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ABSTRACT

The vibrations induced in an elastic panel from an incident
acoustic pressure wave are a function of the resonant mode struc-
ture of the panel and the angle of incidence of the acoustic wave. In
this paper it has been demonstrated how measurement of the panel’s
modal response with a single structural vibration sensor may be em-
ployed to infer the direction of arrival (DOA) of the incident sound.
The method is dependent on the frequency content of the acoustic
wave, as modes that provide important spatial information about
the source may not be excited if the acoustic signal lies outside
their resonant bandwidths. This work explores techniques for ex-
tending this single-sensor approach to DOA estimation for speech
signals, which represent a realistic use case for applications such as
smart audio devices. Feature sets including Mel spectrograms, Mel-
frequency cepstral coefficients (MFCCs), and linear spectrograms,
were used to train convolutional and feedforward neural networks
to estimate the DOA of a wake word recorded by a single structural
vibration sensor affixed to a panel. The experiments were carried
out in semi-anechoic conditions and are thus presented as proof of
concept. Additionally, the models presented are compact enough to
be deployed on embedded/edge hardware commonly used in smart
audio devices. The trained models estimated the DOA of the wake
word utterance to within ±5� with an average reliability of 83.1%
when using MFCCs as features. This average reliability improved
to 92.23%, with a maximum reported reliability of 99.9%, when us-
ing Mel and magnitude spectrograms and an additional hardware-
specific feature set, suggesting that single-sensor DOA estimates for
speech signals may be improved by using more spectrally complete
feature sets.

Index Terms— Direction of Arrival (DOA), Vibration Sensing,
Source Localization, Structural Sensors

1. INTRODUCTION

Smart audio devices utilize multi-microphone arrays to determine
the direction of arrival (DOA) of a user’s speech before perform-
ing directional speech enhancement [1]. Common approaches for
estimating DOA, such as inter-sensor time difference of arrival,
generalized cross-correlation with phase transform, and the mul-
tiple signal classification algorithm, require an array of transducers
and typically become more reliable as the size of the array is in-
creased [2, 3, 4, 5]. However, adding elements to the array increases
the device’s power consumption, manufacturing expense, and com-
putational complexity. Therefore, developing techniques to reduce
the number of sensors needed for reliable DOA estimation is an im-
portant design consideration.

It has recently been demonstrated that structural vibration sen-
sors affixed to an elastic panel are able to record acoustic speech
signals while preserving intelligibility sufficient for transcription

by automatic speech recognition systems [6, 7]. The relative ex-
citations of the panel’s bending modes change depending on the
angle of incidence of the acoustic wave [8, 9, 10], and deep neu-
ral networks (DNNs) may be trained to reliably estimate a wave’s
DOA by associating the magnitude response of the panel measured
by a single structural vibration sensor with the incident angle of
an acoustic wave. This previous experiment provided a proof of
concept of the single-sensor DOA estimation method, although the
conclusions were limited by the use of source signals containing
only stationary white noise and isolated phonemes [11, 12].

An arrangement that more closely approximates an eventual
use case is the estimation of a source’s DOA from full phonetic
utterances, such as device-specific wake words. The scope of this
work is to provide experimental evidence that the DOA of com-
plete speech signals can be estimated using information from a sin-
gle sensor affixed to an elastic panel. Additionally, the feature sets
and neural networks used in the experimental portion of this work
are compact enough to be deployed on an embedded processor. As
such, the application of this work is as a single-sensor DOA esti-
mation system that is deployable on the edge hardware that is be-
coming ubiquitous in commercially available smart devices [13].
We begin with a brief overview of the vibrations of an elastic panel
excited by an incident acoustic wave.

2. THEORETICAL DEVELOPMENT

Consider a damped, isotropic elastic panel with Young’s Modu-
lus E, Poisson’s ratio ⌫, density ⇢, and thickness h. When the panel
is excited by external load p(x, y, t), the out-of-plane displacement
w may be expressed as,

p(x, y, t) =
Eh3

12(1� ⌫2)
r4w(x, y, t)+bẇ(x, y, t)+⇢hẅ(x, y, t),

(1)
where b is the panel’s mechanical loss factor. Solutions for (1) are
well known (see for example [14]). The displacement w(x, y, t) is
a separable function of space and time, given by

w(x, y, t) = '(x, y)ej!t. (2)

The spatial component '(x, y) can be written as a sum of the
panel’s bending modes, expressed as,

'(x, y) =
1X

r=1

↵r�r(x, y), (3)

where �r(x, y) is the spatial function of the rth mode excited with
amplitude ↵r .

