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Abstract

In this article we prove the existence of a new family of periodic solutions for
discrete, nonlinear Schrödinger equations subject to spatially localized driving and
damping. They provide an alternate description of the metastable behavior in such
lattice systems which agrees with previous predictions for the evolution of metastable
states while providing more accurate approximations to these states. We analyze the
stability of these breathers, finding a very small positive eigenvalue whose eigenvector
lies almost tangent to the surface of the cylinder formed by the family of breathers.
This causes solutions to slide along the cylinder without leaving its neighborhood for
very long times.

1 Introduction and background

Metastable systems are common throughout multiple disciplines including biology, physics,
machine learning and chemistry. In this paper we reexamine the existence and properties
of metastable states in (finite) lattices of coupled nonlinear oscillators. We are specifically
interested in a finite discrete nonlinear Schrödinger equation (DNLSE) chain in which
energy is forced to flow through the system from one end to the other. Stochastically
perturbed systems of this type have been used as models to understand the microscopic
origins of heat transport and steady state behavior in non-equilibrium statistical systems
[1]. A key question in such studies is how long it takes for the system to converge to
its invariant measure. This controls how long it takes for the system to exhibit ergodic
properties - in some cases making that time scale so long that these properties are e↵ectively
unobservable [2] [3] [4] [5] [6]. While statistical mechanics methods have been applied to
such systems, it has been been observed that the presence of breathers in the system
prevents the definition of a well-defined thermodynamic temperature for the state. [7]
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[8]. In both numerical studies and theoretical investigations, it has been observed that
the solution can be “trapped” for long times in small regions of the phase space. This
long-time trapping of the solution in restricted regions of phase space is the metastability
we will be studying, and in this paper we look for geometric structures in the phase space,
and an analytical mechanism that can help explain this trapping.

In recent work, it has been proven that for chains of oscillators subject to very weak,
localized damping, there are open sets of initial data in which this metastable behavior
can be approximated for very long times by “breathers”, i.e. temporally periodic, spatially
localized solutions of the undamped equation [9] [10] [11]. The proof used a modulation
approach in which the solution of the damped system was decomposed into a breather
whose frequency and phase were allowed to vary (slowly) in time, and a correction term
which was proven to remain small for very long times. A similar e↵ect is present in the
experimental technique of self-localization, where damping is turned on at both ends of a
dNLSE chain for a short period of time to prepare the system into a localized state after
which the dissipation is turned o↵ [12] [13]. Thus, we expect that while employing this
technique, the system is in fact in a metastable state similar to the one studied above and
it is this metastability which causes the phenomenon of self-localization.

In the present paper we prove the existence of a new family of breather type solutions
which give even better approximations to the metastable states. We are specifically
interested in modeling the types of states that have been found to inhibit the convergence
of models of heat conduction toward their invariant measure [4] [5] [14]. These states are
ones in which the motion of the system is approximately periodic, and there is a strong
localization e↵ect of the system. In additional the dissipation in the system typically
only occurs near the ends, either through an explicit dissipative term, or through the
coupling of the end of the system to a heat bath. This localization of the dissipation is
important, and as pointed out in [5](p.1001) is quite di↵erent from models in which the
dissipation acts equally on all sites of the system. This new family of breather type solution
is constructed, not by regarding the damped system as a perturbation of the undamped
case, but instead by adding an additional very small perturbation to the damped system.
We prove that this perturbed system has breather solutions, and we then analyze the
stability of these solutions. We show that these new localized states (which we dub damped
and driven breathers) reproduce previous predictions for the metastable behavior, but also
provide more accurate approximations to the metastable states themselves. An additional
advantage of these solutions is that they allow us to use standard techniques for analyzing
the stability of fixed points in studying the metastable states.

There has been an immense amount of work on breathers in general nonlinear lattices,
including the addition of damping and driving terms. Such systems arise naturally in op-
tical cavities, for example, [15], [16]. The existence and properties of the breathers in such
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systems have been studied both numerically and analytically in these papers and others
such as [17], [18], [19]. However, in these models the dissipation is spread throughout the
system and this creates very di↵erent issues and e↵ects, both physically and mathemati-
cally. Indeed, one of the first rigorous investigations of breathers included the possibility
of dissipation [20], but again, the types of systems considered in that work do not include
those with localized dissipation of the type studied here.

Much closer to our work is that of Khomeriki [21], and Maniadis, et al [22]. In the first
of these papers, the author studies a discrete NLS equation with driving and one end
and damping at the other, very similar to the model we study. The author finds that for
su�ciently large driving, one can create moving solitons in band gaps for this model. For
small driving amplitudes one finds stationary breathers similar to those analyzed here, but
the focus of [21] is not on the sort of metastability issues considered in this paper nor is
the stability of those solutions analyzed. Maniadis, et al, also consider a chain of nonlinear
Hamiltonian oscillators driven at one end, though in this case they focus on a discrete
Klein-Gordon chain. They also find numerically that one can generate a large family of
moving breather type solutions in this model by varying the driving force, and they track
the types of solutions generated by a numerically implemented bifurcation analysis. Again,
the focus of this paper is not of the type of metastable behavior that we are interested in.

Finally, one very interesting possible connection of our work to current research that was
pointed out by a referee is to PT-symmetry breaking in nonlinear lattices [23]. If one
chooses the strength of the damping and driving to be equal, then the linearization of our
problem satisfies the PT symmetry property. Quantum mechanical systems with this type
of perturbation present at two sites as a sort of “impurity” have been studied in [24] and
[25]. There, the authors find that if the strength of the perturbation is su�ciently large,
one has PT-symmetry breaking and the appearance of exponentially growing or decaying
states. One could then ask whether there is a bifurcation that occurs when the driving and
damping di↵er from one another and whether or not this could be used to give an alternate
proof of the existence of the sort of states we study. Since in our particular situation, the
values of the driving and damping di↵er by several orders of magnitude, we haven’t pursued
this approach here, but it seems like an interesting question for future investigation.

Impurity states have also been studied in systems without PT-symmetry (see for example,
[26]) where they have again been shown to give rise to localized breathing modes. However,
the mechanism in this case is rather di↵erent than the one we observe since it arises from
exponentially localized eigenstates of the linearized problem created by the potential well
associated with the impurity, whereas the states we study are perturbations of inherently
nonlinear states.

We conclude the introduction with an overview of the remainder of the paper. Our goal is
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to understand the trapping of energy in localized regions of the lattice which is observed
in studies of heat transport in coupled lattice of nonlinear Hamiltonian oscillators. These
“trapped” regions correspond to states in which the energy is highly localized in particular
spatial regions, and exhibits a very slow dissipation rate. With this goal, we first prove the
existence of a class of spatially localized, temporally periodic solutions in a system subject
to weak damping and driving. We then derive precise estimates on these states which
we show reproduce aspects of the metastable or trapped states observed in the numerical
studies of such systems. The states we construct occur in continuous families and we then
analyze the stability of this family. In particular, we prove that the linearization of the
system at each of these fixed points has one zero eigenvalue, corresponding to a symmetry
of the system, one very small positive eigenvalue, and all the remaining eigenvalues have
strictly negative real part. We then argue that these stability properties explain why
solutions are trapped near these states for long periods - in particular, the eigenvalues with
negative real part imply that nearby solutions are attracted toward the family of fixed
points, while the small positive eigenvalue leads to a very slow drift along that family.
Finally, we present numerics which show that solutions which start close to some member
of one of these families of states do remain close to that family for very long times.

1.1 Past results

Following [9] [11], we work with a very specific system of coupled oscillators, namely the
discrete nonlinear Schrödinger (dNLS) equation:

�iżj = �✏(�z)j + |zj |
2
zj , j = 1, 2, . . . , N . (1)

Note that if ✏ = 0, this system becomes N , uncoupled, nonlinear oscillators, and we then
have trivial, localized, periodic solutions in which one site rotates with non-zero angular
frequency, and all other sites have zero amplitude. This is sometimes referred to as the
anti-integrable limit.

