *  fQ>fP

fP *  fP >fQ fQ

M
= dTV (P ,Q).

The likelihood ratio is said to achieve the minimal error rate or Bayes
error rate. If multiple independent samples D1,… ,DL are available,
then similarly ⌥ equals dTV (P‰L,Q‰L), where P‰L denotes product
measure.

In our problem setting, we find it easier to work with the Hellinger
distance, which is given defined as

d2H (P ,Q) = 1
2  

⇠˘
fP *

t
fQ

⇡2
.

The Hellinger distance is related to total variation via

d2TV (P ,Q) f 2d2H (P ,Q) = 2
0
1 *  

t
fP fQ

1
, (14)

and it also possess the following subadditivity property: if P = ‰N
i=1Pi

and Q = ‰N
i=1Qi are product measures, then

d2H (P ,Q) f N…
i=1

d2H (Pi,Qi).

By bounding the right-hand side above by a quantity converging to 0
quickly, it follows that the total variation distance also converges to 0
quickly.

We will prove Theorems 2 and 3 by computing the Hellinger dis-
tance of competing joint distributions of (⌧1,… , ⌧N*1). For this, we need
to establish precise two-sided bounds of �(2)p in terms of �(1)p . We start
in the setting of Theorem 2, where � is the birth rate corresponding to
�(1)p and (1 + ⌘)� is the birth rate corresponding to �(2)p . The two-sided
bound of �(2)p (t) is expressed in the following Lemma.

Lemma 3. Let t > 0 and ⌘ > 0 be arbitrary. Then

�(1)p (t)
⌧
1 + a(t)⌘ * 1

2 b(t)⌘
2
� f �(2)p (t) f �(1)p (t)

⌧
1 + a(t)⌘ + 1

2 b(t)⌘
2
�
,

where

a(t) = ⇢*1

⇢*1 + î t
u=0 �(u)eR(u) du

b(t) = *
2⇢*1 î t

u=0 �(u)eR(u) du⌧
⇢*1 + î t

u=0 �(u)eR(u) du
�2 .

Proof. The quotient is
�(2)p (t)

�(1)p (t)
= (1 + ⌘)�(t)eR(t)

⇢*1 + (1 + ⌘) î t
u=0 �(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du
�(t)eR(t)

= (1 + ⌘)
⇢*1 + î t

u=0 �(u)eR(u) du

⇢*1 + (1 + ⌘) î t
u=0 �(u)eR(u) du

=
⇢*1 + î t

u=0 �(u)eR(u) du

⇢*1(1 + ⌘)*1 + î t
u=0 �(u)eR(u) du

.

The coefficients a(t) and b(t) are obtained by differentiating the above
expression with respect to ⌘ and evaluating at 0. The first derivative is

⇢*1(⇢*1 + î t
u=0 �(u)eR(u) du)

(1 + ⌘)2
⌧
⇢*1(1 + ⌘)*1 + î t

u=0 �(u)eR(u) du
�2
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which evaluates at 0 to

a(t) = 1 *
î t
u=0 �(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

= ⇢*1

⇢*1 + î t
u=0 �(u)eR(u) du

.

Note that the right-hand side is a positive number between 0 and 1. The
second derivative is

b(⌘, t) = *
2⇢*1 î t

u=0 �(u)eR(u) du
⇠
⇢*1 + î t

u=0 �(u)eR(u) du
⇡

(1 + ⌘)3
⌧
⇢*1(1 + ⌘)*1 + î t

u=0 �(u)eR(u) du
�3

= *
2⇢*1 î t

u=0 �(u)eR(u) du
⇠
⇢*1 + î t

u=0 �(u)eR(u) du
⇡

⌧
⇢*1 + (1 + ⌘) î t

u=0 �(u)eR(u) du
�3 ,

which is always negative. We now apply Taylor’s theorem, observing
that

�(2)p (t)

�(1)p (t)
= 1 + a(t)⌘ + R2 (⌘; 0) ,

where the remainder term R2 (⌘; 0) is

R2 (⌘; 0) =
b(c, t)
2 ⌘2

for some c À (0, ⌘). Since )b(c, t)_)c < 0, we have R2(⌘; 0) < b(t)⌘2_2,
where

b(t) := b(0, t) = 2⇢*1 î t
u=0 �(u)eR(u) du⌧

⇢*1 + î t
u=0 �(u)eR(u) du

�2 .

Then
ÛÛÛÛÛÛ

�(2)p (t)

�(1)p (t)
* 1 * a(t)⌘

ÛÛÛÛÛÛ
f 1

2 b(t)⌘
2,

which implies the result. ∏

To use the Lemma to prove Theorem 2, we show that a(t) and b(t)
are each bounded by constants over t g 0.

Proof of Theorem 2. From (14), the squared error rate satisfies

⌥ 2 f 2d2H (f1, f2).

Starting with the case ofN = 2, we have d2H (f1, f2) = 1*I(f1, f2) where
I(f1, f2) = î ÿ

t=0
˘
f1(t)f2(t) dt. Defining the probability density function

g(t) = exp
4
* 

t

y=0

h1(y) + h2(y)
2 dy

5
h1(t) + h2(t)

2 ,

we have

I(f1, f2) =  
ÿ

t=0
g(t)

2
˘
h1(t)h2(t)

h1(t) + h2(t)
dt.