The panels used in the experimental portion of this work are
rectangular panels with clamped boundary conditions, and therefore
�r(x, y) contains separable sinusoidal functions along the panels
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length Lx and width Ly . Modal indices rm and rn represent the
number of half-wavelengths in the horizontal and vertical dimen-
sions, respectively. The bandwidth of each mode is determined by
the mode’s quality factor Qr , which can be expressed as,

Qr =
!r⇢h
b

, (4)

where !r is the resonant frequency of the rth mode.
When the panel is excited by an acoustic plane wave with pres-

sure amplitude Pi at frequency ! incident at angle ✓i in the az-
imuthal plane, the relative excitation of the panel’s modes can be
computed following [8, 9, 10] as,

↵r =
8PiIrm(✓i,!)Irn(✓i,!)
⇢h(!2

r � !2 + j!r!/Qr)
, (5)

where Irm(✓i,!) and Irn(✓i,!) are coupling factors between the
pressure distribution on the panel due to the incident wave and the
spatial response of each mode.

An acoustic source playing signal s(t) to a panel with a struc-
tural vibration sensor affixed at point (x0, y0) on its surface is
shown in Fig. 1. From (3) and (5), the transfer function from source
to sensor h✓i(t) is dependent on the incident angle ✓i. Since the
panel displacement is small such that it operates in a linear regime
[8, 11], the velocity response at the sensor’s position can be ex-
pressed with convolution as,

ẇ(x0, y0, t) = s(t)~ h✓i(t). (6)

In the experimental portion of this work, s(t) contained full
utterances of the wake word, and the panel’s response to these pho-
netic excitations were recorded at various angles of incidence. Fol-
lowing (5), varying ✓i causes subtle variations in the spectral prop-
erties of the recordings. In this work, we report experimental evi-
dence that neural networks can be trained to recognize these varia-
tions and estimate the DOA of the speech source using information
from one structural vibration sensor.

3. METHODOLOGY

3.1. Dataset

Two participants, one male and one female, each recorded 300 sen-
tences containing common phrases used to interact with smart audio
devices [15]. The recordings were made in an acoustically treated
studio environment with a Shure SM58 microphone at a sample rate
of 48 kHz, and later downsampled to a sample rate of 16 kHz. The
participants started each sentence with ”Hey, Alexa”, the wake word
phrase most commonly used to activate Amazon’s line of smart de-
vices. Pronunciation and inflection were naturally varied based on
the context of the rest of the command. For this experiment, the
wake word in each recording was isolated and used to train the neu-
ral networks as described in the following sections.

3.2. Experimental Setup

The experimental setup used to record panel vibrations induced at
various angles of incidence is shown in Fig. 1. A 2 mm thick
acrylic panel with Young’s Modulus E = 3.2 GPa, Poisson’s
ratio ⌫ = 0.35, density ⇢ = 1, 180 kg/m3, and dimensions
(Lx, Ly) = (26 cm, 36 cm) was mounted in a semi-anechoic
chamber. The panel was placed on a rotary table to allow the inci-
dent angle of the acoustic wave to be measured between ✓i = �90�

Figure 1: Experimental setup used to record panel vibrations in-
duced by incident acoustic waves with various angles of incidence.

and 90� in 5� increments. A KEF LS50 loudspeaker was used to
reproduce the source signal, and was placed at a distance of 50 cen-
timeters in front of the center of the panel [11].

The panel was equipped with a single PCB Piezotronics
U352C66 accelerometer arbitrarily positioned off-center in each di-
mension [16]. The sensor was used to measure the panel vibrations
in response to the wake word recordings at each incident angle. In
total 11,100 wake word recordings were recorded with the panel,
300 sentences at each of 37 incident angles.

3.3. Features and Network Architectures

The models employed in this work were trained with features that
contain spectral information, since the amplitudes of each resonant
mode are angularly dependent as shown in (5). Since edge AI hard-
ware has recently seen a rapid increase in deployment with smart
audio devices [13], the experimental results are reported using fea-
ture sets and neural network architectures compact enough to be
embedded on edge hardware; in particular, devices that are sup-
ported by the Edge Impulse AI platform [17].