We add a driving term to the first site of our system, and a damping term to the last site
by modifying the equation as

�iżj = �✏(�z)j + |zj |
2
zj � i��j,1z1 + i��j,NzN , j = 1, 2, . . . , N . (2)

The addition of damping and driving to the equation allows one to study energy flow from
one end of the system to the other. The existence of breathers in the dNLS equation
with localized forcing but distributed damping was studied in [27]. Throughout the paper
we will be referring to the � = 0,� = 0 case as undamped, � 6= 0,� = 0 as damped,
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and � 6= 0,� 6= 0 as damped and driven. We emphasize again that the choice of our
particular type of damping and driving is motivated by the desire to understand the very
slow evolution of models of heat conduction toward their equilibrium state and on the basis
of numerical experiments the most slowly decaying states appear to be those in which the
energy is localized as far as possible from the sites at which the damping occurs. However,
we believe that if one chose to impose the damping and driving at other sites, one would
also observe localized periodic solutions of the type we construct - however they would
correspond to more rapidly decaying states in the heat conduction models.

If we now translate to a rotating frame of reference zj(t) = e
i!t
⇣j , then

�i⇣̇j = �✏(�⇣)j � !⇣j + |⇣j |
2
⇣j � i��j,1⇣1 + i��j,N⇣N . (3)

Finally, we will often want to work with real variables so we decompose ⇣j = pj+ iqj . Then
(3) can be written as the system of di↵erential equations:

ṗj = ✏(�q)j + !qj � (|pj |
2 + |qj |

2)qj (4)

+��j,1p1 � �j,NpN

q̇j = �✏(�p)j � !pj + (|pj |
2 + |qj |

2)pj (5)

+��j,1q1 � �j,NqN .

Past research on systems of this type has focused mainly on the Hamiltonian case in which
the damping and driving are both absent - i.e. � = � = 0. In this case, there is an extensive
theory investigating the existence and properties of “breathers”. These spatially localized
but temporally periodic solutions are known to exist for very general types of lattices of
nonlinear Hamiltonian oscillators including the NLS equation, [28] [29] [30].

For the particular case of (4)-(5), one has the following result:

Theorem 1 (see [11]; Theorem 1.6) If � = � = 0, there exists ✏0 > 0 and �⌦ > 0
such that for all |✏| < ✏0, and |! � 1| < �⌦, the equations (4)-(5) have a family of fixed
points (p⇤j (✏,!), 0) which vary smoothly with ✏ and !, and such that p⇤1 = 1+O(✏, |1� !|),

p
⇤
j = O(✏j�1), j = 2, . . . , n, and q

⇤
j = 0.

Remark 1 Note that when we say that (4)-(5) has a family of fixed points of the form
(p⇤j (✏,!), 0), we mean that the qj components of the fixed point are zero.

Remark 2 Due to the invariance of (3) under complex rotations ⇣j ! e
i✓
⇣j, each of the

fixed points constructed in Theorem 1 corresponds to a circle of fixed points.
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Remark 3 Because the fixed points in Theorem 1 are constructed with the aid of the Im-
plicit Function Theorem, for each (✏,!), they are the unique fixed points in a neighborhood
of p1 = 1, p2 = p3 = · · · = pN = 0 (up to the complex rotation noted in the previous
remark).

Remark 4 Note that each of the fixed points constructed in Theorem 1 corresponds to a
periodic solution with angular frequency ! for (2). If we fix ✏ and consider the family
of solutions as a function of !, combined with the circle of solutions given by the complex
rotations we see that in the phase space of (2) we have a cylinder filled with periodic orbits.

2 Existence and properties of damped and driven breather
for NLS

2.1 The implicit function theorem and the existence of breathers for the
damped and driven system

Coupled systems of nonlinear oscillators like (2) have often been studied as models for heat
transport in solid state matter. In these studies, the first and last oscillator are coupled
to stochastic heat baths with di↵erent temperatures, to force an energy flow through the
system, and a damping term is added to insure that the total energy in the system does not
grow without bound. It has been observed that the convergence to the invariant measure
in such systems is often extremely slow due to the presence of metastable states in the
phase space. In prior work, the energy flow through the system is enforced by placing a
localized damping term at one end of the system and placing all the initial energy of the
system at the opposite end [31] [9]. One can prove that the energy in the system tends
to zero as t ! 1 and hence it must flow through the system in order to dissipate in this
way. In [11] it is proven that for very long times during this dissipative process the system
remains in a neighborhood of the cylinder of breather solutions for the undamped system.

In this paper we argue that a new family of solutions for a system subject to both damping
and (very weak) driving provides even better approximations to the metastable states
than do the undamped breathers. The existence of this family of breathers follows from
the following theorem.

Theorem 2 For ✏ and � su�ciently small and all ! in a neighborhood of ! = 1, there
exists a unique value of � such that the equations (4)-(5) have a stationary solution in a
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neighborhood of the undamped breather. This family of fixed points depends smoothly on �,
! and ✏.

Remark 5 Note that stationary solutions of (4)-(5) correspond to periodic solutions with
angular frequency ! of (2).

The proof of this theorem follows from an application of the Implicit Function Thoerem.
Details are provided in Appendix A.

2.2 Approximating the damped and driven breathers

We wish to show that the damped and driven breathers constructed in the previous sub-
section provide a better approximation to the metastable states that occur during energy
dissipation in these systems than do the undamped breathers. To do so, we need accurate
approximations to these solutions which we derive in this subsection. Because we proved
the existence of these breathers with the aid of implicit function theorem, we know that
they are analytic functions of the parameters ✏, � and !, and hence we can derive power
series approximations for them. We describe those approximations in this section and
provide the details of their derivation in Appendix A.

In Appendix A, we define functions fj(p2, p3, . . . pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) whose so-
lutions give the breather solutions. For example,

f2(p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = �✏(p3 + p1 � p2)� !p2 + (p22 + q
2
2)p2

- i.e. the component of the vector field corresponding to q̇2.

In order to derive approximations to the breathers, we consider

fj(p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = 0 (6)

fj+N (p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = 0 , (7)

for j = 2, . . . , N . We want to approximate the solutions of these equations when ✏ and �
are small and p1 and ! are near 1.

Note the equations for f2, . . . fN�1, fN+2, . . . , f2N�1 do not involve � or �, and hence are
the same as those for the undamped breathers. Thus we can construct power-series ap-
proximations for these equations exactly as in the undamped case - i.e., p⇤2 = �

✏p1
! + . . . ,

p
⇤
3 =

✏p⇤2
! = ( ✏

! )
2
p1 + . . . , . . . , p⇤N�1 = (� ✏

! )
N�2

p1 + . . . , while all of the q
⇤
j are zero to this
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order in ✏. (See Section 2 of [9] for more details.) Note that because the implicit function
theorem guarantees that the solution is analytic and unique, if we can find a consistent
power series approximation to the solution to a given order in ✏, �, . . . , then it must cor-
respond to the actual solution. In order to find the leading order terms in p

⇤
N and q

⇤
N , we

must look simultaneously at the equations for fN and f2N . We find that (to lowest order
in ✏ and �) they satisfy:

!q
⇤
N � �p

⇤
N = 0 (8)

✏p
⇤
N�1 � !p

⇤
N � �q

⇤
N = 0 .

Inserting our leading order expansion for p
⇤
N�1, and inverting the matrix

✓
! ��

�� �!

◆
,

we find:
✓

q
⇤
N
p
⇤
N

◆
=

1

!2 + �2

✓
! ��

�� �!

◆ 
0

(�1)N�2✏N�1

!N�2 p1

!
+ . . .

=

 
�(�✏)N�1p1

!N

(� ✏
! )

N�1
p1

!
+ . . . (9)

Using this result for q
⇤
N , we construct the leading order terms for q

⇤
j for j = N � 1, N �

2, . . . , 2. For instance, consider the equation

0 = fN�1 = ✏(q⇤N�2 + q
⇤
N � 2q⇤N�1) + (10)

+!q⇤N�1 + ((p⇤N�1)
2 + (q⇤N�1)

2)q⇤N�1

Inserting the leading order expression for q⇤N from (9), we find

(�1)N�1
�

⇣
✏

!