Now we use an upper bound on h1 + h2 and a lower bound on h1h2
from Lemma 3 to obtain a lower bound for 2

˘
h1h2_(h1 +h2). We have

2
˘
h1(t)h2(t)

h1(t) + h2(t)
g 2�(1)p (t)

t
1 + a(t)⌘ * 1

2 b(t)⌘
2

�(1)p (t)
⌧
2 + a(t)⌘ + 1

2 b(t)⌘
2
� .

The power series expansion of the right-hand side is

1 * 1
8 [a(t)]2 ⌘2 + R3(⌘; 0)

with the remainder term satisfying

R3(⌘; 0) f ÛÛÛÛ
1
8 [a(t)]2 (a(t) * b(t))⌘3

ÛÛÛÛ
for some t À [0, ⌘). Both functions a(t) and b(t) are bounded in t. So for
⌘ close enough to 0, independently of t, we have

1 * 1
8 [a(t)]2 ⌘2 + R3(⌘; 0) g 1 * 1

8 ⌘
2 +D⌘3

where D is a non-zero constant independent of t. So since g(t) is a
density,

I(f1, f2) g
⇠
1 * 1

8 ⌘
2 +D⌘3

⇡
 

ÿ

t=0
g(t) dt = 1 * 1

8 ⌘
2 +D⌘3

for ⌘ sufficiently close to 0. Putting it together, for such ⌘ the Hellinger
distance is bounded as

d2H (f1, f2) f 1
8 ⌘

2,

and the Theorem follows in the N = 2 case.
Now we derive the bound for an arbitrary number N of extant indi-

viduals. There are N * 1 independent coalescent times with identically
distributed arrival times. As f1 and f2 are product measures of N * 1
independent random variables, the subadditivity property implies

d2H (f1, f2) f (N * 1) ⌘
2

8 f N
⌘2

8 .

Then Theorem 2 follows from (14). ∏

For Theorem 3, we compare hypothetical models with the same
birth rate and sampling probability, but R(1)(t) = R(t) and R(2)(t) =
(1 + ⌘)R(1)(t) for all t. Although we prove Theorem 3 in the case where
R(1) is constant over time, the analogue to Lemma 3 can be proved for
general �(1) and R(1).

Lemma 4. Let t be fixed and ⌘ be a positive number close to 0. Then

�(2)p (t)

�(1)p (t)
= 1 + a(t)⌘ + 1

2 b(t)⌘
2 + O(⌘3)

as ⌘ ô 0, where

a(t) = R(t) *
î t
u=0 �(u)R(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

b(t) =
<
*
R(t) î t

u=0 �(u)R(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

*
î t
u=0 �(u)[R(u)]2eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

+
2
⌧î t

u=0 �(u)R(u)eR(u) du
�2

⌧
⇢*1 + î t

u=0 �(u)eR(u) du
�2

=
+ a(t)R(t)

Proof. The quotient is
�(2)p (t)

�(1)p (t)
= �(t)e(1+⌘)R(t)

⇢*1 + î t
u=0 �(u)e(1+⌘)R(u) du

⇢*1 + î t
u=0 �(u)eR(u) du
�(t)eR(t)

As before, the coefficients a(t) and b(t) are obtained by differentiating
the above expression with respect to ⌘ and evaluating at 0. The first
derivative is
h
n
l
nj

R(t)
⇢*1 + î t

u=0 �(u)e(1+⌘)R(u) du
*

î t
u=0 �(u)R(u)e(1+⌘)R(u) du⌧

⇢*1 + î t
u=0 �(u)e(1+⌘)R(u) du

�2

i
n
m
nk

ù e⌘R(t)
0
⇢*1 +  

t

u=0
�(u)eR(u) du

1
,

which evaluates at ⌘ = 0 to

a(t) = R(t) *
î t
u=0 �(u)R(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

.

The second derivative is
<
*
R(t) î t

u=0 �(u)R(u)e(1+⌘)R(u) du⌧
⇢*1 + î t

u=0 �(u)e(1+⌘)R(u) du
�2 *

î t
u=0 �(u)[R(u)]2e(1+⌘)R(u) du⌧
⇢*1 + î t

u=0 �(u)e(1+⌘)R(u) du
�2

+
2
⌧î t

u=0 �(u)R(u)e(1+⌘)R(u) du
�2

⌧
⇢*1 + î t

u=0 �(u)e(1+⌘)R(u) du
�3

=
e⌘R(t)

0
⇢*1 +  

t

u=0
�(u)eR(u) du

1
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+
h
n
l
nj

R(t)
⇢*1 + î t

u=0 �(u)e(1+⌘)R(u) du
*

î t
u=0 �(u)R(u)e(1+⌘)R(u) du⌧

⇢*1 + î t
u=0 �(u)e(1+⌘)R(u) du

�2

i
n
m
nk

ù R(t)e⌘R(t)
0
⇢*1 +  

t

u=0
�(u)eR(u) du

1
,

which evaluates at ⌘ = 0 to
<
*
R(t) î t

u=0 �(u)R(u)eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

*
î t
u=0 �(u)[R(u)]2eR(u) du

⇢*1 + î t
u=0 �(u)eR(u) du

+
2
⌧î t

u=0 �(u)R(u)eR(u) du
�2

⌧
⇢*1 + î t

u=0 �(u)eR(u) du
�2

=

+ a(t)R(t). ∏

The proof of Theorem 3 is similar. However, because the R(t)
function appears inside exponents, bounding a(t) and b(t) is more
complicated. This is why we assume that R(t) = Rt is linear in the
theorem.