3.3.1. Spectral Features

In a previous work, Mel-frequency cepstral coefficients (MFCCs)
were demonstrated to be an effective feature set for estimating DOA
of recordings of phonemes in isolation made by sensors mounted
on elastic plates [11]. The speech signals used in this experiment
contained full phonetic phrases. Therefore, in addition to the use
of an MFCC feature set, Mel and magnitude spectrograms were
also used as features to train the neural networks in an effort to
accommodate the wider spectral and temporal variations associated
with speech signals. Examples of these feature vectors are shown
in Fig. 2 (a).

Additionally, a proprietary feature set created for edge hard-
ware developed by Syntiant was utilized for model training [19].
Syntiant’s tiny machine learning (TinyML) development board is a
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Figure 2: (a) Examples of the feature vectors extracted from the wake word recordings made by the panel using Edge Impulse [17]. The
same features were also extracted locally for offline training of the CNN. (b) The architecture of the CNN used in this experiment. (c) The
architecture of the FNN that is compatible with the Syntiant hardware [18].

commercially available edge device that features an always-on neu-
ral decision processor (NDP) for performing wake word detection
and other real-time speech processing tasks [18].

3.3.2. Model Architecture

The models trained in this work employ two architectures that are
compatible with TinyML, and are compact enough to be embedded
on commercially available edge devices. The first of two archi-
tectures, visualized in Fig. 2 (b), is a two-dimensional convolution
neural network (CNN) with a regression output layer [20]. Note
that this CNN is not proposed as an optimal model, but is employed
in this work as a proof of concept. The second model, a feedfor-
ward neural network (FNN) was chosen because it is built into the
hardware on the Syntiant NDP [18]. Its architecture is shown in
Fig. 2 (c).

Distinct instances of both architectures were trained with each
of the feature sets shown in Fig. 2 (a). Additionally, the FNN was
trained with the proprietary feature set created for the Syntiant hard-
ware accessable on Edge Impulse. Model training was performed
using the wake words spoken by each participant individually, with
8880 wake word recordings split into training and validation sets
with a ratio of 80:20. The remaining 2220 recordings were used to
test each model. The models were trained to minimize the mean
square error between the predicted angle and the ground truth. Note
that because the models were each trained with only one voice, they
serve as speaker-dependent proofs of concept. Generalization to
a speaker-independent model is out of the scope of this work, al-
though the results here suggest that these methods will generalize
to a wide range of voices with different spectral content.

3.4. Evaluation Metric

Each model is evaluated on its ability to correctly predict the true
incident angle ✓i within a defined angular tolerance ±�✓i. Fol-
lowing [21, 22], the reliability with which the model estimates the
DOA of the speech source is expressed as the number of correct
predictions within ±�✓i, divided by the total number of utterances
tested. Experimental results are reported for angular tolerances of
5�, 10�, and 20�, consistent with the resolutions used in previous
experiments [23].

4. RESULTS AND DISCUSSION

The reliability with which each model is able to estimate the DOA
of the speech signal is shown in Table 1 various for angular tol-
erances. The CNN was able to estimate the DOA of both partic-
ipant’s voices to within ±5� with up to 98.3% reliability using a
single structural vibration sensor. The models trained with MFCC
features under-performed the models trained with the more spec-
trally complete Mel and magnitude spectrogram feature sets. Ad-
ditionally, the CNNs trained with magnitude spectrograms as fea-
tures out-performed those using Mel spectrograms. This may be
due to the linear spacing of the frequency bins in the magnitude
spectrogram. At sufficiently high frequencies, a large number of the
panel’s bending modes are excited simultaneously [24, 25]. In this
frequency region of high modal overlap, individual modes are no
longer discernible, which mitigates the ability of the structural sen-
sor to relate the modal excitations given by (5) to a specific angle
of incidence. Therefore, the logarithmic nature of the Mel spectro-
gram may result in less efficient utilization of spectral information
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Reliability (%) of DOA Estimates to within:
Network Feature ±5� ±10� ±20� ±5� ±10� ±20�

CNN
MFCC 89.1 99.3 100 82.5 98.3 99.7

Mel-Spect 92.7 99.4 100 92.9 99.5 100
Mag-Spect 97.1 99.8 100 98.3 99.9 100

FNN

MFCC 82.2 97.3 99.7 78.9 96.7 99.5
Mel-Spect 94.3 99.9 100 87.9 99.6 100
Mag-Spect 76.7 96.7 99.8 82.7 99.2 100

Syntiant 99.7 100 100 99.9 100 100
Voice Male Female

Table 1: Reliability of the DOA estimates made by the trained
CNNs and the FNNs with angular tolerances of 5�, 10�, and 20�.
Distinct models were trained for each feature set and speaker.

in the low-frequency region where low modal overlap occurs, and
individual modes dominate the panel’s spatial response. The use of
panel-specific spectral features that optimize the bandwidths where
individual modes are discernible is left to future work.

The FNNs trained with non-proprietary feature sets were able
to estimate the DOA of both participant’s voices to within ±5�

with up to 94.3% reliability. As was the case for the CNNs, the
FNNs trained with MFCC features under-performed those trained
with the other feature sets. However, the FNNs trained with Mel
spectrograms generally outperformed the models trained with mag-
nitude spectrograms. This may be related to the limitations imposed
on training time by Edge Impulse, as the magnitude spectrograms
were the largest features used in this experiment. Edge Impulse
recently introduced the ability to deploy pre-trained models within
their framework, so re-training the FNN architecture with these fea-
ture sets in an offline setting will enable direct comparison of the
results from the two networks when large feature vectors are em-
ployed, and will be explored in future work.

The FNN trained with the proprietary feature set created for
the Syntiant hardware performed very well when acting on the test
set, as it estimated the DOA of both participant’s voices to within
±5� with up to 99.9% reliability. Although this model is currently
device-specific, the reported reliability of models trained with this
hardware-informed feature set is an important result that may lead
to the development of an optimized, full-stack system.

It is important to note that all of the trained models were able to
estimate the DOA of both participant’s voices to within ±10� with
greater than 96% reliability. Comparing the results across the vari-
ous angular tolerances suggests that the DOA estimates returned by
the models are distributed around the true incident angles. This dis-
tribution is apparent in Fig. 3, which shows the aggregate confusion
matrix for the CNNs trained with the female voice with an angular
tolerance of ±5�.

We wish to acknowledge some important limitations in the ex-
perimental setup. First, the wake word recordings used to train the
models were made by a panel mounted in a relatively quiet semi-
anechoic chamber. However, the presence of environmental noise
may adversely affect the reliability of the trained models. Testing
the reliability of the models in noisy environments is an important
future step. It is likely that significant additional training data or the
implementation of de-noising methods will be necessary for reliable
model performance in more realistic environments.

In addition, each model was trained and tested on only one par-
ticipant’s voice at a time. As such, results are reported from models
that are implicitly speaker-dependent. Generalizing to a speaker-
independent model will require much more training data. However,
it is encouraging that the reported results from the trained models

Figure 3: Confusion matrix showing the distribution of the DOA es-
timates returned by the CNN models trained with the female voice.
The bin size is chosen to visualize an angular tolerance of ±5�.

are generally consistent across both voices. This suggests that the
proposed single-sensor DOA method may be adaptable to various
speech characteristics, as the voices used were inclusive of a wide
range of vocal timbres.

5. CONCLUSIONS

The reported results provide experimental evidence that a single
sensor affixed to an elastic panel may be utilized to perform reli-
able DOA estimation from recorded speech signals. In addition,
the models and feature sets utilized in this work are all compact
enough to be implemented within the constraints imposed by com-
mercially available embedded/edge hardware. In particular, the per-
formance of the FNN trained with the proprietary, hardware-specific
feature set suggests the possibility of designing a highly-reliable,
full-stack DOA estimation system utilizing the described methods.
The trained models are presented here as a proof of concept, as
they were determined for only two speakers and were tested with-
out the presence of significant environmental noise. However, this
does represent an important step toward demonstrating that the pre-
sented methods enable the DOA of a speech signal to be reliably
estimated using a single sensor under these conditions. The ubiq-
uitous time-delay and phase-based approaches to DOA estimation
require transducer arrays with multiple sensing elements. Reduc-
ing the number of sensors needed to perform the tasks required by
modern smart devices may lower their power consumption, manu-
facturing cost, and computational requirements, while offering the
ability to integrate the sensor into built environments without sacri-
ficing form-factor.
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