⌘N
p1 + (! � 2✏)q⇤N�1 +O(✏N+1) = 0 , (11)

or

q
⇤
N�1 = (�1)N

�

!

⇣
✏

!

⌘N
p1 +O(✏N+1) . (12)

Continuing in this way, we find the leading order expression

q
⇤
j = (�1)2N�j�1 �

!

⇣
✏

!

⌘2N�j�1
p1 + . . . (13)

for j = 2, . . . , N � 1.

If we now substitute the leading order expression for q
⇤
2 into the equation fN+1 = 0, (see

(74) in Appendix A for the form of fN+1) we calculate that the unique value of � up to
leading order is:

� = (�1)2N�2
�

⇣
✏

!

⌘2N�2
+ · · · = �

⇣
✏

!

⌘2N�2
+ . . . (14)
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Remark 6 The last equality used the fact that 2N � 2 is always even and it shows that
the value of � is positive for any choice of N , and also extremely small when N becomes
large. The positivity of � is important and natural, since in order to have a steady state in
the damped system we expect to need to inject energy at some point, which corresponds to
a positive value of �.

2.3 The “twist” of the breathers

For the undamped breathers, the fixed points all have q
⇤
j = 0 which means that the zj all

lie on the real line within the complex plane - although by rotational invariance, they can
be rotated to any line through the origin. In contrast, the damped and driven breathers
calculated in the previous section have q

⇤
j 6= 0 for j > 1, when q1 = 0. Therefore, the

components of the damped and driven breathers do not lie on the same line through the
origin. This is the twist of the breathers which we will explore in this section.

An appropriate form of analyzing the twist is by studying the norm and the complex phase
of the equations zj(t) = rj(t)ei'j(t). The utility of such a representation in the study of
periodic solution of the undamped dNLS equation was noted at least as long ago as [32].
Since we are interested in studying the energy of the system, we can look at the energy of
each site individually, defined by Ej(t) =

1
2 |zj(t)|

2. The system can be represented using
these energies and the complex phase. Furthermore, due to rotational invariance we can
use the di↵erences in the phases rather than the absolute phases to represent the system.
The breather solutions correspond to stationary points of this representation. Calling
 j(t) = 'j+1(t)� 'j(t) for j = 1, 2, . . . , N � 1, the system can be written as follows:

Ėj = �2✏
p
EjEj�1 sin j�1 + 2✏

p
Ej+1Ej sin j + 2��1,jE1 � 2��N,jEN (15)

 ̇1 = 2(E2 � E1)

✓
1 + ✏

cos 1

2
p
E1E2

◆
� ✏

r
E3

E2
cos 2 + ✏ (16)

 ̇j = 2(Ej+1 � Ej)

 
1 + ✏

cos j

2
p
EjEj+1

!
� ✏

 s
Ej+2

Ej+1
cos j+1 �

s
Ej�1

Ej
cos j�1

!
(17)

 ̇N�1 = 2(EN � EN�1)

 
1 + ✏

cos N�1

2
p
EN�1EN

!
+ ✏

s
EN�2

EN�1
cos N�2 � ✏ (18)

Remark 7 Note that an additional advantage of the energy-phase representation is that
it uses the rotational invariance of the system to reduce the dimension of the system of
equations from 2N to 2N � 1.
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Remark 8 In (15), we set the first term equal to zero if j = 1, and the second term equal
to zero if j = N .

This energy-phase representation of the breathers is especially useful when we wish to
compare the metastable states which emerge when the damped system is allowed to decay
with our breather solutions. In particular, in the undamped, n-site case all the breathers
have sin j = 0 for all j. This means, for example, that if we use the rotational invariance
to set q⇤1 = 0, then all the q⇤j will be equal to zero. However, for nonzero �, � the equations
will lead to sin j 6= 0.

For the particular breather calculated in Section 2.2, the phase is calculated from 'j =

arctan(
q⇤j
p⇤j
) =

q⇤j
p⇤j

+ . . . . The phases for this breather will be:

'j =
�

!

⇣
�
✏

!

⌘2(N�j)
+ · · · =

�

!

⇣
✏

!

⌘2(N�j)
+ . . . , for j = 2, 3 . . . , N , (19)

while '1 = 0 as a consequence of choosing q1 = 0. Using this, we find that  j = 'j+1 �'j

to leading order is simply:

 j =
�

!

⇣
✏

!

⌘2(N�j�1)
+ . . . (20)

In particular, we obtain the interesting following result for the last phase di↵erence:

Theorem 3 For a fixed � > 0,! > 0, the phase di↵erence between the last two oscillators,
 N�1, is up to leading order independent of the number of sites. The expression for this
phase is:

 N�1 =
�

!
+ . . . (21)

Remark 9 As we will see in the numerical experiments in Section 5, the metastable states
we observe during the energy decay in these systems, also exhibit a non-zero “twist” of this
type, whose value is very close to the prediction of (21).

3 Stability

In this section, we examine the stability of the damped and driven breathers constructed
above, using the fact that they are fixed points of the equations (4)-(5). Define

F̃ (p1, . . . , pN , q1, . . . , qN ,�; ✏,!, �) (22)

= (f1, f2, . . . , fN , fN+1, . . . f2N ) ,
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where the component functions fj are defined in (65)-(67)-(72) in Appendix A. We recall
that our goal in this stability analysis is to show that the stability properties of the family of
breathers constructed in the previous section is consistent with the trapping of trajectories
observed in studies of heat conduction.

If we linearize F̃ at the the fixed points (p⇤, q⇤) = (p⇤1, . . . , p
⇤
N , q

⇤
1, . . . , q

⇤
N ), the Jacobian

matrix takes the form

D(p,q)F̃
��
(p⇤,q⇤)

=

✓
D

(1)
A

(!,✏)

B
(!,✏)

D
(2)

◆
(23)

Here, A(!,✏) and B
(!,✏) are N ⇥ N tri-diagonal matrices and D

(1) and D
(2) are N ⇥ N

diagonal matrices. More precisely, the matrix A
(!,✏) has ✏ on the sub- and super-diagonal,

while the diagonal elements are ! � aj✏ � (p⇤j )
2
� 3(q⇤j )

3, j = 1, 2, . . . , N , where a1 = 1,

aN = 1 and all other aj = 2. The matrix B
(!,✏) has sub- and super-diagonal elements equal

to �✏, while the diagonal elements are �! + aj✏ + 3(p⇤j )
2 + (q⇤1)

2. The diagonal matrix

D
(1) has diagonal elements D

(1)
jj = ��1,j � ��N,j � 2p⇤jq

⇤
j , while D

(2) has matrix elements

D
(2)
jj = ��1,j � ��N,j + 2p⇤jq

⇤
j . Note that from the approximations to p

⇤
j and q

⇤
j derived in

the preprint, we see that D
(k)
jj = ���j,N + O(�✏2(N�1)). Thus, the diagonal part of the

Jacobian is dominated by the dissipation coming from �.

We begin by recalling a few key facts that we already know about the spectrum of the
linearization which we will need in order to approximate the “small” eigenvalue. The
proofs of these facts can be found in [11]

1. Due to the invariance of the original system of equations under complex rotations,
there is a zero eigenvalue with eigenvector

v(1) =

✓
�q

⇤

p
⇤

◆
. (24)

2. The linearization also has 2N � 2 simple eigenvalues near ±i which all have nega-
tive real parts that are O(�). Denote these eigenvalues by �3,�4, . . . ,�2N and the
associated eigenvectors by v(j), j = 3, 4, . . . , 2N . Note that in [11] this is proven for
the linearization about the breather with � = 0. However, since all of these eigenval-
ues are simple, this remains true for � su�ciently small by simple, non-degenerate
perturbation theory estimates.