Proof of Theorem 3. Going forward, we assume that the rates are
constant, implying there exists a real number R such that R(t) = Rt for
all t. Then we use Taylor’s theorem:

�(2)p (t)

�(1)p (t)
= 1 + a(t)⌘ + R2(⌘; 0),

where now

a(t) = �⇢(eRt * 1) + R2t * �⇢Rt
�⇢(eRt * 1) + R

by Lemma 4. If R > 0, then a(t) f 1 for all t g 0. If R < 0, then the
limit of a(t) as t ô +ÿ is *ÿ, which is not usable. So we proceed with
R > 0. The remainder term R2(⌘; 0) has the same structure as before,
but

b(c, t) = ecRtR(R + �⇢(eRt * 1))
⌅
(1 + c)R + �⇢(e(1+c)Rt * 1)

⇧3
4
(1 + c)3R3t2

+ �2⇢2t
�
2 + (1 + c)Rt + e(1+c)Rt((1 + c)Rt * 2)

�

* �⇢
�
e(1+c)Rt(2 * 4(1 + c)Rt + (1 + c)2R2t2)

+ 2(*1 + (1 + c)Rt + (1 + c)2R2t2)
�5

.

(As R > 0, there is no possibility of division by 0.) Now we derive c-
independent bounds for the bracketed expression. The negative terms
are dropped and the remaining polynomial terms are replaced with
exponentials:

(1 + c)3R3t2 + �2⇢2t
�
2 + (1 + c)Rt + e(1+c)Rt((1 + c)Rt * 2)

�

* �⇢
�
e(1+c)Rt(2 * 4(1 + c)Rt + (1 + c)2R2t2)

+ 2(*1 + (1 + c)Rt + (1 + c)2R2t2)
�

f e2(1+c)Rt
⌅
(1 + c)3R3 + �2⇢2(2 + 2(1 + c)R) + �⇢(4(1 + c) + 2)

⇧

f Me2(1+c)Rt.

On the right-hand side, the factor M can be taken to depend only on �
as ⇢ f 1, R f �, and c À (0, ⌘] œ (0, 1). The companion lower bound for
this polynomial is

e2(1+c)Rt
⌅
*2�2⇢2 * 2�⇢ * (1 + c)2R2 * 2(1 + c)R * 2(1 + c)2R2⇧

g *M ®e2(1+c)Rt

for a factor M ® depending only on �. Going back to b(c, t), we drop the
negative term in the numerator to get

b(c, t) f ecRtR(R + �⇢(eRt * 1))
⌅
(1 + c)R + �⇢(e(1+c)Rt * 1)

⇧3 max{M ,M ®}e2(1+c)Rt

f max{M ,M ®}(R2 + R�⇢)e3(1+c)Rt
⌅
(1 + c)R + �⇢(e(1+c)Rt * 1)

⇧3 . (15)

The proof is completed by using Lemma 5, below, to bound b(c, t).
By the lemma, we have maxi supt M (i)

t  < ÿ for the functions M (i)
t

defined in the statement below. Therefore, b(c, t) is bounded above
by some constant independent of c and t. So b(t) = b(0, t) is bounded
in t. Since a(t) and b(t) are bounded in t, we can prove the analogous
result for scaling R. This is sufficient to ensure I(f1, f2) g 1* 1

8 ⌘
2 as in

Theorem 2. ∏

Lemma 5. Letting M ®® = max{M ,M ®}, we have b(c, t) f
max{M (1)

t ,M (2)
t ,M (3)

t } where

M (1)
t = e3RtM ®®R(R + �⇢)

�
R + �⇢(eRt * 1)

�3

M (2)
t = e3+3�⇢tM ®®R(R + �⇢)t3

�
1 + �⇢e1+�⇢tt

�3

M (3)
t = M ®®R(R + �⇢)

�3⇢3
.

Proof. In the two-sided bound (15), we optimize over c À (0,ÿ) for a
fixed t. The partial derivative in c is

3e3(1+c)RtM ®®R2(R + �⇢)(*1 + (1 + c)Rt * �⇢t)
⌅
(1 + c)R + �⇢(e(1+c)Rt * 1)

⇧4 ,

yielding the critical point

c< = 1 * Rt + �⇢t
Rt

.

Since the function is bounded, the global maximum is obtained either
at a critical point or an end point of the interval c À [0,ÿ). Evaluating
the original bound at c = 0 and c< and taking the limit c ô +ÿ yields
M (1)

t ,M (2)
t , and M (3)

t , respectively. ∏
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