We also identify another vector

ṽ(2) =

✓
@!p

⇤

@!q
⇤

◆
, (25)
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which corresponds to the tangent vector in the direction of changes in frequency of the
breathers. While not an eigenvector, there are two important properties of ṽ(2) that we
use in what follows:

1. The set of vectors {v(1)
, ṽ(2)

,v(3)
,v(4)

, . . . ,v(2N)
} form a basis for R2N . This follows

from the fact that they are small perturbations of the eigenvectors and generalized
eigenvector of the linearization of the undamped breathers studied in [11].

2. We know that when the linearization at the breather acts on ṽ(2) we have

D(p,q)F̃
��
(p⇤,q⇤)

ṽ(2) = v(1)
� (@!�)

0

BBBBBB@

p
⇤
1

0
·

·

·

0

1

CCCCCCA
. (26)

This follows by di↵erentiating the equation for the damped and driven breather with
respect to !.

From our approximations to the breather we have

@!p
⇤
1 =

1

2
p
!
+ . . . , and @!� = �(2N � 2)

�

!

⇣
✏

!

⌘2N�1
+ . . . (27)

From the form of ṽ(2), and the expression for @!p⇤1 we have

0

BBBBBB@

p
⇤
1

0
·

·

·

0

1

CCCCCCA
= 2!ṽ(2) +O(✏) . (28)

Remark 10 To simplify the following expressions, we choose ! = 1 for the remainder of
this section, but the case of general ! is very similar.

Then, if we expand (p⇤1, 0, . . . , 0)
T in terms of the basis {v(1)

, ṽ(2)
,v(3)

,v(4)
, . . . ,v(2N)

}, we
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have 0

BBBBBB@

p
⇤
1

0
·

·

·

0

1

CCCCCCA
= ↵2ṽ

(2) + ↵1v
(1) +

2NX

j=3

↵jv
(j)

, (29)

with ↵2 = 2+ . . . , and all the other ↵j at least O(✏) or smaller. Note that the coe�cients
↵j are, in principle, computable, at least approximately, since we have explicit formulas
for v(1) and ṽ(2), and since the remaining v(j)’s correspond to simple eigenvalues, they can
be computed approximately by ordinary non-degenerate perturbation theory, at least to
leading order.

We now denote the small, non-zero eigenvalue as �2, and write its eigenvector as

v(2) = v(1) + µ2ṽ
(2) +

2NX

j=3

µjv
(j)

. (30)

Note that we compute below that the µj ’s are all small and go to zero as � ! 0. This
is expected since for � = 0, we know that the linearization at the breather has a two-
dimensional zero eigenspace, but only one zero eigenvector, v(1) [11].

Now consider the eigenvalue equation for �2:

D(p,q)F̃
��
(p⇤,q⇤)

v(2) = �2v
(2)

. (31)

Insert the expansion from (30) into both sides of this equation and use the fact that on
the left hand side we know that D(p,q)F̃

��
(p⇤,q⇤)

v(1) = 0, D(p,q)F̃
��
(p⇤,q⇤)

v(j) = �jv(j), for

j = 3, . . . , 2N , and D(p,q)F̃
��
(p⇤,q⇤)

ṽ(2) is given by (26).

Thus, we have

µ2

0

@v(1)
� (@!�)

0

@↵2ṽ
(2) + ↵1v

(1) +
2NX

j=3

↵jv
(j)

1

A

1

A+
2NX

j=3

�jµjv
(j) =

= �2

0

@v(1) + µ2ṽ
(2) +

2NX

j=3

µjv
(j)

1

A . (32)

We now equate the coe�cients of the various basis vectors on the two sides of this equation.
From the coe�cients of the vector ṽ(2), we have

�↵2µ2@!� = �2µ2 , or �2 = �↵2(@!�) . (33)

13



Inserting our approximate expressions for ↵2 and (@!�), we find the approximate expression
for the small, positive eigenvalue:

�2 = 2(2N � 2)�✏(2N�2) + . . . (34)

(Recall that we have set ! = 1.) While they are not really important, we can also solve
for the remaining coe�cients µj . Thus, equating the coe�cients of v(1) in (33), we find

µ2 = �2/(1� ↵1(@!�)) , (35)

while

µj =
�↵jµ2(@!�)

�j � �2
, j = 3, . . . , 2N . (36)

Remark 11 Note that for N = 2, the formula in (34) agrees with the computation for the
two-site breather in energy-angle coordinates in (61)

From this expression, we obtain µj << µ2 for j � 3. Thus, from (30), the small positive
eigenvector is (up to very high order) in the span of the vectors v(1)

, ṽ(2) which corresponds
to the tangent space of the cylinder of breathers, with v(1) corresponding to rotations
around the cylinder and ṽ(2) to the direction along the family of breathers. Hence, the
positive eigenvalue pushes solutions to slide along the family of breathers, causing ! to
decrease over time. Movement perpendicular to the cylinder is negligible until ✏ ⇠ !, at
which point v(2) has a significant component in the normal direction (µj ⇠ µ2) forcing the
solution to finally exit the neighborhood of the cylinder.

4 E↵ects on evolution/Metastable behavior

We next consider how the spectral picture derived in the previous subsection can be used
to model the metastable evolution in the damped (but not driven) system of oscillators.
We will see that we reproduce the picture obtained from the modulation approach of [11],
by considering the evolution near one of the fixed points represented by the damped and
driven breathers. However, as we discuss, these damped and driven breathers provide a
more accurate approximation to the metastable state than the undamped breathers used
as an approximation in the prior work.

To simplify the exposition, we introduce the following notation. We set u = (p, q)T , where
p and q are N -vectors. Likewise, the damped and driven breather will be denoted by

14



u
⇤ = (p⇤, q⇤) - depending on the context, we may also include the dependence of the

breathers on the parameters - i.e. u⇤ = u
⇤(�,!). We also introduce two diagonal matrices

which represent respectively the driving and damping - B(�) is a 2N ⇥ 2N matrix with
(1, 1) and ((N + 1), (N + 1)) element equal to � and all other elements zero, and �(�)
is 2N ⇥ 2N matrix with (N,N) and (2N, 2N) element equal to � and all other elements
zero. Finally, we let H(u) denote the Hamiltonian of the undamped and undriven lattice
of oscillators. We can then write the damped, but not driven, evolution as

u̇ = JruH(u)� �u . (37)

The damped and driven breathers u⇤ are solution of the system of equations

JruH(u⇤) +B(�⇤)u⇤ � �(�)u⇤ = 0 . (38)

Here, J is the standard, symplectic matrix for Hamiltonian systems, which takes the form

J =

✓
0 1
�1 0

◆
, with 0 representing an N ⇥N matrix of zeros, and 1 an N ⇥N identity

matrix.

Recall that u⇤ is the ✓ = 0 member of a family of fixed points of (38) of the form

U
⇤(✓) = (<(ei✓u⇤),=(ei✓u⇤)) . (39)

Because of the equivariance of the linearized equation under these complex rotations, the
spectrum of the linearization at the breather solution is independent of ✓, and hence,
without loss of generality, we can assume that ✓ = 0.

We will consider a solution of (37) with initial conditions near the breather. We will
expand the solution with respect to the basis of vectors {v(1)

, ṽ(2)
,v(3)

, . . . ,v(2N)
}, where

as in Section 3, v(1) = (�q
⇤
, p

⇤) is the eigenvector of the linearization about the damped
and driven breather with eigenvalue zero, v(j), with j = 3, 4, . . . , 2N are the eigenvectors
with eigenvalues near ±i (but all with real parts ⇠ �O(�)) and ṽ(2) = @!u

⇤. We know
from our discussion of the spectrum of the linearization about the damped and driven
breather that the eigenvector with small positive eigenvalue is approximately v(1)+µ2ṽ(2),
with µ2 ⇠ O(✏2N�2).

We take an initial condition for (37) of the form

u0 = u
⇤ + w0 . (40)

We assume that w0 is:

1. small, and
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2. has no component in the v(1) or ṽ(2) direction.

The second of these conditions can be enforced by adjusting the angle ✓ in (39) and the
frequency !. Because of the equivariance of the linearization about the damped and driven
breather with respect to the complex rotations by ✓, the spectrum of the linearization is
independent of ✓ (and depends only weakly on !) so we will assume that we are linearizing
about the breather with ✓ = 0 and ! = 1.

We look for a decomposition of the solution similar to that in (40) - that is, we write the
solution of (37) as

u = u
⇤ + w . (41)

Inserting this into (37) we find

ẇ = JrH(u⇤ + w)� �(u⇤ + w)

= JrH(u⇤)� �u⇤ +Bu
⇤ (42)

+ (JrH(u⇤ + w)� JrH(u⇤)) +Bw � �w (43)

�B(u⇤ + w) (44)

The goal in rewriting the equation for ẇ in this form is to note that from the definition of
u
⇤, the expression in (42) vanishes, while if we apply Taylor’s Theorem to expand (43) in

w, the linear terms in w just give Lu⇤w, the linearization about the damped and driven
breather. Thus, we have

ẇ = Lu⇤w �Bw �Bu
⇤ + Ñ(w) , (45)

where Ñ(w) collects the nonlinear terms resulting from applying Taylor’s Theorem to (43),
and is O(w2).

We can write the solution as

w(t) = ↵1(t)v
(1) + ↵̃2(t)ṽ

(2) +
2NX

j=3

↵j(t)v
(j)

. (46)

We will ignore the contributions of ↵j(t), with j � 3, since we expect the components of
the solution in those directions to be contracting since the eigenvalues corresponding to
these eigendirections all have negative real part.

To isolate the evolution of ↵1(t) and ↵̃2(t), we also introduce the vectors

ñ(1) = c1

✓
@!q

⇤

@!p
⇤

◆
, n(2) = c2

✓
p
⇤

�q
⇤

◆
, (47)
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for constants c1 and c2 determined below. Note that if we consider the transpose of Lu⇤ ,
we have

(Lu⇤)T ñ(1) = �

0

@
0✓

(@!�)p⇤1
0

◆
1

A+
c1

c2
n(2) +O(�✏2N�1) , (48)

and

(Lu⇤)Tn(2) =

✓
0
0

◆
+O(�✏2N�1) . (49)

The first vector on the right hand side of (48) is the 2N vector whose first N components
are all zero, and whose second N components have (@!�)p⇤1 in the (N + 1)st component
and then zero in the remaining components. We choose the constants c1 and c2 so that
ñ(1)

· v(1) = n(2)
· ṽ(2) = 1. Note that from the definitions of these vectors, and the

asymptotic formulas we derived for p
⇤ and q

⇤, we find that for ! = 1, c1 = 2 + O(✏),
c2 = 2 +O(✏) and that ñ(1)

· ṽ(2) and n(2)
· v(1) are both O(�✏2N�1).

Thus, if we take the dot product of the equation (45) with ñ(1), we have (ignoring the
nonlinear terms, for the moment)

↵̇1 = ↵1hñ
(1)

, Lu⇤v(1)
i+ ↵̃2hñ

(1)
, Lu⇤ ṽ(2)

i (50)

�hñ(1)
, Bu

⇤
i � hñ(1)

, B(↵1v
(1) + ↵̃2ṽ

(2))i � ˙̃↵2hñ
(1)

, ṽ(2)
i

= ↵1h

0

@
0✓

(@!�)p⇤1
0

◆
1

A+
c1

c2
n(2)

,v(1)
i+ ↵̃2h

0

@
0✓

(@!�)p⇤1
0

◆
1

A+
c1

c2
n(2)

, ṽ(2)
i

�hñ(1)
, Bu

⇤
i+O(✏2N�1(↵1 + ↵̃2 + ˙̃↵2))

=
c1↵̃2

c2
+O(�✏2N�1(↵1 + ↵̃2 + ˙̃↵2)) +O(✏4N�2) ,

or
↵̇1 = (1 +O(✏))↵̃2 +O(�✏2N�1(↵1 + ↵̃2 + ˙̃↵2)) +O(✏4N�2) (51)

Here we used the form of ñ(1) and u
⇤ to bound |hñ(1)

, Bu
⇤
i| by O(✏4N�2).

If we now repeat this procedure, taking the dot product of (45) with n(2), we find

˙̃↵2 = ↵1hn
(2)

, Lu⇤v(1)
i+ ↵̃2hn

(2)
, Lu⇤ ṽ(2)

i � ↵̇1hn
(2)

,v(1)
i (52)

�hn(2)
, Bu

⇤
i � hn(2)

, B(↵1v
(1) + ↵̃2ṽ

(2))i

= �hn(2)
, Bu

⇤
i+O(�✏2N�1(↵1 + ↵̃2 + ↵̇1))

= �c2� +O(�✏2N�1(↵1 + ↵̃2 + ↵̇1)) ,
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or
˙̃↵2 = �(2 +O(✏))� +O(�✏2N�1(↵1 + ↵̃2 + ↵̇1)) . (53)

If we ignore the high order correction terms, we can solve these equations and we find

↵̃2(t) = ↵̃2(0)� 2�t , (54)

and
↵1(t) = ↵1(0) + ↵̃2(0)t� �t

2
. (55)

By adjusting the breather u⇤ about which we are perturbing, we can insure that ↵1(0) =
↵̃2(0) = 0, so we have

↵1(t) = ��t
2
, and ↵̃2(t) = �2�t . (56)

Inserting the value of �, we have

↵1(t) = ��✏
2N�2

t
2
, and ↵̃2(t) = �2�✏2N�2

t . (57)

Recall that our parameter � corresponds to �✏ and our ↵̃2 corresponds to � in the paper
[9]. (This last equivalence follows from the fact that � in [9] is the change in the frequency
of the breather, while our ↵̃2 corresponds to the displacement in the direction @!u⇤ - i.e.
also the change in frequency of the breather.) Then for N = 3, the case considered in that
reference, the formula for �(t) derived in that work agrees exactly with our formula for ↵̃2.

To compare the expression for ↵1(t) with that of ✓(t) in [9], note that ↵1(t) is the coe�cient
of v(1), the eigenvector corresponding to rotations in the complex plane u ! e

i✓
u. (This is

not the same ✓ as in [9]). In [9], the quantity corresponding to a complex rotation of this
sort is t�(t) + ✓(t) (see equation (13) of that reference). If we take the formulas ✓(t) and
�(t) from [9] and compute, we obtain

t�(t) + ✓(t) = �2�✏5t2 + �✏
5
t
2 = ��✏

5
t
2
, (58)

which again, agrees exactly with our formula for ↵1(t) when N = 3. (Again, recalling that
our � should be replaced by �✏ to compare with the results of [9].)

This is only an approximate calculation - in particular, we have ignored the contributions of
the nonlinear terms, but in [11] it was shown rigorously that in the case of damping alone,
the nonlinear e↵ects could be rigorously incorporated without changing the predictions of
the linear approximation and we expect that the same is true here.
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Table 1: Numerically computed spectrum of the linearization about the breather, when
✏ = 0.03, � = 0.0035, and ! = 1.

�0.00257707 + 0.987135i
�0.00257707� 0.987135i
�0.000922942 + 0.914551i
�0.000922942� 0.914551i

3.43099 ⇤ 10�8 + 0.i
2.28602 ⇤ 10�9 + 0.i

5 Numerical verification

In this section, we present numerical experiments which illustrate the results of the pre-
ceding sections. We will compute the spectrum of the linearization about the breather,
showing that it has the form described in the previous section, and we will compute the
dynamics of the metastable state of the damped system. In addition to showing that solu-
tions of the damped system, which start close to the damped and driven breathers remain
close to this family for a long time we will also follow such solutions until their disappear-
ance and develop a conjecture about how such families of metastable states terminate. We
focus on systems with a small number of sites (specifically, N = 2, 3) because the very slow
drift along the family of breathers means that the computational time required increases
very rapidly with N . This makes it unfeasible to compute the solution up until the disap-
pearance of the metastable state for larger N . In addition, by concentrating on these small
systems we are able to perform many computations explicitly, which helps to elucidate the
numerical results. All numerical computations are done with Mathematica.

We begin by computing the spectrum of the linearization of equations (4)-(5) about the
breather solution. Table 5 contains the spectrum of the linearization around the breather
solution with ✏ = 0.03, � = 0.0035, and ! = 1. Note that as expected, there are two
eigenvalues near i, and two more near �i, all with negative real part, one with small,
positive real part and one eigenvalue which is zero to within the errors of our computations
(i.e. ⇠ O(10�9)),

As we saw in the previous section, the crucial eigenvalue for understanding the metastable
behavior of the system is the small positive eigenvalue, so we focus on that. In Figure 1,
we plot the numerically computed value of this eigenvalue for N = 3, � = 0.0035, and for
five di↵erent values of ✏, ✏k = 0.03 + 0.002 ⇤ k, k = 1, 2, . . . , 5, and compare these values to
the values predicted by equation (34). As we see, the computed values are quite close to
the theoretically predicted values, and the approximation improves as ✏ becomes smaller.
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Figure 1: Numerically computed value of the small, positive eigenvalue (blue dots), when
N = 3, � = 0.0035, and ✏k = 0.03+0.002⇤k, for k = 1, 2, . . . , 5, compared with the formula
in (34)

We next compute the full time evolution of the three site system to examine how long the
metastable behavior persists, and how it terminates. For these computations we found it
easier to work in the energy-phase representation of the system, (15), since this reduces
the number of equations we need to solve by one. We choose as initial conditions for our
numerics the approximation to the damped and driven breather computed in Section 2.2.
We also need some way of determining what member of the breather family we are close
to at any given time in the course of the the computation.

We proceed as follows. Choose a value of !0 to determine the initial values for the equations.
Then set p1 =

p
!0. and approximate the initial values for the other variables using the

equations of motion and our knowledge of the breather solution.

As the solution evolves, it moves along the family of breathers, and we need to determine
how the frequency (which determines which breather we are close to) changes. If we are
very close to a damped and driven breather we can consider  ̇j ⇡ 0 and so all the '̇j are
the same. For this reason, we can define !(t) to be any of the '̇j and we should obtain
approximately the same result. For simplicity, we define it as !(t) = '̇1(t) and in turn we
can calculate it from:

'̇1 = 2E1 + ✏� ✏

r
E2

E1
cos 1 (59)

Notice that !0 6= !(0) because of the fact that we calculate an approximation to p1 from !0
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Figure 2: Graph of the phase di↵erence between the first and second oscillator and its
approximation for !0 = 1, � = 0.005, ✏ = �0.1 and initial condition given by the ap-
proximation to the damped and driven breathers of Section 2.2; (a) is graphed between
times 0 and 20 000, and (b) between times 0 and 295 000, approximately when it leaves the
metastable state.

and then use it to calculate approximations for E1(0), E2(0), 1(0). In fact !0 = 2E1(0).

The first quantity we examine are the graphs of  1(t) and  2(t) for the three site system.
We recall that for the undamped breathers, all of the  j(t) are zero, while the damped and
driven breathers have non-zero “twist”. Figure 2 graphs  1(t) for the three-site system
with two approximations. The blue curve represents the computed value of  j(t). From
Theorem 3, we know that the lowest order approximation to the twist of the breather is
 j(t) ⇡

�
!(t) , and this is plotted in orange, using the approximation !(t) ⇡ '̇1(t). We

obtain a good approximation to the computed twist, showing that the damped and driven
breathers provide a better approximation to the metastable states than the undamped
breathers. Finally, recalling that !(t) ⇡ 2E1(t) we have also plotted (in green) the quantity

�
E1(t)

. Interestingly, this quantity seems to provide an even better approximation to the
numerically computed twist though at the moment we have no theoretical explanation of
why this should be the case.

Speaking colloquially, our numerics show that the metastable state slides along the family
of damped and driven breathers. This is consistent with our computations of the spectrum
of the linearization which showed that the span of the eigenspace of the zero eigenvector
and the eigenvector with small positive eigenvalue was very close to the tangent plane of
the family of damped and driven breathers. Moreover, this allows for the modeling of the
dynamical evolution of the metastable state of the damped system from the damped and
driven breathers (especially the time evolution of the phases) for long times. We believe
that the period for which this approximation is accurate is connected to the bifurcations
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Figure 3: The energy of each oscillator in an eight-site system. The parameters chosen
were � = 0.05, ✏ = �0.1, and the initial condition is p1 = 1 and all other pj , qj = 0.

of the undamped system.

In Figure 3, we present numerics for a system with N = 8 sites, which show that the
e↵ects we have described persist for systems with larger numbers of oscillators. Again we
note that once the system has fully settled in the metastable state, we observe an initial,
almost flat state where the system moves along the family of damped and driven breathers
for a very long time. The system eventually reaches a point where the energy of the first
oscillator decays suddenly while that of the other oscillators rise to meet it until they have
the same energy, after which they reach the thermalized state and decay exponentially.
The sudden decay in the energy is significantly more dramatic for the eight sites than it
was for two or three sites.

Thus, we conjecture that the general evolution of these metastable states is as follows.
When the trajectory is “captured” by one of the damped and driven breathers, the system
begins to evolve by drifting along this family until the family of breathers disappears
through bifurcation, at which point the system may be captured by another attractive
family of approximately periodic orbits. There may, of course be other, possibly large,
parts of the phase space where these metastable solutions do not exist and the evolution
of the system is chaotic. In particular, it is not clear what properties of the periodic orbit
in the undamped Hamiltonian system result in the solution becoming attractive once the
system is subjected to damping.

We now turn to a discussion of the two-site damped and driven system where many of
the phenomena discussed above can be illustrated by explicit computations. A detailed
derivation is found in Appendix B, while in this section we will mostly show the results.
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The family of breathers of the Damped and Driven system related to the metastable state
we have studied is analytically calculated to be:

E1 =
1

2

r
�

�

p
✏2 � ��, E2 =

1

2

s
�

�

p
✏2 � ��,  =

(
�⇡ + arcsin

⇣p
��
✏

⌘
✏ > 0

� arcsin
⇣p

��
✏

⌘
✏ < 0.

(60)

We can compute the spectrum of the linearization around these breathers, first writing
out the Jacobian and then using Mathematica to derive series approximations. The small
positive eigenvalue is:

�2 = 4�
⇣
✏

!

⌘2
+O(�✏4) (61)

The zero eigenvalue, �1, is absent in the energy-phase representation, because it corre-
sponds to uniform phase rotation at all sites, and the energy-phase representation considers
only phase di↵erences between adjacent sites and hence is insensitive to phase rotations of
the whole system. The leading order term in the small positive eigenvalue �2 has the same
form as we derived in equation (34), if we set N = 2 in that formula, as expected.

In Appendix B, we derive an approximation to the time evolution of the metastable state
using the Ansatz that the solution maintains the relation E1(t) � E2(t) =

p
E(t)2 � ✏2

resulting in an expression for the phase shift:

sin =
�

2
p
E2 � ✏2

(62)

Note that this is only an approximation to the solution - this value of  will not satisfy
the equation for  ̇. However Figure 4 shows that it is a very accurate approximation when
E & |✏|.

This result can then be used to calculate an approximation to the time evolution of the
energy with initial energy E(0) = E0:

E(t) ⇡
|✏|

2

0

@
q
�W�1

�
�e�1+4�(t�⌧)

�
+

1q
�W�1

�
�e�1+4�(t�⌧)

�

1

A (63)
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HereW�1 is the�1 branch of the product logarithm, and ⌧ is the time for which limt!⌧ E(t) =
|✏| and is given by:

⌧ =
1

2�

 
E0

E0 +
p
E

2
0 � ✏2

✏2
� ln

 
E0 +

p
E

2
0 � ✏2

|✏|

!
� 1

!
(64)

If (63) was exact, ⌧ would be the time when E = |✏|, corresponding to the bifurcation for
the undamped system, therefore the solution would be valid up until ⌧ . Since this is not
the case, ⌧ instead serves as an approximation for the time at which (63) stops working. In
fact, the approximation stops working a small amount of time before ⌧ . This is expected

since (62) does not make sense for E >

q
✏2 �

�2

4 due to the domain of the arcsin.

Figure 4 shows the e↵ectiveness of the approximation. E0 was chosen so that it coincided
with the initial energy of the graphs in the previous sections, leading to ⌧ = 4700.8.
The energy was graphed for longer than ⌧ to identify the behaviour after it leaves the
breather, while the phase di↵erence was graphed for less than ⌧ since the expression for
the approximation explodes due to the singularity in the arcsin. After this, the behavior of
the solution is governed either by (84) or (85). Note that by approximating the energy of
the solution by the expression for the energy of the breather in (87) we are assuming that
this approximation moves along the family of breathers and from Figure 4 we again see
that this scenario accurately reproduces the observed numerical behavior of the solution
of the system.

6 Summary and Conclusions

In this paper we have derived a new family of periodic solutions of the damped and driven
discrete nonlinear Schrödinger equation. We have derived approximations to these solutions
and analyzed their stability. We have also proposed an explanation for the appearance of
very long-lived metastable states in the phase space of weakly damped lattice systems in
which the trajectory is attracted to a cylinder of such breathers and then drifts very slowly
along the cylinder of breathers until this family of solutions disappears. We suspect that the
disappearance occurs near a bifurcation of the undamped system. Finally, we have shown
that certain aspects of the metastable states are better approximated by these damped
and driven breathers than by the breather solutions of the undamped lattice system.
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Figure 4: Graphs of the total energy and the phase di↵erence for E0 = 0.505, ✏ = �0.1, � =
0.005. (a) Is the total energy graphed from t = 0 to t = ⌧ + 300 ⇡ 5000 and (b) is the
phase di↵erence graphed from t = 0 to ⌧ � 100 ⇡ 4600.
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Appendix A Proof of Theorem 2

In this appendix, we apply the implicit function theorem to establish the existence of
the breather solutions discussed in Theorem 2. We begin by defining a function whose
components are the equations for ṗj and q̇j . Thus, we set

fj(p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = (65)

= ✏(qj+1 + qj�1 � 2qj) + !qj � (p2j + q
2
j )qj

fj+N (p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = (66)

= �✏(pj+1 + pj�1 � 2pj)� !pj + (p2j + q
2
j )pj ,

for j = 2, 3, . . . N � 1, and

fN (p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = (67)

= ✏(qN�1 � qN ) + !qN � (p2N + q
2
N )qN � �pN

f2N (p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) = (68)

= �✏(pN�1 � pN )� !pN + (p2N + q
2
N )pN � �qN .
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Defining

F (p2, p3, . . . , pN , q2, q3, . . . , qN ; ✏,!, �, p1, q1) =

= (f2, f3, . . . , fN , fN+2, fN+3, . . . , f2N ) , (69)

we see that F : R2(N�1)
⇥R5

! R2(N�1) and that F (0, 0, . . . , 0; 0, 1, 0, 1, 0) = 0. Computing
the Jacobian at this fixed point gives:

D(p̃,q̃)F =

✓
0 1
�1 0

◆
(70)

where p̃ = (p2, . . . , pN ), q̃ = (q2, . . . , qN ), and where 0 represents and (N � 1) ⇥ (N � 1)
matrix of zeros and 1 represents an (N � 1)⇥ (N � 1) dimensional identity matrix.

Thus, by the Implicit Function Theorem, for every ✏, �, q1 su�ciently close to zero and
every ! and p1 su�ciently close to 1, there exists (a unique) p

⇤
2, . . . , p

⇤
N , q

⇤
2, . . . , q

⇤
N such

that
F (p⇤2, p

⇤
3, . . . , p

⇤
N , q

⇤
2, q

⇤
3, . . . , q

⇤
N ; ✏,!, �, p1, q1) = 0 . (71)

Furthermore, the solution (p⇤2, . . . , p
⇤
N , q

⇤
2, . . . , q

⇤
N ) depends smoothly (in fact, analytically)

on (✏,!, �, p1, q1).

Finally, consider the two equations for ṗ1 and q̇1. In order to have a fixed point, we need

f1(✏,!,�, p1, q1, p2, q2) = (72)

= ✏(q2 � q1) + !q1 � (q21 + p
2
1)q1 + �p1 = 0

fN+1(✏,!,�, p1, q1, p2, q2) = (73)

= �✏(p2 � p1)� !p1 + (q21 + p
2
1)p1 + �q1 = 0

By rotational invariance, we choose q1 = 0. Then, inserting the solutions q
⇤
2 and p

⇤
2 from

above, from the requirement that f1 = 0, we see that we must have

�p1 = �✏q
⇤
2 , (74)

while the requirement that fN+1 = 0 implies

�✏(p⇤2 � p1)� !p1 + p
3
1 = 0 . (75)

Using the implicit function theorem, and the fact that p⇤2 depends smoothly on p1, we see
that there exists a solution p

⇤
1 of (75), for ! near 1 and � and ✏ su�ciently small which

satisfies (p⇤1)
2 = ! + O(✏). Inserting this into (74), we see that there is a unique value of

� (depending smoothly on ✏, �, and !), such that we have a damped and driven breather
near the (1, 0, 0, . . . , 0) breather, for each value of ! near one and ✏ and � su�ciently small.
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Appendix B Detailed analysis of the two site system

The simplicity of the two-site system allows for a more global investigation of the phase
space. Once again, the analysis is better suited to using the energy-phase equations rather
than expressing the system in the p, q coordinates, and the energy-phase equations for the
two-site system give the simple system of three ODEs:

Ė1 = 2✏
p
E1E2 sin + 2�E1 (76)

Ė2 = �2✏
p
E1E2 sin � 2�E2

 ̇ = 2(E2 � E1)

✓
1 + ✏

cos 

2
p
E1E2

◆

For the undriven-undamped, two-site system, (i.e. � = � = 0), all breather solutions were
found in [32] and in our notation they take the form:

E
(1)
1 = 1

2E E
(1)
2 = 1

2E  
(1) = 0 (77)

E
(2)
1 = 1

2E E
(2)
2 = 1

2E  
(2) = ⇡ (78)

E
(3)
1 = 1

2

⇣
E +

p
E2 � ✏2

⌘
E

(3)
2 = 1

2

⇣
E �

p
E2 � ✏2

⌘
 
(3) = ⇡ (79)

E
(4)
1 = 1

2

⇣
E �

p
E2 � ✏2

⌘
E

(4)
2 = 1

2

⇣
E +

p
E2 � ✏2

⌘
 
(4) = ⇡ (80)

when ✏ > 0 with similar expressions for ✏ < 0. For each of these breathers, we can calculate
the angular frequency ! from E. The values are !(1) = E,!

(2) = E + 2✏,!(3) = !
(4) =

2E + ✏. The third breather is the one close to the metastable states discussed so far.

These breathers continue to the damped and driven setting , and again, one can derive
explicit formulas for them by calculating the fixed points of (76) - for example, if 0 <

� << �, and �� < ✏
2, the family of breathers E

(3), continues to a family of the form
described by (60) (Note that to compare these formulas with those derived for the general
N -site damped and driven breather, one should first fix � and ✏ and then choose � so that

E
(3)
1 = 1/2, since those breathers were chosen to be close to the breather with p1 = 1 and

all other components zero.)

If we linearize energy-phase system system (76) about this breather, the Jacobian matrix
takes the form:
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0

@
� �� �("2 � ��)
� �� ("2 � ��)

�1 + �
� 1� �

� � � �

1

A (81)

Using Mathematica to derive series approximations for the solutions of the characteristic
polynomial, we find the eigenvalues of the linearization are the eigenvalue �2, given by (61)
and:

�3 = ��

✓
1 +

⇣
✏

!

⌘2
+O(✏4)

◆
+ i
�
! +O(✏2)

�
(82)

�4 = ��

✓
1 +

⇣
✏

!

⌘2
+O(✏4)

◆
� i
�
! +O(✏2)

�
(83)

These two eigenvalues are close to ±i!, but with strictly negative real part, proportional
to �, as expected. An important fact to notice is that if we instead find the linearization
about this fixed point using the p, q coordinates, we obtain the same eigenvalues �2,�3,�4,
with an added 0 eigenvalue corresponding to the invariance with respect to rotations about
the cylinder of breathers.

For |✏| >> � > 0 but � = 0, the breathers disappear but they can be used to help find
approximate solutions of the damped problem, and to understand its metastable behavior.
For example, if we make the Ansatz that E1(t) = E2(t) for all time, and substitute this
into the equations of motion we find exact solutions:

E1(t) =
1
2E0e

��t
E2(t) =

1
2E0e

��t
 (t) = � arcsin

⇣
�

2✏

⌘
(84)

E1(t) =
1
2E0e

��t
E2(t) =

1
2E0e

��t
 (t) = �⇡ + arcsin

⇣
�

2✏

⌘
(85)

where E0 = E1(0)+E2(0) is the initial total energy, and ✏ > 0. One has similar expressions
when ✏ < 0. These are the states corresponding to (77) and (78) respectively, with only
the first of these being stable.

We can use a similar argument to approximate the e↵ects of initial conditions close to the
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solution E
(3) of (77). First, di↵erentiate d

dtE
(3)
1 and d

dtE
(3)
2 :

d

dt
E

(3)
1 =

1

2
Ė

✓
1 +

E
p
E2 � ✏2

◆

d

dt
E

(3)
2 =

1

2
Ė

✓
1�

E
p
E2 � ✏2

◆

Using Ė = Ė1 + Ė2 = �2�E2, and considering E1 = E
(3)
1 , E2 = E

(3)
2 , we set:

d
dtE

(3)
1 �

d
dtE

(3)
2 = Ė1 � Ė2 = �2✏

p
E1E2 sin � (2✏

p
E1E2 � 2�E2) (86)

Solving for sin we get (62). However, if we calculate  ̇ from this expression, it will not
match the expression in the equations of motion, meaning that the solution is not exact.
This is expected due to the metastability of the state, the solution cannot be described
by these equations for all time. Numerically, the above expression provides a very good
approximation for long time. Recall that for this breather !(3) = 2E + ✏, so calculating
the leading order in  we find  = �

! + . . . , which is identical to the value of the twist in
the damped and driven breather from Theorem 3. This is further evidence of the fact that
the damped and driven breathers provide a better approximation to the metastable states
than do the undamped breathers.

We also obtain an approximation to the time evolution of the energy through:

Ė = �2�E2 ⇡ �2�E(3)
2 = ��

⇣
E �

p
E2 � ✏2

⌘
(87)

If the system starts with initial total energy E0, an approximate expression we simply solve
the integral:

Z E(t)

E0

dx

x�
p
x2 � ✏2

= ��t (88)

If we set the upper limit to be ✏ and the right hand side to be ��⌧ , we obtain (64), using
the indefinite integral:

Z
dx

x�
p
x2 � ✏2

=
1

2

"
x
x+

p
x2 � ✏2

✏2
� ln

⇣
x+

p
x2 � ✏2

⌘#
(89)

To obtain (63), it is worth defining:

f(t) = E(t) +
p

E(t)2 � ✏2 (90)
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Then, evaluating the indefinite integral (89) at E(t), E0, will lead to an algebraic equation
in f(t):

4�t� 2
E0

✏2
+ 1 = �

✓
f(t)

✏

◆2

+ ln

 ✓
f(t)

f(0)

◆2
!

(91)

Which can be shown to solve to:

f(t) = ✏

q
�W�1(e�1+4�(t�⌧)) (92)

From where (63) is derived, and ⌧ defined as in (64). To get that the branch of the product
logarithm, we take the limit:

lim
t!0

E(t) = E0 (93)

References

[1] Jean-Pierre Eckmann, Claude-Alain Pillet, and Luc Rey-Bellet. Entropy production in
nonlinear, thermally driven Hamiltonian systems. J. Statist. Phys., 95(1-2):305–331,
1999.

[2] Stefano Iubini, Stefano Lepri, Roberto Livi, Antonio Politi, and Paolo Politi.
Nonequilibrium Phenomena in Nonlinear Lattices: From Slow Relaxation to
Anomalous Transport, pages 185–203. Springer International Publishing, 2020.

[3] C. Danieli, D. K. Campbell, and S. Flach. Intermittent many-body dynamics at
equilibrium. Phys. Rev. E, 95:060202, June 2017.

[4] Carlo Danieli, Thudiyangal Mithun, Yagmur Kati, David K. Campbell, and Sergej
Flach. Dynamical glass in weakly nonintegrable Klein-Gordon chains. Phys. Rev. E,
100:032217, Sep 2019.

[5] Martin Hairer and Jonathan C. Mattingly. Slow energy dissipation in anharmonic
oscillator chains. Communications on Pure and Applied Mathematics, 62(8):999–1032,
2009.

[6] Salvatore D. Pace and David K. Campbell. Behavior and breakdown of higher-
order Fermi-Pasta-Ulam-Tsingou recurrences. Chaos: An Interdisciplinary Journal
of Nonlinear Science, 29(2):023132, 2019.

[7] K. Ø. Rasmussen, T. Cretegny, P. G. Kevrekidis, and Niels Grønbech-Jensen. Statis-
tical mechanics of a discrete nonlinear system. Phys. Rev. Lett., 84:3740–3743, Apr
2000.

30



[8] Uri Levy and Yaron Silberberg. Equilibrium temperatures of discrete nonlinear sys-
tems. Phys. Rev. B, 98:060303, Aug 2018.

[9] J.-P. Eckmann and C.E. Wayne. Breathers as metastable states for the discrete NLS
equation. Discrete & Continuous Dynamical Systems - A, 38:6091–6103, 2018.

[10] Sergej Flach and Andrey V. Gorbach. Discrete breathers — advances in theory and
applications. Physics Reports, 467(1):1 – 116, 2008.

[11] J.-P. Eckmann and C.E. Wayne. Decay of hamiltonian breathers under dissiptation.
Comm. Math. Phys., 380:71–102, 2020.

[12] Holger Hennig and Ragnar Fleischmann. Nature of self-localization of Bose-Einstein
condensates in optical lattices. Physical Review A, 87:033605, 2013.

[13] Roberto Livi, Roberto Franzosi, and Gian-Luca Oppo. Self-localization of Bose-
Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett.,
97:060401, Aug 2006.

[14] N. Cuneo, J.-P. Eckmann, and C. Poquet. Non-equilibrium steady state and subgeo-
metric ergodicity for a chain of three coupled rotors. Nonlinearity, 28(7):2397–2421,
jun 2015.

[15] U. Peschel, O. Egorov, and F. Lederer. Discrete cavity solitons. Opt. Lett.,
29(16):1909–1911, Aug 2004.

[16] Jaroslaw E. Prilepsky, Alexey V. Yulin, Magnus Johansson, and Stanislav A.
Derevyanko. Discrete solitons in coupled active lasing cavities. Opt. Lett.,
37(22):4600–4602, Nov 2012.

[17] Nikolaos K. Efremidis and Demetrios N. Christodoulides. Discrete Ginzburg-Landau
solitons. Phys. Rev. E, 67:026606, Feb 2003.

[18] Dirk Hennig. Periodic, quasiperiodic, and chaotic localized solutions of a driven,
damped nonlinear lattice. Phys. Rev. E, 59:1637–1645, Feb 1999.
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